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Abstract

Recent developments in the causal inference literature introduced Machine Learning (ML) algorithms to the 

analysis of heterogeneous treatment effects. Relying on these methods, various studies examine how treatment effects 

vary as a function of covariates. We highlight the potential interpretation challenges when one analyzes treatment 

effect heterogeneity without taking into account correlated covariates, and propose to examine the partial effect of a 

covariate on the estimated conditional average treatment effect. Our approach introduces the application of Partial 

Dependence Plots (PDP) and Accumulated Local Effects (ALE) used in the prediction literature, to the analysis of 

heterogeneous treatment effects.
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1. Introduction

The causal inference literature has expanded beyond the estimation of average treatment effects in an attempt to

uncover the distributional impacts of treatment and to examine treatment effect heterogeneity. New recent developments

include the application of Machine Learning (ML) methods to estimate heterogeneous treatment effects. Several

recent studies include the estimation of Conditional Average Treatment Effects (CATE) for the purpose of optimizing

treatment assignment and highlighting potential economic mechanisms underlying the response to treatment. The

discussion of mechanisms based on ML estimation of treatment effect heterogeneity typically includes a comparison

of covariates between those with high versus low predicted treatment effects, as well as the examination of how

average treatment effects non-parametrically vary when the value of a covariate changes. The former is typically

referred to as classification analysis (CLAN; see Chernozhukov et al. (2020)), while the latter is sometimes referred to

as marginal plots in the ML literature (see, e.g., Molnar (2020), and Apley and Zhu (2020)). These types of analyses are

informative; however, they cannot reveal whether a treatment effect varies due to a direct interaction of the treatment

with a specific covariate, or rather through the covariance with other variables associated with the treatment effect.

In this paper, we highlight the potential interpretation challenges in applying marginal plots and CLAN to heterogeneity

analysis and propose an approach that goes one step further to examine the partial effect of a covariate on the estimated

CATE, while holding all other observed covariates constant. Specifically, we apply ML methods used to examine

partial effects of a data feature on the response variable to the analysis of treatment effect heterogeneity. We show how

to use Partial Dependence Plots (PDP) introduced by Friedman (2001), as well as Accumulated Local Effects (ALE)

plots developed by Apley and Zhu (2020), to non-parametrically describe how the estimated CATE varies as a function

of a specific covariate, while holding all other covariates constant.1 Like any estimation of CATE, our approach has

the limitation that it can explore only variation in treatment effects that arises from variation in observed covariates,

and not omitted confounders. Yet, despite its limitations, our approach will help to highlight important patterns of

predicted treatment effect heterogeneity to explore in further research. Moreover, in cases where the main drivers of

heterogeneity are observed, our proposed methods provide important insights into why a specific treatment matters

and for whom.

To motivate our approach, consider the following example. Suppose that there is an intervention where the treatment

effect varies as a function of household income. In particular, assume that low-income families benefit more from

treatment. Assume also that income is negatively associated with the number of children in the household. By

contrast, a treatment effect does not vary with the number of children. In this setup, a simple analysis of treatment

effect heterogeneity that does not account for correlations between covariates will show that the treatment effect is

larger for families with more children even though there is no direct link between the treatment effect and family size.

This might not matter if the objective of the analysis is to provide predictions in order to target treatment or create

assignment rules. However, if the objective is to learn about why the treatment works and about possible mechanisms,

we might arrive at wrong conclusions if we simply examine how a treatment effect varies as a function of a specific

1To keep the discussion simple, we always refer to a change in one variable while holding all other variables constant. The approach can be
generalized to changing a set of variables while holding all other variables constant.
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covariate without holding other covariates fixed (i.e., without accounting for correlations between covariates and their

interactions with the treatment effect).

In Section 2 we illustrate these ideas using simulations, where we show that the heterogeneity analysis based on

ML estimation using marginal plots and CLAN cannot capture the true heterogeneity in treatment effects with respect

to covariates, even if all sources of heterogeneity are observed by the researcher.

We proceed in Section 3 by presenting two approaches to examining how the estimated CATE varies with respect to

a specific covariate, while holding other covariates constant. We start by applying PDP to the analysis of heterogeneity

in treatment effects. PDP are used in machine-learning applications to visualize how predictions of an outcome variable

vary as a function of a specific feature of the data while all other features are kept constant. We propose an application

of this method to examine how treatment effect predictions (instead of outcome predictions) vary as a function of a

specific covariate while all other covariates are kept fixed. As discussed in the literature (see, e.g., Apley and Zhu

(2020)), in cases of high correlation between covariates, PDP might sometimes fail to reflect the partial effect of

covariates as they involve extrapolation over points beyond the envelope of the training data. Hence, we proceed by

proposing the application of ALE to the analysis of treatment effect heterogeneity. We implement both methods within

the Chernozhukov et al. (2020) framework, using their derivation of the Best Linear Predictor (BLP) of CATE.

We evaluate the PDP and ALE approaches in terms of performance and, using a simulation study, compare them to

the heterogeneity analysis used in most recent papers in economics (i.e., marginal plots and CLAN). The simulations

are based on different DGPs, where we also vary the degree of correlation between covariates and the functional form

of the heterogeneous treatment effects. These simulations illustrate the stark differences between applying marginal

plots and CLAN, and the two proposed approaches (PDP and ALE), where PDP and ALE succeed in capturing direct

links between treatment and covariates, while holding other covariates fixed.

In Section 4 we reanalyze data from a field experiment in order to compare the alternative approaches. We estimate

CATE by applying several ML methods and show that across all methods ALE and PDP deliver different results

compared to marginal plots. These differences are consistent with the idea that marginal plots do not account for

correlated covariates.

Our paper is directly related to the growing literature on the heterogeneity in treatment effects. Traditionally,

the examination of treatment effect heterogeneity has been done in a classical regression framework by including

interactions between the treatment indicator and covariates, while controlling for the main effects. Following recent

advances in ML methods for causal inference (see, e.g., Athey and Imbens (2016); Wager and Athey (2018); Künzel

et al. (2019); Athey, Tibshirani and Wager (2019); Chernozhukov et al. (2020); Hahn, Murray and Carvalho (2020);

Nie and Wager (2021); Fan et al. (2022)), a growing number of papers include an analysis of treatment effect

heterogeneity using a ML approach (see, e.g., O’Neill and Weeks (2018); Hoffman and Mast (2019); Davis and

Heller (2020); Deryugina et al. (2019); Lechner, Strittmatter and Knaus (2020); Haaland and Roth (2020); Bertrand

et al. (2021); Breda et al. (2021); Carlana and La Ferrara (2021), Farbmacher, Kögel and Spindler (2021); Sylvia et al.

(2021)).2 The use of ML methods to explore treatment effect heterogeneity has several appealing features as it requires

2For a review of recent methodological papers and applications see Knaus, Lechner and Strittmatter (2021).
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fewer assumptions on the functional form or sources of heterogeneity.

Our paper contributes to the literature on the estimation of treatment effect heterogeneity by pointing out a potential

pitfall in the interpretation of treatment effect heterogeneity with respect to observed covariates in setups where these

covariates are correlated. We propose to apply two approaches that come from the ML literature to evaluate how the

estimated CATE varies as a function of a specific covariate, while holding all other variables fixed.

