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Abstract

We present an equilibrium concept based on the idea that agents

evaluate actions using sample data drawn from the equilibrium dis-

tribution, where the number of observations about an alternative is

proportional to its usage in a relevant population. Agents naively ex-

trapolate from their data, using the sample mean payoff from each

alternative as a predictor of their payoff from choosing it. The endo-

geneity of sample sizes gives rise to a novel equilibrium effect: Players’

assessment of less frequently played actions is noisier. We study the

implications of this effect in a single-agent, binary-choice model, as

well as in various examples of games.
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1 Introduction

Standard analysis of long-run behavior in single- or multi-agent decision prob-

lems assumes that agents act as if they know the long-run statistical regu-

larities in their environment. How players get to learn these regularities is

left outside the scope of analysis and relegated to separate models of learning

(e.g., Fudenberg and Levine (1998) in the context of games), which focus on

players’ dynamic responses to finitely many observations of past outcomes.

In the context of strategic decision making, a small literature — start-

ing with Osborne and Rubinstein (1998), and including Spiegler (2006a,b),

Salant and Cherry (2020) and Goncalves (2020) — has attempted to fuse

these two approaches by formulating game-theoretic equilibrium concepts in

which learning from finite samples is intrinsic to equilibrium behavior. Play-

ers base their actions on some kind of inference from samples that are drawn

from the equilibrium distribution, which in turn is determined by their own

response to these samples. Equilibrium behavior is intrinsically random due

to sampling errors.

Equilibrium concepts in this vein are based on fundamental assumptions

regarding the procedures players employ when forming their sample and

drawing inferences from it. In particular, the choice of sampling procedure

depends on the type of learning one wishes to capture: Are agents learning

from active experimentation or from passive observation?

Osborne and Rubinstein (1998) and Salant and Cherry (2020) assumed

uniform sampling, where each player samples each action K times (more

precisely, she draws K independent sample points from each action’s con-

ditional outcome distribution). This uniform sampling procedure naturally

fits situations in which players rely on deliberate experimentation to form

beliefs. It is less appropriate as a description of situations in which players’

equilibrium perceptions are based on passive, casual observational data. For

example, consider a decision between two smartphone brands (in the absence

of consumption externalities, this decision is non-strategic). To learn about
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the quality of each brand, an agent might ask some of her friends to report

their experiences with their current devices. In this case, her sample size for

each brand will depend on its popularity among her friends.

To capture this kind of sampling-based decisions, we extend the Osborne-

Rubinstein approach by assuming that each player’s sample is not uniform

but representative. In the simplest case of a single-agent choice problem, the

decision maker constructs a sample of size n, such that the number of sample

points about a given action a is n · q(a), where q(a) is the frequency with

which the action is taken in the population. Thus, the decision maker will

gather more sample points about actions that are played more frequently.

As in Osborne and Rubinstein (1998), we assume that players draw naive

frequentist inferences from their sample — that is, they treat the sample

average as a predictor of the outcome they will get from each action, neglect-

ing sampling error. This kind of over-inference from finite samples is related

to the phenomenon that Tversky and Kahneman (1971) called “the law of

small numbers”. The idea that people take sample averages at face value

and inadequately incorporate sample size has received corroboration both in

experimental settings (e.g., Orbrecht et al. (2007)) and in studies of users’

response to online reviews (e.g., de Langhe et al. (2016)).

A representative sampling equilibrium (RSE) in an extensive-form game

is a profile of behavioral strategies that are consistent with this sampling

procedure. That is, at every information set, the probability that the player

takes the action a is the probability that it will have the best performance

in the relevant representative sample.

The representative-sample assumption can be taken literally, modeling a

form of experimentation in which players deliberately ensure that the com-

position of their sample matches the relevant population, in the manner of

political pollsters. Our favored interpretation, however, regards the repre-

sentative sample assumption as a modeling approximation of more passive,

observational learning. In the smartphone story described above, agents
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base their decision on a random sample of their peers. Directly modeling

a random-sample procedure would be more realistic, yet far less tractable;

representative sampling is an approximation that makes the model tractable

while preserving the feature that frequently played actions are sampled more

often.

In line with this modeling strategy, we also assume that the signal the

decision maker gets about an action from a single sample point is a normally

distributed variable, whose mean and variance are those of the equilibrium

conditional outcome distribution associated with this action. In some set-

tings, this normality assumption is not an approximation but follows auto-

matically from the model’s primitives. In others (e.g., games like the Pris-

oner’s Dilemma), normality is an approximation that addresses the problem

that n · q(a) need not be an integer.

The modeling approximations of representative samples and normal vari-

ables constitute a methodological contribution of this paper: They enable

tractable analysis of sampling-based equilibrium behavior in a variety of com-

plex environments. Moreover, as we will see, non-trivial equilibrium effects

persist even when n takes values for which these approximations are relatively

accurate.

The basic insight of this paper is that since the sample size of each action

depends on its popularity in the relevant population, it is endogenous and

thus gives rise to a novel equilibrium effect. Even in a single-agent decision

problem, the evaluation of a given action a will depend on its choice frequency

q(a), because the frequency affects the variance of the sample’s outcome

distribution; this variance in turn affects the probability with which the agent

chooses a, which in equilibrium coincides with q(a). This equilibrium effect

is new to the literature on sampling-based solution concepts.

Revisiting our smartphone example, assume that smartphone A is ob-

jectively inferior to smartphone B. If a consumer were able to fully assess

the brands’ quality levels before making her purchase decision, she would
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choose B. However, when she bases her decision on a representative sample

of her peers, she may decide to purchase A due to sampling error. Since A

is objectively inferior, it is less likely to be chosen and therefore the sample

will contain fewer observations of A users. As a result, the consumer’s esti-

mate of the quality of A will be noisier. Since a noisy assessment favors an

objectively inferior alterative, it introduces an equilibrium effect that magni-

fies the choice frequencies of objectively inferior actions, compared with the

choice frequencies under a uniform sample.

The observation that naive inference from representative samples intro-

duces an equilibrium force that favors inferior alternatives is a key message

of this paper. We explore its ramifications in various settings. In Sections

2 and 3 we present and analyze a simple model of binary choice, in which

a consumer’s underlying objective valuation of actions is a function of her

private type. The same alternative is objectively superior for all consumer

types. Thus, the only difference between types is in the intensity of this

objective preference. The decision maker’s representative sample is drawn

from the population of consumers.

We define RSE for this environment and obtain existence, uniqueness, and

monotonicity results for RSE in this binary-choice model. Our main finding

for this model concerns the dependence of equilibrium choice probabilities

on sample size. The basic insight described above implies that not only does

the representative sample assumption increase the equilibrium frequency of

the inferior alternative relative to the rational or uniform-sample cases, but

the rate with which this frequency vanishes with n is extremely slow.

We also consider an extension of this binary-choice model, in which the

set of types is partitioned into “intervals”, such that each type’s sample is

restricted to the interval that includes it. This extension captures situations

in which the decision maker only receives data about similar types. We carry

out comparative statics with respect to the coarseness of the partition. In

particular, we show that when the objective payoff difference between the
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two alternatives is not too large, a finer partition leads to a higher overall

equilibrium probability of choosing the objectively inferior alternative.

