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Abstract

This paper studies the matching of workers within the firm when
the productivity of workers depends on how well they match with their
co-workers. The firm acts as a coordinating device and derives value
from this role. It is shown that a worker’s contribution to firm value
changes over time in a non-trivial way as co-workers are replaced by
new workers.
The paper derives optimal hiring and replacement policies, includ-

ing an optimal stopping rule, and characterizes the resulting equilib-
rium in terms of worker flows, firm output and the distribution of
firm values. Simulations of the model reveal a rich pattern of worker
turnover dynamics and their connections to the resulting firm values
distribution.
The paper stresses the role of horizontal differences in worker pro-

ductivity, which are different from vertical, assortative matching issues.
It derives the rent from organizational capital, with worker complemen-
tarities playing a key role. We compare the model to match-specific
productivity models and explore the essential differences, with the em-
phasis laid on worker interactions and complementarities.
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Matching Workers1

1 Introduction

How does the value of the firm depend on the value of its workers? When one
considers firms that have little physical capital —such as IT firms, software
development firms, investment banks and the like —the neoclassical model
does not seem to provide a reasonable answer. The firm has some value that
is not manifest in physical capital. Rather, Prescott and Visscher’s (1980)
‘organization capital’may be a more relevant concept in this context. One
aspect of the latter form of capital, discussed in that paper, is the formation
of teams and this is the issue taken up in the current paper. We ask how
workers affect each other in production and how this interaction affects
firm value. Garicano and Wu (2012, p.1394) state that “organizational rent
is the economic return to organizational capital...an important theme in
organizational economics that is yet to be explored.” The current paper
offers such an exploration.

The paper studies the value of firms and their hiring and firing decisions
in an environment where the productivity of the workers depends on how
well they match with their co-workers and the firm acts as a coordinating
device. This role of the firm is what generates value.

In the model, match quality derives from a production technology whereby
workers are randomly located on the Salop (1979) circle and depends nega-
tively on the distance between them. It is shown that a worker’s contribution
in a given firm changes over time in a nontrivial way as co-workers are re-
placed with new workers. The paper derives optimal hiring and replacement
policies, including an optimal stopping rule, and characterizes the resulting
equilibrium in terms of employment and the distribution of firm values.

A key result is the derivation of an optimal worker replacement strategy,
based on a productivity threshold that is defined relative to the other work-
ers. The derivation is non-trivial and underlines the importance of worker
complementarities in productivity. Thus the model is not equivalent to one
with idiosyncratic shocks to individual workers or to job-worker pairings.

1We thank Russell Cooper, Jan Eeckhout, Ricardo Lagos, Rani Spiegler and seminar
participants at various conferences and at Yale, the LSE, the Norwegian Business School,
Tel Aviv, Haifa, and IDC for helpful comments on previous versions of the paper, Tanya
Baron and Avihai Lifschitz for very useful suggestions, the UCL and LSE Departments
of Economics for their hospitality, and Tanya Baron for excellent research assistance. We
thank the Foerder Institute for financial support. All errors are our own.
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This replacement strategy, interacted with exogenous worker separation
and firm exit shocks, generates rich turnover dynamics. The resulting firm
values distribution are found to be —using illustrative simulations —non-
normal, with negative skewness and negative excess kurtosis. This shape
reflects the fact that, as firms mature, there is a process of forming good
teams on the one hand and the effects of negative separation and exit shocks
on the other hand.

The paper proceeds as follows: in Section 2 we outline the model. We
describe the set up and delineate the interaction between workers. In Section
3 we derive optimal hiring and firing policy, including a stopping rule, and
study the implications for firm value. In Section 4 we allow for exogenous
worker separation. Section 5 places the model in the context of the literature.
Section 6 discusses key assumptions in light of the results. Section 7 presents
simulations of the model, exploring the mechanisms inherent in it. Section
8 concludes.

2 The Model

In this section we first describe the set-up of the firm and the production
process (2.1). We then define worker interactions and the emerging state
variables (2.2). We subsequently provide stylized facts supporting this way
of modelling (2.3). We end the section (2.4) with a short discussion of
optimal stopping, to prepare for the optimal replacement analysis in the
next section.

2.1 The Set-Up

A firm enters the market by sinking an entry costK. The firm starts offwith
three workers. In each period, a firm faces an exogenous exit probability.
If the firm does not exit, it can replace at most one worker. It does so by
first firing one of the existing workers without recall, and then sampling
— from outside the firm —one worker. Thus, we do not allow the firm to
compare the existing and the sampled worker and hire the more productive
one. We rationalize this by assuming that it takes a period to learn a
worker’s productivity. Replacing a worker is costly. Wages and productivity
distributions are time independent.

The main focus of the paper is horizontal worker heterogeneity. Thus,
although workers are identical from an ex ante perspective, the value of a
worker to a firm is random. More specifically, we assume that how well
workers’team up depends on their personal characteristics, and that these
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characteristics are random at the stage at which the firm decides on whom
to hire.

A common way to model worker heterogeneity, and which we use in this
paper, is to attribute to each worker a location in a metric space, and apply
a distance measure to capture the differences between the workers. In order
to ensure that workers with different locations to be equally attractive in
expected terms, we have to put restrictions on the space in which workers
are located. A common way to obtain this is to assume that a worker has
a location on a Salop (1979) circle and that workers are allocated uniformly
on the circle.2 In this case, the distribution of the distance from a worker
to a co-worker randomly placed on the circle is independent of the worker’s
location. Note that this is not the case if the workers are uniformly allo-
cated on a line segment, in which case a worker at the middle of the segment
on average has a shorter distance to a randomly allocated co-worker than a
worker close to the end point. More generally, in an n dimensional Euclidean
space, an n− 1 dimensional sphere will also have the property that the dis-
tribution of the distance to a randomly placed co-worker will be independent
of a worker’s location on the sphere. However, in this case the distribution
of the distance to a randomly placed co-worker is no longer uniform. In
the discussion section we argue that a higher-dimensional sphere may be a
convenient location space if there are more than three workers.

In what follows we therefore attribute to all workers a position on a Sa-
lop circle, with their placement randomly and independently drawn from a
uniform distribution. Any new worker placement will be drawn indepen-
dently from the same distribution. Note that if two workers are close on the
circle, a third worker will either be close to or far away from both of the
workers. Hence the distances from the third, new worker, to each of the ex-
isting workers are workers are positively correlated. This seems reasonable.
The productivity of a team of workers is assumed to depend negatively on
the distance between the workers.

Let β = 1
1+r denote the discount factor and r the discount rate of the

firm. In the simulations below we let r include a stationary probability of
exiting the market, after which the value of the firm is zero.

2 In a two-dimensional Euclidean space, one may equivalently locate the workers along
the boundary of any simply connected set as long as distance is measured along the
boundary.
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2.2 Workers’Productivity and Interactions

We now turn to a formal description. The three workers are located on the
unit circle. The one in the middle (out of the three) is the j worker who
satisfies

min
j

3∑
i=1

dij (1)

where dij is the distance between worker i and j, and dii = 0. We shall
define two state variables δ1, δ2 as follows:

δ1 = min
i,j

dij (2)

δ2 = min
j
dkj , k 6= i∗, j∗ i∗, j∗ = arg min

i,j
dij (3)

The first state variable δ1 expresses the distance between the two closest
workers. The second state variable δ2 expresses the distance between the
third worker and the closest of the two others.

The following figure illustrates:

1

2

3

1 2

Figure 1: The State Variables

Every period, each worker works together with both co-workers to pro-
duce output. Output depends negatively on the distance between the work-
ers. When measuring the distance between two peripheral workers, we as-
sume that it is measured on the segment that goes through the middle man,
not the other way around the circle (even if that is shorter). Partly this is
meant to capture the structure of a team, that it needs a common ground.
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Partly it is done for convenience, as it simplifies the algebraic expressions
somewhat. It is not important for the results3.

Every period, each worker works together with both co-workers to pro-
duce output. Production yij is negatively related to the distance dij :

yij =
ỹ

3
− dij (4)

The firm’s total output is then given by the linear additive function:

Y = y12 + y13 + y23 (5)

= ỹ −
3∑
i=1

dij

The firm’s total output is written as a linear additive function:

Y = ỹ − 2(δ1 + δ2) (6)

In the baseline case we assume that wages are independent of match
quality. This is consistent with a competitive market where firms bid for ex
ante identical workers prior to knowing the match quality. The profits (π)
of the firm are then given by:

π = Y −W (7)

= ỹ − 2(δ1 + δ2)−W
= y − 2(δ1 + δ2)

where W is the total wage bill and y is production net of wages (ỹ −W ).
Within a period, the firm cannot fire the workers. Hence it will produce

as long as output is positive. We will assume that this is always the case.
Furthermore, the firm may want to exit the market endogenously if δ1 is
suffi ciently high. In what follows we rule this out by assumption. Below we
show that in equilibrium it will never be optimal to exit the market or halt
production after a bad draw if K > 4(1 + r)/3r. Allowing for firm exit after
a bad draw is trivial, though cumbersome, and does not add interesting new
results.