2. Treatment Effect Heterogeneity Analysis in the Presence of Correlated

Covariates

We start by showing a simple simulated example that illustrates the potential interpretation issues in the analysis of

treatment effect heterogeneity based on CLAN and marginal plots in the presence of correlated covariates. Consider a

Data Generating Process (DGP) with three variables (z1,z2,z3)∼ N(0,Σ) such that:

Σ =


1 ρ ρ

ρ 1 0

ρ 0 1

 , (1)

and an outcome function defined by

Y = α1(W × I(z1 > 0))+ γ1z1 +α2(W × I(z2 > 0))+ γ2z2 +α3(W × I(z3 > 0))+ γ3z3 +u, (2)

where W is an indicator for participation in the treatment group and I is the indicator function.

This DGP is designed such that the heterogeneity in treatment effect is a step function over z1, z2, and z3, allowing

for correlation between z1 and z2 and between z1 and z3. We examine a particular case where α1 = −α2 = 0.15,

γ1 = −γ2 = 0.06, and α3 = γ3 = 0. This implies that while z1 and z2 are correlated (for ρ 6= 0) they have opposite

effects on Y and their interaction with the treatment effect is also of the opposite sign. At the same time, z3 is correlated

with z1, but it does not affect Y by itself, and naturally does not induce any treatment effect heterogeneity.

To obtain CATE estimates for this DGP, we use three popular ML methods, Generalized Random Forests (GRF),

Gradient Boosting (GBM), and Neural Networks (NNET), which are non-parametric algorithms that differ in their

smoothness level, allowing us to achieve a good fit to various DGPs.3,4 The estimates were obtained by applying all

algorithms to estimate the proxy for CATE. Following the approach in Chernozhukov et al. (2020), we choose between

the proxies using the performance measure (Λ), which is informative on the fit in the regression of the estimated proxy

on the true CATE. We then obtain a measure of the CATE by calculating the BLP of CATE (see more details about the

implementation in Appendix D).5

3Whenever we apply GRF, we refer to the implementation of causal forests as discussed in Athey, Tibshirani and Wager (2019).
4For the GBM and NNET algorithms, we estimate the proxy for CATE using a T-learner methodology (see, e.g., Künzel et al. (2019)).
5As opposed to classical ML algorithms, GRF (Athey, Tibshirani and Wager (2019)) predicts treatment effects rather than outcomes and produces

consistent estimates for CATE. This fact renders estimation of BLP unnecessary. Nevertheless, for comparability with the other methods, we apply
the same procedure using the BLP of CATE throughout the paper.
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Figure 1 shows marginal plots for different values of z1 and z3. Marginal plots offer a popular way to summarize

the estimated CATE function obtained from the ML procedure. They are calculated as an average of the CATE

estimates over a single dimension. The plots in Figure 1 were obtained using the GRF algorithm, which had the higher

performance measure (Λ) in this case. The displayed estimates were obtained averaging over 500 simulated data sets

from this DGP. Each data set was compiled of 10,000 observations with a treatment assignment probability of 0.5 and

u∼ N(0,0.12).

Starting from the left panel of the figure, as we move along the z1 dimension, the distribution of z2 and z3 changes

as well, in accordance with equation (1). Hence, the marginal plot over z1 captures (1) a direct relation between z1 and

the treatment effect (the partial effect of z1), and (2) the changes in CATE due to the correlation between z1 and the

other two covariates, through their relation with the treatment effect.

The "direct effect" line in the figure represents changes in the treatment effect due to changes in z1, holding constant

the other variables, centered around the average treatment effect (ATE).6 The red diamonds show the estimated

marginal plot when there is no correlation between the zs (i.e., ρ = 0). In this scenario, there is no indirect effect.

Hence the marginal plot provides a good representation of the direct relationship between z1 and the treatment effect.

The black circles show the estimated marginal plot for the case where ρ = 0.6. Unlike the no-correlation case, the

marginal plot over z1 incorporates also the indirect effect driven by the relation between the other covariates and the

treatment effect. The deviation of the estimates from the "direct effect" line is larger as z1 grows (in absolute terms).

Specifically, z2 has the opposite effect on the treatment effect, and is positively correlated with z1, which explains the

growing difference between the marginal plot and the "direct effect" for high values of z1.

The right panel in Figure 1 shows the marginal plot over the z3 dimension, a covariate that does not interact with

the treatment effect in the DGP (and, in fact, does not affect Y at all). In this case, the marginal plot captures only

the indirect effect of z3 through its correlation with z1. For the case of ρ = 0.6, this plot demonstrates how marginal

plots in the presence of correlated covariates may erroneously lead one to conclude that an irrelevant variable (z3) is

an important driver of treatment effect heterogeneity.

While so far we have focused on marginal plots, it is important to highlight that other popular approaches to

analyzing heterogeneity in treatment effects, such as CLAN, raise similar interpretation issues. CLAN aims to

characterize individuals with high versus low treatment effects in terms of their observed characteristics. This is done

by first splitting the sample according to the level of the predicted treatment effect obtained using the ML procedure

(for example, by quartiles of treatment effect), and then showing means of observed characteristics for individuals in

the different categories.7 Table 1 shows the results for a CLAN analysis of the simulation study discussed above, for

the cases of ρ = 0 and ρ = 0.6. Each row in Table 1 reports the mean of a specific covariate for observations with

predicted treatment effect in the lower quartile (columns (1) and (4)) and in the upper quartile (columns (2) and (5))

of the proxy predictor S(z). Columns (3) and (6) show the difference between the means of the lower and the upper

quartiles and report in parentheses rejection rates at the 10% significance level for a test of the hypothesis that the

6In Section 3, we discuss two different concepts that correspond to the direct effect. However, for the specific DGP discussed in the current
section, the two concepts coincide, due to the lack of interaction between the covariates in the treatment effect function.

7See Appendix D for more details about CLAN analysis.
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difference equals zero, over the 500 replications. The table illustrates that when covariates are correlated, using the

difference in mean between variables among those with high and low predicted treatment effects could give rise to

erroneous conclusions regarding the true drivers of treatment effect heterogeneity. For example, when ρ = 0.6, the

difference in the mean of z3 between observations with treatment effects in the lower quartile and the upper quartile

(column (6)), is the largest, even though z3 is not even in the DGP for Y and has no interaction with treatment.

In the next section, we show how to apply two methods using machine-learning predictions of treatment effects to

examine treatment effect heterogeneity with respect to specific covariates, while holding other covariates constant.

3. Heterogeneous Treatment Effects, Partial Dependence Plots, and Accumulated

Local Effects

Motivated by the above examples, we introduce two methods that allow researchers to look into the black box of ML

predictions, and explore the direct relation between a covariate and the estimated CATE, while accounting for other

correlated features of the data. We start by discussing PDP, first introduced by Friedman (2001), and then present ALE

plots, as discussed in Apley and Zhu (2020). We briefly describe the general ideas behind PDP and ALE, as well as

their interpretation in the context of treatment effect heterogeneity. We close this section by showing how PDP and

ALE perform in a simulation study.

3.1. Partial Dependence Plots

A Partial Dependence Plot (PDP) is a model-agnostic tool aimed at illustrating the partial effect of one variable (or a set

of variables) on the predicted outcome of a machine learning model, which is usually trained using many (correlated)

variables. This is done by fixing the variable of interest at specific values and then, for each value, averaging the

predicted outcome over the marginal distribution in the sample (Friedman (2001)). In this section we apply this

approach to CATE estimation.