In Section 4, we present the more general formulation of RSE for games,

and illustrate it with the one-shot Prisoner’s Dilemma. Finally, in Section

5 we extend the representative-sample idea to encompass the situation in

which the agent takes her action. While our main model assumes that play-

ers’ total sample size is n for every information set, here we assume that it is

proportional to the information set’s equilibrium frequency: More frequent

situations generate more sample points. This version is even closer to the

idea of samples that are drawn from passive observation as opposed to ac-

tive experimentation. It also introduces an additional layer of sample-size

endogeneity, because the frequency of information sets is determined in equi-

librium. We illustrate this extension with an infinite-horizon trust game and

show how it leads to endogenous patterns of reciprocity, which are impossible

under the original concept.

Related literature

As mentioned above, this paper builds on a literature that incorporates learn-

ing from finite samples into the definition of equilibrium concepts in games.

Osborne and Rubinstein (1998) introduced the concept of S(K) equilibrium,

in which each player samples each available strategy K (independent) times

and chooses the best-performing strategy in her sample. Osborne and Ru-

binstein (2003) study a variant on this concept (in the context of a voting

model), in which each player best-replies to a finite sample drawn from her

opponents’ strategies. Spiegler (2006a,b) studied price competition models

in which consumers evaluate products using the S(K) procedure.

Osborne and Rubinstein (1998,2003) assumed that players regard their

sample as a noiseless estimate of the distribution from which it is drawn.

This is what we referred to as “naive frequentist” inference, which this pa-

per assumes as well. Salant and Cherry (2020) extended the sampling-based

equilibrium approach to a more general class of statistical inference proce-
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dures, and proposed Bernstein polynomials as a tool for analyzing equilibria

in certain classes of games. Unlike the present paper, Salant and Cherry

(2020) maintained Osborne and Rubinstein’s assumption that sample size is

an exogenous parameter.

Goncalves (2020) formulated an equilibrium concept for games, based

on a sequential sampling procedure. Each player has a prior distribution

over the opponents’ strategies, and she uses rational sequential sampling to

gather more accurate information about them. The player stops sampling

before she attains certainty, due to sampling costs; this is what generates

random equilibrium behavior.

Our model is also related to the literatures on word-of-mouth learning

(e.g., Ellison and Fudenberg (1995) or Banerjee and Fudenberg (2004)) and

the role of homophily in learning in social networks (e.g., Golub and Jackson

(2012)). Unlike this paper, both literatures involve explicitly dynamic mod-

els. Like us, Banerjee and Fudenberg (2004) assume that the process of social

learning involves representative samples. However, they assume that agents

draw Bayesian inferences from noisy observations of their predecessors’ pay-

offs (as well as their observed choices). Another distinction between our

paper and these earlier works is that agents in our model do not draw any

inferences from alternatives’ relative popularity as such; popularity affects

choice behavior only though the sample-size channel.

2 A Single-Agent Binary Choice Model

An agent is facing a choice between two alternatives, denoted A and B. The

agent’s type is t ∈ T , where T ⊂ R is a finite set. Let µ ∈ ∆(T ) represent a

distribution over types in a large population of agents facing the same choice

problem. Denote the fraction of type t in the population by µt. The agent’s

objective expected payoff from choosing an alternative z ∈ {A,B} given her

type t ∈ T is u(z, t).
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Let qt(z) be the probability that agents of type t choose z. The average

frequency of choosing z in the population is

q̄(z) =
∑
t∈T

µtqt(z) (1)

We will often use the abbreviated notation qt = qt(B) and q̄ = q̄(B).

In our model, qt is a consequence of agents’ attempt to learn their payoffs

from samples. An agent’s total sample size is a positive integer n. The agent’s

estimate of u(z, t) is independently and normally distributed as follows:

û(z, t) ∼ N

(
u(z, t),

σ2

nq̄(z)

)
(2)

where σ2 > 0 is the payoff variance of a sample point from any alternative.

Definition 1 A profile (qt)t∈T is a representative-sampling equilibrium

(RSE) if for every t ∈ T ,

qt = Pr(û(B, t)− û(A, t) > 0)

where this probability is calculated according to (2).

The idea behind this formulation is as follows. Before choosing an action,

an agent of type t samples the payoff realizations of each alternative. The

alternatives’ representation in her sample matches their choice frequencies

among the types in the population. The agent is a “naive frequentist”, who

takes sample outcomes at face value. That is, she regards the sample average

û(z, t) as an accurate representation of her underlying average payoff from

choosing z, ignoring sampling error.

The assumption that û(z, t) is normally distributed can be interpreted

literally — i.e., every sample point is objectively drawn from a normal dis-

tribution. Alternatively, the assumption can be viewed as a modeling ap-
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proximation. That is, the objective distribution of each sample point is not

necessarily normal, yet the central limit theorem allows us to approximate

the distribution of the sample average by a suitable normal distribution. This

alternative interpretation will be more pertinent in later sections.

By the assumption that û(A, t) and û(B, t) are independent normal vari-

ables,

û(B, t)− û(A, t) ∼ N

(
u(B, t)− u(A, t),

σ2

nq̄(A)q̄(B)

)
(3)

Therefore, we can identify t with the mean of this distribution — i.e.,

t = u(B, t)− u(A, t)

such that t measures the agent’s underlying intrinsic preference for B over

A. Furthermore, it is clear from (3) that the value of σ can be normalized to

1 without loss of generality (because we can rescale t). Therefore, from now

on we set σ = 1.

Consequently, the equilibrium condition can be rewritten as

qt = Pr

[
N

(
0,

1

nq̄(1− q̄)

)
< t

]
for all t, or, equivalently,

qt = Φ
(
t
√

nq̄(1− q̄
)

(4)

where Φ is the cdf of the standard normal distribution (we invoke this nota-

tion consistently throughout the paper).

We will use (4) as our working definition of RSE in Section 3. This

definition immediately implies that in any RSE, an agent of type t chooses

her objectively superior alternative (i.e., the z with the higher u(z, t)) with

probability greater than 1
2
. It is not surprising that due to sampling errors,

the inferior alternative is also chosen with positive probability.
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When q̄(z) = 0, û(z, t) is ill-defined because it involves infinite variance.

To handle this, we treat N(0,∞) as a well-defined distribution satisfying

Pr(x ≤ c) = 1
2
for every c. Consequently, the definition of RSE given by

(4) is legitimate even when q̄(z) = 0. Equilibrium choice probabilities will

always be interior.

Yet, how big are agents’ choice errors? A central theme of this paper

is that naive-frequentist inference from representative samples magnifies the

probability of errors. Specifically, when the average choice distribution is

skewed (i.e., when q̄ is close to zero or one), the variance of û(B, t)− û(A, t)

is large, and this introduces an equilibrium counter-force toward a less skewed

distribution, namely larger choice errors. Section 3 will explore the implica-

tions of this force.

Comment: What do agents observe?