3 In an earlier version of the paper, we assumed that the distance between the peripheral
workers were always measured along the shortest line segments. All the results still prevail.
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As already mentioned, the firm can replace up to one worker each period,
at a cost c, incurred in the following period. It replaces the worker who is
further away from the middle worker. The new values δ′1 and δ

′
2 are random

draws from a distribution that depends on δ1. We write (δ′1, δ
′
2) = Γδ1.

Figure 2 illustrates, how, without loss of generality, workers 1 and 2, who
are not replaced, are situated symmetrically around the north pole:

Figure 2: Incumbent Workers

From Figure 2 it follows that Γ can be characterized as follows:

1. With probability 1− 3δ1, δ′1 = δ1 and δ′2 ∼ unif [δ1,
1−δ1

2 ]

2. With probability 2δ1, δ′1 ∼ unif [0, δ1] and δ′2 = δ1

3. With probability δ1, δ′1 ∼ unif [0, δ1/2] and δ′2 = δ1 − δ′1

Note that the transition probabilities, and hence continuation values
when replacing, are a function of δ1 and thus are independent of δ2. Hence
only δ2 influences continuation values in states where the firm is not re-
placing. That is, as follows from the definition of profits (equation 7), the
continuation value of inaction is a function of (δ1 + δ2).

2.3 Microeconomic Stylized Facts

The afore-going set-up aims at capturing properties that have been found
in empirical micro-studies of team production and complementarities within
firms. To note just a few examples: Hamilton, Nickerson and Owan (2003)
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find that teamwork benefits from collaborative skills involving communica-
tion, leadership, and flexibility to rotate through multiple jobs. Team pro-
duction may expand production possibilities by utilizing collaborative skills.
Turnover declined after the introduction of teams. Bresnahan, Brynjolfsson
and Hitt (2002) study U.S. evidence and stress the importance of comple-
mentarities between workplace organization (and organizational changes)
and computerization. Garicano and Wu (2012) discuss how performing com-
plementary tasks leads to the formation of an homogenous team.

A recent study, undertaken by MIT’s Human Dynamics Laboratory, col-
lected data from electronic badges on individual communications behavior
in teams from diverse industries. The study, reported in Pentland (2012),
stresses the huge importance of communications between members for team
productivity. In describing the results of how team members contribute to a
team as a whole, the report actually uses a diagram of a circle (see Pentland
(2012, page 64)), with the workers placed near each other contributing the
most. The findings state that face to face interactions are the most valu-
able form of communications, much more than email and texting, thereby
emphasizing the role of physical distance.

2.4 A Detour: One-Dimensional Optimal Stopping

Before we continue, we will briefly examine our model with only two workers.
Our model then collapses to an optimal stopping model as in McCall (1970).
It can also be viewed as a simplified version of the Jovanovic (1979 a,b)
model, where the entrepreneur learns the worker type after one period.4

The owner of a firm needs two workers to produce. Analogous with the
two-period case, we assume that per period output net of wages is given by
y − ε. Let V (ε) denote the value function of the firm. After each period,
the firm decides whether it will replace one of the workers (which one is
arbitrary). If no worker is replaced, the NPV pay-off from the next period
and onwards is (y − ε)1+r

r . It follows that

V (ε) = y − ε+ maxβ[(y − ε)1 + r

r
, (EV (ε′)− c)]

where the expectation is taken with respect to ε′. It is well known that
the solution of this problem is an optimal stopping rule of the form “stop
replacing if ε ≤ ε for some ε̄,”where ε̄ solves

y − ε
r

=
EV (ε′)− c

1 + r
(8)

4Pissarides (2000, Chapter 6) studies a similar optimal stopping model.
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At ε̄, the firm is indifferent between replacing and keeping one of the work-
ers. If the worker is replaced, the new worker will be within the stopping
region with probability 2ε̄, and the expected distance is ε̄/2. With the com-
plementary probability, the distance exceeds ε̄. The expected value of the
distance is (conditioning on being outside the stopping region) is 1/4 + ε̄/2.
Inserting for V (ε) and manipulating gives that ε̄ solves 5

ε2

r
− (

1

4
− ε)− c = 0 (9)

The first term reflects the expected gain from replacing in terms of lower
distances in all periods if the draw is good. The second term reflects the
cost associated with a higher expected distance next period, and the last
term the pocket cost of replacement. Solving the equation gives

ε =
1

2
r

(√
1

r
(4c+ r + 1)− 1

)

In the next section we employ a similar logic in the more challenging and
essentially different three worker case.

3 Optimal Hiring and Firing with Worker Com-
plementarities

Our aim in this section is to derive an optimal stopping rule for worker re-
placement. With three workers, this problem is more complex than with two
workers. The reason is that the replacement depends not only on the posi-
tion of the middle man, but also on the distance between the two remaining
workers, i.e., how good they are matched. In this section we first show that
a firm’s search rule can be characterized by an optimal stopping rule. Then
we derive this stopping rule. Finally, we close the model by deriving the
wage solution.

5Equation (8) thus reads

y − ε
r

= 2ε
y − ε/2
r

+ (1− 2ε)[y − (1/4 + ε/2) + (y − ε)/r
1 + r

]− c

1 + r

where we again have inserted for (8) on the right-hand side. This expression simplifies to

ε2(1 + r)

r
− (1− 2ε)(1

4
− ε

2
)− c = 0

which simplifies to equation (9).
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3.1 Optimal Stopping

In this subsection we show that the optimal stopping problem can be char-
acterized by a stopping rule of the form “stop searching if δ2 ≤ δ2(δ1).”In
the next subsection we characterize this stopping rule.

Note that the existence of a stopping rule of this form is not obvious. For
example, suppose we formulate the stopping rule in terms of total distance
X = 2(δ1 + δ2) rather than in terms of δ1 and δ2, that is, stop if X ≤ X̄
for some X̄ > 0. Such a stopping rule cannot be optimal. To see this,
note that (i) for a given X, the pay-off if stopping is independent of the
decomposition of X into δ1 and δ2, and (ii) the pay-off if replacing for a
given X is decreasing in δ1 (see below). Hence it cannot be optimal to apply
a stopping rule under which stopping depends only on total distance.

By the logic of equation (8), note that in the stopping region, we have
that

V (δ1 + δ2) = (y − 2(δ1 + δ2))
1 + r

r
(10)

Outside the stopping region, the continuation value depends only on δ1.
Define V (δ1) ≡ EV (δ′1, δ

′
2)|δ1 as the expected continuation value if the firm

chooses to replace. The value function in the case of replacement can then
be written as:

V (δ1, δ2) = y − 2(δ1 + δ2) + βV̄ (δ1) (11)

We start by showing an important property of the value function.

Lemma 1 V (δ1 + ∆) > V̄ (δ1)− 2∆1+r
r

Proof. Consider replacement in two cases in which the distances between
the remaining workers are δ1 and δ1 + ∆, respectively. We refer to the two
cases as the δ1-case and the δ1 +∆-case, respectively. The expected pay-offs
only depend on the distances between the agents, and not on their exact
location on the circle. Without loss of generality, we can therefore assume
that in both cases, the two workers are located symmetrically around the
north pole, and that the draw of the new worker is the same in the two
cases. In what follows we assume that the firm in the δ1 + ∆ case follows
exactly the same replacement strategy as the firm in the δ1 case (replaces the
worker on the left hemisphere whenever the optimal strategy in the δ1 case
prescribes so, the same for the worker on the right hemisphere, and stops
searching after the same draws of location). We refer to it as the replication
strategy. This is clearly in the choice set of the firm. Hence if we can show
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that the replication strategy gives the firm in the δ1 + ∆ case a profit that
is strictly greater than V̄ (δ1)− 2∆1+r

r , the proof is complete.
Let δn1 and δ

n
1∆ denote the state variable in the two cases after n periods,

and let ∆n ≡ δn1 − δn1∆. Define δ
n
2 and δ

n
2∆ correspondingly. Consider first

the case with n = 1. Let ∆δtot be defined as ∆δtot ≡ δ1
1∆ + δ1

2∆ − δ1
1 − δ1

2.
It follows that the difference in output the first period after replacement is
equal to 2∆δtot. There are three possibilities:

(i) The new worker is located below the workers in the δ1 + ∆ case, as
in area A of Figure 3. It follows that ∆δtot = ∆/2, and hence that the
difference in per period output is ∆.