Denote by Y (1) and Y (0) treated and untreated potential outcomes respectively and s0(z) = E[Y (1)−Y (0)|z] be

the conditional average treatment effect (CATE), where z is a vector of covariates that potentially interact with the

treatment effect, zl is a single covariate of interest, and z−l denotes all variables except zl . Lastly, we denote by ŝ some

estimator of s0.

One way to illustrate the dependency of ŝ on zl is to use marginal plots, calculated by E[ŝ(z) | zl ]. However, as

discussed above, by using the conditional expectation, we also capture the indirect effects of zl on ŝ(z) over zs that

are correlated with zl (analogous to omitted variable bias in a regression context). Our first proposal to overcome this

problem is to adapt the PDP approach by Friedman (2001) to the heterogeneous treatment environment. We define the

PDP estimator of the CATE as

s̄PDP
l (z∗l ) = Ez−l [ŝ(z

∗
l ,z−l)] , (3)
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which traces how the estimator changes when we change zl , while keeping constant all other z−l . The concept in (3)

can thus be interpreted as a counterfactual prediction of the CATE estimator, when all z−l are kept constant and only

zl varies. By keeping all other covariates constant, we do not allow z−l to change as we vary zl , and hence we observe

only the direct effect of zl . To estimate (3), one can replace the expectation operator with sample averages.

It is worth noting that when the data consists of strongly correlated covariates, PDP may lead to extrapolation of the

treatment effect outside the joint support of the covariates (see the discussion in Apley and Zhu (2020)). In this case,

the computation of equation (3) for a covariate, which is highly correlated with other covariates, involves averaging

predictions of data points that rarely exist in reality, making the PDP estimates sensitive to model extrapolation. ALE,

discussed in the next section, is not sensitive to such extrapolation issues.

3.2. Accumulated Local Effects

The second approach, Accumulated Local Effects (ALE), relies on using the partial derivatives of the estimator with

respect to a specific variable zl . The aim of ALE, described by Apley and Zhu (2020), is to average the predicted

derivative of a function with respect to zl over the conditional distribution of z−l , and then to integrate these local

derivatives to obtain a local averaged prediction. As above, we adapt this idea to the heterogeneous treatment

environment.

To define the estimand of ALE, consider first the mean partial derivative of ŝ(z) with respect to zl at a specific point

t:8

PDALE
l (t) = Ez−l

[
∂ ŝ(zl ,z−l)

∂ zl
| zl = t

]
. (4)

This expression has a clear interpretation: it captures how the estimated CATE changes locally with zl around a

specific point (t) when all other variables are held constant. ALE accumulates these local changes by integrating over

the partial derivatives. Integrating over (4) we get the ALE function for ŝ(z):

s̄ALE
l (z∗l ) =

∫ z∗l

zl,min

PDALE
l (t)dt− c. (5)

To estimate (5), one needs to estimate (4) using ŝ, as well as to numerically calculate the integral in (5). In Appendix

E we outline the implementation of the ALE estimator following Apley and Zhu (2020).

3.3. Comparing the Interpretation of PDP and ALE

Before proceeding with the implementation of PDP and ALE, it is useful to compare them. These two approaches

capture different statistical concepts, and hence generally lead to different estimates. Specifically, predicting how the

estimated CATE changes over the zl dimension, PDP integrates over the marginal distribution of other covariates z−l ,

regardless of the conditional distribution around specific values of zl . By contrast, ALE takes into account the fact

8For simplicity we present here the definition in which ŝ is assumed to be differentiable, but there is another version of this definition in which
this assumption is relaxed. See, e.g., equation (6) in Apley and Zhu (2020), and application of ALE to discrete covariates, discussed in Appendix F.
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that partial derivatives of the estimated CATE with respect to zl may depend on other covariates. To do so, it uses the

conditional distribution of z−l when recovering local partial derivatives around specific values of zl .

To further illustrate the difference between PDP and ALE, suppose that ŝ and its partial derivative w.r.t. zl are

continuous and consider the partial derivative of the PDP estimand (3) with respect to zl :

∂Ez−l

[
ŝ
(
z∗l ,zi,−l

)]
∂ zl

= Ez−l

[
∂ ŝ
(
z∗l ,zi,−l

)
∂ zl

]
. (6)

This derivative is the unconditional expectation of a partial derivative of the CATE estimator with respect to a single

covariate. This is in contrast to the derivative of ALE as shown in (4), which is a conditional expectation of a partial

derivative of the CATE estimator with respect to a single covariate.

In Appendix C we show sufficient conditions for the estimands for PDP and ALE to coincide (though the estimators

are not generally numerically identical).9 In the simulation study below, we introduce a specific DGP, which demonstrates

where the two approaches diverge.

3.4. Applying PDP and ALE to Study Heterogeneous Treatment Effects

We turn now to the application of PDP and ALE to the analysis of heterogeneous treatment effects. We implement

PDP and ALE within the Chernozhukov et al. (2020) framework. This general framework can be applied to study

heterogeneous treatment effects, using any machine learning approach (for more details see Appendix D.1). A central

idea in Chernozhukov et al. (2020) is to provide consistent estimates and confidence intervals of features of the

CATE instead of focusing on the CATE itself. This approach overcomes the challenges of getting a valid estimation

framework for the CATE obtained from generic ML algorithms.

Let s0(z) be the true CATE, and S(z) be a proxy predictor of s0(z). There is no requirement for the proxy to

be a consistent estimate of CATE, and hence we may use a wide variety of ML methods to estimate this proxy. To

obtain consistent estimates and confidence intervals for a specific feature of CATE, the estimation approach involves

randomly splitting the data into main and auxiliary samples where the model is trained using the auxiliary sample and

inference is performed on the main sample. To account for the uncertainty induced by the random splitting of the data,

Chernozhukov et al. (2020) propose using Variational Estimation and Inference (VEIN), i.e., repeating the estimation

process many times and reporting the median over the splits for point estimates and confidence intervals.

One of the features derived by Chernozhukov et al. (2020) is the Best Linear Predictor (BLP) of CATE, s0(z).

Given the proxy S(z), the BLP of CATE is defined as

BLP(s0(z) | S(z)) = β1 +β2 (S(z)−E[S(z)]) . (7)

In this equation, β1 is interpreted as the ATE, while β2 measures both the presence of heterogeneity and whether the

9By construction, as an integral, ALE is defined up to a scale and therefore, to show that PDP and ALE coincide, we show that their partial
derivatives w.r.t. zl coincide at every point. As mentioned, we suggest centering ALE around the ATE. However, the mean of the PDP function is
not necessarily the ATE, and therefore if one wishes to have the two functions coincide in levels, ALE needs to be centered around the PDP mean.
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proxy S(z) is a relevant predictor of CATE. Chernozhukov et al. (2020) develop two approaches to estimate (7).10

We apply the PDP and ALE approaches to the estimated BLP(s0(z) | S(z)) and use the VEIN method to calculate

confidence bands (see details in Appendix D). Note that Chernozhukov et al. (2020) prove that this method provides

consistent estimates and valid confidence bands for the BLP of CATE. While PDP and ALE are informative of the

properties of the estimated CATE function, there is no formal proof that they recover the properties of the true CATE

since they rely on the derivative of the BLP of CATE. As a result, the confidence bands that we provide are mainly

meant to illustrate the amount of uncertainty of our PDP and ALE estimates. Nevertheless, in the simulation study

described below we show that both PDP and ALE estimates successfully capture the direct effects of covariates on the

treatment effect for various DGPs with different types of heterogeneity structures and correlation between covariates.