The definition of û(z, t) given by (2) implies that although each agent learns

from the outcomes of other people’s choices, the mean of her noisy signal is

u(z, t), where t is the agent’s own type. In other words, an agent of type

t observes an unbiased noisy signal of the payoff that she herself would get

from a particular action.

Our main interpretation of this assumption is that the agent observes

the full consequences of the choices of the people in her sample. Using our

smartphone example from the Introduction, an agent’s sample point consists

of the full experience that a friend of hers had with his chosen brand. Since

this experience contains random elements, it is a noisy signal of the agent’s

own payoff from the brand. However, our agent does not draw inferences

from her friend’s mere choice (as would be the case in social-learning models

in the tradition of Bikchandani et al. (1992)) or his subjective assessment of

the product.

An alternative interpretation is that u(z, t) = v(z) + t, such that v is

a common-payoff component which agents learn via sampling, whereas t is

an idiosyncratic payoff component that each agent knows and does not need
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to learn from observations. For instance, v may represent restaurant quality

while t represents the relative distance of the two restaurants from the agent’s

location. Since v is common to all agent types, we can assume that agents

learn their friends’ subjective satisfaction with their choices, even without

observing their complete experiences.

3 Analysis

We begin our analysis with a few elementary results.

Remark 1 An RSE exists.

Remark 2 Let q be an RSE. If t′ > t, then, qt′ > qt.

Both results are immediate consequences of (4). This equation defines a

fixed point of a continuous mapping from [0, 1]|T | to itself. Such a fixed point

exists, by Brouwer’s fixed-point theorem. Furthermore, fixing an equilibrium

q, the R.H.S of (4) is strictly increasing in t, and therefore qt must increase

in t.

The following result establishes equilibrium uniqueness when B is the

intrinsically superior alternative for all agent types.

Proposition 1 Assume t > 0 for every t ∈ T . Then, there is a unique RSE.

Proof. Assume towards contradiction that q = (qt)t∈T , q
′ = (q′t)t∈T are both

RSE solutions and q ̸= q′. Let t satisfy qt ̸= q′t for some t ∈ T . Then, by (4),

q̄′ ̸= q̄. Assume without loss of generality that q̄ > q̄′. Since t > 0 for every

t ∈ T , we have qt, q
′
t >

1
2
for every t ∈ T and hence q̄ > q̄′ > 1

2
. This implies

q̄(1− q̄) < q̄′(1− q̄′). Thus, for all t ∈ T ,

qt = Φ
(
t
√

nq̄(1− q̄)
)
< Φ

(
t
√

nq̄′(1− q̄′)
)
= q′t
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Hence,

q̄ =
∑
t∈T

µtqt(z) <
∑
t∈T

µtq
′
t(z) = q̄′

a contradiction.

Finding conditions for equilibrium uniqueness when the sign of t is not

constant is an open problem.

3.1 Convergence Properties

Consider the case of a single agent type, T ≡ {t}. Let t > 0, without loss of

generality. In this sub-section, we will use qt(n) to denote the RSE for type

t and the sample size n, in order to highlight the role of n. It is uniquely

given by

qt(n) = Φ
(
t
√

nqt(n)(1− qt(n))
)

(5)

Our task is to analyze the dependence of qt(n) on n, especially in comparison

with uniform sampling.

First, observe that qt(n) increases with n, by the same logic as Remark

2. The next result shows that choice errors vanish as n tends to infinity.

Proposition 2 limn→∞ qt(n) = 1.

Proof. Assume the contrary — i.e., there exists q∗ < 1 such that for every

n > 0, there exists n′ > n such that qt(n
′) < q∗. Recall that qt(n

′) > 1
2
.

Therefore, for all such n′,

qt(n
′)(1− qt(n

′)) > q∗(1− q∗)

Consequently,
√
n′qt(n′)(1− qt(n′)) diverges with n′, which implies that,

from some point onward,

Φ
(
t
√
n′qt(n′)(1− qt(n′))

)
> q∗
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a contradiction.

Now compare (4) with the case of a uniform sample, where each alterna-

tive is sampled n
2
times. In this case, the probability of choosing B is given

by

rt = Φ

(
t

2
n

1
2

)
(6)

This can be viewed as a normal approximation of Osborne and Rubinstein’s

(1998) S(K) procedure, mentioned in the Introduction.

Formula (6) has two noteworthy features. First, it lacks the equilibrium

effect that arises from the representative sample assumption. Second, since√
q(1− q) < 1

2
for any q ∈ (0, 1), rt assigns higher probability to the favored

alternative than any RSE value of qt, for any type t.

Of course, rt increases with n and converges to one as n → ∞. However,

rt differs from qt in the speed of convergence. Our next result demonstrates

that qt(n) increases much more slowly than rt(n). For convenience, we fix

t = 1; this is without loss of generality.

Proposition 3 For every k > 0, there exists n(k) such that for every integer

n ≥ n(k),

q1(n) ≤ Φ(
1

2
nk)

Proof. We will prove that for all k > 0,

q1(n) ≤ Φ(nk)

from some n(k) onward. The general claim follows immediately with a suit-

able change of n(k).

Let n, k > 0. Denote x = q1(n). That is, x is the unique solution to

x = Φ
(√

nx(1− x)
)
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Assume x > Φ(nk). Since Φ is monotonically increasing,
√

nx(1− x) >

nk or, equivalently,

x(1− x) > n2k−1 (7)

The contradiction is immediate for k ≥ 1
2
. Henceforth, we assume k < 1

2
.

Let f(x) = x(1 − x). The function f is invertible for x ∈ [1
2
, 1] with

f−1 : [0, 1
4
] → [1

2
, 1] given by f−1(x) = 1+

√
1−4x
2

. The inequality (7) implies

0 < n2k−1 < 1
4
and, since f is strictly decreasing, also implies,

x < f−1(n2k−1) =
1 +

√
1− 4n2k−1

2

Thus,

Φ(nk) < x <
1 +

√
1− 4n2k−1

2

Hence, it suffices to show that from some n onward,

Φ(nk) ≥ 1 +
√
1− 4n2k−1

2

By the Chernoff bound for the normal distribution (e.g., see Boucheron

et al. (2013)),

1− Φ(x) ≤ e−
x2

2 (8)

for all x > 0. Thus,

Φ(nk) ≥ 1− e−
n2k

2

Hence, it suffices to prove

e−
n2k

2 ≤ 1−
√
1− 4n2k−1

2
(9)

for sufficiently large n. See Claim 2 in the Appendix for this proof.

In the uniform-sample case, rt(n) increases with n like Φ(
√
n). By com-

parison, in the representative sample case, qt(n) increases with n more slowly
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Figure 1(a) Figure 1(b)

than Φ(nk) for any k, however small (and in particular, smaller than 1
2
).

Thus, the equilibrium forces introduced by representative sampling have a

qualitative effect on the agent’s choice behavior, even when n is large.

Figure 1 illustrates this comparison for t = 1. Figure 1(a) focuses on

the range n < 100, while Figure 1(b) zooms out to n < 500 (and also

describes Φ(1
2
n1/4)). As we can see, the uniform-case specification exhibits

fast convergence — e.g., r1(30) ≈ 0.997. In contrast, the RSE prediction

is q1(30) ≈ 0.925. Considering that t = 1 represents an objective payoff

difference of one standard deviation (recall that σ = 1), this is a significant

choice error. Moreover, convergence is very slow such that from around

n = 400, q1(n) < Φ(1
2
n1/4).

