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Abstract

This paper generalizes the canonical model of human capital accumulation through
schooling to endogenize the process of academic specialization. It provides the solu-
tion to a class of dynamic investment problems with switching and stopping under
sequential uncertainty. Under mild assumptions, we show that the model’s opti-
mal policy has a particularly simple form that can be reduced to the comparison
of independent indices. The optimal policy implies that schooling should begin
with a period of general education, common to all students, followed by a period
of gradual academic specialization before graduation. At the microeconomic level,
it is consistent with the dynamics of student course taking observed in the data and
the outcomes of educational interventions studied in the literature. At the macroe-
conomic level, its predictions are consistent with models of how education should
adapt to changes in the speed and scope of technological change in labor markets.
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1 Introduction

A nearly universal feature of modern education systems is that their curriculum be-
comes more specialized as education progresses. Schooling typically begins with a pe-
riod of general education common to all, followed by a gradual process of academic
specialization that differentiates students by field-of-study. While a common feature of
many systems, the length of general education and the timing and scope of academic
specialization varies considerably between countries and over time. For instance, today
over 40% of upper secondary students in the European Union are enrolled in vocational
degree programs, and students in countries like Germany and Austria are tracked start-
ing from age 10. In the United States and Canada, tracking of students begins at age 16
and over 90% of upper secondary students are enrolled in general academic programs.1

What should be the length and scope of general education? When should academic
specialization begin, and how quickly and narrowly should it progress? The answers
to these questions have important implications for the design of education systems and
for the wider economy, as the allocation of students across distinct fields-of-study deter-
mines, in part, the future skill composition of the workforce.

To begin answering these questions, this paper extends the canonical model of human
capital accumulation through schooling to endogenize the process of academic special-
ization. Agents dynamically allocate time to different fields-of-study before graduating
at a time and with a specialization of their choosing to enter the labor market and be-
gin work. Students do not initially know their true skill-specific abilities, but can learn
their comparative advantage over time through academic experiences.2 The dynamics
of education are shaped by the interaction of this learning process and the human cap-
ital accumulation technology. In the absence of uncertainty, the model collapses to the
Mincerian model of optimal schooling, nesting it as a special case.

The paper shows that, in this extended environment, optimal schooling begins with a
period of general education followed by a gradual process of academic specialization
before graduation. During general education, students exploit complementarities be-
tween skills through broad-based study, which is beneficial regardless of their ultimate
field-of-study. During the specialization phase, students experiment to learn their un-
derlying talents, progressively narrowing the set of skills they study in order to maxi-
mize the returns to schooling by focusing on their (perceived) comparative advantages.

1See Figures 3 and 4 and their accompanying source notes.
2The model also allows for tastes or other skill-specific attributes to be endogenously learned over time.
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Methodologically, the paper presents the solution to a dynamic stochastic Roy (1951)
model with learning from endogenous experience and human capital accumulation
through schooling, as in Mincer (1974). The model belongs to a wider class of dy-
namic investment problems with optimal switching and stopping under sequential un-
certainty. The technical challenge in solving this class of models arises from the com-
bination of an optimal stopping problem of how long to invest, with an optimal switching
problem of what to invest in and when.3 An important insight of this paper is that these
challenges can be overcome in canonical models of human capital by applying results on
monotonic multidimensional stopping problems from Glazebrook (1979). Under mild
assumptions, we show that the optimal policy takes a particularly simple form that can
be reduced to the comparison of suitably defined indices, one for each field. Each index
is independent of information about other fields and the optimal investment in each pe-
riod is determined by the greatest prevailing index. Its tractability provides both analyt-
ical and computational advantages. In the context of schooling, the policy characterizes
the process of academic specialization, including the optimal sequence of course taking,
field switching, major choice, and educational attainment.

By endogenizing the process of academic specialization, this paper helps close the gap
between economic models of optimal schooling and a burgeoning empirical literature
on the dynamics of educational attainment and college major choice (Altonji, Arcidia-
cono, and Maurel 2016; Patnaik, Wiswall, and Zafar 2020). The tractability of the optimal
policy – based on a comparison of skill specific indices – allows us to show that it gener-
ates behavior consistent with the new facts documented by this literature. For instance,
every skill’s index is associated with an educational markup that captures the option value
of continuing to study that field. It reflects the value of both the human capital and
new information that individuals expect to acquire. We show that the markups are al-
ways greater than one, reflecting the value of information; the marginal change in such
markups declines as education progresses and uncertainty is resolved; and they respond
asymmetrically to good and bad academic outcomes. As observed in the data, these dy-
namics imply that field switching should be concentrated in early stages of schooling,
just after general education, and is driven by unexpectedly bad academic performance.

3Incorporating stopping decisions into models of optimal switching typically precludes the possibility
of tractable solutions. This is the main feature distinguishing the model here from the classic multi-
armed bandit problem. Our environment is a generalization of the latter in which, beyond “pulling” an
arm, agents can additionally decide whether to “stop” or “continue” the evolution of each arm’s state.
The human-capital investment problem satisfies a key monotonicity property that allows us to tractably
characterize the optimal investment policy.
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The optimal policy is also consistent with the results of educational interventions and
natural experiments studied in the literature. It correctly predicts how student course
taking and major choice respond to exogenous curricular interventions. For example,
as in the natural experiment analyzed by Fricke, Grogger, and Steinmayr (2018), forcing
students to study any topic for a given period will increase the probability that they
ultimately specialize in that field. As conjectured by the authors, the result depends
on both the accumulation of field-specific human capital and new information received.
As in the field study conducted by Conlon (2021), simply providing students with in-
formation that resolves uncertainty or corrects biases about field-specific payoffs can
have large effects on subsequent course-taking and major choice. Moreover, the impact
of these curricular and informational interventions is greater the earlier they are imple-
mented, consistent with the experimental findings of Patterson, Pope, and Feudo (2019).

The model also makes predictions for how education systems should adapt in response
to macroeconomic changes in the labor market. The literature emphasizes how the pace
and direction of technological change can lead societies to optimally adopt more general
or more specialized education systems (Krueger and Kumar 2004a, 2004b). To capture
these changes in labor market demand, the final section extends the model to include
complementarities between skills and shows that a suitably defined index policy is still
optimal. The complementarities are modelled in reduced form using a skill-weights ap-
proach similar to Lazear (2009) and Cavounidis and Lang (2019), except here the weights
are stochastic and use geometric aggregation. Consistent with the literature, the optimal
policy with complementarities shows that the scope and duration of general education
depends on prevailing labor market conditions. Skill-biased technical change which in-
creases the demand for some skills relative to others leads to longer periods of general
education, with more focus on the effected skills, and a delay in specialization. Gen-
eral education also increases after a rise in labor market risk, as students attempt to self
insure against the uncertain composition of future skill demand.

In summary, the paper makes two contributions. Methodologically, it provides a use-
ful characterization of the optimal policy in a class of dynamic investment problems
with sequential uncertainty, stopping, and switching. The results hold under relatively
mild assumptions on the investment and learning technologies, and so may be applica-
ble in other economic settings. As an application, we show the model nests the classic
Mincerian model of optimal schooling, generalizing the theory to accommodate recent
empirical findings on the dynamics of academic specialization.
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Related Literature. The investment problem studied here is closely related to those of
Jovanovic (1979), Miller (1984), and Papageorgiou (2014) who study optimal switching
that takes place on the job, rather than prior to entry into the labor market. As a re-
sult, the model here includes an endogenous stopping problem alongside endogenous
switching decisions. Education dynamics under the optimal policy are driven by an ex-
ploitation versus experimentation trade-off similar to Perla and Tonetti (2014) and Lucas
and Moll (2014). More broadly, the paper contributes to the literature developing models
of multidimensional skill formation. Recent contributions cover a variety of economic
contexts, including the sorting of workers (Lindenlaub 2017), the evolution of lifecycle
earnings (Cavounidis and Lang 2019), business cycle volatility (Grigsby 2020), technol-
ogy adoption (Adão, Beraja, and Pandalai-Nayar 2020), and more. This paper focuses in
particular on formal schooling and the optimal design of curricula, with important im-
plications for the productivity of education systems and their interaction with the real
economy (Krueger and Kumar 2004a, 2004b; Martellini, Schoellman, and Sockin 2022).

The remainder of the paper is organized as follows. Section 2 lays out the model and
presents the optimal policy. Section 3 characterizes learning dynamics under the optimal
policy. Section 4 demonstrates the consistency of the optimal policy with experimental
and empirical evidence from education interventions studied in the literature. Section
5 presents the extended model with skill complementarities, derives its solution, and
discusses its implications. Section 6 concludes. All proofs are relegated to Appendix A.

2 The Benchmark Model

We study an economy in which production requires the execution of differentiated tasks,
each requiring a particular skill. Faced with uncertainty about their true abilities, indi-
viduals sequentially decide how much time to spend studying each skill before entering
the labor market at a time, and with a specialization, of their choosing.

Human Capital Accumulation. In each period t = 0, ...∞, an agent’s human capital
consists of a vector ht = (h1,t, ..., hK,t) of skill-specific components. The agent sequen-
tially chooses which skill to study. When studying a skill k, agents make a stochastic
amount of progress ak,t, drawn from distribution Fθk which depends on their unknown
skill-specific ability θk. Consistent with the idea that higher ability students under-
stand new material more quickly, we assume that Fθk is stochastically increasing in θk.
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Progress in studying a skill k contributes to human capital accumulation according to
the education technology,

hk,t+1 = Hk(hk,t, ak,t). (1)

The amount of human capital accumulated within a given period is therefore a function
of the agent’s current level of human capital, as well as their underlying ability, which
affects the amount of progress they make while studying. While the formulation im-
poses no parametric restrictions and allows the education technology to vary by skill,
tractability requires that the human capital accumulation within a period be bounded
so that there exists H̄ > 0 such that Hk(hk,t, ak,t) − hk,t ≤ H̄ for all k and t. Beyond
this, the only restriction we place on the human capital technology is that it satisfies a
monotonicity condition summarized in Assumption 1.

Assumption 1. For any skill k in any period t, Hk(hk,t, ak,t) ≥ hk,t.

The monotonicity assumption arises naturally in the context of education technologies.
It states simply that individual’s cannot end up with less human capital after attempting
to study a skill (though they may learn nothing, leaving human capital unchanged).