3.5. A Simulation Study

We illustrate the two proposed methods, PDP and ALE, for the analysis of treatment effect heterogeneity using

simulations. We conduct simulations for three DGPs. First, the DGP defined in equations (1) and (2), which we

term the “step” DGP. The second DGP has the same correlation matrix between the covariates as defined in equation

(1), but the heterogeneity in the treatment effects is linear, defined in equation (8) below. In what follows we term this

the “linear” DGP. In the third DGP we introduce interactions between two covariates and the treatment effects in order

to highlight the differences between PDP and ALE.

We first focus on the step DGP defined in equations (1) and (2), and a linear DGP of the following form:

Y = α1z1W + γ1z1 +α2z2W + γ2z2 +α3z3W + γ3z3 +u. (8)

Each simulated data set consists of 10,000 observations, the treatment assignment probability is 0.5, and u ∼
N(0,0.12). We set α1 = −α2 = 0.09, γ1 = −γ2 = 0.04, and α3 = γ3 = 0.11 We conduct 500 replications, and use

the same estimation procedure described in Section 2 for our main results. Figure 2 summarizes the results from the

simulation study for the step and the linear DGPs (we introduce the third DGP below). The solid black line denotes

the direct effect of zi on CATE, when z−i is held constant. Because the treatment effect is additive, in this case the

direct effect is equivalent under both PDP and ALE (see the discussion in Appendix C). The triangles show the average

marginal plot estimates over the simulated data sets, the diamonds show the average PDP estimates, and the circles

show the average ALE estimates. The colors show the share of data sets for which we rejected the test that the estimate

is different from the true direct effect (indicated by the solid black line) at the 10% significance level. Green denotes

low rejection values, implying that the estimator performs well. To represent the variance over the simulated samples,

we also report the 0.005 and 0.995 percentiles of the different estimators over the 500 replications for each point in

the figure.

Panels A and B of Figure 2 plot the results for the step DGP obtained by applying GRF as the proxy predictor

ML algorithm (given that it provided a higher performance measure than NNET and GBM). Panel A plots the results

10See further discussion in Chernozhukov et al. (2020) and in Appendix D.
11For ρ = 0 these values maintain the same R2 as that of the step DGP.
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for a relatively low correlation case (ρ = 0.3) and Panel B plots the results when there is higher correlation between

covariates (ρ = 0.6). As shown in Panel A, PDP and ALE plots deliver highly similar results. However, they both

differ from the marginal plot, which erroneously attributes part of the effect of z1 to the heterogeneity in treatment

effect with respect of z3. Similarly, the marginal plot differs from the direct effect of z1 as it attributes part of the

(negative) treatment effect of z2 to z1, while ALE and PDP capture direct effect correctly. This is even more salient

in Panel B (ρ = 0.6), where differences between the marginal plot and the direct effect are larger due to the higher

correlation between the covariates.

Panels C and D of Figure 2 show the results for the linear DGP obtained by applying NNET as the proxy predictor

ML algorithm (due to a higher performance measure than GRF and GBM). Again, we see that the marginal plot

estimates attribute part of the treatment effect heterogeneity to z3 even though this covariate does not interact with the

treatment. In addition, the effect of z1 in determining heterogeneity in treatment effects is much smaller (in absolute

terms) than the direct effect, especially in the high correlation case (Panel B). PDP and ALE plots almost overlap in

this case and are again very close to the direct effect.

The simulation has shown no evident difference between the PDP and ALE estimates. As discussed in Appendix

C, this result is not surprising when the treatment effect does not include interactions between the covariates, as was

the case in the two DGPs discussed so far. The third DGP will highlight the difference between PDP and ALE when

the treatment effect is not additive. Specifically, we add to the linear DGP in (8) an interaction between the treatment

and both z1 and z2 as follows:

Y = α1z1W + γ1z1 +α2z2W + γ2z2 +α3z3W + γ3z3 +α4z1z2I(z1 > 0)W +u, (9)

where we use the exact same specifications as before, and set α4 = α1 = 0.09.

We focus on the case of ρ = 0.6 and present the results in Figure 3 for the NNET as it achieved the highest

performance measure. In the left panel, triangles represent the average marginal plot estimates, diamonds represent

average PDP estimates, and the black line represents the direct effect defined in to equation (3). PDP estimates fit this

line well, while the marginal plot estimates do not. Similarly, in the right panel triangles represent average marginal

plot estimates, circles represent average ALE estimates, and the black line represents the direct effect line defined in to

equation (5). It is evident that the marginal plot estimates do not fit the direct effect line well, while the ALE estimates

approximate this line with high precision.

We also conduct several robustness tests to demonstrate that our results hold when we change the stylized DGPs in

the above simulation. Specifically, we replicate Figures 2 and 3 three times with the following changes: we reduce the

number of observations by half from 10,000 to 5,000 (Figures A1 and A2); we increase the noise from u∼N(0,0.12) to

u∼N(0,0.22) (Figures A3 and A4); and we decrease the heterogeneity by half from β1 = β2 = 0.15 to β1 = β2 = 0.075

in equation (2) and from α1 = α2 = 0.09 to α1 = α2 = 0.045 in equations (8) and (9) (Figures A5 and A6). In all cases

the results remain very similar to the ones presented in this section, even though the best algorithm according to the Λ

performance measure varies across some specifications.12

12Due to the long computational time, we lowered the number of MC replications in the robustness tests from 500 to 100 when using GRF as the
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4. Application

In this section we show the results from the different approaches discussed above using data from a field experiment.

We use data from a General Social Survey (GSS) wording experiment, illustrating that marginal plots might lead to

different conclusions than PDP and ALE estimates regarding the sources of treatment effect heterogeneity.

For about five decades, the GSS has been collecting Americans’ perspectives and views on national spending

priorities, as well as on many other social issues. Starting in the mid-1980s, respondents randomly received different

versions of the question regarding national spending. While some were asked about their view on the level of spending

on "welfare," others were asked about the level of spending on "assistance to the poor."13 It has been long documented

that the framing of the question has an impact on the response. Specifically, Americans tend to hold the opinion that

national spending on welfare is too high, but that assistance to the poor is too low.14

The sample we use includes 32,814 observations, of which 17,567 are assigned to treatment and 15,247 to control.15

The outcome variable is the response to the national spending question coded "1" for "too much" and "0" otherwise.

Treatment is defined as receiving the "welfare" version of the question and is randomly assigned in each survey year.

A comparison of the characteristics of the treatment and control groups (Appendix Table B1) suggests that within

a survey year, the assignment protocol produced well-balanced groups. Our set of covariates include age, years of

education, party identification coded on a scale of 0 to 6 (higher values denote affiliation with the Republican party),

political views coded on a scale of 1 to 7 (higher values denote more conservative views), gender, race, and a vector

of year dummy indicators. Appendix Figure A7 shows a high correlation between some covariates. For example, the

race covariate "Black" is negatively correlated to conservative parties.