3.2 Getting Data from “Similar” Types

In many of the real-life situations that motivate our model, people do not get

their data from a representative sample of the entire population, but rather

from a sub-population of “similar” agents. To capture this, we introduce a

new primitive into our model, in the spirit of Jehiel’s (2005) notion of analogy

partitions. Let Π be a partition of T , where Π(t) denotes the partition cell

that includes t. For some of our results, we will assume that Π consists of

“intervals” — i.e., if Π(t) = Π(t′) and t < t′′ < t′, then Π(t′′) = Π(t). In this
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case, we refer to Π as an interval partition.

The average frequency of choosing z among types in Π(t) is

q̄Π(t)(z) =

∑
t∈Π(t) µtqt(z)∑

t∈Π(t) µt

(10)

We will occasionally use the abbreviated notation q̄Π(t) = q̄Π(t)(B).

One interpretation of Π is that it captures coarse sample data. The agent

tends to learn the outcome of choices by other agents who are like her, in

the sense that they share certain characteristics with her. An alternative

interpretation is that Π represents a particular word-of-mouth learning envi-

ronment. Agents learn from the experiences of other, socially linked agents.

The partition corresponds to a particular social network that consists of iso-

lated cliques. When Π is an interval partition, a finer partition corresponds

to a larger degree of homophily.

The next result establishes monotonicity of q̄π when Π is an interval

partition. Given any two cells π, π′ ∈ Π, write π′ ≻ π if and only if t′ > t for

every t ∈ π, t′ ∈ π′.

Proposition 4 Suppose Π is an interval partition. Then, in equilibrium,

π ≻ π′ implies q̄π > q̄π′.

Proof. Suppose that π ≻ π′, and assume that q̄π′ ≥ q̄π. As we already saw,

since t > 0 for every t ∈ T , qt >
1
2
for every t in RSE, and therefore q̄π > 1

2
.

It follows that q̄π(1− q̄π) ≥ q̄π′(1− q̄π′). Since t > t′ for every t ∈ π, t′ ∈ π′, it

follows from (4) that qt > qt′ in RSE for every t ∈ π, t′ ∈ π′, hence q̄π > q̄π′ ,

a contradiction.

Note that the monotonicity result applies to choice probabilities in cells

of the interval partition Π, but not necessarily to choice probabilities of

individual types. In particular, it is possible that t′ > t and yet qt′ < qt in

the unique RSE. To see why, note that in RSE, two opposing forces shape
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choice probabilities. On one hand, a higher type (which represents a greater

underlying taste for B) is a force that increases the probability of choosing

this alternative. On the other hand, suppose that Π(t′) ≻ Π(t) and t′ is

at the lower end of its cell while t is at the upper end of its cell. Then, t′

shares its cell with higher types that imply a high q̄Π(t′), whereas t shares

its cell with lower types that imply a low q̄Π(t). As a result, the sample size

for alternative A will be smaller for type t′, which implies a noisy estimate

of the payoff difference between the two alternatives. This force favors the

inferior alternative A, and therefore lowers the probability of choosing B for

t′, relative to t. The net effect of these two forces is ambiguous. Of course,

within a given cell, qt increases with t, as in Remark 2.

We now turn to the question of how the coarseness of the partition Π af-

fects the agent’s behavior. First, we analyze the effect of splitting a partition

cell into multiple sub-cells on the average behavior of types in the various

sub-cells.

Proposition 5 Consider two partitions Π and Π′, such that Π′ refines some

cell T ∗ into a collection of sub-cells {T 1, ..., Tm}. Let q and q′ be the RSE

under Π and Π′. Then:

(i) If q̄Tk > q̄T ∗, then q̄′
Tk < q̄Tk .

(ii) If q̄Tk < q̄T ∗, then q̄′
Tk > q̄Tk .

Proof. We prove part (i); the proof of part (ii) follows the same logic.

Suppose q̄Tk > q̄T ∗ for some k = 1, ...,m. Then, since both quantities are

above 1
2
,

q̄Tk(1− q̄Tk) < q̄T ∗(1− q̄T ∗)

By (4),

qt = Φ
(
t
√

nq̄T ∗(1− q̄T ∗)
)
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for every t ∈ T ∗. Therefore, since Φ is an increasing function,

qt > Φ
(
t
√

nq̄Tk(1− q̄Tk)
)

for every t ∈ T ∗. Taking an average over t ∈ T k with respect to the condi-

tional type distribution given T k, we obtain

q̄Tk −
∑
t∈Tk

µt∑
t∈Tk µt

Φ
(
t
√

nq̄Tk(1− q̄Tk)
)
> 0 (11)

By comparison, the definition of q′ requires

q̄′Tk −
∑
t∈Tk

µt∑
t∈Tk µt

Φ
(
t
√

nq̄′
Tk(1− q̄′

Tk)
)
= 0 (12)

Since the L.H.S of (11)-(12) is an increasing function of a scalar variable (q̄Tk

in the inequality, q̄′
Tk in the equation), it follows that q̄′

Tk < q̄Tk .

To understand this result, suppose that the original partition is fully

coarse, and its refinement divides it into two groups. Suppose further that

under the original coarse partition, the average propensity to consume the

superior alternative in group 1 is above the overall average (such that group 2

is below the average). The result says that after the refinement, the average

probability of consuming the superior alternative decreases in group 1 and

increases in group 2. If we think of each cell in the refined partition as a

“peer group”, then the message of the result is that increased homophily (i.e.,

greater tendency to learn from similar types) brings the choice probabilities

in extreme cells closer together.

The intuition behind this result is that when members of group 1 stop

learning from the choices of members of group 2, they have fewer sample

points about the inferior product, which leads to a noisier assessment and

therefore a lower probability of choosing the superior product.

While the above result holds for any partitional structure, in the remain-
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der of the sub-section we restrict attention to interval partitions. Our next

result will make use of the following lemma (the proof is in the Appendix).

Define the function

H(s, x) = Φ (sx)

where s, x > 0.

Lemma 1 If s < 2 and x ∈ (0, 1
2
), then H is supermodular.

We now show that as long as the types in T are not too far away from zero,

a finer partition leads to a higher overall probability of taking the inferior

action A. Denote

q̄(Π) =
∑
t∈T

µtqt(Π)

where qt(Π) is the RSE probability that type t chooses B under the partition

Π.

Proposition 6 Suppose t
√
n ∈ (0, 2) for every t ∈ T . Consider two interval

partitions Π and Π′, such that Π′ is a refinement of Π. Then, q̄(Π′) < q̄(Π).

Proof. For notational simplicity only, we set n = 1 in what follows. Take

two interval partitions Πc and Πf , such that Πf is a refinement of Πc. For

notational simplicity, let qft = qt(Π
f ) and qct = qt(Π

c).