Endogenous Learning Dynamics. Since individuals cannot observe their true abilities,
they must rely on their beliefs when making decisions about what to study or how much
time to spend in school. Let Pt = (P1,t, ..., PK,t) denote an agent’s vector of period-t
beliefs about their ability in each skill. After each period of studying, agents observe
the progress ak,t they have made in skill k and update their skill-k period-t belief Pk,t to
Pk,t+1 according to the belief-updating rule Γ,

Pk,t+1(θk|ak,t) = Γ(Pk,t(θk), ak,t). (2)

As with the human capital technology, the formulation in (2) is general and imposes no
parametric or updating restrictions on the learning process. It allows for the possibility
that agent’s are myopic and do not learn from experience, so that Pk,t+1 = Pk,0 for all k
and t, as in the case of exogenous switching models. It also allows for the possibility of
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Bayesian updating, in which case

Γ(Pk,t(θk), ak,t) =
Pk,t(θk)fθk(ak,t)∫
Pk,t(x)fx(ak,t)dx

,

where fθk denotes the density of the distributionFθk . It also accommodates non-Bayesian
learning processes, time-inconsistent beliefs, and many other belief updating rules.4 The
only restriction we impose is that the learning process must be endogenous, so that
agents learn their abilities only through experience. Assumption 2 formalizes this re-
striction on the learning process.

Assumption 2. If skill j is not studied in period t, then Pj,t+1 = Pj,t.

The assumption captures a notion of learning-by-doing. It states that agents do not
learn about their ability in skills that they do not use. For example, one cannot discover
a talent for playing the piano without first investing time in practice. The realism of this
assumption depends on the scope with which skills are defined in the model. When
skills are broadly defined, the assumption of local learning appears appropriate. One
is not likely to learn about their ability in mathematics while studying literature. On
the other hand, if the skills being modelled are closely related–say applied math and
physics–then the assumption may no longer be without loss of generality.5 In Section
5 we discuss an extension of the model that is more suited for a definition of skills in
which complementarities play a prominent role.

Educational Attainment and the Labor Market. At any point during their education,
agents can choose to graduate from school and enter the labor market with a special-
ization (e.g. college major) of their choice. Entering the labor market after s years of
schooling as a skill-k specialist yields lifetime utility,

∞∑
t=s

δtUk(wk, hk,s)

4The model can also accommodate heterogeneous, non-stationary belief updating rules Γk,t(·), though
we do not pursue this formulation here.

5For instance, one could learn about their ability to study math while studying physics. For instance,
Stinebrickner and Stinebrickner (2014) shows that outside of Science, beliefs about a particular major may
be shaped by experiences in other majors. Zafar (2011) provides suggestive evidence that learning is
not entirely local and that beliefs updating in non-pursued majors can also respond to the arrival of new
information. Our results continue to hold even in the presence of such spillovers, as long as they are small
relative to the information that is learned directly about a skill.
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where δ ∈ (0, 1) denotes the discount factor and wk is the wage rate for skill k, which
individuals take as given. Utility function Uk(wk, hk,s) represents the expected average
per-period payoff to being a skill-k specialist with human capital hk,s. The dependence
of the utility function on k allows for skill-specific preferences or amenities. Defining
utility in this way also allows for the possibility that household income and human cap-
ital continues to evolve after graduation (e.g., due to on-the-job training).6 We assume
Uk is bounded for tractability and that it is strictly increasing in both arguments. The
pay-off function can be extended to allow for additional uncertainty over skill-specific
wages and preferences while in the labor market.

At each point in time, the state space of the agent’s problem consists of (ht,Pt), which
includes their K skill-specific human capitals and the K distributions encoding their
prevailing beliefs. A solution to the individual’s problem is a policy π which maps the
state space ht × Pt into decisions about what to study, when to graduate, and in what
field. The optimal policy π∗ is that which maximizes expected lifetime utility, formally

Eπ
[
∞∑
t=s

δt Uk(wk, hk,s) | (h1t, P1t), . . . , (hKt, PKt)

]
, (3)

subject to the human capital technology in (1) and the belief-updating rule in (2), where
the expectation operator Eπ is taken with respect to the endogenous stochastic process
induced by the policy π. The expectation operator represents the fact that agents make
education decisions sequentially, and do not know precisely when they will graduate
(s∗) or in what field-of-specialization (k∗) while proceeding through their education. The
problem is difficult because these expectations depend on information which arises en-
dogenously from the agents past decisions. Agents internalize that their decisions about
what to study will affect both their accumulated human capital as well as the informa-
tion they acquire about their underlying abilities. Consequently, the policy π that agent’s
pursue both shapes, and is shaped by, the skills they acquire and the information they
receive while progressing through formal schooling.

6Uk(wk, hk,s) can also simply represent a constant flow utility payoff to the agent in each period after
graduation. All of the results can be extended to allow payoffs, positive or negative, and even skill-
specific, to accrue during study.
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2.1 Optimal Human Capital Accumulation

This section characterizes the optimal policy π∗ which maximizes household expected
lifetime utility in (3). It describes the optimal sequence of course taking, educational
attainment, and field of specialization for each individual. The key step in this char-
acterization is to show that the complex decision problem defined over (ht,Pt) can be
decomposed into K lower-dimensional problems, one for each skill, and a static choice
between them. In particular, define an index vk for each skill (hk,t, Pk,t) given by

vk(hk,t, Pk,t) = sup
λ≥0

Eλ
(

δλ

1− δ
Uk(wk, hk,t+λ) |hk,t, Pk,t

)
, (4)

where the supremum is over all realization dependent stopping times.7 The index vk
measures the expected lifetime utility an individual would receive if they optimally in-
vested their time studying and working with skill-k exclusively, ignoring the presence of
other skills. In other words, it is the value function of a one-dimensional (K = 1) human
capital accumulation problem with endogenous learning. In the absence of learning or
stochastic human capital accumulation, the index corresponds to a discrete time version
of the Mincer (1974) model of optimal schooling.

For each skill k, define the graduation region Gk as the set of skill-k states in which –
ignoring the existence of all skills other than k – it is optimal to graduate immediately
and enter the labor market as a skill-k specialist. Formally,

Gk =

{
(hk, Pk)| arg max

λ≥0

Eλ
(

δλ

1− δ
Uk(wk, hk,λ) |hk, Pk

)
= 0

}
. (5)

The graduation region Gk admits a natural interpretation. It contains the set of all states
(hk,t, Pk,t) such that – if no other skills j 6= k existed – the opportunity cost of further
schooling would be greater than the expected value of continued education. As we

7Formally, denote by âk,1, âk,2, ... the independent random variables with common distribution Fθk ,
representing the successive progress made studying skill k. Stopping times are then defined on
{âk,1, âk,2, ...}, and the expectation is taken with respect to the stochastic process induced by λ. Note
that allowing the stopping time to be infinite, a solution to the stopping problem is guaranteed to exist.
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demonstrate in Section 3, whether or not a skill k is in its graduation region can typi-
cally be verified by a simple one-step look-ahead rule (1-SLA) comparing the expected
lifetime utility of entering the labor market as a skill-k specialist today, Uk(wk, hk)/(1−δ),
to the expected value, given current beliefs Pk,t(θk), of studying skill k for an additional
period and then entering the labor market.

The following proposition defines the optimal policy π∗ solving the agent’s investment
problem (3) subject to (1) and (2).

Proposition 1. If Assumptions 1 and 2 hold, the agents’ optimal policy π∗ is as follows:

1. In each period t, select the skill k∗ ∈ arg maxi∈{1,...,K} vi with the highest index. If multiple
skills have the highest index, select among them at random.

2. If (hk∗ , Pk∗) ∈ Gk∗ , enter the labor market as a k∗ specialist. Otherwise, study k∗ for an
additional period and then return to step 1.

Proposition 1 provides the solution to a class of sequential investment problems with
heterogeneous skills and endogenous uncertainty. It shows that the agent’s optimal
policy can be reduced to a comparison among K independent indices, and verifying
whether a skill is in its graduation region or not. The key property behind these features
of the solution is that the optimal investment in any skill is independent of information
pertaining to other skills. In other words, the optimal amount of time someone pursuing
an economics degree should spend in school depends only on their ability in economics
and is independent of their ability in other fields. This feature of the optimal policy
constitutes a dynamic Independence of Irrelevant Alternatives (IIA). Specifically, a policy
satisfies IIA if at any stage, conditional on not selecting skill i, the probability of studying
any of the K − 1 skills k 6= i is independent of i’s state.

The characterization of the optimal policy in Proposition 1 has both theoretical and com-
putational advantages. First, as we show in the next section, it can yield tractable ana-
lytical characterizations of the optimal policy that can be computed directly or used for
comparative statics and theoretical analysis. Second, even without analytical solutions,
numerically solving the model using the characterization in Proposition 1 can substan-
tially reduce computational time, especially when the number of skills K is large. The
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source of these computational savings is the decomposability of the optimal policy in
the space of (ht,Pt) into K smaller problems, alleviating the curse of dimensionality.8

From a technical standpoint, the proof of Proposition 1 applies a result by Glazebrook
(1979) which provides the solution to a multi-armed bandit problem in which players
can additionally decide whether to “stop” or “continue” the evolution of each arm’s
state.9 The necessary feature required for the optimal policy to satisfy the IIA property
described above is that the continuation payoff upon stopping be non-decreasing, so
that the option value of stopping weakly improves over time. This monotonicity prop-
erty preserves the decomposability of the multi-armed bandit solution by ensuring that
the irreversibility of stopping has no bite. An insight of this paper is that this prop-
erty arises naturally in models of human capital accumulation and is guaranteed by
Assumption 1 on the human capital technology.

The proposition also provides a link to the canonical models of human capital accumu-
lation, which are nested as special cases. With a single skill and in the absence of un-
certainty, the model collapses to the Mincer (1974) model of optimal schooling. In this
case, the optimal policy in Proposition 1 says to continue with formal schooling until the
opportunity cost of further study surpasses its its expected return, as in the Mincerian
model. With multiple skills and no uncertainty, the model becomes a Roy (1951) model
of college major choice. An interesting feature of the solution is that the indices agents
use to rank each skill correspond to the lifetime utility they would expect to receive
in a one-dimensional human capital problem where no other skills were available and
switching never occurs. These differ from the value function of the agent’s actual deci-
sion problem, since under the optimal policy agents may switch fields often and their
sequence of course taking and years of schooling will depend on their entire vector of
human capital and beliefs. The fact that agents can ignore these considerations in decid-
ing what to study demonstrates how the IIA property above allows us to separate the
vertical and horizontal dimensions of the human capital investment problem.

8For example, if we define the learning process Γ so that beliefs reside in a two-parameter family, the
resulting dynamic programming problem would have 3×K state variables. In contrast, the optimal policy
in Proposition 1 would have K 3-dimensional problems, which could substantially reduce computation
time when K is large.

9To the best of our knowledge, this is the first application of the result in the Economics literature.
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3 Learning Dynamics and Gradual Specialization

In certain cases, the characterization in Proposition 1 yields closed-form expressions for
the optimal policy governing the evolution of investment and learning dynamics. To
demonstrate the usefulness of these expressions, and to provide further insight into the
model’s mechanics, this section considers the classic Beta-Bernoulli learning model from
the statistics literature which gives rise to closed-form solutions.