(ii) The new worker is located between the workers in the δ1 case, as in
area C of the figure. Then ∆δtot = ∆, and the difference in output is 2∆.

(iii) The new worker is between a worker in the δ1 and the δ1 + ∆ case
(on the same side), as in area B of the figure. Then ∆δtot ∈ [∆/2,∆], and
the difference in output is in the interval [∆, 2∆].

Hence the difference in output the next period is at most 2∆, and with
strictly positive probability it is strictly less than 2∆. It follows that the
expected difference in output next period is strictly less than 2∆. This is
a general property of replacement. Hence if we can show that ∆n ≤ ∆ for
all n with the replication strategy, it follows that the profit in the δ1 + ∆
case under the replication strategy is strictly higher than V̄ (δ1)−2∆1+r

r , in
which case the proof is complete.

If the firm in the δ1 + ∆ case follows the replication strategy, it will in
all future periods have either two, one or zero workers in a different location
than in the δ1-case. The corresponding values for ∆n are either ∆ (if both
workers are in different locations), ±∆/2 (if only one of the workers is in
a different location) or 0 (if none of the workers is in a different location).
Hence ∆n ≤ ∆ for all n, and this completes the proof.
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Figure 3: Lemma 1

The lemma captures the essence of replacement: it makes a bad draw
less costly than without replacement, since the firm can always make a new
draw. For any δ1, δ2, let D(δ1, δ2) denote the value of replacing less the
value of stopping, i.e., from equation (10) and (11),

D(δ1, δ2) ≡ y − 2(δ1 + δ2) + βV̄ (δ1)− (y − 2(δ1 + δ2))
1 + r

r

= βV̄ (δ1) + 2(δ1 + δ2)
1

r
− y1

r
(12)

Lemma 2 Consider the case in which δ1 = δ2 = δ′. There exists a unique
δ∗ such that the firm does not replace if and only if δ′ ≤ δ∗.

Proof. First, note that if δ′ is suffi ciently small, the firm will not replace.
This follows from the fact that the gain from replacing is at most 2δ′/r,
which is smaller than the direct cost c for suffi ciently low values of δ′. Now
from equation (12) we have that

D(δ′, δ′) = βV̄ (δ′) + 4δ′
1

r
− y1

r

From Lemma 1 it follows that the right-hand side is strictly increasing in
δ′. Hence the equation D(δ′, δ′) = 0 has at most one solution. The Lemma
thus follows.

With these two lemmas in hand, we can easily prove the following propo-
sition:
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Proposition 3 Existence of an optimal stopping rule: Let δ∗1 be de-
termined as in Lemma 2. Then if δ1 > δ∗1, the firm replaces. For any δ1 ≤ δ∗1
there exists a value δ̄2(δ1) such that the firm will stop replacing if and only
if δ2 ≤ δ̄2(δ1). Furthermore, δ̄2(δ1) is strictly decreasing in δ1.

Proof. Since D(δ1, δ2) is strictly increasing in both arguments, it follows
from Lemma 2 that the firm does not replace δ1 ≤ δ2 ≤ δ∗1, while it does
replace if δ∗1 ≤ δ1 ≤ δ2, with one of the inequalities being strict. Hence it
is suffi cient to show that for any δ1 ≤ δ∗1, there exists a unique δ̄2(δ1) such
that the firm stops replacing if and only if δ2 ≤ δ̄2(δ1) (where δ̄2(δ1) may
be equal to 1

2 − δ1 in which case the firm never replaces). However, this
follows directly from the fact that D is increasing in δ2.

The optimal stopping is implicitly defined by the equation D(δ1, δ2) = 0.
Since D is strictly increasing in both argument, it follows that δ̄2(δ1) is
strictly decreasing in δ1.

The finding that δ̄2(δ1) is strictly decreasing in δ1 deserves a comment.
At δ1 = δ∗1, δ̄2(δ∗) = δ∗1. As δ1 decreases below δ∗1, δ̄2(δ1) increases above δ∗1.
This rules out the possibility of a non-monotonicity in stopping behaviour,
in the sense that a good draw that reduces δ1 makes the firm more choosy
and induces it to replace more. Appendix A shows the full derivation of δ∗.

As will become clear below, a firm will replace for large values of δ1

provided that r and c are not too big.

3.2 Characterizing the Stopping Rule

In this section we will characterize δ2(δ1). Now

V (δ1, δ2) = π(δ1, δ2) + βmax[V (δ1, δ2), V (δ1)− c] (13)

= y − 2(δ1 + δ2) + max[
y − 2(δ1 + δ2)

r
,
V (δ1)− c

1 + r
]

It follows directly from proposition 4 in Stokey and Lucas (1989, p.522)
that the value function exists. By definition the optimal stopping rule must
satisfy

V (δ1, δ2(δ1)) = V (δ1)− c

Or (from equation ( 13))

y − 2(δ1 + δ2(δ1))

r
=
V (δ1)− c

1 + r
(14)
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Let E|x denote the expectation conditional on x. Intuitively, the expected
value of replacement, V (δ1) , is given by:

V (δ1) = y − 2 · E|δ1
(
δ′1 + δ′2

)︸ ︷︷ ︸
(1) : expected flow output

after replacement

(15)

+ Pr(δ′2 ≤ δ2(δ′1))︸ ︷︷ ︸
(2) : probability of

stopping

· y − 2 · E|δ1,δ′2≤δ2(δ′1)(δ′1 + δ′2)

r︸ ︷︷ ︸
(3) : expected discounted value
if stopped after replacement

+

+ Pr(δ′2 > δ2(δ1))︸ ︷︷ ︸
(4) : probability of
replacing again

· V (δ1)− c
1 + r︸ ︷︷ ︸

(5) : expected discounted value
if replacing again

There are two important points about this equation:
(i) The probability of stopping (2) includes the possibility that the small-

est distance δ1 has changed to δ′1, and the expected value if stopped (3) takes
this into account.

(ii) The probability of replacing again (4) and the expected discounted
value if replacing again (5) build on the fact that repeated replacement can
occur when the smallest distance between the workers remained the same
(follows from Lemma 1 in the previous section).

We will show that equation (15) can be expressed as

V (δ1) = y − (
1

2
+ δ1) (16)

+
(δ1 + 2δ2)y − 2δ2(2δ1 + δ2)− 2δ2

1

r

+(1− δ1 − 2δ2)
V (δ1)− c

1 + r

1. First we show that expected flow output (1) from equation 15 is

y − 2 · E|δ1
(
δ′1 + δ′2

)
= y− (1

2 + δ1 +
δ21
2 ). Consider Figure 2. The following

is true:

• With probability 2 ·
(

1
2 −

δ1
2

)
the new worker falls outside the arc

between the two incumbents (to the left or to the right), and the
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expected sum of distances between all workers in this case will be

2
(
δ1 + 1

2 ·
(

1
2 −

δ1
2

))
• With probability δ1 the new worker will fall between the two incum-
bents, and the total sum of distances between all workers will be 2δ1

Summing up, the total expected sum of distances between all workers
after replacement is:

2 · E|δ1
(
δ′1 + δ′2

)
= 2 ·

(
1

2
− δ1

2

)
· 2 ·

(
δ1 +

1

2
·
(

1

2
− δ1

2

))
+ δ1 · 2δ1 =

=
1

2
+ δ1 +

δ2
1

2

2. Then we show that the probability of stopping (2) and the expected
discounted value if stopped (3) in equation 15 above is:

Pr(δ′2 ≤ δ2(δ′1))·y − 2 · E|δ1,δ′2≤δ2(δ′1)(δ′1 + δ′2)

r
=

(δ1 + 2δ2)y − 2δ2(2δ1 + δ2)− 2δ2
1

r

• With probability δ1 the new worker will fall between the two incum-
bents, in which case the firm will stop. The total sum of distances
between the workers in this case will be 2δ1. The expected discounted
value in this case will be y−2δ1

r

• With probability 2δ2 the new worker falls outside the two incumbents
and below the threshold, and the firm will stop. The expected distance
between the new worker and the closest incumbent is δ2

2 , so that the
expected total sum of distances between the workers in this case will

be 2 ·
(
δ1 + δ2

2

)
.The expected discounted value in this case will be

y−2δ1−δ2
r

Summing up:

Pr(δ′2 ≤ δ2(δ′1)) · y − 2 · E|δ1,δ′2≤δ2(δ′1)(δ′1 + δ′2)

r

= δ1 ·
y − 2δ1

r
+ 2δ2 ·

y − 2δ1 − δ2

r

=
(δ1 + 2δ2)y − 2δ2(2δ1 + δ2)− 2δ2

1

r
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3. Finally we show that

Pr(δ′2 > δ2(δ1))
V (δ1)− c

1 + r
= (1− δ1 − 2δ2)

V (δ1)− c
1 + r

This comes from the fact that with probability (1−δ1−2δ2) the new worker
is above the δ2 threshold. The firm will keep replacing and pay the cost c
again.
We have thus fully derived equation (16).