We use GRF, gradient boosting, and neural network algorithms to compute treatment effects.16 Appendix Table B2

reports the results from estimating the BLP (Chernozhukov et al. (2020)) for the three algorithms. The GBM algorithm

(column (2)) does a slightly better job than GRF in capturing heterogeneity, and a much better job than neural network.

All the algorithms report a β2 that is significantly different from zero, suggesting that there is heterogeneity in the

treatment effects.

In Figure 4, we illustrate how PDP and ALE may lead to a different interpretation from that of marginal plots, by

focusing on the race and party identification covariates. The figure reports results from the three algorithms (GBM,

GRF, and NNET) along with empirical confidence bands. The solid line indicates the average treatment effect and

the dotted lines indicate its confidence band. We also report at the top of each column the sample distribution of

the variable of interest. Marginal plot estimates show large differences in the treatment effect for Blacks versus non-

Blacks, while PDP and ALE show much smaller differences along this dimension. This finding may be explained by

the negative correlation between Black and conservative party identification, which is found to be an important driver

proxy predictor, after verifying that the main results were very similar.
13See Appendix G for the full wording of the question
14See, e.g., Smith (1987), Rasinski (1989), and Green and Kern (2012) for some studies that analyzed this experiment.
15We use the GSS data for the years 1986–2010 taken from Green and Kern (2012). The data is available from Susan Athey and Guido Imbens’

course "Machine Learning and Econometrics" (AEA continuing Education, 2018), see: https://github.com/gsbDBI/ExperimentData.
16We account for the randomization process by including survey year dummies as covariates in the ML model fit, as well as fixed effects in the

BLP estimation, along the lines of the application in Chernozhukov et al. (2020).
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of heterogeneity in the PDP and ALE analysis. Relatedly, PDP and ALE show smaller variation in treatment effects

with respect to party identification relative to the pattern described by the marginal plots, which does not account for

the correlation between this variable and other variables. Importantly, the three algorithms produce very similar results

when we compare marginal plots with PDP and ALE.17

5. Conclusion

The treatment effect literature has evolved beyond analyzing average treatment effects to analyzing heterogeneous

treatment effects. To this end, recent studies apply ML methods to estimate Conditional Average Treatment Effects

(CATE). These estimates are sometimes used to discuss the economic mechanisms underlying the response to treatment.

The discussion of economic mechanisms in this context typically includes a comparison of covariates between those

with high versus low predicted treatment effects, and the examination of how average treatment effects vary with the

values of the covariates.

In this paper, we proposed an approach that goes one step further than the classical heterogeneity analysis by

examining the partial effect of a covariate on the estimated CATE function. Our approach brings ML tools that are

used to uncover the role of specific variables in black-box predictions, specifically PDP and ALE, to the domain of

heterogeneous treatment effects. We show in simulations that they perform well in uncovering partial effects. Finally,

we demonstrate the differences between marginal plot estimates and the PDP and ALE approaches using data from a

field experiment.

17In Appendix Figure A8 we report the results for the rest of the covariates, focusing on the GBM method that had the highest performance
measure (Λ).
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Figure 1: Simulated Estimated Marginal Plots with Correlated Covariates
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Notes: The figure shows results obtained by applying the GRF algorithm as the ML proxy predictor, averaged over 500 replications. GRF, GBM, and
NNET algorithms were applied. The algorithm with the highest performance measure was chosen. The "direct effect" line in the figure represents
changes in the treatment effect due to changes in z1 (left panel) or z3 (right panel), when the other variables are held constant. Step DGP is defined
in equations (1) and (2).
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Figure 2: Simulation Study of Step and Linear Heterogeneous Treatment Effect

(a) Step DGP – Low Correlation (ρ = 0.3)
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(b) Step DGP – High Correlation (ρ = 0.6)
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(c) Linear DGP – Low Correlation (ρ = 0.3)
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(d) Linear DGP – High Correlation (ρ = 0.6)
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Notes: The figure shows results obtained by applying the GRF for the Step DGP and NNET for the Linear DGP as the ML proxy predictor, averaged over 500 replications. GRF, GBM, and
NNET algorithms were applied. The algorithm with the highest performance measure was chosen. Step DGP is defined in equations (1) and (2), and Linear DGP is defined in equations (1) and
(8).
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Figure 3: Simulation Study of Treatment Effect with Interactions
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Notes: The figure shows results obtained by applying the NNET algorithm as the ML proxy predictor, averaged over 500 replications. GRF, GBM,
and NNET algorithms were applied, with NNET obtaining a higher performance measure. Interactions DGP defined in equations (1) and (9) for
ρ = 0.6.
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Figure 4: Application – Heterogeneity Along Black and Party Identification Variables
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Notes: The ML algorithm is reported at the top of each panel and the covariate at the bottom. The top of each column shows the covariate’s
distribution. The black horizontal lines represent the estimated ATE β̂1 (solid) and its 90% confidence interval (dashed).
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Table 1: Simulated CLAN – Relevant and Irrelevant Variables

ρ = 0 ρ = 0.6

Lower Quartile Upper Quartile Difference Lower Quartile Upper Quartile Difference
(1) (2) (3) (4) (5) (6)

z1 -0.801 0.798 1.600 -0.509 0.525 1.044
(1.000) (1.000)

z2 0.797 -0.801 -1.598 0.367 -0.359 -0.716
(1.000) (1.000)

z3 0.000 -0.001 -0.001 -0.816 0.833 1.643
(0.027) (1.000)

Notes: 500 replications. Rejection rates are in parentheses. z3 is not in the DGP for Y , but is correlated with z1. The DGP is defined in equations
(1) and (2).
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Appendix A Appendix Figures
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Figure A1: Robustness – Simulation Study of Step and Linear Heterogeneous Treatment Effect Using Half the Observations

(a) Step DGP – Low Correlation (ρ = 0.3)
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(b) Step DGP – High Correlation (ρ = 0.6)
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(c) Linear DGP – Low Correlation (ρ = 0.3)
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(d) Linear DGP – High Correlation (ρ = 0.6)
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Notes: The figure shows results obtained by applying the GRF for the Step DGP with low correlation (ρ = 0.3), NNET for the Step DGP with high correlation (ρ = 0.6) and NNET for the
Linear DGP as the ML proxy predictor. GRF, GBM, and NNET algorithms were applied (100 replications for GRF and 500 replications for GBM and NNET). The algorithm with the highest
performance measure was chosen. Step DGP is defined in equations (1) and (2), and Linear DGP is defined in equations (1) and (8).
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Figure A2: Robustness – Simulation Study of Treatment Effect with Interactions Using Half the Observations
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Notes: The figure shows results obtained by applying the NNET as the ML proxy predictor. The GRF, GBM, and NNET were applied (100
replications for GRF and 500 replications for GBM and NNET). The algorithm with the highest performance measure was chosen. Interactions
DGP is defined in equations (1) and (9) for ρ = 0.6.
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Figure A3: Robustness – Simulation Study of Step and Linear Heterogeneous Treatment Effect Doubling the Noise