Following the literature, suppose agents make education investments to maximize their
lifetime income, so Uk(wk, hk,t) = wkhk,t. Human capital accumulates according to the
education technology given by

H(hk,t, ak,t) = hk,t + ak,t, (6)

where the stochastic amount of progress made while studying, ak,t, is Bernoulli dis-

tributed with success probability θk. That is,

akt =

νk, w.p. θk

0, w.p. 1− θk
,

where νk > 0. No progress is made in skills that are not studied in period t.

The education technology admits a simple interpretation. In each period an individual
studies skill-k, they progress in understanding the new material they studied with prob-
ability θk. The new material learned increases their human capital in skill-k by νk. With
probability 1− θk, they fail to progress their understanding, leaving their human capital
unchanged. An individual’s skill-k ability is therefore summarized by the probability
that they succeed in understanding new material, θk. The increment of human capital
upon success, νk, proxies for the difficulty of acquiring human capital in different skills.
While we assume νk is fixed for each skill, the results can also accommodate the case
where it is stochastic.

Students do not know their true skill-specific abilities θk, but learn about what they
may be through academic experience. Let an agent’s initial beliefs about their ability
in skill-k, Pk,0, be given by a Beta distribution B(αk,0, βk,0). For simplicity, we assume
belief updating follows Bayes’ rule. As a result, posterior beliefs Pk,t+1 remain in the
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Beta distribution family and evolve according to a simple process.10 Specifically, given
period t beliefs B(αk,t, βk,t), beliefs in period t+ 1 will be

Γ(B(αk,t , βk,t), ak,t) =


B(αk,t + 1, βk,t), if ak,t = νk

B(αk,t , βk,t + 1), if ak,t = 0
. (7)

Initial human capital h0 is set to hk,0 = νkαk,0, so that agents’ starting skill level is con-
sistent with their initial beliefs Pk,0 and the human capital technology. The initial period
can therefore be thought of as the result of a pre-period of learning and human capital
accumulation before time zero subject to the same learning and education technologies.

In each period t, the state (hk,t, Pk,t) of every skill k is therefore entirely described by
the triplet (hk,t, αk,t, βk,t). In line with the intuition above, a sufficient statistic for beliefs
about one’s own talent is a record of past academic success and failure in skill-k. The
expected probability of success in skill-k at period t given current belief is given by

E(θk|Pk,t) =
αk,t

αk,t + βk,t
. (8)

Every time the individual succeeds in understanding new material, αk,t increases by
one; if they fail to understand new material, βk,t increases by one. At any period t,
the individual’s expectation of their own talent is simply their expected probability of
success given past successes and failures. The more individuals fail when studying, the
more pessimistic they become about their talent; the more times they succeed, the more
optimistic they become.

It is straightforward to verify that the the human capital technology (6) and learning
process (7) satisfy Assumptions 1 and 2. Consequently, Proposition 1 can be applied to
characterize the agents’ optimal policy.

Proposition 2 (Optimal Policy in the Beta-Bernoulli Model). In each period t, agents select
the skill k∗ with the highest index vk(hk,t, αk,t, βk,t), breaking ties according to any rule. Given
state (hk,t, αk,t, βk,t), the index of skill-k is given by

vk(hk,t, αk,t, βk,t) =
wkhk,t
1− δ

· Ω(αk,t, βk,t), (9)

10This follows from the conjugacy property of the Beta and Bernoulli distributions.
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where

Ωk(αk,t, βk,t) ≡
d δ
1−δeδ

d δ
1−δ e−(αk,t+βk,t)

αk,t + βk,t

during formal schooling and Ωk(αk,t, βk,t) = 1 at the moment of graduation and thereafter.
Agents complete formal schooling and enter the labor market to work as a skill-k∗ specialist if

αk,t + βk,t ≥
δ

1− δ
. (10)

Otherwise, they study skill-k∗ for an additional period and the select amongst the skills again.

In the proof (see Appendix A), we show that condition (10) describes the optimal years
of schooling that individuals would choose in a one-dimensional model of human capi-
tal where only skill-k was available. It characterizes the set of states of skill k for which
the opportunity cost of further schooling is greater than the expected value of continued
education. In particular, we show that (10) is equivalent to

wkhk,t ≥
δ

1− δ
E [wkhk,t+1|(hk,t, αk,t, βk,t)] , (11)

where the left hand side is the opportunity cost of schooling and the right hand side is
the expected value of further study. The equivalence shows how, in the presence of only
one skill (K = 1), the model collapses to a stochastic version of the Mincerian framework
and the optimal policy predicts the same optimal years of schooling as Mincer (1974).
Importantly, however, condition (10) does not describe the optimal years of schooling
when there are multiple skills (K > 1). This is because in the multi-dimensional model
of human capital individuals can switch between skills and therefore have additional
options to studying k or entering the labor market as a k-specialist.

3.1 The Dynamics of Academic Specialization

The indices in (9), which serve as the basis for comparison between skills, drive the dy-
namics of individual course taking, field switching, major choice, and ultimate years
of schooling under the optimal policy. After graduating and entering the labor market,
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agents value each skill according to the net present value of earnings it can generate,
wkhk,t/(1− δ). While in school, the value students assign to each skill is greater than
the market net present value of their prevailing human capital. In particular, its mar-
ket value is multiplied by a skill-specific educational markup Ω(αk,t, βk,t) reflecting the
expected value of continued study, which includes the value of new information about
one’s ability. Proposition 3 describes how the markups evolve as education progresses.

Proposition 3 (The Educational Markups Ω). As long as a skill k has not entered its grad-
uation region, its educational markup Ωk,t satisfies the following properties:

1. Ωk,t is strictly greater than 1 and decreases with every period the skill is studied.

2. The marginal change in Ωk decreases with every period the skill is studied.

The educational markup applied to any skill k being studied is always greater than one,
except at the moment of entry into the labor market. The declining value of information
about one’s own abilities θk is reflected in the fact that Ωk,t is declining in the number of
study periods. The value of information about one’s ability is maximal at early stages
of education, when uncertainty is highest and the length of time to profitably exploit
new information in subsequent human capital investments is the greatest. The marginal
change in markups Ωk,t also declines in the number of periods a skill is studied, re-
flecting in part the declining value of information as uncertainty is resolved. The fact
that eventually Ωkt does not change much indicates that in later stages of education it is
prevailing human capital ht that drives investment decisions, while at earlier stages of
education information plays an important role.

The dynamics of Ωk,t also embody predictions about when major switching occurs. Intu-
itively, students switch away from studying a skill after failing to make as much progress
as they expect while studying. In the Beta-Bernoulli model, this occurs if agents become
pessimistic about their ability after failing too many times in a row. However, since in-
formation about ability is more valuable early on, the effects of failure on major switch-
ing diminishes as education progresses. Formally, the marginal decrease in the skill’s
index as the result of failure decreases in the number of periods the skill is studied.

The prediction of the optimal policy that major switching is concentrated amongst poorly
performing students at earlier stages of their education is consistent with a growing
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body of empirical evidence. The idea that these dynamics are driven by an endogenous
learning process through which students learn their true abilities dates back at least to
Schultz (1968)11, while a more recent empirical literature provides direct evidence by
documenting new empirical regularities in the dynamics of student academic histories.
For instance, Zafar (2011) gathers panel data on the academic histories and subjective
beliefs of Northwestern University undergrads and, comparing GPA to prior elicited
beliefs, finds evidence that students revise beliefs about their ability in a manner con-
sistent with learning from their academic performance. Using longitudinal data from
the Berea Panel Study, Stinebrickner and Stinebrickner (2012, 2014) also provide evi-
dence that students dynamically learn about their underlying abilities through grades.
Similarly, structural models of student academic histories often recover estimated shock
processes which suggest learning processes are important to explain the dynamics of
student academic histories, major choice, and drop-out decisions (Arcidiacono 2004; Ar-
cidiacono, Hotz, and Kang 2012; Wiswall and Zafar 2015). This paper shows that these
empirical findings are indeed consistent with the optimal education choices of students
in a generalized model of learning and human capital accumulation through schooling.

Numerical Illustration. Figure 1 illustrates the dynamics of academic specialization
under the optimal policy. It demonstrates how the optimal allocation of study time
evolves as education progresses. In particular, it reports the outcome of simulating
100,000 individual academic histories under the optimal policy in Proposition 2. To fa-
cilitate comparison across individuals with different chosen years of schooling, time al-
locations are reported by deciles of education completed. Within each individual, skills
are ordered based on the total study time they received by the end of formal school-
ing. The model’s time scale is calibrated to mimic post-secondary course taking at the
Bachelors level; college (endogenously) lasts an average of four years, with each period
representing one post-secondary course sequence. Three skills are available to study,
each with the same population ability distribution Fθ. Each individual draws their (un-
known) field-specific abilities from the population distributions at the start of schooling
and has consistent rational beliefs, i.e. Pk,0 = Fθk . Further details on the calibration and
computation are contained in Appendix B.

11In particular, Schultz (1968) observes that while the premise that part of the value of education is in
the revelation of individual talents is a long-standing idea in economics, it is conspicuously absent from
most modern theories of human capital and schooling. He describes this process of discovering one’s
talents as one of the “strongest features of U.S. higher education” while at the same time being the “much
neglected activity” in economic research on education and human capital.
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Figure 1: Gradual Specialization with Identical Skills. Note: The panel shows the average distribution of
human capital investment for different stages of education completion. Skills are ordered according to the amount
of study-time they received, with skill #3 representing the skill an individual invested the most time in, and skill #1
receiving the least amount of time. Details of the underlying parametric assumptions are contained in Appendix B.

The results in figure 1 illustrate the gradual process of academic specialization under
the optimal policy. At early stages of education, individuals allocate their time relatively
uniformly across all three skills; a period of schooling which resembles a general edu-
cation curriculum. As individuals progress through schooling, they increasingly focus
their study time on their intended field of specialization in anticipation of graduation
and entering the labor market.

Since all skills are distributed ex-ante identically in the population, an equal number
of individuals end up specializing in each field (the final grey columns). However, it
is important to note that the cumulative allocation of each individual’s investments in
human capital are not uniform across the skills, nor do they reflect perfect specialization
in one skill alone. In the simulation, individuals on average invest only 61% of their
schooling time in their field of specialization; 39% of time is invested in skills that will
never be used again after graduation. Despite never using these skills in the labor mar-
ket, the investments are optimal because they help individuals learn their comparative
advantage early on, which improves the efficiency of subsequent investments in human
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capital and ultimate major choice. These effects are most evident in the positive selec-
tion of student into fields for which they are better suited. For instance, the average
ability of individuals who choose to specialize in each field, E [θk | k = k∗], is 42% higher
than the underlying average ability in the population, E [Fθk ]. In other words, the en-
dogenous learning process within schools improves the allocation of talent and can be
an important component of the returns to education and aggregate labor productivity.