Let us write:

(δ1 + 2δ2)y − 2δ2(2δ1 + δ2)− 2δ2
1

= (δ1 + 2δ2)(y − 2(δ1 + δ2)) + 2δ
2
2 + 2δ1δ2

Hence we can re-write (16) as follows:

V (δ1) = y − (
1

2
+ δ1 +

δ2
1

2
) (17)

+
(δ1 + 2δ2)(y − 2(δ1 + δ2)) + 2δ

2
2 + 2δ1δ2

r

+(1− δ1 − 2δ2)
V (δ1)− c

1 + r

Substituting out V (δ1) and using (14), gives the rule (see Appendix B for
details):

c+
1

2
+
δ2

1

2
− δ1 − 2δ2 =

2δ1δ2 + 2δ
2
2

r
(18)

This cut-off rule has a very intuitive interpretation:
The LHS of (18) represents net costs of replacing, evaluated at the

threshold (δ2). If not replacing the worker, the total distance is given by
2(δ1+ δ2).When replacing the worker, the firm expects to have a distance

of 1
2 + δ1 +

δ21
2 ,(see derivation of equation 16 above). The firm pays c when

replacing the worker. So the net costs are c+ the expected total distance
with replacement less the total distance without replacement. The net costs
are thus

c+
1

2
+
δ2

1

2
+ δ1 − 2(δ1 + δ2) = c+

1

2
+

δ21

2
− δ1 − 2δ2
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which is the LHS of (18).
The RHS of (18) represents the gains from replacement associated with

lower costs in all future periods if the draw is good.
With probability δ1 the new worker will be between the two existing

workers who have a distance of δ1 between them. The total distance between
the three workers is 2δ1. Existing total distance is 2(δ1 +δ2), and the savings
in distance is thus 2δ2. Multiplying this with the probability of the event, δ1,
gives the first term in the nominator of the RHS of (18).

With probability 2δ2 the worker is not between the existing workers but
within a distance of δ2 from one of them. The expected distance of the
new worker to the nearest existing worker is δ2/2 and to the other existing
worker it is δ1 + δ2/2. The per period cost savings is thus

2(δ1 + δ2)− [δ1 +
δ2

2
+ (δ1 +

δ2

2
)] = δ2

Multiplying this with the probability of the event 2δ2 gives the second term
of the RHS of (18).

We see from equation (18) that an increase in δ1 reduces the net cost of
replacing (reduces the left-hand side) and increases the gain of replacement
(the right-hand side) This means that the higher is δ1 the worse is the team
and the more the firm is willing to replace. Thus δ2(δ1) is declining, as
shown previously. The intuition for optimal behavior is simple. The gain
from replacing is higher the higher is δ1 (for a given δ2), as the higher is
the probability that an improvement will take place, and the higher is the
expected gain given that an improvement takes place.

Not surprisingly, the optimal stopping rule is independent of the pro-
ductivity level ỹ, and hence also of the wage level W . For later reference we
formulate this as a corollary

Corollary 4 The optimal stopping rule is independent of the wage level and
the overall productivity of the firm

3.3 Turnover Dynamics With Optimal Stopping

The following figure illustrates this optimal behavior:
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Figure 4: Optimal Policy

The space of the figure is that of the two state variables, δ1 and δ2. The
feasible region is above the 45 degree as δ2 ≥ δ1 by definition. The downward
sloping line shows the optimal replacement threshold δ2 as a function of δ1.

With the replacement of a worker, the firm may move up and down a
vertical line for any given value of δ1 (such as movement between A, B and
C or between D, E and F). If the replacement implies a lower value of δ1,
this vertical line moves to the left. This is what happens till the firm gets
into the absorbing state of no further replacement in the shaded triangle
formed by the δ∗1 = δ2(δ∗1) point, the intersection of δ2(δ1) line with the
vertical axis, and the origin (δ1 = δ2 = 0).

The following properties of turnover dynamics emerge from this figure
and analysis:

(i) At the NE part of the δ1− δ2 space, δ1, δ2 are relatively high, output
is low, and the firm value is low. Hence the firm keeps replacing and there is
high turnover. Note that some workers may stay for more than one period in
the firm when in this region. The dynamics are leftwards, with δ1 declining,
but δ2 may move up and down.

(ii) Above the δ2(δ1) threshold, left of δ∗1, newcomers may still be re-
placed, but veteran workers are kept.
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(iii) In the stopping region there is concentration at a location which is
random, with a flavor of New Economic Geography agglomeration models.
Thus firms specialize in the sense of having similar workers. There is no
turnover, and output and firm values are high.

(iv) Policy may affect the regions in δ1− δ2 space via its effect on c. The
discount rate affects the regions as well.

(v) These replacement dynamics imply that the degree of complemen-
tarity between existing workers may change. This feature is unlike the con-
tributions to the match of the agents in the assortative matching literature,
where they are of fixed types.

Our main purpose in this paper is to study replacement, and this can be
done in partial equilibrium. Still, for completeness we demonstrate in the
appendix how the model can be closed by endogenizing the wage w (in the
case where w is a competitive wage and not a bargained wage) and pin it
down by a free entry condition.

4 Wage bargaining

In this section we assume that wages are determined by bargaining. In each
period, after the worker type is observed, the agents bargain over wages.
In order to make the bargaining game tractable, we make some simplifying
assumptions. First, we assme that the bargaining games in different periods
are independent. Hence, bargaining in a given period is essentially over
the output in that period. We also assume that the replacement decision
is determined unilaterally by the firm, like in the standard right-to-manage
model of employment and wage bargaining. Since wages in future periods
are independent of wages in the current period, there is no reason why the
firm should let current wages influence the replacement decision. We assume
that the middle man is chosen before the bargaining starts.

Suppose first that the output of the bargaining game coincide with the
agents’ Shapley values.6 The value of a any subset of the three workers
without the firm is zero. Given our production function, the value of one
worker and a firm is zero. The value of having two workers ij is yij . With
all workers present, the output is given by y12 + y13 + y23. In the appendix

6Brugerman et al (2017) show that the Shapley values are the limit equilibrium pay-offs
in the Rolodex game. In this game, the firm bargains with the workers sequencially. If
a proposal is rejected, the worker is placed at the end of the queue of workers unless the
match is destroyed for exogenous reasons. They show that as the probability of exogenous
destruction goes to zero, the pay-offs of the Rolodex game converges to the Shapley values.
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we show that the Shapley value of the firm is (y12 + y13 + y23)/3 = Y/3,
while the Shapley value of worker i is

∑
j=1,j 6=i yij/3. The per period profit

of the firm is thus (from 6)

πS(δ1, δ2) =
1

3
[ỹ − 2(δ1 + δ2)]

7

In addition to, or as a generalization of the Shapley values, we will
analyze the following wage bargaining game. Suppose the firm has three
agents that bargain which each of the workers separately, without getting
information on the bargaining outcome in the other games. Hence in each
game, the agent and the worker bargain under the presumption that the
bargaining outcome in the other bargaining games will be the equilibrium
outcome. If an agreement is not reached, the worker will not receive any
income that period, while the replacement decision and the pay-off in the
following periods will be unaffected. Without loss of generality, let worker
2 be the middle man, worker 1 the worker closest to the middle man, and
worker 3 the worker most distant to the middle man. Define the marginal
value of worker i, Si, as the value of production with all workers present less
the value of production with all workers but worker i present. The marginal
contribution is thus y12+y13 for worker 1, and defined accordingly for worker
2 and 3. Hence the It follows that (recall that y is output net of wages and
ỹ output not subtracting wages when distances are zero)

S1 = [ỹ − 2(δ1 + δ2)]− [y23 − δ2] = ỹ − y23 − 2δ1 − δ2 =
2

3
ỹ − 2δ1 − δ2

S2 = [ỹ − 2(δ1 + δ2)]− [y13 − δ1 − δ2] = ỹ − y13 − δ1 − δ2 =
2

3
ỹ − δ1 − δ

S3 = [ỹ − 2(δ1 + δ2)]− [y12 − δ1] = ỹ − y12 − δ1 − 2δ2 =
2

3
ỹ − δ1 − 2δ2

Denote by α the share of the surplus that accrue to the worker in each
period. Hence the wage in each period is given by

wi = αSi

It follows that wages are highest for the middle man, second highest for
worker 1 and lowest for worker 3. Note also that the sum of the surpluses

7An interpretation is as follows: the firm has three agents that bargain which each of
the workers separately, without getting information on the bargaining outcome in the other
games. Hence in each game, the agent and the worker bargain under the presumption that
the bargaining outcome in the other bargaining games will be the equilibrium outcome.
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may be larger than total output. This is most clearly seen when δ1 = δ2 = 0.
Then the sum of the surpluses is equal to 2ỹ, while total output is only ỹ.
We require α < 1/2 to ensure that the firm gets a positive profit in total.
Note that the pay-off to the firm is equal to the Shapley value when α = 1/3

By summing up the surpluses, it follows that the per period profit of the
firm now can be written as

π = (1− 2α)ỹ − (1− 2α)[2(δ1 + δ2)]

= (1− 2α)[ỹ − 2(δ1 + δ2)]

It follows that the replacement model with bargaining is isomorphic to a
repacement model without bargaining, but with the productivity ỹ instead
of y and the cost of mismatch to be scaled down with a factor of (1 − 2α).
The next proposition follows immediately:

Proposition 5 Suppose wages are determined by bargaining as described
above, with the workers’ bargaining power is given by α. Then the firms’
replacement behaviour is identical to the firm’s replacement behaviour when
the workers’bargaining power is 0 and the replacement cost is c/(1− α).