Consider some cell T ∗ ∈ Πc. Denote

αt =
µt∑

s∈T ∗ µs

Define

Qc =
∑
t∈T ∗

αtq
c
t =

∑
t∈T ∗

αtΦ
(
t
√

Qc (1−Qc)
)

This is the average equilibrium probability of choosing B among types in T ∗

under the partition Πc.
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Obviously, if T ∗ is also a cell in Πf , then qct = qft for every t ∈ T ∗, hence

QC = Qf . We now turn to the non-degenerate case, in which Πf strictly

refines the cell T ∗.

Let βπ be the probability of π ∈ Πf conditional on π ⊂ T ∗. Denote

q̄π =
∑
s∈π

αs

βπ

qfs

Define

Qf =
∑
t∈T ∗

αtq
f
t =

∑
t∈T ∗

αtΦ
(
t
√
q̄Πf (t)(1− q̄Πf (t))

)
This is the equilibrium probability of choosing B conditional on t ∈ T ∗under

Πf .

Suppose that Qc ≤ Qf . Then, since
√

q(1− q) is strictly decreasing in

q > 1
2
, √

Qc(1−Qc) ≥
√

Qf (1−Qf )

Since Φ is strictly increasing,

Qc =
∑
t∈T ∗

αtΦ
(
t
√
Qc (1−Qc)

)
≥
∑
t∈T ∗

αtΦ
(
t
√

Qf (1−Qf )
)

Denote

xπ =
√

q̄π(1− q̄π)

The expression
√

q(1− q) is strictly concave in q. Therefore,

√
Qf (1−Qf ) =

√√√√(∑
π⊂T ∗

βπ q̄π

)(
1−

∑
π⊂T ∗

βπ q̄π

)
>
∑
π⊂T ∗

βπ

√
q̄π(1− q̄π) =

∑
π⊂T ∗

βπxπ

Since Φ is strictly increasing,

∑
t∈T ∗

αtΦ(t
√

Qf (1−Qf )) >
∑
t∈T ∗

αtΦ

(
t
∑
π⊂T ∗

βπxπ

)
=
∑
t∈T ∗

αtH

(
t,
∑
π⊂T ∗

βπxπ

)
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By concavity of H with respect to its second argument,

H

(
t,
∑
π⊂T ∗

βπxπ

)
>
∑
π⊂T ∗

βπH(t, xπ)

for every t. Therefore,

∑
t∈T ∗

αtH

(
t,
∑
π⊂T ∗

βπxπ

)
>
∑
t∈T ∗

∑
π⊂T ∗

αtβπH(t, xπ)

Note that xπ ∈ (0, 1
2
) for every π, by the definition of xπ. Furthermore, by the

monotonicity result, the cells in Πf are ordered such that q̄Πf (t) is increasing

in t, and hence xΠf (t) is decreasing in t. By Lemma 1, H is supermodular

when t < 2. Therefore,∑
t∈T ∗

∑
π⊂T ∗

αtβπH(t, xπ) >
∑
t∈T ∗

αtH(t, xΠf (t)) =
∑
t∈T ∗

αtΦ
(
t
√
q̄Πf (t)(1− q̄Πf (t))

)
= Qf

This inequality is a special case of a standard inequality from the literature

on stochastic orderings — e.g., see Tchen (1980).1 We have thus obtained

Qc > Qf , a contradiction.

It follows that for every cell T ∗ ∈ Πc, Qc ≤ Qf , with a strict inequality

for at least one cell. Therefore, q̄(Πc) < q̄(Πf ).

This result establishes that when the underlying payoff advantage of al-

ternative B is sufficiently small, a finer partition leads to a higher probability

of choice mistakes. Recall our two alternative interpretations of Π. Under

the “coarse data” interpretation, the result means that finer data has an

adverse effect on average choice quality. Under the “homophily” interpreta-

tion, the result means that increasing the homophily of the underlying social

network that agents rely on for learning leads to poorer choice on average.

The question of how the coarseness of Π affects average behavior for larger

1We thank Meg Meyer for the reference.
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values of t remains open.

It can also be shown that under the same conditions, a finer partition has

an adverse effect on average welfare. Intuitively, this is because Proposition

5 implies that refining the partition leads to a decrease (an increase) in the

probability of choosing B among high (low) types. Proposition 6 shows that

the decrease among the high types is greater than the increase among the low

types. Since the welfare effects of a change in choice probability are larger for

high types (whose bias in favor of B is stronger), Proposition 6 also implies

an overall decrease in average welfare following the refinement.

4 A General Formulation for Games

In this section, we extend the concept of RSE from single-agent decision

problems to multi-agent games, and illustrate it with the one-shot Pris-

oner’s Dilemma (in the next section, we apply RSE to an infinite-horizon,

overlapping-generation-like version of the game). For expositional purposes,

we impose strong regularity conditions, avoid using the fully notated formal-

ism of extensive-form games, and rely on verbal exposition whenever possible.

Consider a K-player extensive-form game. We use Ik to denote an in-

formation set at which player k moves. We use qk to denote a behavioral

strategy for player k, where qk,Ik(a) is the probability of playing action a

that qk induces at the information set Ik. We assume that for any strategy

profile q = (qk)k, information set Ik and action a that is feasible for player

k at Ik, the distribution over player k’s payoffs conditional on playing a at

Ik is well-defined and has finite mean and variance, denoted mk,Ik,q(a) and

σ2
k,Ik,q

(a). As before, n denotes players’ common sample size.

These assumptions allow a straightforward extension of RSE. The player’s

estimated payoff from playing a at Ik is

ûk,Ik,q(a) ∼ N

(
mk,Ik,q(a),

σ2
k,Ik,q

(a)

nqk,Ik(a)

)
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As in previous sections, whenever qk,Ik(a) = 0, we treat ûk,Ik,q(a) as a well-

defined random variable satisfying Pr(ûk,Ik,q(a) ≤ c) = 1
2
for every c.

Definition 2 A strategy profile q is an RSE if for every player k, every

information set Ik and every action a that is feasible for player k at Ik,

qk,Ik(a) = Pr [ûk,Ik,q(a) > ûk,Ik,q(a
′) for every other feasible a′ at Ik]

This extended definition of RSE assumes that what players evaluate by

sampling is not their extensive-game strategies, but the actions that are

feasible at any given information set. This is in the spirit of behavioral rather

than mixed strategies in the classical theory of extensive-form games. The

definition can be extended to introduce an analogy partition of information

sets, as in Section 3.2. Since our following examples do not make use of this

feature, we omit it here for conciseness.

4.1 An Example: The Prisoner’s Dilemma

Consider the following symmetric, simultaneous-move 2×2 game. There are

two players, 1 and 2. The action set for each player is {0, 1}. Player i’s payoff
function is

ui(a1, a2) = aj − cai

where j ̸= i and c < 1. This is a standard specification of the Prisoner’s

Dilemma, where the strictly dominated action ai = 1 corresponds to cooper-

ation.

As in previous sections, our main interest in this sub-section is in the

contrast between the predictions of RSE and the uniform-sample case.