Noteworthy is the fact that the model endogenously produces an imperfect allocation of
individuals across fields, even when everyone is behaving optimally. In the simulation
of the optimal policy, only 56% of individuals selected into the field in which their true
ability was highest. If all individuals selected into their best field, average ability would
be 81% higher than the population average (rather than only 42%, based on equilibrium
outcomes in the last paragraph). These imperfect outcomes reflect inherent uncertainties
in knowing one’s own true talents, and the costly trade-offs we face in attempting to
discover them versus simply building on existing skills.

The investment behavior and field sorting which emerges under the model’s optimal
policy contrasts starkly with the predictions of other popular models of multidimen-
sional skills. For instance, in Roy-type models without sequential uncertainty, the al-
location of talent would be perfect, whereas in model’s of exogenous switching, their
would be no productivity premium associated with selection. Instead, the model here
predicts an intermediate case where the allocation of talent lies between these extremes,
and the extent to which an economy allocates individuals efficiently depends on the
curricular structure of its education institutions.

4 Educational Interventions

Education policies such as curricular requirements, which limit an individual’s ability
to choose their own optimal sequence of course topics, can have important implications
for the returns to education and the sorting of students across fields. The optimal pol-
icy provides a benchmark to analyze the extent to which curricular requirements and
educational interventions may distort individual behavior. Its predictions are also con-
sistent with a growing body of empirical and quasi-experimental evidence which show
that even minor curricular requirements can have large, permanent effects on a student’s
subsequent course taking and major choice.
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For example, Fricke, Grogger, and Steinmayr (2018) analyze a natural experiment at the
University of St. Gallen in Switzerland and find that early exposure to a field can sub-
stantially alter the probability with which students major in that field. In particular, they
find that students randomly assigned to write a research paper in economics were 50%
more likely to choose economics as their major. The authors conclude that the lasting
effect is likely the result of both the accumulation of area-specific human capital and
information revealed to the student regarding their taste for and ability in economics.

The result that curricular requirements to study a skill k will increase the probability of
specializing in that area is surprising. One would expect that negative realizations of
required study could make students less likely to study the topic further in the future,
offsetting any positive effects. Nevertheless, Proposition 4 shows that student behavior
following the intervention is consistent with the model’s optimal policy.

Proposition 4 (Educational Interventions I). A policy that forces an agent to study skill k in
period 0 increases the probability with which the agent ends up graduating as a skill-k specialist.

The proof follows from arguments similar to those in Gossner, Steiner, and Stewart
(2021). To understand the intuition, consider the path of human capital investments
for each possible sequence of outcome realizations, for every skill. Given a realization
path, the agent’s human-capital-accumulation strategy can be viewed as selecting in
each period a skill for which to uncover one more step along the sequence. The choice
of a specialization with which to enter the labor market can then be thought of as re-
sulting from a contest among the skills: the agent continues to study until one of the
skills gains sufficiently many positive realizations. The ultimate decision therefore boils
down to which of the skills gains a sufficient amount of positive outcomes first. Study-
ing any one of these skills accelerates the process of specialization for this skill while
slowing it down for the other skills. Consequently, the likelihood that the target skill
will ultimately win this contest increases.12

There is, however, one simplification in this intuition: forcing an agent to study a par-
ticular skill affects future decisions. It is possible that, for some accumulation strategies,
such an educational intervention may lead to a path along which the agent studies the

12In other words, fixing any realization path, if in the absence of intervention the agent ultimately
specializes in skill j given this realization path, then she will certainly do so when she is forced to study
skill j initially. Such an intervention could also lead to specialization in j when, without it, the agent
would have ultimately specialized in a different skill.
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target skill less afterwards to an extent that might outweigh the direct effect of forcing
the agent to study it. It is here that the IIA property again plays a crucial role. Together
with the monotonicity of human capital accumulation in Assumption 1, IIA allows us to
consider learning about the target skills seperately from learning about the alternatives.

While curricular requirements appear to play an important role, other studies have
shown that simply providing students with information can have large effects on their
subsequent course taking and major choice. Conlon (2021) conducts an experiment at a
flagship state university and finds negative bias and substantial heterogeneity in beliefs
about future major specific payoffs. Treating students with information about future
payoffs of specific majors increased the probability of selecting that major by 16%.

Since the value of information changes as students progress through their education,
the effect of interventions can decline the later they are implemented. Patterson, Pope,
and Feudo (2019) document the importance of the timing of information revelation by
exploiting a natural experience at the US Military Academy which randomly assigned
students to take certain courses during (as opposed to after) the semester that they de-
clared their major. The authors document big effects on major selection for students
who took the course before major selection, rather than after. They conclude that the
results are consistent with a learning process over uncertain ability. The same process
emerges under the optimal policy, which leads the informational value of educational
interventions to decline over time. Proposition 5 formalizes the result.

Proposition 5 (Educational Interventions II). Providing an agent with information about
their ability in skill k has a diminishing marginal effect on their index vk.

Numerical Illustration. The parametric model in Section 3 can demonstrate how edu-
cational interventions influence academic specialization. To demonstrate the effect, we
simulate the academic history of 100,000 college students choosing between two fields
of study. For the purpose of illustration, we let the fields correspond loosely to STEM
and non-STEM subject groups, and calibrate population ability distributions so that the
average level of education attainment corresponds to four years of college and the op-
timal policy results in 18% of the population selecting into the STEM field, as in the
data.13 Mirroring experiments in the literature, we compute the effect of curricular in-

13Specifically, we match the share of total bachelor’s degree awarded in STEM fields by postsecondary
institutions, after adjusting for race and ethnicity differences. See https://nces.ed.gov/programs/
raceindicators/indicator_reg.asp.
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Figure 2: Educational Interventions. Note: The figure displays the share of college graduates who choose a
STEM major in the benchmark calibration, and after each educational intervention. Interventions occur at the start
of Freshman, Sophomore, Junior, and Senior years. Curriculum interventions force students to take a course in
STEM fields. Information interventions provide students with a signal about their abilities in STEM, but does not
lead to the formation of new human capital. Additional details are contained in Appendix B.

terventions which force students to take a STEM-field course at the beginning of their
Freshman, Sophomore, Junior, and Senior years. To isolate the contribution of learning,
we re-simulate the model focusing on informational interventions which provide students
with a signal of their ability in STEM while holding constant their human capital.

One technical challenge of the simulation is that the index vk will no longer have a
closed-form solution after an information-only educational intervention. We therefore
calculate the indices in these simulations using the recursive method in Sonin (2008).14

See Appendix B for additional computational details.

Figure 2 plots the results and shows how the share of students choosing to major in
STEM changes after each educational intervention. Consistent with findings in the lit-

14In general, a variety of methods exist to calculate the indices of the optimal policy, even when their
analytical form is not known (Varaiya, Walrand, and Buyukkoc 1985; Katehakis and Veinott 1987).
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erature, it shows that course requirements can have large effects on ultimate student
major choice. For instance, the model predicts that requiring Freshman to take an ad-
ditional STEM course at the beginning of college can increase the ultimate number of
STEM majors by 4.8 percentage points, from 18.2% to 23.0%. The increase in STEM ma-
jors is the result of both accumulated skill-specific human capital and students learning
about their ability in STEM fields. The simulation shows that even without accumulated
human capital, the information revealed by the course requirements would increase spe-
cialization in STEM by 1.4 percentage points, from 18.2% to 19.6%. While the effect of the
educational interventions are visible in each year, their impact on college major choice
falls the later it occurs. Interventions at the beginning of Senior year, for instance, have
only minimal impact on student major choice, with curricular interventions increasing
STEM majors by 0.6 percentage points and information interventions increasing it by
0.2 percentage points. The declining effect reflects both the falling value of information
and the fact that students acquire skill-specific human capital as they progress through
school that endogenously raises their cost of switching fields later in their education.

5 A Model with Skill Complementarities

This section extends the model to allow for complementarity between skills. One rea-
son for such complementarities may be knowledge hierarchies, whereby certain skills
must be learned before others, for instance reading comprehension or basic numeracy.
Another reason may be technological, in that every job may require using each skill
with some positive probability. Complementarities may also reflect insurance motives,
whereby workers invest in multiple skills to insure against obsolescence risk or job loss
in frictional labor markets. This section shows that, despite the added complexity, the
optimal policy can still be characterized by a suitably defined index rule.

In the presence of these complementarities, the optimal policy gives rise to periods of
purely general education, where all individuals study the same mix of topics at the start
of their education regardless of their ultimate field of specialization. The model without
complementarities in the preceding sections gave rise to periods of exploration which
could resemble, in terms of time allocation, periods of general education. The general
education induced by complementarities precedes this period of exploration and has
different economic motives. The particular mix of skills studied and the length of time
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Figure 3: Age of First Educational Tracking

Notes: Source data taken from the OECD’s PISA 2012 Database.

spent in general education depends on the strength of the complementarities between
skills, and hence the technological and structural characteristics of labor markets.

Understanding these channels is important because there is considerable cross-country
variation in both the timing and scope of academic specialization in formal schooling.
Figure 3 illustrates this point by plotting cross-country differences in the age of first
educational tracking, when students are separated and assigned to different curricular
tracks. In countries like the United States and Canada, tracking begins at age 16, while
in countries like Germany and Austria, students are put on distinct curricular tracks
starting from age 10. Academic specialization is also often associated with separating
students into academic and vocational tracks. Figure 4 shows that this notion of ed-
ucational specialization also varies substantially across countries by plotting the share
of upper secondary graduates who hold general education versus vocational degree.
While vocational education is rare in the United States, accounting for less than 9% of
graduates, it is very common in other countries like Austria and Germany, where the
majority of students are vocationally specialized. Interestingly, there does not appear to
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Figure 4: Education System Comparisons: Attainment and Curricular Specialization

Notes: Bar height reports upper secondary school graduation rates in 2019. Bar shading depicts upper secondary
enrollment share by program type (general or vocational) for upper secondary students, ages 15-19, in 2014. Voca-
tional shares include students in combined school and work-based programs. Canadian shares correspond to all ages
18-64. Underlying data come from OECD’s Education at a Glance Database. U.S. vocational share is not included
in the database and so is taken from estimates in Alon (2019).

be a clear relationship between educational attainment and educational specialization in
the cross-section of countries, as more or less specialized education systems are present
in countries with both high and low levels of educational attainment.

To capture complementarities, we alter the payoff function in (3) so that it depends on
the entire vector of human capital. Specifically, letting h = (h1, . . . , hK), for each skill k
the new payoff function Uk(wk,h) is given by

Uk(wk,h) = wk · E

[
K∏
j=1

h
ηj
j

]
, (12)
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where η ≡ (ηk)k∈{1,...,K} are stochastic skill weights. We assume that η is independently
distributed with each ηk drawn in each period from a distribution with cdf Ψk. The skill
weights capture, in a reduced-form, the employment and technological uncertainty that
may lead human capital outside one’s specialization to matter in the labor market. In
this sense, the model with complementarities resembles the skill-weights framework of
Lazear (2009) except that here the weights are stochastic and take the form of a geometric
average, rather than arithmetic average. Similarly, Cavounidis and Lang (2019) develop
an earnings model where skill weights enter through a CES aggregator. Within fields,
the specification is also consistent with the findings of Deming and Kahn (2018) who
analyze job postings and document substantial variation in the mix of skills required
in even narrowly defined jobs, as well as evidence of complementarities across skill
groups, notably cognitive and social abilities.