To see this, note that the value function with bargaining reads (analogous
to (13)), and with topscript α denoting bargaining power

V α(δ1, δ2) = (1− α)[y − 2(δ1 + δ2)] + max[(1− α)
y − 2(δ1 + δ2)

r
,
V (δ1)− c

1 + r
]

= (1− α)

{
y − 2(δ1 + δ2)] + max[

y − 2(δ1 + δ2)

r
,
V (δ1)− c/(1− α)

1 + r
]

}
which is identical to the value function (13) when the worker’s bargaining
power is zero and the replacement cost is c/(1 − α) except for the scaling
parameter (1− α), which does not influence the replacement decision. The
proposition thus follows.

From equation (18) it follows that the replacement threshold δ̄2(δ1) is
decreasing in c; the higher is the replacement cost, the less the firm replaces.
The corollary follows imediately:

Corollary 6 Suppose c > 0. Then an increase in the worker’s bargain-
ing power α reduces the replacement threshold δ̄2(δ1), and hence leads to
less replacement. If c = 0, then δ̄2(δ1), and hence the firm’s replacement
behaviour, is independent of α.
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The intuition for the result is straight-forward. With wage bargaining,
wages will increase if the match quality increases. Hence the employees
(although not necessarily the current ones) get a share of the surplus if the
match improves, while the firm pays the entire replacement cost c. This is
akin to a hold-up problem, and the firm "underinvest" (replace too little) in
the presence of bargaining. A conjecture of our model is thus that there will
be less replacement in countries in which worker empowerment is strong.

If c = 0, there is no direct cost of replacement. In this case the cost
of replacement is the expected lower match quality next period only. How-
ever, this cost is also scaled down by bargaining. Therefore the replacement
strategy is not distorted in this case.

5 Exogenous Replacement

We now allow, with probability λ, for one worker to be thrown out of the
relationship at the end of every period. If the worker is thrown out, the firm
is forced to search in the next period.8 Thus, if the replacement shock hits,
one of the workers, chosen at random, has to be replaced. The firm can
only hire one worker in any period, and hence will not voluntarily replace
a second worker if hit by a replacement shock. If the shock does not hit,
the firm may choose to replace one of its workers or not. We retain the
assumption that wages are exogenous to the firm.

Suppose one worker is replaced by the firm as above. The transition
probability for (δ1, δ2) was denoted by Γ(δ1), and depends only on δ1. We
refer to this as the basic transition probability.

The forced transition probabilities are the transition probabilities which
occur when one worker is forced to leave, to be denoted by ΓF (δ1, δ2). Which
of the three incumbent workers leaves is random: with probability 1/3 the
least well located worker leaves, in which case the transition probability is
Γ(δ1); with probability 1/3, the second best located worker leaves, in which
case the transition probability is Γ(δ2); with probability 1/3, the best located
worker leaves, in which case the distance between the two remaining workers
is min[δ1 + δ2, 1− δ1− δ2]. It follows that the forced transition probabilities
can be written as

ΓF (δ1, δ2) =
1

3
Γ(δ1) +

1

3
Γ(δ2) +

1

3
Γ(min[δ1 + δ2, 1− δ1 − δ2]) (19)

8With minor adjustments of the model, replacement can be interpreted as a change of
position on the circle of one worker, due to learning to work better with other workers or,
the opposite, the “souring”of relations.
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With exogenous replacement, the probability distributions for δ′1 and δ′2
depend on both δ1 and δ2, not just δ1 as above. The Bellman equation
reads:

V (δ1, δ2) = π(δ1, δ2) + β[λEΓF V1(δ′1, δ
′
2)− c] (20)

+(1− λ)βmax[V (δ1, δ2), V̄ (δ1)− c]

The first term in the bracket shows the expected NPV of the firm if the
firm is hit by a replacement shock. The second term in the bracket shows
the expected NPV if the firm is not hit by a replacement shock. It follows
directly from Proposition 4 in Stokey and Lucas (1989, p. 522) that the
value function exists. Furthermore, due to continuity, we know that the
optimal replacement strategy can be characterized by an optimal stopping
rule provided that λ is small.

6 The Model in the Context of the Literature

The paper bears (limited) similarity to Kremer’s (1993) O-ring production
function model. The similarity pertains to the importance attributed to the
idea of workers working well together. In that model firms employ workers
of the same skill and pay them the same wage. In this set-up quantity
cannot substitute for quality. But the models differ in their treatment of the
matching of workers: in Kremer (1993) there is a multiplicative production
function in workers/tasks and this underlies their complementarity. In the
current paper there is explicit modelling of the match between workers,
formalized as random state variables, which realization elicits the firm’s
optimal worker replacement policy.

The paper stresses the role of horizontal differences in worker produc-
tivity, as opposed to vertical, assortative matching issues. The literature on
the latter —see the prominent contributions by Eeckhout and Kircher (2010,
2011), Shimer and Smith (2000), and Teulings and Gautier (2004)), and the
overview by Chade, Eeckhout, and Smith (2016) —deals with the matching
of workers of different types. Key importance is given to the vertical or hier-
archical ranking of types. These models are defined by assumptions on the
information available to agents about types, the transfer of utility among
workers (or other mating agents), and the particular specification of com-
plementarity in production (such as supermodularity of the joint production
function). In the current paper, workers are ex-ante homogenous, there is
no prior knowledge about their complementarity with other workers before
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joining the firm, and there are no direct transfers between them. In simi-
lar vein, the models of Garicano and Rossi-Hansberg (2006) and Caliendo
and Rossi-Hansberg (2012), whereby agents organize production by match-
ing with others in knowledge hierarchies, stresses the vertical dimension of
worker communication. In terms of those models, the current paper is rel-
evant for the modelling of team formation at a particular hierarchical level.
Thus these approaches are complementary to ours.

The paper has points of contact with papers in the search literature.
We exploit the idea of optimal stopping, as in McCall (1970) and the rich
strand of search literature which followed (see McCall and McCall (2008), in
particular chapters 3 and 4, for a comprehensive treatment). The existing
literature does not cater, however, for the key issue examined here, namely
that of worker complementarities. Conceptually this is an important distinc-
tion, and it allows us to analyze team formation in detail. Technically it also
gives rise to new challenges. Total match quality (or output) depends on
two variables that are stochastic ex ante, the distances from the best placed
worker to each of her two co-workers. At the same time the firm replaces
only one worker at a time. This creates a new dimension to the optimal
stopping problem, which, in contrast to most earlier studies, now depends
on a state variable (the distance between the two closest workers who are
not replaced in a given round). Furthermore, optimal stopping behaviour
depends on this state variable in a non-trivial way, and it is not even obvious
from the outset that a simple optimal stopping rule exists.

Our paper shares some features with the search model of Jovanovic (1979
a,b): there is heterogeneity in match productivity and imperfect informa-
tion ex-ante (before match creation) about it; these features lead to worker
turnover, with good matches lasting longer.9But it has some important dif-
ferences: the Jovanovic model stresses the structural dependence of the sep-
aration probability on job tenure and market experience. There is growth
of firm-specific capital and of the worker’s wage over the life cycle. In the
current model the workers do not search themselves and firms do not of-
fer differential rewards to their workers. But the Jovanovic model does not
cater for the key issue here, namely that of worker complementarities.