(a) Step DGP – Low Correlation (ρ = 0.3)
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(b) Step DGP – High Correlation (ρ = 0.6)
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(c) Linear DGP – Low Correlation (ρ = 0.3)
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(d) Linear DGP – High Correlation (ρ = 0.6)
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Notes: The figure shows results obtained by applying the GBM for the Step DGP and NNET for the Linear DGP as the ML proxy predictor. GRF, GBM, and NNET algorithms were applied
(100 replications for GRF and 500 replications for GBM and NNET). The algorithm with the highest performance measure was chosen. Step DGP is defined in equations (1) and (2), and Linear
DGP is defined in equations (1) and (8).
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Figure A4: Robustness – Simulation Study of Treatment Effect with Interactions Doubling the Noise
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Notes: The figure shows results obtained by applying NNET as the ML proxy predictor. The GRF, GBM, and NNET were applied (100 replications
for GRF and 500 replications for GBM and NNET). The algorithm with the highest performance measure was chosen. Interactions DGP is defined
in equations (1) and (9) for ρ = 0.6.
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Figure A5: Robustness – Simulation Study of Step and Linear Heterogeneous Treatment Effect Halving the Heterogeneity

(a) Step DGP – Low Correlation (ρ = 0.3)
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(b) Step DGP – High Correlation (ρ = 0.6)
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(c) Linear DGP – Low Correlation (ρ = 0.3)
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(d) Linear DGP – High Correlation (ρ = 0.6)
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Notes: The figure shows results obtained by applying NNET as the ML proxy predictor. GRF, GBM, and NNET algorithms were applied (100 replications for GRF and 500 replications for
GBM and NNET). The algorithm with the highest performance measure was chosen. Step DGP is defined in equations (1) and (2), and Linear DGP is defined in equations (1) and (8).
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Figure A6: Robustness – Simulation Study of Treatment Effect with Interactions Halving the Heterogeneity
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Notes: The figure shows results obtained by applying NNET as the ML proxy predictor. The GRF, GBM, and NNET were applied (100 replications
for GRF and 500 replications for GBM and NNET). The algorithm with the highest performance measure was chosen. Interactions DGP is defined
in equations (1) and (9) for ρ = 0.6.
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Figure A7: Covariates’ Correlation Matrix
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Notes: The matrix reports the covariance between the variables used in the analysis: age, years of education, party identification coded on a scale of
0 to 6 (higher values denote affiliation with the Republican party), political views coded on a scale of 1 to 7 (higher values denote more conservative
views), gender, and race (White, Black, and other).
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Figure A8: Application – Marginal Plots, PDP, and ALE
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Notes: The black horizontal lines represent the estimated ATE β̂1 (solid) and its 90% confidence interval (dashed). The figure shows results for
GBM due to highest performance measure.
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Appendix B Appendix Tables

Table B1: Treatment – Control Comparison

Treatment Mean Control Mean Difference
(1) (2) (3)

Age 46.01 46.21 -0.25
(0.27)

Years of Education 13.16 13.15 0.02
(0.05)

Party Identification 2.74 2.77 -0.02
(0.02)

Political Views 4.12 4.12 0.00
(0.01)

Female 0.57 0.56 0.01
(0.01)

Black 0.14 0.14 0.00
(0.00)

White 0.79 0.8 0.00
(0.00)

N 17,567 15,247

Notes: The table reports means for the treatment and control groups and the mean difference between the groups controlling for year of survey.
Clustered standard errors (at the survey-year level) are reported in parentheses.

Table B2: Application – BLP Results

Generalized Random Forest Gradient Boosting Neural Network
(1) (2) (3)

ATE (β1) 0.335 0.335 0.335
[0.322, 0.347] [0.323, 0.347] [0.323, 0.347]

Heterogeneity (β2) 1.313 0.740 0.631
[1.132, 1.494] [0.639, 0.839] [0.496, 0.774]

Performance (Λ) 0.0074 0.0080 0.0060

Notes: Point estimates are medians over 100 splits. 90% confidence intervals in brackets. Each algorithm is trained with a sample consisting of
32,814 observations and includes the following variables: survey year dummies, age, years of education, party identification, political view, gender,
and race.
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Appendix C Proofs

In this appendix we prove that mean ALE and PDP slopes w.r.t. a single covariate are equivalent when either (i)

covariates are independent, or (ii) when there is no interactions of covariates within the treatment effect function. This

implies that they trace out the same function, up to a level-shift constant. We define

PDPDP (z∗l ) = Ez−l

[
∂ ŝ
(
z∗l ,z−l

)
∂ zl

]
,

PDALE
l (z∗l ) = Ez−l

[
∂ ŝ(zl ,z−l)

∂ zl
| zl = z∗l

]
,

where z is a covariate vector, zl is a single covariate, and z−l are all the covariates in z exept zl , and ŝ is the estimated

CATE function. The integral over each of these definitions corresponds to equations (3) and (5), and so the equivalence

of PDPDP
(
z∗l
)

and PDALE
l

(
z∗l
)

implies that (3) and (5) are equivalent, up to a constant.

Proposition C.1. If zl and z−l are independent then PDPDP
l

(
z∗l
)
= PDALE

l

(
z∗l
)
.

Proof. Assume that zl and z−l are independent. Then

PDALE
l (z∗l ) = Ez−l

[
∂ ŝ(zl ,z−l)

∂ zl
| zl = z∗l

]
=
∫

z−l

∂ ŝ
(
z∗l ,z−l

)
∂ zl

fz−l |zl=z∗l
dz−l

=
∫

z−l

∂ ŝ
(
z∗l ,z−l

)
∂ zl

fz−l dz−l

= Ez−l

[
∂ ŝ
(
z∗l ,z−l

)
∂ zl

]
= PDPDP (z∗l ) .

Proposition C.2. If ŝ is an additive function of zl and z−l without interactions of the form ŝ(zl ,z−l) = h(zl)+g(z−l)

then PEPDP
(
z∗l
)
= PEALE

l

(
z∗l
)
.
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Proof. Assume that ŝ(zl ,z−l) = h(zl)+g(z−l). Starting from PDALE
l

(
z∗l
)
, we get

PDALE
l (z∗l ) = Ez−l

[
∂ {h(zl)+g(z−l)}

∂ zl
| zl = z∗l

]
= Ez−l

[
∂h(zl)

∂ zl
+

∂g(z−l)

∂ zl
| zl = z∗l

]
= Ez−l

[
∂h(zl)

∂ zl
| zl = z∗l

]
=

∂h
(
z∗l
)

∂ zl
.

And starting from PDPDP
(
z∗l
)

we get the same expression:

PDPDP (z∗l ) = Ez−l

[
∂
{

h
(
z∗l
)
+g(z−l)

}
∂ zl

]

= Ez−l

[
∂h
(
z∗l
)

∂ zl

]

=
∂h
(
z∗l
)

∂ zl
.
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Appendix D Short review of Chernozhukov et al. (2020) Algorithm

D.1 The Best Linear Predictor (BLP) of the CATE

We start by providing some notation. Let Y , W , and z denote the outcome variable, the treatment variable, and the

covariate vector, respectively. Under the assumption of conditional random assignment, the CATE is identified by

s0(z) = E(Y |W = 1,z)−E(Y |W = 0,z), (D.1)

and the propensity score is given by18

p(z) = P(W = 1|z). (D.2)

In addition, we denote the ML estimator of the CATE by S(z). This ML estimator can be obtained by any ML

method (see the discussion below about our implementation). Chernozhukov et al. (2020) refer to this estimator as a

proxy predictor of CATE, and derive the statistical properties of the coefficients of the Best Linear Predictor (BLP) of

the CATE given the ML proxy. The BLP of the CATE is defined as

BLP(s0(z) | S(z)) = β1 +β2 (S(z)−E[S(z)]) . (D.3)

The idea in Chernozhukov et al. (2020) is that instead of focusing on obtaining a consistent estimator for CATE,

we can consistently estimate the BLP of CATE given a proxy predictor. This is appealing for two reasons. First, BLP

coefficients have an important interpretation: β1 is the Average Treatment Effect (ATE), and β2 is interpreted as a

measure of both the presence of heterogeneity and the relevance of the proxy S(z) as a predictor of s0(z), in the sense

that β2 = 0 suggests that the correlation between S(z) and s0(z) is 0. Second, the BLP is the personalized prediction

of s0(z), which, as described below, can be used to explore treatment effect heterogeneity with a wide variety of LM

algorithms and with no requirement for the proxy to be a consistent estimate for CATE.