5.1 General Education

General education emerges in the presence of complementarities because additional
knowledge in some particular skill may be of such high general value that further study
of this skill is expected to be beneficial independently of an agent’s ultimate field of
specialization. Formally,

Definition 1. Studying skill k has general value if its state (hk, Pk) satisfies

δτE
[
h
ηk,τ
k,τ

]
≥ hηkk (13)

for some stopping time τ .

Condition (13) holds when a skill’s impact on other skills is expected to increase at a
rate that exceeds discounting, optimizing over the period of time it is studied. Real
world examples include studying Mathematics to develop basic numeracy or English
for literacy. For each skill k, denote by Ek the set of states of general value.15

Proposition 6 below shows that, even in the presence of complementarities between
skills, the optimal policy can still be expressed as a simple comparison of appropriately

15Note that a skill may satisfy (13) for some states and violate it for others. Furthermore, each set Ek is
only a function of information about skill k.
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defined, independent indices. The horizontal decision (across skills) and vertical deci-
sion (study/work) of human capital investment are disentangled, as in Proposition 1,
satisfying the IIA condition. To characterize the optimal policy in this extended envi-
ronment with complementarities, we define the following indices vC . For each skill k
and state (hk, Pk) /∈ Ek, let

vCk (hk,t, Pk,t) = sup
λ,τ

{
Eτ,λ

[∑τ−1
s=t+λ−1 δ

sUk(wk, hk,s)|hk,t, Pk,t
]

h
ηk,t
k,t − Eτ,λ

[
δτh

ηk,t+τ
k,t+τ |hk,t, Pk,t

] }
, (14)

where, again, τ is a stopping time (possibly infinite), and λ is an additional stopping
time specifying when entry into the labor market occurs. Note that for (hk, Pk) /∈ Ek, the
difference hηk,tk,t − Eτ,λ

[
δτh

ηk,t+τ
k,t+τ |hk,t, Pk,t

]
in the denominator is always positive. Further-

more, as in the original model, define skill k’s graduation region GCk as the set of states
such that – in the solution to the maximization problem in the definition of (14) – it is op-
timal to graduate formal schooling and enter the labor market. Given these definitions,
the following proposition describes the agent’s optimal policy:

Proposition 6. In the environment with skill complementarity, the following procedure de-
scribes the agent’s optimal policy:

1. At each period t, if there are any skills is a state with general value, the agent studies any
one of them.

2. At each period t, if there are no skills in a state of general value, the agent selects the skill
k∗ ∈ arg maxi∈{1,...,K} vCi with the highest index. If multiple skills have the highest index,
a skill is selected at random.

3. In each period t, if there are no skills in a state of general value and skill k∗ is selected,
then: If (hk∗ , Pk∗) ∈ GCk∗ , the agent enters the labor market as a k∗ specialist; otherwise,
she studies skill k∗ for an additional period.

Proposition 6 shows that a suitably defined index policy remains optimal in a model
with complementarities.16 The following dynamics emerge under the optimal policy:

16See Eliaz, Fershtman, and Frug (2021) for an analysis of scheduling problems with externalities in
other contexts.
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Initially, individuals invest solely in skills with general value (i.e., those satisfying Def-
inition 1), during a period of time that may be viewed as the general education phase
of schooling. During this period, human capital is accumulated in skills that enhance
other skills to the extent that they overcome the opportunity cost of time and are bene-
ficial regardless of eventual specialization. After general education ends, agents begin
the process of academic specialization. Once again, a process of gradual specialization
arises whereby individuals progressively narrow the range of skills they invest in as they
learn their comparative advantage. The specialization process is even more gradual in
the presence of complementarities since skills enhance one another, providing yet an-
other incentive for broad investment across skills. Formal schooling ends endogenously
when individuals choose a field of specialization and enter the labor market.

The optimal policy for educational investments described in Proposition 6 resembles the
structure of many education systems observed in the real world. Most systems begin
with a period of common general education before students become gradually differen-
tiated and eventually specialize in narrower fields of expertise. The model shows that
periods of general education, regardless of ultimate specialization, can emerge endoge-
nously for very distinct reasons. Further periods of common education across students
may also emerge because of broad-based academic exploration. While resembling a pe-
riod of general education, this latter phase occurs for fundamentally different reasons
than the general education induced by complementarities. An important implication
of the model is that the duration and composition of general education, the speed and
scope of academic specialization, and the optimal years of schooling all jointly depend
on the characteristics of labor markets awaiting students after graduation.

5.2 Skill-Biased Technological Change and General Education

The optimal policy allows us to characterize how particular changes in the labor mar-
ket affect the structure of education systems and their curricula. One particularly well-
studied recent shift in the labor market has been skill-biased technical change, which has
lead to an increase in demand for certain skills, such as cognitive and STEM-based, rela-
tive to others. The economic sources of these shifts in demand remain varied and inter-
related, including the advent of new technological processes (Acemoglu 2002; Violante
2008), changes in the pattern of trade (Traiberman 2019), and structural transformation
of the economy (Buera et al. 2021). A large ensuing literature examines the implications
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for employment dynamics, earnings, occupation choice, technology adoption, growth
and more (Dvorkin and Monge-Naranjo 2019; Cavounidis and Lang 2019; Adão, Beraja,
and Pandalai-Nayar 2020).

The model complements this literature by showing how changes in the relative demand
of certain skills can induce changes in the education system and the process of academic
specialization. Within the model, the effect of skill-biased technical change can be cap-
tured by a first-order stochastic (FOS) improvement in the skill weight distributions of
a subset of skills. A FOS improvement in skill-j’s skill weight means that human capi-
tal in j becomes (stochastically) more important in determining a worker’s productivity
at work. The following proposition summarizes the effect on the optimal provision of
education.

Proposition 7 (General Education and Skill-Biased Technological Change). An improve-
ment in demand for any subset of skills J ⊆ {1, ..., K} – represented by a first-order stochastic
improvement in Ψj for each j ∈ J – leads to more general education and delays the start of
academic specialization.

The proposition shows that skill-biased technical change (SBTC) increases the optimal
provision of general education pursued by all students. The expansion in general ed-
ucation focuses in particular on the skills which experience increased demand. The
prediction is consistent with the observed expansion of general education, and delay
in academic specialization, accompanying SBTC in the United States (Goldin and Katz
2010; Alon 2019). Moreover, as in Section 4, these curricular changes can alter the skill
composition of the labor force by leading some students to change their specialization.

5.3 Labor Market Uncertainty and General Education

Technological change may also increase labor market risk by creating uncertainty about
the future demand for certain skills. Advances in automation increase the risk of skill
obsolescence as capital replaces labor in a growing variety of production tasks (Ace-
moglu and Restrepo 2022; Jones and Liu 2022). Recent studies of comprehensive online
job databases provide empirical evidence of how technological innovation changes the
composition of skills that firms demand (Deming and Noray 2020; Acemoglu et al. 2022).
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As with skill-biased shocks to demand, the model provides predictions for how formal
education should optimally respond to changes in labor market uncertainty. Represent-
ing an increase in skill-specific risk as a mean preserving spread (e.g. a second order
stochastic shift) in its skill weights, the following proposition formalizes the result.

Proposition 8 (General Education and Labor Market Uncertainty). An increase in labor
market risk – represented by a mean preserving spread of the distributions (Ψk)k∈{1,...,K} – leads
to more general education and delays the start of academic specialization.

A mean preserving spread of the skill weight distributions increases the uncertainty in-
dividuals face in determining which skills they will use over the course of their careers.
Greater variability in ηk makes agents more uncertain about the importance of human
capital in skill-k for future earnings and productivity. Proposition 8 shows that agents
respond by pursuing more general education to insure themselves against labor mar-
ket risk. The process of academic specialization is delayed to later periods of formal
schooling, when agents are also more certain of their underlying abilities.

The literature studying the link between education and labor market uncertainty has
emphasized the trade off between more general and more specialized training. The pre-
vailing belief is that more specialized training leads to higher earnings in the short-run,
but more general education provides insurance against future obsolescence or other la-
bor market risks. Hanushek et al. (2017) provide evidence consistent with this perspec-
tive, showing that gains in youth employment from specialized education may be offset
by less adaptability to technological change later in life. Similarly, Krueger and Kumar
(2004a, 2004b) show how more general education may have lead the United States to be
more adaptable to the changing skill demands of rapid technological progress compared
to Europe, where education curricula are more specialized.

The result in Proposition 8 is consistent with the literature in predicting that labor mar-
ket uncertainty increases general education, though the underlying mechanisms are dis-
tinct. Moreover, while the literature typically focuses on the final allocation of workers
across the two types of schooling (specialized v. general), the model here describes how
the whole process of academic specialization adjusts. This includes the precise mix of
skills constituting general education, the duration and timing of academic specializa-
tion, and how the curriculum interacts with the optimal years of schooling. In doing
so, the model enables a more detailed comparison of education systems; provides a
mapping to new microdata on the dynamics of students’ academic histories; and, in
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conjunction with the results in Section 4, generates predictions for how educational in-
terventions may be tailored to contemporary changes in the labor market. Future work
should further develop these lines of inquiry, both theoretically and empirically.

6 Conclusion

This paper extends the canonical models of human capital accumulation through school-
ing to incorporate the process of academic specialization. Under mild assumptions, we
show that the model’s optimal policy has a particularly simple form that can be reduced
to the comparison of independent indices. The optimal policy predicts that schooling
should begin with a period of general education common to all students, following by
a period of gradual academic specialization before graduation. At the microeconomic
level, it is consistent with the dynamics of student course taking observed in the data
and the outcomes of educational interventions studied by the literature. At the macroe-
conomic level, its predictions are consistent with models of how education should adapt
to changes in the speed and scope of technological change in labor markets.

A potential avenue for future research is to further expand the realism and generality in
models of schooling to capture additional aspects of education technologies and insti-
tutional arrangements. Such work would help connect existing theory to a proliferating
body of research on the dynamics and heterogeneity in education markets. These ad-
vances are a necessary step to answering important questions regarding the optimal
structure of education institutions and how they should adapt to economic conditions.
The results here provide a modest step in this direction.

29



References
Acemoglu, Daron. 2002. “Technical Change, Inequality, and the Labor Market.” Journal

of Economic Literature 40 (1): 7–72.

Acemoglu, Daron, David Autor, Jonathon Hazell, and Pascual Restrepo. 2022. “Ar-
tificial Intelligence and Jobs: Evidence from Online Vacancies.” Journal of Labor
Economics 40 (S1): S293–S340.