Burdett, Imai and Wright (2004) analyze models where agents search
for partners to form relationships and may or may not continue searching
for different partners while matched. Both unmatched and matched agents

9Pissarides (2000, Chapter 6) incorporates this kind of model into the standard DMP
search and matching framework, keeping the matching function and Nash bargaining
ingredients, and postulating a reservation wage and reservation productivity for the worker
and for the firm,respectively.
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have reservation match qualities. A crucial difference with respect to the
current set-up is that they focus on the search decisions of both agents
in a bi-lateral match and stress the idea that if one partner searches the
relationship is less stable, so the other is more inclined to search, potentially
making instability a self-fulfilling prophecy. They show that this set-up can
generate multiple equilibria. In the current paper we do not allow for the
workers themselves to search but rather focus on the main issue, which is
optimal team formation through search by firms.

7 Discussion of the Model

Our model builds on several strong assumptions regarding technology, wage
determination, search behaviour, etc. We turn now to a brief discussion of
these assumptions in light of the analysis.

One important underlying assumption is that workers are horizontally
but not vertically differentiated. From an ex ante perspective, workers are
identical, while ex post the workers may work more or less well together.
Our assumption reflects a view that an interesting part of team formation is
related to horizontal differences, i.e., finding workers who work particularly
well together. Of course finding the correct mix of workers with respect to
productivity (ability, “types”) is also important. As shown in the literature
review, there exists a substantial literature on vertical worker heterogeneity
and search. We view our contribution as complementary to this literature.

Our second assumption is the use of the Salop circle as the set of possible
worker locations. The main reason why we use the Salop circle is that it
conveniently allow the distances from a given worker to a randomly placed
co-worker to be independent of the worker’s location. Hence, this modelling
technique readily implies that the workers’location, ex ante, does not influ-
ence his expected contribution to a team. As already indicated in the text,
this property does not carry over to a location on a line segment. A worker
located close to the middle of the line will on average be closer to randomly
allocated co-workers than a worker located close to the an end point. In ad-
dition, the Salop circle easily captures the notion that if A works well with
B and B with C, then A and C are also likely to work well together. There
may exist other stochastic structures that capture the same type of regu-
larities, but the Salop structure does so in a particularly nice and tractable
way. Note that we could alternatively let output depend positively on the
difference between the workers, in order to capture a love of variety. To
some extent this may be a matter of interpretation of what a good match
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is.
As indicated in the text, another representation which qualitatively cap-

tures the same properties are n − 1 dimensional spheres in n-dimensional
Euclidean space. With this model formulation, the distribution of distances
of a new worker will be non-linear. More importantly, it may be convenient
to choose a higher-dimensional location space if the number of workers in
the team exceeds 3. In a two-dimensional space, it is not clear which of four
workers are more peripheral. On a two-dimensional sphere, there are ways
to deal with this, for example by defining closeness as the area of a circle on
the sphere that contain all three locations. However, it is beyond the scope
of this paper to explore these issues further.

We assume that wages are independent of match quality. As mentioned
above, this is consistent with a competitive market where firms bid for ex
ante identical workers prior to knowing the match quality. An alternative
formulation would be to allow for bargaining, in which case part of the sur-
plus from a good match would be allocated to the worker. This will give rise
to a hold-up problem, if the firm pays the entire cost of replacing the worker
and only gets a fraction less than one of the return in terms of a better
match. The effect will be equivalent to reducing the circumference with a
fraction equal to the workers’bargaining power, and can hence be easily cap-
tured within our framework. The effect will, naturally, be less replacement.
In addition, if the firm is unable to extract the rents going to workers ex
ante through a lower fixed wage, this rent will have to be dissipated in some
other way, for instance through unemployment as in Shapiro and Stiglitz
(1984) and Moen and Rosen (2006). Hence our model in this case may link
worker replacement to the unemployment level. Furthermore, in the present
version of the model, workers have no incentives to do on-the-job search, as
wages are the same across firms. With wage bargaining, workers may have
an incentive to search for a new job, and bargaining may therefore lead to
on-the-job search.

Throughout we have assumed that the effi ciency of a given team stays
constant over time. Although a natural assumption as a starting point,
one may think that the quality of a team may develop over time. As the
workers get to know each other better, their ability to communicate and
collaborate may improve. On the other hand, good relationships may sour
over time. Introducing dynamics of team quality may lead to interesting
hiring patterns. For instance, a firm that has been passive for a while may
start a replacement frenzy if the relationship suddenly sours. This is on our
agenda for future research.
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8 Illustrative Simulations: Exploring the Mecha-
nisms

We undertake simulations in order to explore the mechanisms inherent in the
model. This gives a sense of the model’s implications for worker turnover,
firm age, firm value and the connections between them, revealing rich pat-
terns. In particular, we examine the properties of the resulting firm value
distributions and relate them to replacement policy. The dynamic evolution
of these variables is due to both the random draw of workers and the firm’s
optimal replacement policy. The interaction of worker draws, exogenous
shocks and firm policy is not trivial and generates non-normal firm value
distributions. We explain the properties of these distributions, as expressed
by their first four moments, in terms of the mechanisms of the model.

When simulating we look at the full model, with both endogenous and
exogenous replacement and allowing for exogenous firm exit. As in the
previous section, the value function is given by (20). Let β denote the pure
time preference factor, where β = β(1 − s). This value function can be
found by a fixed point algorithm. Appendix D provides full details. When
simulating firms over time, we use the value function formulated above. We
simulate 1000 firms over 30 periods, and repeat it 100 times to eliminate
run-specific effects. In the benchmark case, we set: y = 1, c = 0.01, r = 0.04
(the pure discount rate), λ = 0.1, s = 0.1.

8.1 The Distribution of Firm Values

Plotting the simulated values of (V, δ1, δ2) space, as in Figure 4, one gets:
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Figure 5: Simulated V, δ1, δ2

Figure 5 shows the results looking from the NE of Figure 4 towards
the stopping region in the SW, beyond the black cutoff line of the optimal
stopping rule δ2 (δ1). The figure shows the concentration of high values
in the stopping region, where the slope is quite steep and where maximum
value is 6.21 with δ1 = δ2 = 0 and V = y

r (1 + r)). It also shows the large
dispersion in the low value region at the front of the figure, where the slope
is relatively flat. Minimum value is computed numerically to be 2.51 with
δ1 = δ2 = 1/3.In what follows, the latter region will show up as the long tail
of the lower part of the cross-sectional value distribution

8.2 Firm Value and Age

Figures 6 show firm value distributions and their moments by firm age.10

10To construct the distributions of firm value by age we looked for all periods and all
firms, when each particular age was observed. For example, due to the firm exit shock
and the entry of new firms, age 1 will be observed not only for all firms in the first period,
but also in all cases when a firm exogenously left and was replaced by a new entrant. In
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Figure 6a: Cross-sectional log firm values, by age

this manner we gathered observations of values for all ages, from 1 to 30, and built the
corresponding distributions.
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Figure 6b: Moments of cross-sectional log firms value, by age

The patterns reflect the pure process of convergence, disrupted from time
to time by workers’exogenous exits, without the entry of new-born firms.
The value of the firm grows with age as a result of team quality improve-
ments, while the standard deviation is rather stable. As firms mature, more
of them enter the absorbing state, with relatively high values, and at the
same time there are always unlucky firms that do not manage to improve
their teams suffi ciently, or which have been hit by a forced separation shock.
Therefore the distribution becomes more and more skewed over time. Excess
kurtosis fluctuates.

These turnover dynamics of the model are very much in line with the
findings in Haltiwanger, Jarmin and Miranda (2013), whereby, for U.S. firms,
both job creation and job destruction are high for young firms and decline
as firms mature.

We run a regression of the simulation data to further study the connec-
tion between firm value and firm age. Here we look only at a simulated
subsample of firms which have survived until the 30th period. There have
been 45 such firms in our simulation. The estimated equation is:
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ln(V )t = c0 + c1 ∗ ln(t) (21)

where ln(V )t is the average logged value of firms at age t, t = 1, 2, ..., 30.
The results are presented in Table 1:

Table 1
The Relation Between Firm Value and Age

Regression Results of Simulated Values

c1 0.05
(0.01)

c0 1.37
(0.02)

R2 0.62

The coeffi cients are highly significant and imply a positive relation, il-
lustrated below:
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Figure 7: Predicted firm value (logs) and firm age

Figure 7 shows that overall, despite exogenous separation shocks, firms
tend to increase in value as they mature, due to the improvement of their
teams’quality. This is in line with the findings of Haltiwanger, Lane and
Spletzer (1999) whereby productivity rises with age for U.S. firms in Census
Bureau data, covering the period 1985-1996.