Estimation of equation (D.3) involves a three-step procedure: (1) split the data randomly into a main sample and an

auxiliary sample; (2) fit the proxy predictor of CATE using the auxiliary sample; (3) proceed to the main sample and

exploit the proxy obtained in the previous step to estimate the following weighted linear projection, which identifies

the coefficients of the BLP:19

Y = α0 +α1B(z)+β1
(
W − p(z)

)
+β2

(
W − p(z)

)(
S(z)−E[S(z)]

)
+ ε,

q(z) =
1

p(z)(1− p(z))
,

(D.4)

where q(z) are the weights in the linear regression, and B(z) is the proxy predictor estimate for b0(z), the baseline

18The propensity score depends on the entire set of variables z, or on a subset of thereof. In some applications the propensity score is a known
function. In cases where the propensity score is unknown to the experiment designer, it can be computed as a preliminary stage. See, e.g., Section
6.3 in Chernozhukov et al. (2020).

19Chernozhukov et al. (2020) provide two different specifications for estimation of equation (D.3). Here we describe a short version of the first
specification (equation (2.1) in their paper).
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value of the outcome, defined as b0(z) = E[Y |W = 0,z]. Chernozhukov et al. (2020) show that β̂1 and β̂2 obtained from

estimating equation (D.4) are consistent estimates for β1 and β2 from equation (D.3), and can be used to (1) calculate

the estimated ATE (i.e., β̂1), (2) test for the presence of heterogeneity and whether S(z) is its relevant predictor by

assessing the null hypothesis β2 = 0, and (3) calculate the estimated BLP of CATE.

As described above, the identification of BLP relies on random sample splitting, which introduces an additional

source of uncertainty as different splits lead to different estimates. To account for that uncertainty, Chernozhukov

et al. (2020) suggest the following method, which they refer to as Variational Estimation and Inference (VEIN): repeat

the estimation process many times. For each data partition calculate an estimate for the parameter of interest θ , a

p-value for the null hypothesis θ = θ0, and a confidence interval (CI) for θ . Then report the median estimate over the

splits as a point estimate, and the median upper and lower bounds of a 1−α CI as a CI with a confidence level of

1−2α . Reject the null hypothesis θ = θ0 at a significance level of α if the median p-value is lower than α/2.

D.2 Implementation Algorithms

We describe in this subsection our implementation algorithm for producing CATE estimates over one dimension.

1. Calculating the propensity score. In the simulations (Sections 2 and 3.5) we assign the known treatment

probability for each observation while in the application we compute the propensity score by using a logistic regression

of W on z and survey year dummies.

2. Training the proxy predictor. We split the data randomly into main and auxiliary samples. Using only

the auxiliary samples, we train three proxy predictors with Generalized Random Forests (GRF), Gradient Boosting

(GBM), and Neural Network (NN).20 For the GBM and NN algorithms we take a T-learner approach, where we fit

two ML models to predict Y based on z, first using only the treated observations, and second using the untreated

observations. We then predict for observations in the main sample the proxy predictor S(z) using the difference in

predictions between the model trained on the treated observations and the model trained on the untreated observations.

We also estimate the baseline predictor B(z) using the prediction of the model trained on the untreated observations.

For the GRF algorithm, we fit a causal forest model to produce estimates for S(z). For this case, we estimate the

baseline predictor by estimating the outcome and treatment (using a regression forest) and subtracting the outcome

from the estimated treatment propensity and the CATE proxy predictor: B(z) := Ŷ (z)−Ŵ (z)×S(z).21

3. Classification Analysis (CLAN). Using the proxy predictor S(z), we split the observations in the main sample

into K equally sized groups where group 1 consists of observations with the lowest CATE and group K consists of

observations with the highest CATE. Using the subsample of observations belonging to the lowest and highest groups,

i.e., observations in groups 1 and K, we calculate the mean of each covariate in z in each group and their difference,
20All algorithms were implemented in R. For GRF we use the grf package and the default tuning option tune.paramters = "all," which

tunes the following hyper-parameters using 100 cross-validated repitions: min.node.size (minimum node size), sample.fraction (fraction
of sample used in each tree), mtry (number of variables considered in each split), honesty.fraction (fraction of sample used to grow vs.
populate leaves), honesty.prune.leaves (whether to prune empty leaves in honest splitting), alpha (the maximum imbalance of a split), and
imbalance.penalty (how harshly imbalanced splits are penalized). For gradient boosting we use the gbm package and tune the following hyper-
parameters: shrinkage (regularization parameter), interaction.depth (tree depth), n.minobsinnode (minimum node size), and n.trees
(number of trees). For neural network we use the nnet package and tune the following hyper-parameters: size (hidden layer size), decay
(regularization parameter), and linout (activation function).

21Baseline prediction taken from GRF tutorials: https://grf-labs.github.io/grf/articles/muhats.html.
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which allows the comparison of the mean of each covariate between those with the smallest and largest predicted

treatment effects.

4. Estimating the performance of the proxy predictor. For each data split we estimate equation (D.4) in the main

sample and obtain β̂1 and β̂2 for each proxy predictor separately. We also obtain a point estimate for the performance

measure Λ = |β2|2var(S(z)), which is informative on the fit in the regression of the proxy predictor of the true CATE.

To see this, note that

β2 =
cov(S(z),s0(z))

var(S(z))
= cor(S(z),s0(z))×

√
var(s0(z))√
var(S(z))

and so Λ = [cor(S(z),s0(z))]2× var(s0(z)). Since var(s0(z)) is constant, choosing the proxy predictor that maximizes

Λ is equivalent to choosing the proxy predictor with the highest correlation with the true CATE. We estimate Λ̂ using

β̂2 and the known variance Λ̂ = (β̂2)
2× var(S(z)).

5. Calculating marginal plots. For each data partition we use β̂1 and β̂2 to calculate the personalized BLP

prediction (equation (D.3)). In order to draw the marginal plot over zl , we first group observations into bins in the

following way: if zl is a continuous variable, we divide the support of zl into deciles and group together observations

whose zl falls in the same decile. Otherwise, in cases where zl is a discrete variable, we group together observations

that have the same value of zl . We denote by z∗l a specific bin of zl and calculate for each z∗l the average BLP prediction

and its CI, using the fact that standard errors can be calculated using V (β̂ ) as follows:

var

 1
N(z∗l )

∑
i: zl,i∈z∗l

[
β̂1 + β̂2

(
S(zi)−E[S(z)]

)]
| S(·),z

=

var(β̂1)+ var(β̂2)
( 1

N(z∗l )
∑

i: zl,i∈z∗l

S(zi)−E[S(z)]
)2

+2cov(β̂1, β̂2)
( 1

N(z∗l )
∑

i: zl,i∈z∗l

S(zi)−E[S(z)]
)
,

(D.5)

where N(z∗l ) is the number of observations that fall into z∗l .