Acemoglu, Daron, and Pascual Restrepo. 2022. “Tasks, Automation, and the Rise in
U.S. Wage Inequality.” Econometrica 90 (5): 1973–2016.

Adão, Rodrigo, Martin Beraja, and Nitya Pandalai-Nayar. 2020. ““Technological Tran-
sitions with Skill Heterogeneity Across Generations”.” Working paper 26625, Na-
tional Bureau of Economic Research.

Alon, Titan. 2019. “Earning More by Doing Less: Human Capital Specialization and
the College Wage Premium.” Working paper.

Altonji, J.G., P. Arcidiacono, and A. Maurel. 2016. “Chapter 7 - The Analysis of Field
Choice in College and Graduate School: Determinants and Wage Effects.” In ,
edited by Eric A. Hanushek, Stephen Machin, and Ludger Woessmann, Volume 5
of Handbook of the Economics of Education, 305 – 396. Elsevier.

Arcidiacono, Peter. 2004. “Ability sorting and the returns to college major.” Journal of
Econometrics 121 (1-2): 343–375.

Arcidiacono, Peter, V. Joseph Hotz, and Songman Kang. 2012. “Modeling college ma-
jor choices using elicited measures of expectations and counterfactuals.” Journal of
Econometrics 166 (1): 3–16. Annals Issue on “Identification and Decisions”, in Honor
of Chuck Manski’s 60th Birthday.

Buera, Francisco J, Joseph P Kaboski, Richard Rogerson, and Juan I Vizcaino. 2021.
“Skill-Biased Structural Change.” The Review of Economic Studies 89 (2): 592–625
(07).

Cavounidis, Costas, and Kevin Lang. 2019. ““Ben-Porath Meets Lazear: Microfounda-
tions for Dynamic Skill Formation”.” Journal of Political Economy.

Chow, Y. S., and Herbert Robbins. 1961. “A Martingale System Theorem and Appli-
cations.” Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and
Probability, Volume 1: Contributions to the Theory of Statistics. Berkeley, Calif.: Univer-
sity of California Press, 93–104.

30



Conlon, John J. 2021. “Major Malfunction A Field Experiment Correcting Undergrad-
uates’ Beliefs about Salaries.” Journal of Human Resources 56 (3): 922–939.

Deming, David, and Lisa B. Kahn. 2018. “Skill Requirements across Firms and Labor
Markets: Evidence from Job Postings for Professionals.” Journal of Labor Economics
36 (S1): S337–S369.

Deming, David J, and Kadeem Noray. 2020. “Earnings Dynamics, Changing Job Skills,
and STEM Careers*.” The Quarterly Journal of Economics 135 (4): 1965–2005 (06).

Dvorkin, Maximiliano, and Alexander Monge-Naranjo. 2019. “Occupation Mobil-
ity, Human Capital and the Aggregate Consequences of Task-Biased Innovations.”
Working paper 2019-13, Federal Reserve Bank of St. Louis.

Eliaz, Kfir, Daniel Fershtman, and Alexander Frug. 2021. “On the Optimal Scheduling
of Attention.” CEPR Discussion Paper No. DP16364.

Fricke, Hans, Jeffrey Grogger, and Andreas Steinmayr. 2018. “Exposure to academic
fields and college major choice.” Economics of Education Review 64:199–213.

Glazebrook, Kevin D. 1979. ““Stoppable Families of Alternative Bandit Processes”.”
Journal of Applied Probability 16 (4): 843–854.

Goldin, Claudia, and Lawrence F. Katz. 2010. The Race between Education and Technology.
Harvard university press.

Gossner, Olivier, Jakub Steiner, and Colin Stewart. 2021. “Attention please!” Economet-
rica 89 (4): 1717–1751.

Grigsby, John. 2020. ““Skill Heterogeneity and Aggregate Labor Market Dynamics”.”
Working paper, University of Chicago.

Hanushek, Eric, Guido Schwerdt, Ludger Woessmann, and Lei Zhang. 2017. “General
Education, Vocational Education, and Labor-Market Outcomes over the Lifecycle.”
Journal of Human Resources 52 (1): 48–87.

Jones, Benjamin F, and Xiaojie Liu. 2022, September. “A Framework for Economic
Growth with Capital-Embodied Technical Change.” Working paper 30459, National
Bureau of Economic Research.

Jovanovic, Boyan. 1979. ““Job Matching and the Theory of Turnover”.” Journal of
Political Economy 87 (5): 972–990.

31



Katehakis, Michael N, and Arthur F Veinott. 1987. ““The Multi-Armed Bandit Problem:
Decomposition and Computation”.” Mathematics of Operations Research 12 (2): 262–
268.

Krueger, Dirk, and Krishna B. Kumar. 2004a. “Skill-Specific Rather than General Edu-
cation: A Reason for US-Europe Growth Differences?” Journal of Economic Growth 9
(2): 167–207.

. 2004b. “US–Europe differences in technology-driven growth: quantifying the
role of education.” Journal of Monetary Economics 51 (1): 161–190.

Lazear, Edward P. 2009. “Firm-Specific Human Capital: A Skill-Weights Approach.”
Journal of Political Economy 117 (5): 914–940.

Lindenlaub, Ilse. 2017. “Sorting Multidimensional Types: Theory and Application.”
The Review of Economic Studies 84 (2): 718–789 (01).

Lucas, Robert E., and Benjamin Moll. 2014. ““Knowledge Growth and the Allocation
of Time”.” Journal of Political Economy 122 (1): 1–51.

Martellini, Paolo, Todd Schoellman, and Jason A. Sockin. 2022, March. “The Global
Distribution of College Graduate Quality.” Working papers 791, Federal Reserve
Bank of Minneapolis.

Miller, Robert A. 1984. “Job matching and occupational choice.” Journal of Political
economy 92 (6): 1086–1120.

Mincer, Jacob. 1974. Schooling, Experience, and Earnings. National Bureau of Economic
Research, Inc.

Papageorgiou, Theodore. 2014. ““Learning Your Comparative Advantages”.” The
Review of Economic Studies 81 (3): 1263–1295.

Patnaik, Arpita, Matthew J. Wiswall, and Basit Zafar. 2020, August. “College Majors.”
Nber working papers 27645, National Bureau of Economic Research, Inc.

Patterson, Richard, Nolan G. Pope, and Aaron Feudo. 2019, January. “Timing Is Ev-
erything: Evidence from College Major Decisions.” Iza discussion papers 12069,
Institute of Labor Economics (IZA).

Perla, Jesse, and Christopher Tonetti. 2014. ““Equilibrium Imitation and Growth”.”
Journal of Political Economy 122 (1): 52–76.

Roy, A. D. 1951. ““Some Thoughts on the Distribution of Earnings”.” Oxford Economic
Papers 3 (2): 135–146.

32



Schultz, Theodore W. 1968. ““Resources for Higher Education: An Economist’s
View”.” Journal of Political Economy 76:327–327.

Sonin, Isaac M. 2008. ““A Generalized Gittins Index for a Markov Chain and its Recur-
sive Calculation”.” Statistics & Probability Letters 78 (12): 1526–1533.

Stinebrickner, Ralph, and Todd Stinebrickner. 2014. “A Major in Science? Initial Beliefs
and Final Outcomes for College Major and Dropout.” The Review of Economic Studies
81 (1 (286)): 426–472.

Stinebrickner, Todd, and Ralph Stinebrickner. 2012. “Learning about Academic Ability
and the College Dropout Decision.” Journal of Labor Economics 30 (4): 707–748.

Traiberman, Sharon. 2019. ““Occupations and Import Competition: Evidence from
Denmark”.” American Economic Review 109 (12): 4260–4301.

Varaiya, Pravin, Jean Walrand, and Cagatay Buyukkoc. 1985. ““Extensions of the
Multiarmed Bandit Problem: The Discounted Case”.” IEEE transactions on automatic
control 30 (5): 426–439.

Violante, Giovanni L. 2008. “Skill-biased technical change.” The new Palgrave dictionary
of economics 2:1–6.

Whittle, Peter. 1980. ““Multi-Armed Bandits and the Gittins Index”.” Journal of the
Royal Statistical Society: Series B (Methodological) 42 (2): 143–149.

Wiswall, Matthew, and Basit Zafar. 2015. “Determinants of College Major Choice:
Identification using an Information Experiment.” The Review of Economic Studies 82
(2): 791–824 (4).

Zafar, Basit. 2011. “How Do College Students Form Expectations?” Journal of Labor
Economics 29 (2): 301–348.

33



A Proofs

Proof of Proposition 1. Agents’ human capital investment problem is a special case
of a class of problems that consist of sequential choice among independent decision
problems. This class generalizes the classical multi-armed bandit problem in that in
addition to choosing which “arm” to “pull” at each stage, the decision maker must also
choose how to pull the arm. Generally, this class of problems does not admit a simple
solution. However, Assumptions 1 and 2 allow us to follow Glazebrook (1979) (see also
Whittle 1980) and exploits the special structure of the human capital investment problem
to show that it can indeed be decomposed and admits a simple “index characterization”.

We first consider the following simplified problem. Suppose there is only one skill, and
at each period either the skill is selected, or an “outside option” that yields a fixed,
known payoff of (1− δ)M ≥ 0 whenever selected.

A policy π for this problem specifies, given each state (h,P) of the skill, whether to
choose it – and if so whether to study it or enter the labor market – or to utilize the
outside option and obtain a payoff of (1− δ)M . Let π∗M denote an optimal policy for this
problem (i.e., a policy that maximizes the expected discounted payoff). For convenience,
suppose that in cases of indifference between the outside option and the skill, π∗M breaks
ties in favor of the skill, and that in cases of indifference between study and work, π∗M
breaks ties in favor of study. For any (h,P), denote byM∗(h,P) ⊆ R+ the set of outside-
option payoffs M for which π∗M selects the skill when it is in state (h,P).

Lemma 1. Conditional on the skill being chosen under the optimal policy π∗ for this problem, the
decision to study or work is independent of the size ofM : for any (h,P) and M̃, M̂ ∈M∗(h,P),
π∗
M̃

prescribes studying the skill if and only if π∗
M̂

does.