8.3 The Role of Model Parameters

The core parameters of the model at the benchmark are the worker replace-
ment cost, c = 0.01, the annual rate of interest, r = 0.04, the exogenous
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worker replacement rate, λ = 0.1, and the exogenous firm destruction rate,
s = 0.1. In addition, we set the flow output at y = 1. Changes in these
parameters affect the values of the firms both directly, through the value
function and exogenous random events, and indirectly, through adjustments
in the optimal hiring decisions. In what follows we analyze changes in these
core parameters.11

The following patterns emerge:
(i) Increases in the cost of replacement c or in the interest rate r are

illustrated in Figure 8a (and reported in rows 2-6 of Appendix E Table E1).
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Figure 8a: effects of c and r

These two different increases affect the values distribution similarly: the
mean value goes down, the coeffi cient of variation goes up, skewness be-
comes more negative and excess kurtosis goes up from negative to positive.
Both higher costs of replacement and costs of time make the firms retain
their teams rather than improve them; firms enter the stopping region more
quickly, with worse teams than before and the mean value goes down.

11Table E1 in Appendix E presents the moments of the log firm value distributions for
the changes in the parameter values analyzed here, relative to their benchmark values.
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As firms tend to stay with their current, randomly-drawn, teams, firm
values become more dispersed. Along the same lines, extreme values become
relatively more frequent and excess kurtosis goes up. As inaction becomes
optimal for so many firms, firms values become more concentrated above
the mean. At the same time, in any period there are always unlucky firms,
which have just obtained a very bad team as a result of the λ or s shock.
Hence skewness becomes more negative. The sensitivity to the interest rate
is higher than to changes in replacement costs. Thus, under higher c or
higher r the distribution has a longer left tail, lower mean, and fatter and
longer tails relative to the benchmark.

(ii) Increases in the exogenous worker separation rate λ are illustrated
in Figure 8b (and reported in rows 7-9 of Appendix Table E1).
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Figure 8b: effects of λ and s

Increased separation depresses the mean value, slightly increases the co-
effi cient of variation, make the skewness less negative and kurtosis more
negative. The possibility of a worker’s exogenous exit is a burden on the
firms, limiting their control over teams and the possibility to improve them.
Hence the decrease in mean value. With optimization repeatedly disrupted
by the shock, less firms are able to achieve the high-value steady state in
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each given period, there are less values concentrated above the mean, and
skewness becomes less negative. Kurtosis becomes more negative as λ grows,
implying that the bulk of the dispersion now comes from moderate devia-
tions from the mean. Such a separation shock may hit any firm, occasionally
throwing some firms out of the stopping region, or bringing other firms into
it; the sample becomes more homogenous in terms of values, with extreme
deviations from the mean less frequent, hence the negative excess kurtosis.

(iii) The simulated increases in the exogenous firm destruction rate s, also
shown in Figure 8b, as well as in rows 10-12 in Appendix Table E1, brings the
mean value down, raises the coeffi cient of variation, and skewness becomes
more negative while kurtosis becomes less negative. As there is a positive
probability for any firm of being closed down in the next period, and due to
the constant inflow of new-born firms which have not yet started to improve
their teams, the mean value in the simulated cross-section goes down as s
goes up. The inflow of random worker triples increases dispersion drastically,
so the coeffi cient of variation goes up. As there are less firms in the stopping
region and extreme values become more frequent, excess kurtosis goes up.
The inflow of new firms with all kinds of values, including extremely low ones,
makes the left tail of the distribution longer and skewness more negative.

(iv) Going the other way and shutting down exogenous worker separation
and firm destruction, λ = s = 0, presented in row 13 of Table E1, has
firms just smoothly converge to the stopping region. Removing exogenous
uncertainty improves the mean value drastically and it is higher than in any
other specification. The coeffi cient of variation is low, as a result of massive
convergence. Likewise, excess kurtosis is substantially negative. Skewness
is slightly negative as there is no drag on value as a result of some unlucky
firms being hit by a shock or replaced, with all the firms allowed to converge
(and they do so by period 30).

To sum up, each of the parameters above has an impact on the process
of convergence into the stopping region. The factors that facilitate stop-
ping, such as high c and r or low λ produce higher concentration of firms
in the stopping region and therefore make skewness more negative. The
replacement of old firms by new ones does not impact the process of conver-
gence directly. It adds new triples everywhere, thereby lengthening the left
tail of the distribution and adding more extreme values —skewness becomes
more negative and excess kurtosis goes up. The factors that impede firms,
namely high c, high r, high λ or high s decrease mean firm value. The
factors that make the firms stop quickly wherever they are (high c or r), or
add new triples exogenously, such as high s, make values more dispersed,
distribution tails fatter, and excess kurtosis higher.
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9 Conclusions

The paper has characterized the firm in its role as a coordinating device.
Thus, output depends on the interactions between workers, with comple-
mentarities playing a key role. The paper has derived optimal policy, us-
ing a threshold on a state variable and allowing for endogenous hiring and
firing. Firm value emerges from optimal coordination done in this man-
ner and fluctuates as the quality of the interaction between the workers
changes. Simulations of the model generate non-normal firm value distribu-
tions, with negative skewness and negative excess kurtosis. These moments
reflect worker turnover dynamics, whereby a large mass of firms is inactive
in replacement, having attained good team formation, while exogenous re-
placement and firm exit induce dispersion of firms in the region of lower
value. Future work will examine alternative production functions, learning
and training processes, and wage-setting mechanisms within this set-up.
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10 Appendix A. Solution of the Cut-Off δ∗

In this Appendix we show how to derive δ∗. We repeat the cut-off equation
for convenience

c+
1

2
+
δ2

1

2
− δ1 − 2δ2 =

2δ1δ2 + 2δ
2
2

r
(22)

If δ2 = 0, the left-hand side of (22) is strictly positive while the right-
hand side is zero (since δ1 ≤ 1/3 by construction). As δ2 →∞, the left-hand
side goes to minus infinity and the right-hand side to plus infinity. Hence
we know that the equation has a solution. Since the left-hand side is strictly
decreasing and the right-hand side strictly increasing in δ2, we know that
the solution is unique.

In the text we have already shown that δ2(δ1), if it exists, is decreasing
in δ1. It follows that δ∗ can be obtained by inserting δ2 = δ1 = δ∗ in (22).
This gives

c+
1

2
+
δ∗2

2
− δ∗ − 2δ∗ =

2δ∗δ∗ + 2δ∗2

r
(23)

Hence δ∗ is the unique positive root to the second order equation

c+
1

2
− δ∗2 8− r

2r
− 3δ∗ = 0 (22)
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11 Appendix B. Derivation of Equation (18)

Substituting (14) into (17) gives

y − 2(δ1 + δ2(δ1))

r
(1 + r) + c = y − (

1

2
+ δ1 +

δ2
1

2
) (25)

+
(δ1 + 2δ2)(y − 2(δ1 + δ2)) + 2δ

2
2 + 2δ1δ2

r

+(1− δ1 − 2δ2)
y − 2(δ1 + δ2(δ1))

r

Collecting all terms containing y− 2(δ1 + δ2(δ1)) on the left-hand side gives

y − 2(δ1 + δ2(δ1))

r
[1 + r − (δ1 + 2δ2)− (1− (δ1 + 2δ2))] + c− y(26)

= −(
1

2
+ δ1 +

δ2
1

2
) +

2δ
2
2 + 2δ1δ2

r

which simplifies to

−2(δ1 + δ2(δ1)) + c = −(
1

2
+ δ1 +

δ2
1

2
) +

2δ
2
2 + 2δ1δ2

r
(27)

Collecting terms gives

c+
1

2
+
δ2

1

2
− δ1 − 2δ2(δ1) =

2δ
2
2 + 2δ1δ2

r
(28)

which is equation (18).
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12 Appendix C. Proof of Existence of Equilibrium

There are costs K ≥ 3c to open a firm. A zero profit condition pins down
the wage (w = W

3 ):

E|δ1δ2V (δ1, δ2;w; ỹ, c) = K (29)

As we have seen, the hiring rule is independent of w (since it is independent of
y). If y is suffi ciently large relative toK, we know that E|δ1δ2V (δ1, δ2;w; ỹ, c) >
K, and there exists a wage w∗ that satisfies (29). We will now give a formal
proof of existence, as well as suffi cient conditions on the parameters that
ensure existence and production in each period.

Define
V ≡ E|δ1δ2V (δ1, δ2; 0; ỹ, c)

Given our assumption that the firm always produces until it is destroyed, it
follows that

E|δ1δ2V (δ1, δ2;w; ỹ, c) = V − W

r′
(30)

where r′ = r/(1 + r) and where, as above, W = 3w. By assumption, V > 0
(see below). It follows that there exists a unique W that solves the zero-
profit condition given by

V − W

r′
= K (31)

The solution is given by W = r′(V −K).
We will give conditions on parameters that ensure that V > 0,and that

firms, if entering, will produce even after the worst possible draws. The
supremum of per-period output is ỹ (obtained with δ1 = δ2 = 0). It follows
that

V <
ỹ

r′

Suppose

K >
4

3

1

r′
(32)

From the zero profit condition it then follows that

W = r′(V −K) < ỹ − 4/3 (33)

The infimum of per period profit is πinf = ỹ − 4/3 − W (obtained when
δ1 = δ2 = 1/3). From (33) it follows that

πinf = ỹ − 4/3−W > 0 (34)
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Hence a suffi cient condition for firms to operate after the lowest possible
draws is that (32) is satisfied.