Proposition 7 The game has a unique symmetric RSE, where the probabil-

ity of playing a = 0 is Φ(c
√
n).
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Proof. Let q denote the RSE probability of a = 0. When a player draws a

single sample point from an action a, she obtains the payoff 1−ca with prob-

ability 1− q and the payoff −ca with probability q. The normal distribution

that shares the mean and variance with this random variable is

N (1− q − ca, q(1− q))

In RSE, the player samples a = 0 nq times and a = 1 n(1 − q) times.

Therefore, the player’s estimated gain from playing a = 0 is

û(0)− û(1) ∼ N

(
c,
q(1− q)

nq
+

q(1− q)

n(1− q)

)
= N

(
c,

1

n

)
In RSE,

q = Pr

{
N

(
0,

1

n

)
> −c

}
= Φ(c

√
n)

This completes the proof.

Thus, RSE uniquely predicts a positive probability of cooperation, which

is below 1
2
and decreases with c and n. One might think that playing a

strictly dominated action with positive probability is merely a consequence of

sampling error. However, we will now see the crucial role that representative

sampling plays in this result.

Specifically, compare our analysis with the uniform-sample case: a player’s

estimated gain from playing a = 0 is

û(0)− û(1) ∼ N

(
c,
2r(1− r)

n
+

2r(1− r)

n

)
= N

(
c,
4r(1− r)

n

)
where r is the probability that the player’s opponent plays a = 0. The

equilibrium condition for this uniform-sample variant is

r = Pr

{
N

(
0,

4r(1− r)

n

)
> −c

}
(13)
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Claim 1 When nc2 > 8, the unique solution of (13) is r = 1.

Proof. The condition (13) can be rewritten as

r = Φ

(
c

√
n

4r(1− r)

)
Applying the Chernoff bound (8), we obtain

r = Φ

(
c

√
n

4r(1− r)

)
≥ 1− e−

c2n
8r(1−r)

This inequality is equivalent to

x ≤ e−
c2n

8x(1−x)

where x = 1 − r. Claim 3 in the Appendix establishes that when nc2 > 8,

this inequality fails for all x ∈ (0, 1].

This example demonstrates once again the key role of representative sam-

pling in two-action decision problems — specifically, its enhancement of the

perceived value of objectively inferior actions. In the Prisoner’s Dilemma (as

in any simultaneous-move game), the distribution of a single sample point for

a player’s action is given by the opponent’s mixed strategy. As this strategy

becomes more skewed in favor of the objectively superior action (defection),

its variance vanishes and makes the player’s assessment of the two actions

more accurate. Under a uniform sample, this force eliminates the possibility

of cooperative play when n is not too small. The representative-sample as-

sumption introduces a counter-force that favors the objectively inferior action

(cooperation) and therefore manages to sustain it with positive equilibrium

probability for any value of n.

Comment. Arigapudi et al. (2021) study S(K) equilibria in the Prisoner’s

Dilemma and their dynamic convergence properties. They show that for some

range of values of K and the payoff parameters, cooperation can be part of
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a stable S(K) equilibrium. However, if K is not small enough relative to the

parameters that correspond to c in the present example, cooperation cannot

be sustained in equilibrium. The uniform-sample version of the present model

serves as a normal approximation of the analysis in Arigapudi et al. (2021),

where K = n/2.

5 Situation-Dependent Sample Size (SDSS)

Our formulation of RSE for extensive-form games assumes that each player

at any information set has a fixed “budget” of n sample points, which are

allocated to the actions that are available at the information set according

to their equilibrium frequencies in the relevant partition cell.

However, one could argue that the total number of sample points that

a player has at some information set should reflect the frequency of the

partition cell that contains it. If a class of information sets is rarely visited,

then it is natural to assume that there will be few observations about it. In

other words, the representative-sample idea may be extended to encompass

not only actions but also the situations in which they are considered.

In this section, we explore the possible implications of this idea through a

specific infinite-horizon “trust” game with an overlapping-generations flavor.

We show that our previous definition of RSE implies a stationary cooperation

pattern, whereas a variation that assumes situation-dependent sample sizes

implies positive reciprocity in equilibrium.2

Consider the following discrete-time, infinite-horizon, sequential-move game.

It will be helpful to imagine time as stretching to infinity in both directions,

i.e., t = . . . − 2, 1, 0, 1, 2, .... At every period t, a distinct agent, referred to

as player t, chooses an action at ∈ {0, 1}.
2It can be shown that a stationary equilibrium would also exist under uniform sampling.
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Player t’s payoff is purely a function of at and at+1, given by

u(at, at+1) = at+1 − cat

where c < 1 is a constant. As in Section 4.1, this is a standard Prisoner’s

Dilemma payoff matrix: at = 1 means that player t decides to “put her trust”

in player t+ 1. This payoff function implies the following basic observation.

If player t believes that at+1 = 1 with probability p(at), then player t will

weakly prefer to play a = 1 if and only if p(1)− p(0) ≥ c.

Players in this game have limited recall. They can only condition their ac-

tion on m-truncated histories, i.e., the m ≥ 1 most recent actions. Thus, the

set of relevant truncated histories is H = {0, 1}m. For every truncated his-

tory h = (at−m, ..., at−1), (h, a) is a shorthand notation for the concatenated

truncated history (at−m+1, ..., at−1, a). A behavioral strategy for any player t

in this game is a function f : H → [0, 1], where f(h) is the probability that

at = 1 given the truncated history h.

Benchmark: Nash equilibrium

As usual, this game has a Nash equilibrium in which every player chooses

a = 0 after every history. This is the unique symmetric Nash equilibrium if

we impose the following refinement: player t’s equilibrium strategy conditions

on an action in her truncated history only when she believes that this action

affects the behavior of player t+1.3 The reason is as follows. Fix a candidate

Nash equilibrium. Define m∗ ≤ m as the effective recall associated with this

equilibrium — i.e., there is a player t who conditions her behavior on at−m∗ ,

and there is no m′ > m∗ for which this is the case. Suppose m∗ > 0, and

consider player t’s reasoning. By the definition of m∗, this player knows that

player t+1 will not condition her behavior on at−m∗ . By the refinement, she

will not condition her own behavior on at−m∗ , contradicting the definition of

m∗. It follows that m∗ = 0, which means that players never condition their

3This refinement is consistent with the idea that players prefer not to use complex
strategies unless they have a strict benefit from doing so, as in Rubinstein (1986).

27



behavior on the history. This makes a = 0 a best-reply for each player.

The game also has symmetric Nash equilibria in which players cooperate.

For instance, every f that satisfies f(h, 1)− f(h, 0) = c is a symmetric Nash

equilibrium, because players are always indifferent between the two actions.

The function f(h) = cat−m · · · at−1 is another symmetric Nash equilibrium

that exhibits some cooperation. These equilibria violate the criterion that

players condition on a past action only when they believe it is relevant for

predicting future behavior.

For the remainder of the section, we assumem = 2 and present our results

for this case only. Whether they can be extended to any m > 2 is an open

problem.

5.1 RSE in the Trust Game

Let us see how RSE can be applied to this setting. A player’s information set

is the truncated history h. When a player acts at the history h, she obtains

a total of n observations, and allocates them into observations about what

happens after the histories (h, 1) and (h, 0), with representative proportions.