Proof. Let (h,P) be the current state of the skill and let M1 ∈ M∗(h,P). Suppose
that given M1, studying the skill is strictly optimal. There must, therefore, exist a τ̂ > 0

such that the payoff from continuing to study for τ̂ periods and then choosing whether
to enter the labor market or choose the outside option yields a greater expected payoff
than both choosing to enter the labor market immediately and choosing the outside
option immediately:

E
[
δτ̂max

{
U(w.hτ̂ )

1− δ
,M1

}
|(h,P)

]
> max

{
U(w, h)

1− δ
,M1

}
. (15)
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Now suppose, towards a contradiction, that for some M2 ∈ M∗(h,P) it is strictly opti-
mal to choose the skill and enter the labor market. Then for all τ > 0,

U(w, h)

1− δ
> E

[
δτ
{
U(w.hτ )

1− δ

}
|(h,P)

]
. (16)

Combining (15) and (16), it must be that

E
[
δτ̂
(

max
{
U(w.hτ̂ )

1− δ
,M1

}
− U(w.hτ̂ )

1− δ

)
|(h,P)

]
> max

{
U(w, h)

1− δ
,M1

}
− U(w, h)

1− δ
,

which is a contradiction since U(w, hτ̂ ) ≥ U(w, h). �

Lemma 1 shows that the choice between study and work within each skill depends only
on information about the skill, and is independent of outside information. We now use
Lemma 1 to prove the Proposition.

Returning to the original problem with K skills, we again augment it with a fictitious
outside option. Note that the outside option can be interpreted as an additional skill,
which yields a fixed payoff (1 − δ)M ≥ 0 in each period regardless of whether the
individual studies or works. Clearly in this case the index associated with the outside
option is equal to M . Consider now the policy described in Proposition 1, applied to
this augmented problem. Note that since the payoff from the outside option is fixed,
if this policy selects the outside option in some period, it will continue to select it in
all subsequent periods (yielding a continuation payoff of M ). Given the initial state
(h0,P0), denote by τk the number of periods spent on skill k, studying or working, until
the index vk falls below M . This time τk is of course stochastic, and may be infinite, in
which case we let τk = ∞. Denote by V τ the (stochastic) discounted payoff obtained
during the τ =

∑K
i=1 τi periods spent on the K skills (with τ = ∞ if τi = ∞ for some i).

The expected discounted payoff V ((h0,P0),M) under the index policy described in the
statement of Proposition 1 is then given by

V ((h0,P0),M) = E
[
V τ + δτM |(h0,P0)

]
.

Let V ∗k ((hk,0, Pk,0),M) be the value function for the auxiliary single-skill problem con-
sidered above, consisting of only skill k and the outside option M (note that for M =
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0, V ∗k coincides with the index vk). Since τ1, ..., τN are independent, and since each
V ∗i ((hi,0, Pi,0),M) is convex in M and differentiable almost everywhere (it is a maximum
over stopping times of a linear function of M ),

∂

∂M
V ((h0,P0),M) =

K∏
i=1

∂

∂M
V ∗i ((hi,0, Pi,0),M).

Therefore, taking M > 0 large enough, V ((h0,P0),M) = M , and

V ((h0,P0), 0) = M −
∫ M

0

K∏
i=1

∂

∂M
V ∗i ((hi,0, Pi,0),M)dM. (17)

Note that for M = 0, the augmented problem is equivalent to the original one (i.e., with
no outside option). Hence, it remains to show that V ((h0,P0), 0) solves the Bellman
equation, i.e., that

V ((h0,P0), 0) = maxiΛiV ((h0,P0), 0),

with the operator Λi defined as

ΛiG((h0,P0), 0) = max

δE [G((hi,1, Pi,1), 0)|(hi,0, Pi0)]︸ ︷︷ ︸
study

,
Ui(wi, hi,0)

1− δ︸ ︷︷ ︸
enter labor market

 .

Similarly, for a function of ((hi,0, Pi,0), 0) only, Λi will be defined in the same way by
dropping the states of the other skills.

For each skill k, denote

V ∗−k((h0,P0),M) =
∏
i 6=k

∂

∂M
V ∗i ((hi,0, Pi,0),M).

In the remainder of the proof, to ease the notation, we drop all arguments except for M .
Let v∗ ≡maxi=1,...,Kvi denote the highest index among the skills, given (h0,P0). From
(17),

V (0) = M +

∫ M

0

V ∗−k(M)
∂

∂M
V ∗k (M)dM

= M −
(
V ∗k (M)V ∗−k(M)− V ∗k (0)V ∗−k(0)

)
+

∫ M

0

V ∗k (M)dV ∗−k(M)
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= M −
(
M − V ∗k (0)V ∗−k(0)

)
+

∫ M

0

V ∗k (M)dV ∗−k(M)

= V ∗k (0)V ∗−k(0) +

∫ v∗

0

V ∗k (M)dV ∗−k(M), (18)

where the second equality follows from integration by parts, the third from the fact that
V ∗k (M) = M and V ∗−k(M) = 1, and the fourth from the fact that dV ∗

−k(M)

dM = 0 for all
M ≥ v∗.

Without loss of generality suppose the skill with highest index given (h0,P0) is skill 1.
From Lemma 1, for all values of M below v1, V ∗1 (M) = Λ1V

∗
1 (M) (note that this need not

be true in general, and is a consequence of Lemma 1). Hence, from (18), V (0) = Λ1V (0).
Furthermore, from (18), since V ∗i (M) ≥ ΛiV

∗
i (M) for all i and M , and since dV ∗

−i(M)

dM ≥ 0

for all i, it must be that V (0) ≥ ΛiV (0) for all i.17 Therefore, since we have shown that
V (0) = Λ1V (0) and that V (0) ≥ ΛiV (0) for all skills i = 1, ..., K, this implies V (0) =

maxi=1,...,KΛiV (0). Thus, V solves the Bellman equation. �

Proof of Proposition 2. The result follows from Proposition 1, once we establish that the
indices (9) are a special case of the indices v and that (10) characterizes the graduation
region Gk, as defined in Section 2.

Skill k’s graduation region Gk (as defined in (5)) can be derived as follows. For a given
state (hk,t, αk,t, βk,t), consider first the following "one-step-look-ahead" inequality, which
guarantees the value of entering the labor market immediately as a skill-k specialist is
weakly greater than the expected value of studying k for a single additional period and
then entering the labor market:

hk,t ≥ δE [hk,t+1|(hk,t, αk,t, βk,t)] . (19)

Rewritten as

hk,t ≥
δ

1− δ
E [ak,t|(hk,t, αk,t, βk,t)] , (20)

the condition states that one period of foregone earnings is greater than the expected
marginal benefit of continuing to study for an additional period. Using (8), we rewrite

17That dV ∗
−k(M)

dM ≥ 0 follows from the convexity of each V ∗i , i 6= k.
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(19) as

hk,t(1− δ) ≥ δνk

(
αk,t

αk,t + βk,t

)
. (21)

It is easy to verify that this inequality guarantees that the value of entering the labor
market immediately as a k-specialist exceeds the value of studying k for at least one ad-
ditional period. This follows from that fact that the skill-k stopping problem – deciding
when to stop studying k and enter the market as a k-specialist, ignoring all other skills
– is monotone (Chow and Robbins 1961).18

Note that the number of successes the individual has experienced studying skill k in
the periods prior to period t is equal to (hk,t − hk,0)/νk. As a result, αk,t = hk,t/νk. It
therefore follows that the work region Gk is the set of skill-k states that satisfy (10). Next,
denote by mk,t the number of periods the individual has studied skill k prior to period
t, and note that αk,t + βk,t = αk,0 + βk,0 +mk,t. Given (10), the number of periods m∗k the
individual spends studying skill k before reaching a state in the work region, is equal to
the smallest integer greater than δ

1−δ − (αk,0 + βk,0). That is, m∗k = 0 if δ
1−δ < αk,0 + βk,0,

and otherwise

m∗k = d δ

1− δ
e − (αk,0 + βk,0). (22)

Clearly, if mk,t ≥ m∗k, the state (hk,t, αk,t, βk,t) of skill k is in the work region, and hence
the index of the skill is vk(hk,t, αk,t, βk,t) = hk/(1 − δ). Now suppose mk,t < m∗k. From
(4), the index of the skill is equal to the expected discounted payoff from studying the
skill for exactly an additional m∗k −mk,t periods, and then entering the labor market as
a skill-k specialist. Given the current state (hk,t, αk,t, βk,t) and mk,t, the distribution of
the number of "successes" during these m∗k −mk,t periods of studying skill k is Binomial
with parameters (m∗k −mk,t, αk,t/(αk,t + βk,t)), and the expected number of successes is
(m∗k −mk,t) (αk,t/(αk,t + βk,t)). The index of skill k is therefore:

vk(hk,t, αk,t, βk,t) =
δm

∗
k−mk,t

1− δ

(
hk,t + νk(m

∗
k −mk,t)

(
αk,t

αk,t + βk,t

))
=

hk,t
1− δ

δm
∗
k−mk,t

(
m∗k −mk,t + αk,t + βk,t

αk,t + βk,t

)
18We say the skill-k stopping problem is monotone if, for any period t and (hk,t, αk,t, βk,t), hk,t ≥

δE [hk,t+1|(hk,t, αk,t, βk,t)] implies that for any realization of ak,t, and resulting (hk,t+1, αk,t+1, βk,t+1),
hk,t+1 ≥ δE [hk,t+2|(hk,t+1, αk,t+1, βk,t+1)].
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=
hk,t

1− δ

(
d δ
1−δeδ

d δ
1−δ e−(αk,t+βk,t)

αk,t + βk,t

)
,

where the second equality follows from the fact that νkαk,t = hk,t, and the fourth equality
follows from (22). �

Proof of Proposition 3. Part 1. The educational markup of a given skill k is equal to
Ωk(x) = d δ

1−δeδ
d δ
1−δ e · δ−x

x
. The derivative of δ−x

x
is δ−x(−1−xln(δ))

x2
, which is negative if and

only if −1 − xln(δ) < 0. The latter condition is equivalent to −ln(δ) < 1
x
. Since the skill

has not yet reached its graduation region, δ
1−δ > x, which can be rearranged as 1

x
> 1

δ
−1.

The derivative of Ωk is therefore negative, as 1
δ
− 1 > −ln(δ) for all δ ∈ (0, 1). Next,

note that Ωk(x) > 1 is equivalent to d δ
1−δeδ

d δ
1−δ e−x > x, which indeed holds whenever

d δ
1−δe > x.

Part 2. We now show that the marginal reduction in Ωk is diminishing; that is, that
Ωk(x+ 1)− Ωk(x) is decreasing in x. To prove the claim, we must show that the deriva-
tive of δ−x

(
1

δ(x+1)
− 1

x

)
is negative. Indeed, the derivative of the latter is given by

δ−x
[
xln(δ)+1

x2
− (x+1)ln(δ)+1

δ(x+1)2

]
, which is negative since xln(δ)+1

x2
< (x+1)ln(δ)+1

δ(x+1)2
. �

Proof of Proposition 4. The proof follows from arguments similar to those in Gossner,
Steiner, and Stewart (2021) and is therefore omitted. �

Proof of Proposition 5. The proof follows from arguments similar to those in the proof
of Proposition 3. �

Proof of Proposition 6. Denote the policy described in the statement of the proposition
by π∗. Recall that the index of any skill k in a general value state (hk, Pk) /∈ Ek is defined
as in (14). Let the index of any skill in a state (hk, Pk) ∈ Ek be equal to ∞. For any
skill k in a state (hk, Pk) /∈ Ek, let λ∗k(hk, Pk), denote the labor-market-entry rule that
solves the maximization problem in (14). Analogously to the proof of Proposition 1,
this rule can be shown to be invariant in the size of a fictitious retirement option, and
hence it will be optimal to follow λ∗k whenever skill j is selected. The new complication
complementarities introduce is in the choice between skills.