We assume that the lower bound on wages is that W ≥ 0. To ensure
that V > K, note that

V >
ỹ − 4/3

r′

since ỹ − 4/3 is the lowest per period output and a firm can always choose
not to replace. Entry occurs in equilibrium if and only if it is profitable to
enter when W = 0. Hence a suffi cient condition for entry to occur i is that
ỹ−4/3
r′ > K or that ỹ ≥ r′K + 4/3 (tighter bounds can also be found).
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13 Appendix D. Shapley values

The Shapley value of an agent is the agent’s expected marginal contribution
to output when the agents arrive to the coalition in a random order. The
firm will only have a strictly positive marginal contribution if it arrives
number 3 or number 4, which both happen with probability 1

4 . If the firm
arrives as number 3, its marginal contribution is yij , where i and j are the
identities of the workers already in place. Hence the expected contribution
in this event is y12+y13+y23

3 . If the firm is the last to arrive, its marginal
contribution is y12 + y13 + y23. It follows that the Shapley value of the firm
is ( 1

12 + 1
4)(y12 + y13 + y23) = y12+y13+y23

3
For a worker, he will only have a strictly positive marginal contribution

if he arrives as number 3 or 4, which both happens with probability 1/4. If
the worker arrives as number 3, the firm will be in place with probability
2/3. Consider worker 1. If he arrives as number 3, his expected contribution
will be y12+y13

3 . If he arrives as number 4, his marginal contribution will be
y12 + y13. His Shapley value is thus

y12+y13
3 . More generally, the Shapley

value of worker i is
∑
j=1,j 6=i yij

3 .
As a consistency check, note that if we sum the pay-offs of the three

workers and the firm we get that the total pay-off is equal to total pay-off
y12 + y13 + y23.
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14 Appendix D. The Simulation Methodology

The entire simulation is run in Matlab with 100 iterations. In order to
account for the variability of simulation output from iteration to iteration,
we report the average and the standard deviation of the moments and the
probability density functions, as obtained in 100 iterations.

Calculating the Value Function

We find the value function V numerically for the discretized space (δ1, δ2),
using a fixed-point procedure. First we guess the initial value for V in
each and every point of this two-dimensional space; we then mechanically
go over all possible events (exit, in which case the value turns zero, forced
or voluntary separation, with the subsequent draw of the third worker) to
calculate the expected value in the next period, derive the optimal decision
at each point (δ1, δ2), given the initial guess V, and thus compute the RHS
of the value function equation below:

V (δ1.δ2) = π(δ1, δ2)+β

[
s · 0 + (1− s) ·

(
λ ·
[
EΓF V (δ′1, δ

′
2)− c

]
+(1− λ) · Emax[V (δ1, δ2), EΓV (δ

′
1, δ

′
2)− c]

)]
(35)

Next, we define the RHS found above as our new V and repeat the
calculations above. We iterate on this procedure till the stage when the
discrepancy between the V on the LHS and the RHS is less than the pre-set
tolerance level.

The mechanical steps of the program are the following:
1. We assume that each of δ1, δ2 can take only a finite number of values

between 0 and 1. We call this number of values BINS_NUMBER and it
may be changed in the program.

2. However, not all the pairs (δ1, δ2) are possible, as by definition δ2 ≥
δ1 and δ2 ≤ 1

2 −
δ1
2 (the latter ensures that the distances are measured

“correctly”along the circle). We impose the above restriction on the pairs
constructed earlier, and so obtain a smaller number of pairs, all of which
are feasible. Note that all the distances in the pairs are proportionate to
1/BINS_NUMBER

3. In fact, the expected value of forced and voluntary replacement,
Eq

F
V (δ′1, δ

′
2) and EV q(δ

′
1, δ

′
2), differ in only one respect: when the replace-

ment is voluntary, two remaining workers are those with δ1 between them,
whereas when the replacement is forced, it might be any of the three: δ1, δ2
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or min(( δ1 + δ2), 1 − ( δ1 + δ2)), with equal probabilities. In the general
case, if there are two workers at a distance δ, and the third worker is drawn
randomly, possible pairs in the following period may be of the following
three types: (i) δ turns out to be the smaller distance (the third worker falls
relatively far outside the arch), (ii) δ turns out to be the bigger distance
(the third worker falls outside the arch, but relatively close) (iii) the third
worker falls inside the arch, in which case the sum of the distances in the
next period is δ. In the simulation we go over all possible pairs to identify
the pairs that conform with (i)-(iii). Note that because all the distances are
proportionate to 1/BINS_NUMBER, it is easy to identify the pairs of the
type (iii) described above. This can be done for any δ, whether it is δ1, δ2

or min(( δ1 + δ2), 1− ( δ1 + δ2))
4. Having the guess V , and given that all possible pairs are equally prob-

able, we are then able to calculate the expected values of the firm when cur-
rently there are two workers at a distance δ. Call this value EV (δ). Then, if
there is a firm with three workers with distances (δ1.δ2), the expected value
of voluntary replacement is EV (δ1), and expected value of forced replace-
ment is 1/3·EV (δ1)+1/3·EV (δ2)+1/3·EV (min((δ1 + δ2), 1− (δ1 + δ2))) .
Thus we are able to calculate the RHS of equation ( 35) above and compare
it to the initial guess V .

We iterate the process till the biggest quadratic difference in the values
of LHS and RHS, over the pairs (δ1, δ2), of equation (35) is less than the
tolerance level, which was set at 0.0000001.

Dynamic Simulations

Once the value function is found for all possible points on the grid, the
simulation is run as follows.

1. The number of firms (N) and the number of periods (T ) is defined.
We use N = 1000, T = 30.

2. For each firm, three numbers are drawn randomly from a uniform
distribution U [0, 1] using the Matlab function unifrnd.

3. The distances between the numbers are calculated, the middle worker
is defined, and as a result, for each firm a vector (δ1, δ2) is found.

4. For each firm, the actual vector (δ1, δ2) is replaced by the closest point

on the grid found above
(
δ̃1, δ̃2

)
.
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5. According to
(
δ̃1, δ̃2

)
, using the calculations from previous section, we

assign to each firm the value and the optimal decision in the current
period.

6. It is determined whether an exit shock hits. If it does, instead of the
current distances of the firm, a new triple is drawn in the next period.
If it does not, it is determined whether a forced separation shock λ
hits. If λ hits, a corresponding worker is replaced by a new draw and
distances are recalculated in the next period. If it does not, and it
is optimal not to replace, the distances are preserved for the firm in
the next period, as well as the value. If it is optimal to replace, the
worst worker is replaced by a new one, distances are re-calculated in
the next period, together with the value.

Steps 4-6 are repeated for each firm over all periods.
As a result, we have a T by N matrix of firm values. The whole process

is iterated 100 times to eliminate run-specific effects. We also record the
events history, in a T by N matrix which assigns a value of 0 if a particular
firm was inactive in a particular period,1 if it replaced voluntarily, 2 if it was
forced to replace, and 3 if it was hit by an exit shock and ceased to exist
from the next period on. We use this matrix to differentiate firms by states
and to calculate firms’ages.
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15 Appendix E. Changes in Parameters

Table E1
The Effects of Changes in Parameters

Parameters Moments of ln(V) in period 30
c r λ s mean coef. of var. skewness excess kurtosis

1 0.01 0.04 0.1 0.1 1.46 0.13 −0.47 −0.40

2 0.05 −12 − − 1.45 0.14 −0.55 −0.28
3 0.10 − − − 1.44 0.16 −0.68 0.06

4 − 0.01 − − 1.60 0.10 −0.39 −0.53
5 − 0.04 − − 1.46 0.13 −0.47 −0.40
6 − 0.10 − − 1.15 0.20 −0.72 0.02

7 − − 0 − 1.73 0.11 −0.67 −0.04
8 − − 0.05 − 1.58 0.12 −0.58 −0.27
9 − − 0.15 − 1.46 0.13 −0.41 −0.48

10 − − − 0 2.82 0.02 −0.21 −0.52
11 − − − 0.05 1.86 0.07 −0.41 −0.40
12 − − − 0.15 1.09 0.22 −0.53 −0.32

13 − − 0 0 3.11 0.02 −0.12 −0.49

The implications of these changes are discussed in sub-section 5.5.

12As in the benchmark, row 1.
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