That is, she obtains n · f(h) independent draws from the Bernoulli distri-

bution whose success rate is f(h, 1), and n · (1 − f(h)) independent draws

from the Bernoulli distribution whose success rate is f(h, 0). Our normal

approximation of this description means that the player’s assessment of the

probability that a player’s immediate successor cooperates after she herself

plays a = 1 at h is

f̂(h, 1) ∼ N

(
f(h, 1),

f(h, 1)(1− f(h, 1))

nf(h)

)
(14)
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Likewise, the player’s assessment of the probability that a player’s immediate

successor cooperates after she herself plays a = 0 at h is

f̂(h, 0) ∼ N

(
f(h, 0),

f(h, 0)(1− f(h, 0))

n(1− f(h))

)
(15)

The player will weakly prefer to play a = 1 if and only if f̂(h, 1)− f̂(h, 0) ≥ c.

Therefore, in RSE, f(h) is equal to

Pr

[
N

(
f(h, 1)− f(h, 0),

f(h, 1)(1− f(h, 1))

nf(h)
+

f(h, 0)(1− f(h, 0))

n(1− f(h))

)
> c

]

Equivalently, this can be written as

f(h) = Φ

 √
n(f(h, 1)− f(h, 0)− c)√

f(h,1)(1−f(h,1))
f(h)

+ f(h,0)(1−f(h,0))
1−f(h)

 (16)

Let us guess a stationary RSE, in which f(h) = b for every h. Then,

equilibrium is unique and given by:

b = 1− Φ(c
√
n)

This coincides with the RSE in the one-shot Prisoner’s Dilemma that we

studied in Section 4.1. We will proceed to show that it is the unique RSE in

the present setting. The result makes use of the following lemma, which is

proved in the Appendix.

Lemma 2 Fix f(h, 1), f(h, 0) ∈ (0, 1). Then, there is a unique f(h) that

solves equation (16).

Proposition 8 Let m = 2. Then, the stationary equilibrium is the unique

RSE.
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Proof. Lemma 2 establishes that there is a unique f(h) solution to (16) for

any given f(h, 1) and f(h, 0). By definition, these two objects do not depend

on at−m (i.e., the earliest action in player t’s truncated history). Then, this

property necessarily extends to f(h). When m = 2, this means that in RSE,

f(h) is purely a function of the most recent action — i.e., f(at−2, at−1) is

constant in at−2.

Accordingly, let fa denote the equilibrium probability that at = 1 condi-

tional on at−1 = a. In addition, denote x(a) = f̂(a, 1)− f̂(a, 0). Then,

x(1) ∼ N

(
f1 − f0,

1

n

(
1− f1 +

f0(1− f0)

(1− f1)

))
x(0) ∼ N

(
f1 − f0,

1

n

(
f1(1− f1)

f0
+ f0

))
Recall that

fa = Pr(x(a) ≥ c)

Suppose f1−f0 > c. Then, f1, f0 >
1
2
. Since x(1) and x(0) have the same

mean which is above c, f1 > f0 only if the variance of x(1) is lower than the

variance of x(0). Therefore,

1− f1 +
f0(1− f0)

(1− f1)
<

f1(1− f1)

f0
+ f0

Using the fact that f1 > f0 >
1
2
, we obtain

f1(1− f1)

f0
+ f0 <

f0(1− f0)

f0
+ f0 = 1

1− f1 +
f0(1− f0)

(1− f1)
> 1− f1 +

f1(1− f1)

(1− f1)
= 1

a contradiction.

Now suppose f1 − f0 < 0. Then, f1, f0 < 1
2
. Since x(1) and x(0) have

the same mean which is below c, f1 < f0 only if the variance of x(1) is lower
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than the variance of x(0). Therefore,

1− f1 +
f0(1− f0)

(1− f1)
<

f1(1− f1)

f0
+ f0

Since f1 < f0 < 1
2
, it follows that f1(1 − f1) < f0(1 − f0), and we obtain a

contradiction.

Finally, suppose 0 < f1 − f0 < c. Then, f1, f0 < 1
2
. Since x(1) and x(0)

have the same mean which is below c, f1 > f0 only if the variance of x(1) is

larger than the variance of x(0). Therefore,

1− f1 +
f0(1− f0)

(1− f1)
>

f1(1− f1)

f0
+ f0

Since f0 < f1 <
1
2
, f0(1− f0) < f1(1− f1), and we obtain a contradiction.

We have thus ruled out all possibilities of f1 ̸= f0.

Thus, RSE allows for cooperative behavior in the infinite-horizon trust

game with m = 2, as a result of sampling errors — just as in the one-shot

Prisoner’s Dilemma of Section 4.1. However, it does not allow for any non-

stationary patterns.

5.2 Emergent Reciprocity under SDSS

To introduce SDSS, note that a behavioral strategy f induces a discrete-time

Markov process, in which the set of states is the set of truncated histories H.

The probabilities of transition from h ∈ H into the concatenated truncated

histories (h, 1) and (h, 0) are f(h) and 1 − f(h), respectively. If f(h) ∈
(0, 1) for every h — i.e., f has full support — then the Markov process is

irreducible and therefore has a unique invariant distribution over H, denoted

αf . Moreover, this distribution has full support.

For every h ∈ H and a ∈ {0, 1}, define the following independently
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distributed, normal random variable:

f̂(h, a) ∼ N

(
f(h, a),

f(h, a)(1− f(h, a))

nαf (h, a)

)
(17)

This variable represents a player’s estimate of the probability that the sub-

sequent player will choose a = 1 following the truncated history (h, a). This

is the same as (14)-(15), except that the number of observations about (h, a)

is nαf (h, a). This captures the idea that the representation of a situation in

the sample is proportional to the frequency with which it is visited.

Definition 3 (Situation-dependent RSE) A full-support strategy f is a

situation-dependent RSE if, for every h ∈ H,

f(h) = Pr(f̂(h, 1)− f̂(h, 0) ≥ c) (18)

where f̂ is defined by (17).

The following result shows that unlike the original definition of RSE,

situation-dependent RSE involves non-stationary strategies. In particular, it

implies positive reciprocity.

Proposition 9 Let m = 2. In any situation-dependent RSE, f(at−2, at−1)

is strictly increasing in at−1.

Proof. The argument that f is effectively a function of the most recent

action, established in the proof of Proposition 8, holds here, too. Accordingly,

we denote by fa the probability that at+1 = 1 conditional on at = a. In a

similar vein, we use the notation αh for αf (h). Then, condition (18) can be

written as

f1 = Pr
(
f̂(1, 1)− f̂(1, 0) ≥ c

)
f0 = Pr

(
f̂(0, 1)− f̂(0, 0) ≥ c

)
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where

f̂(1, 1)− f̂(1, 0) ∼ N

(
f1 − f0,

f1(1− f1)

nα11

+
f0(1− f0)

nα10

)
f̂(0, 1)− f̂(0, 0) ∼ N

(
f1 − f0,

f1(1− f1)

nα01

+
f0(1− f0)

nα00

)
By the definition of αf ,

α11 = f1 · (α11 + α01)

α10 = (1− f1) · (α11 + α01)

α01 = f0 · (α10 + α00)

α00 = (1− f0) · (α10 + α00)

1 = α00 + α01 + α10 + α11

The solution for αf is

α11 =
f1f0

1+f0−f1

α10 =
f0(1−f1)
1+f0−f1

α01 =
f0(1−f1)
1+f0−f1

α00 =
(1−f0)(1−f1)

1+f0−f1

If f1 − f0 ≥ c, then f1 > f0 and we are done. Now suppose f1 − f0 < c.