Denote the the policy described in the statement of Proposition 6 by π∗. Under this
policy, skills in a state with general value are all treated the same, and have priority
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over skills in state (hk, Pk) /∈ Ek. Denote the index of the former by ∞. Among skills
in states (hk, Pk) /∈ Ek, those with a higher index are preferred. Among skills in states
(hk, Pk) ∈ Ek, all skills have the same indices. Indices are therefore ordered in increasing
order, with∞ preferred to any finite index. Denote this ordering by �.

The optimal stopping times in (14) satisfy the following crucial property. Suppose that
a skill k is in state (hkt, Pkt) /∈ Ek in period t. Then τ ∗k (hk,t, Pk,t) solving the maximization
problem in (14) is the first time t̂ > t in which vCk (hk,t, Pk,t) � vCk (hk,t̂, Pk,t̂). That is, it is
the first time at which the skill’s index drops to a value that is less preferred under the
order �.

We now use an interchange argument to show that this policy is optimal. Let π0 be
a policy that chooses skill i in period 0 and then proceeds according to the policy π∗

from period 1 onward. Following standard results in the literature on Markov decision
processes, in order to establish the optimality of π∗, it is sufficient to show that the ex-
pected discounted payoff under π0 is no greater than that under π∗, given any initial
state (h0,P0).

Let (h0,P0) be the initial state of the agent’s problem. Consider the policy π0. If π0 selects
in period 0 the same skills as π∗ would have, the two policies coincide in all periods.
Therefore, suppose that π0 selects skill i in period 0, while π∗ would have selected skill
j 6= i in period 0. This means vCj (hj,0, Pj,0) � vCi (hi,0, Pi,0). Furthermore, despite the
fact that π0 proceeds according to π∗ from period 1 onward, π0 need not select skill j in
period 1, since the skill i’s state may change after it is studied in period 0.

Define τ ∗k (hk, Pk) to be the first time such that, starting from the state (hk, Pk) and re-
peatedly choosing k, the index of skill k is no longer better than vCk (hk, Pk) according to
�. Note that this time is stochastic. Denote by σ1 the (stochastic) time at which a skill
other than i is selected under π0. Without loss of optimality, assume this will be skill
j. As j has not been selected yet, its state in period σ1 is equal to that of period 0. Let
τ ∗j (hj,0, Pj,0) be the optimal stopping time in the definition of the index of j given state
(hj,0, Pj,0). Setting σ2 = τ ∗j (hj,0, Pj,0), π0 will therefore choose skill j from period σ1 until
(at least) period σ1 +σ2− 1. At time σ1 +σ2, the skill i’s index will be vCi (hi,σ1 , Pi,σ1), skill
j’s index will be vCj (hj,σ2 , Pj,σ2), and the index of all other skills remains vCk (hk,0, Pk,0).

Define the policy π1 that initially invests in skill j during periods 0, ..., σ2 − 1, then in-
vests in skill i, during periods σ2, ..., σ2 + σ1 − 1, and then coincides with π∗ thereafter.

We now show that the expected payoff under π1 is weakly greater than under π0. Denote
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by uk(hk, Pk) the payoff from skill k given state (hk, Pk). If the state (hk, Pk) is in skill k’s
graduation region, then uk(hk, Pk) = hηkk . Otherwise, uk(hk, Pk) = 0. The expected payoff
during periods 0, ..., σ1 + σ2 − 1 under π1 is equal to

∏
k 6=i,j

h
ηk,0
k,0

{
h
ηi,0
i,0 E

(
σ2−1∑
t=0

δtuj(hj,t, Pj,t)

)
+ E

(
δσ2h

ηj,σ2
j,σ2

)
E

(
σ1−1∑
t=0

δtui(hi,t, Pi,t)

)}
. (23)

Similarly, under π0, the expected payoff during these periods is equal to

∏
k 6=i,j

h
ηk,0
k,0

{
h
ηj,0
j,0 E

(
σ1−1∑
t=0

δtui(hi,t, Pi,t)

)
+ E

(
δσ1h

ηi,σ1
i,σ1

)
E

(
σ2−1∑
t=0

δtuj(hj,t, Pj,t)

)}
. (24)

Denote by ∆(π1, π0) the difference between the expected discounted payoff under π1

and its counterpart under π0. Subtracting (24) from (23) and rearranging, we have that
∆(π1, π0) is equal to

∏
k 6=i,j

h
ηk,0
k,0

{
E

(
σ2−1∑
t=0

δtuj(hj,t, Pj,t)

)(
h
ηi,0
i,0 − E

(
δσ1h

ηi,σ1
i,σ1

))
(25)

− E

(
σ1−1∑
t=0

δtui(hi,t, Pi,t)

)(
h
ηj,0
j,0 − E

(
δσ2h

ηj,σ2
j,σ2

))}
.

We now verify that ∆(π1, π0) ≥ 0. Recall that vCj (hj,0, Pj,0) % vCi (hi,0, Pi,0). We must
consider the following cases.

Case 1. Suppose that (hj,0, Pj,0) is a state of general value and (hi,0, Pi,0) is not. Then, by
the definition of σ2 = τ ∗j (hj,0, Pj,0), hηj,0j,0 −E

(
δσ2h

ηj,σ2
j,σ2

)
< 0, and because i is not of general

value, hηi,0i,0 − E
(
δσ1h

ηi,σ1
i,σ1

)
≥ 0. This guarantees that ∆(π1, π0) ≥ 0.

Case 2. Suppose that (hj,0, Pj,0) and (hi,0, Pi,0) are both states of general value. Note that
this implies uj(hj,t, Pj,t) = ui(hi,t, Pi,t) = 0 for all t = 0, ..., σ2 − 1, as these periods are
necessarily spent studying. So we have ∆(π1, π0) = 0 in this case.

Case 3. Suppose that (hj,0, Pj,0) and (hi,0, Pi,0) are both not states of general interest. Then
vCj (hj, Pj) ≥ vCi (hi, Pi) and both indices are finite. Furthermore, hηi,0i,0 − E

(
δσ1h

ηi,σ1
i,σ1

)
≥ 0

and h
ηj,0
j,0 − E

(
δσ2h

ηj,σ2
j,σ2

)
≥ 0, and by (14),

E
(∑σ1−1

t=0 δtui(hi,t, Pi,t)
)

h
ηi,0
i,0 − E

(
δσ1h

ηi,σ1
i,σ1

)
) ≤ vCi (hi,0, Pi,0) ≤ vCj (hj,0, Pj,0) =

E
(∑σ2−1

t=0 δtuj(hj,t, Pj,t)
)

h
ηj,0
j,0 − E

(
δσ2h

ηj,σ2
j,σ2

) .
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Rearranging and multiplying by
∏

k 6=i,j h
ηk,0
k,0 , we have that ∆(π1, π0) ≥ 0,

We have therefore shown that the expected payoff under π1 is weakly greater than under
π0. Note that if π1 coincides with π∗ during the periods σ2, ..., σ2 + σ1 − 1, then π1 and
π∗ are identical and the proof is complete. Otherwise, modify π1 to a new policy π2,
repeating the argument in the preceding paragraphs. We can proceed inductively to
construct a sequence of policies (π0, π1, π2, ...), such that (i) given the initial state (h0,P0),
πs+1 yields an expected discounted payoff weakly greater than πs, and (ii) the expected
discounted payoff under πs converges to the expected discounted payoff under π∗ as
s→∞. It follows that the expected discounted payoff under π0 is no greater than under
π∗, which completes the proof. �

Proof of Proposition 7. Recall that the condition determining whether a skill is in a
state for which it has general value is given by (13). At any period t, for any skill k, and
any hk,t and ηk,t, a first-order stochastic improvement in the distribution Ψk relaxes the
condition in (13). �

Proof of Proposition 8. Recall that the condition determining whether a skill is in a
state for which it has general value is given by (13). At any period t, for any skill k, and
any hk,t and ηk,t, a mean preserving spread of the distribution Ψk relaxes the condition
in (13). This is because because hηk,t+τk,t+τ is a convex function of ηk,t+τ , such a mean pre-
serving spread must increase E(h

ηk,t+τ
k,t+τ ). Therefore, at any state and for any realization

path, E
[
h
ηk,t+τ
k,t+τ

]
increases, making the inequality easier to satisfy. General education will

therefore last longer. �
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B Computational Appendix

This appendix contains additional computational details on the simulations in Figures
1 and 2. The simulations illustrate the model’s dynamics under the optimal policy by
simulating the academic history of 100,000 college students. Each model period corre-
sponds to one college course credit. Allowing eight course credits per year, as per the
standard college schedule, we initialize individuals at age 18 and calibrate the model so
that college (endogenously) lasts an average of four years (32 periods). For the illustra-
tion of educational interventions in Figure 2, the parameterization additionally targets
an 18% share of STEM college graduates, as in the data. Education interventions at the
start of Freshman, Sophomore, Junior, and Senior year correspond to model periods 1,
9, 17, and 25, respectively.

Despite its parsimony, the parametric model has many more degrees of freedom than
are necessary for the illustrative exercise. To simplify it further, we set the parameters of
the human capital technology, skill wages, and initial conditions to unity for all skills, so
that wk = 1, h0,k = 1 and vk = 1 for all k in all simulations. To calibrate each simulation,
we vary the discount factor (δ) and parameters of the population ability distributions
(αk, βk). Together, these parameters determine the optimal years of schooling, as δ deter-
mines the opportunity cost of time, and the ability distributions determine the average
returns to schooling and, via rational expectations, the degree of uncertainty individu-
als face in knowing their own abilities. Clearly, many combinations of these parameters
can generate the same targeted years of schooling. The illustrations select among these
calibrations to produce visually pronounced dynamics and avoid degenerate cases.

For Figure 1, the discount factor is set to δ = 0.975 and (αk, βk) = (1, 22) for all k. For
Figure 2, the discount factor is set to δ = 0.970, the STEM (S) ability distribution is
(αS, βS) = (2, 10), and the non-STEM (NS) ability distribution is (αNS, βNS) = (3, 10).

For the education intervention simulations in Figure 2, the indices in the optimal policy
do not admit closed-form solutions. As a result, we calculate the indices numerically
using the recursive methods in Sonin (2008). In general, while closed-form expressions
produce the most efficient computation, a variety of methods exist to calculate the in-
dices of the optimal policy, even when their precise analytical form is not known (for
example, see also Varaiya, Walrand, and Buyukkoc 1985; Katehakis and Veinott 1987).
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