Then, f1, f0 < 1
2
. Therefore, α11 < α01 and α10 < α00. It follows that

f̂(1, 1)− f̂(1, 0) and f̂(0, 1)− f̂(0, 0) have the same mean, and

V ar(f̂(0, 1)− f̂(0, 0)) < V ar(f̂(1, 1)− f̂(1, 0))

Since the mean lies below c,

f1 = Pr(f̂(1, 1)− f̂(1, 0) ≥ c) > Pr(f̂(0, 1)− f̂(0, 0) ≥ c) = f0

This completes the proof.
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The message of this result is that reciprocity emerges naturally when

players form beliefs on the basis of representative samples, where represen-

tativeness extends to the truncated histories at which they evaluate actions.

To see the logic behind this result, note that in equilibrium, one of the two

actions is objectively better for all players, regardless of the history. Indeed,

if f1 − f0 < c (> c), defection (cooperation) is strictly better. Furthermore,

the inferior action will be played with frequency below 50% after any trun-

cated history — just as alternative A was chosen with probability below 1
2

in the binary choice model. To fix ideas, assume cooperation (a = 1) is

the inferior action. Then, since cooperation is less frequent than defection,

agents will have fewer observations about what happens after the truncated

history (h, 1) compared to the history (h, 0). This means that their payoff

estimates following (h, 1) will be noisier, leading them to choose the inferior

action a = 1 with higher probability after (h, 1) than after (h, 0). The same

logic holds if defection is the inferior action. (While it seems plausible that

a = 1 should be the inferior action — indeed, this is supported by numerical

simulations we have carried out, the results of which are presented in Figure

2 — we have been unable to prove this so far.)

Figure 2
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Unlike the reciprocity patterns admitted by Nash equilibrium, those that

are implied by situation-dependent RSE are a lot more specific. We do

not know whether situation-dependent RSE is unique, but our numerical

simulations suggest that it is. They also give a sense of the magnitude of

cooperation in the trust game for various values of c and n. Furthermore,

RSE satisfies the criterion that players condition on a past action only when

they believe it is relevant for predicting their opponent’s behavior.

Situation-dependent RSE takes us further away from the “active ex-

perimentation” image behind S(K) equilibrium and brings us closer to a

sampling-based equilibrium concept in which sample data is observational in

nature.

6 Conclusion

This paper conveyed three basic ideas. First, it took the sampling-based equi-

librium approach and modified its implicit “active experimentation” learning

mode into a more passive format, which better fits situations in which players

learn from observational data generated by their equilibrium behavior.

Second, the concept of RSE introduces two modeling approximations —

representative samples and Gaussian approximations — which enhance the

tractability of sampling-based equilibrium analysis and facilitate its extension

to complex games.

Finally, the key equilibrium force that our paper highlighted is the effect

of endogenous sample size on the variance of players’ assessments of their

actions. A skewed distribution over actions generates noisy estimates of

their payoff differences, which favors the objectively inferior actions and thus

moderates the distribution’s skewness. This force drives new strategic effects,

such as the slow convergence of equilibrium behavior toward the rational

benchmark in binary choice models, or the play of dominated actions in 2×2

games.
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Appendix: Missing Proofs

Claim 2 For every sufficiently large n,

e−
n2k

2 ≤ 1−
√
1− 4n2k−1

2

Proof. Define

h(n) =
1−

√
1− 4n2k−1

2
− e−

n2k

2

Note that (since k < 1
2
) limn→∞h(n) = 0. Thus, it suffices to prove that

there exists n(k) such that for all n ≥ n(k), h′(n) < 0. This will imply

h(n) ≥ 0 for all n ≥ n(k) and thus that (9) holds for all such n. We have

h′(n) =
(2k − 1)n2k−2

√
1− 4n2k−1

+ kn2k−1e−
n2k

2

Therefore, h′(n) < 0 if and only if

e
n2k

2

n
√
1− 4n2k−1

>
k

1− 2k

Successive applications of L’Hôpital’s rule imply

limn→∞
e

n2k

2

n
√
1− 4n2k−1

= ∞

which completes the proof.

Proof of Lemma 1

Recall that

H(s, x) =
1√
2π

∫ sx

−∞
e−

a2

2 da
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Let us calculate the cross derivative of H. First,

∂H(s, x)

∂s
=

1√
2π

· x · e−
1
2
s2x2

Now differentiate this expression with respect to x:

1√
2π

[
e−

1
2
s2x2 − s2

2
· 2x · x · e−

1
2
s2x2

]
When x < 1

2
, this expression is strictly positive whenever s < 2. ■

Claim 3 If x ∈ (0, 1] and nc2 > 8, then x > e−
c2n

8x(1−x) .

Proof. Denote t = c2n and define

f(x, t) = x− e−
t

8x(1−x)

Note that for all x > 0, f(x, t) is increasing in t for t > 0. Thus, it suffices to

prove that f(x, 8) > 0 for all x ∈ (0, 1]. For all such x we have x > x(1−x) >

0 and hence,

f(x, 8) = x− e−
1

x(1−x) > x− e−
1
x

The R.H.S can easily be shown to be strictly positive for all x > 0.

Proof of Lemma 2

Fix f(h, 1), f(h, 0) ∈ (0, 1). Denote

x = f(h)

d =
√
n(f(h, 1)− f(h, 0)− c)

a = f(h, 1)(1− f(h, 1))

b = f(h, 0)(1− f(h, 0))
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Then, equation (16) can be written as

x = Φ

(
d

√
x(1− x)

a(1− x) + bx

)
(19)

where a, b ∈ (0, 1
4
), d is any real number, and x ∈ [0, 1].

When d = 0, x = 1
2
trivially. Suppose d > 0 (the case of d < 0 is proved

in the same manner). Then, the candidate solutions of x in (19) lie in [1
2
, 1].

Moreover, the R.H.S is above 1
2
(namely, above the L.H.S) at x = 1

2
and takes

the value 0 (namely, below the L.H.S) at x = 1. In addition, the function

h(x) =
x(1− x)

a(1− x) + bx

is concave in x. Therefore, there is some x∗ ∈ [1
2
, 1] such that h is increasing

for x < x∗ and decreasing for x > x∗. Recall that the functions d
√
z and Φ(z)

are strictly increasing and concave for z, d > 0. Therefore, the composite

function

Φ

(
d

√
x(1− x)

a(1− x) + bx

)
is strictly increasing and concave for x < x∗, and decreasing (but not nec-

essarily concave) for x > x∗. It follows that (19) has a unique solution in

(1
2
, 1).
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