6. Using the VEIN procedure. We iterate steps 2–5 100 times, and draw the median estimates of β1, β2, Λ and

the personalized predictions and their respective median CI (with an adjusted confidence level).
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Appendix E ALE Implementation

In this appendix we present for completeness the ALE estimator for a generic function f as proposed in Apley and

Zhu (2020). Using the notation in the main text, for the generic function f the ALE estimand is

f̄l,ALE(z∗l ) =
∫ z∗l

zl,min

E
[

∂ f (zl ,z−l)

∂ zl
| zl = t

]
dt− c. (E.6)

Let f̂ denote an estimator of f . Let PM
l = {xm

l : m = 0,1, ...,M} be a fixed partition of the support of zl into

M intervals such that x0
l = zl,min and xM

l = zl,max. Let Nl(m) and nl(m) denote the mth interval and the number of

observations that fall into it, i.e., Nl(m) = (xm−1
l ,xm

l ) and ∑
M
m=0 nl(m) = N. Finally, let ml(z∗l ) denote the index of

the interval into which z∗l falls, i.e., z∗l ∈ Nl(ml(z∗l )). Then Apley and Zhu (2020) suggest estimating the uncentered

component of equation (E.6) using

ĝl,ALE(z∗l ) =
ml(z∗l )

∑
m=1

1
nl(m) ∑

{i: zi,l ∈ Nl(m)}

(
f̂ (xm

l ,zi,−l)− f̂ (xm−1
l ,zi,−l)

)
(E.7)

and to choose the constant c to be an average of ĝl,ALE(z∗l ) over zl , i.e.,

ˆ̄fl,ALE(z∗l ) = ĝl,ALE(z∗l )−
1
N

N

∑
i=1

ĝl,ALE(zi,l) (E.8)

so that the plot of ˆ̄fl,ALE(z∗l ) will be centered around zero.
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Appendix F Implementing PDP and ALE to BLP and VEIN

Here we follow again steps 1–3 from Appendix D.2 and estimate β̂1 and β̂2. Then, we use the BLP function to study

how the estimated CATE changes when changing the value of a single variable zl , while holding all other variables

constant, according to the implemented method.

F.1 Applying PDP to the BLP of CATE

To study the direct relation between the estimated treatment effect and zl using PDP and ALE, we apply the PDP

and ALE approaches to the estimated B̂LP(z).22 Starting with PDP, we implement this approach by substituting the

estimated BLP into the PDP estimator. Formally,

B̂LPl,PDP(z∗l ) =
1
N

N

∑
i=1

B̂LP(z∗l ,zi,−l) = β̂1 + β̂2

( 1
N

N

∑
i=1

S(z∗l ,zi,−l)−E[S(z)]
)
. (F.9)

To keep the PDP estimation comparable to the marginal plots, we obtain point estimates and confidence intervals

following the same VEIN approach of Chernozhukov et al. (2020) as described in Appendix D.1. The computation

of confidence intervals within a split requires the estimation of standard errors (within a split), which we derive as

follows:

var
(

B̂LPl,PDP(z∗l ) | S(·),z
)
= var

(
β̂1 + β̂2

( 1
N

N

∑
i=1

S(z∗l ,zi,−l)−E[S(z)]
)
| S(·),z

)
= var(β̂1)+ var(β̂2)

( 1
N

N

∑
i=1

S(z∗l ,zi,−l)−E[S(z)]
)2

+2cov(β̂1, β̂2)
( 1

N

N

∑
i=1

S(z∗l ,zi,−l)−E[S(z)]
)
,

(F.10)

where the covariance matrix of β̂ is obtained in the estimation of the BLP. The equality in the second line of (F.10)

derives from the fact that S(z) is calculated using the auxiliary sample and, thus, is uncorrelated with β̂ .

The computation itself is conducted as follows. We first start by fixing a set of values from the support of zl . In

the application, where all covariates are discrete, we essentially use the entire support. In the simulations, where

all covariates are continuous, we use the median value of each decile, so that the results will be comparable to the

marginal plots. Then, for each value z∗l in the set, we use the main sample to calculate B̂LPl,PDP(z∗l ) using equation

(F.9) and its CI using var(B̂LPl,PDP(z∗l )) defined in equation (F.10). Finally, we aggregate the results over the splits

using the VEIN method and draw the median estimate and the median CI (with an adjusted confidence level).

22As a result, we use the estimated B̂LP(z) as our estimator for s0(z). Having said that, recall that this is a consistent estimator for the BLP of
s0(z), rather than directly for s0(z).
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F.2 Applying ALE to the BLP of CATE

As with PDP, we suggest applying ALE to the BLP of CATE. First, we define the population ALE of BLP by

substituting the BLP function (7) into (5):

BLPl,ALE(z∗l ) =
∫ z∗l

zl,min

E
[∂
(
β1 +β2

(
S(zl ,z−l)−E[z]

))
∂ zl

| zl = t
]
dt− c

= β2

∫ z∗l

zl,min

E
[

∂S(zl ,z−l)

∂ zl
| zl = t

]
dt− c = β2S̄l,ALE(z∗l )− c. (F.11)

As can be seen, applying ALE to the BLP of CATE is equivalent to first applying ALE to the proxy function S and

then multiplying the result by β2. Hence, to estimate the ALE of BLP we apply the estimation procedure described

in Appendix E for the proxy function S and then multiply the results by β̂2. In addition, we suggest centralizing the

results around the estimated ATE rather than zero, and so the final estimate of equation (F.11) is

B̂LPl,ALE(z∗l ) = β̂1 + β̂2
ˆ̄Sl,ALE(z∗l ). (F.12)

As before, to obtain the point estimates and confidence intervals of the ALE of the estimated CATE we apply VEIN.

That is, we use the within-split covariance matrix of β̂ to calculate within-split standard errors, using again the fact

that S(z) is uncorrelated with β̂ .

While the focus of this subsection is on the derivation of PDP and ALE within the Chernozhukov et al. (2020)

framework, it is worth noting that in the case where treatment effect heterogeneity is estimated using GRF, and because

GRF provides consistent estimates directly to the CATE, PDP and ALE can be applied directly to the prediction

function ŝ0 estimated by GRF to explore treatment effect heterogeneity rather than to the BLP.

We compute the ALE estimates as follows. In order for ALE to be computationally feasible and comparable to

previous methods, we always apply ALE to discrete covariates. In the case where zl is continuous, we first discretize it

by replacing each value in the support of zl with the median value of the decile to which this value belongs. For the sake

of clarity, we describe here a discrete version of the algorithm described in Section 3.2. Let PM
l = {xm

l : m= 0,1, ...,M}
be the ordered support of the discrete covariate zl . We initialize ĝl,ALE(x0

l ) = 0 and calculate for each m> 0 the discrete

version of equation (E.7) for the function S(z) using the main sample:

ĝl,ALE(xm
l ) =

m

∑
k=1

1
nl(k)

∑
{i: zi,l ∈ [xk

l ,x
k−1
l ]}

(
S(xk

l ,zi,−l)−S(xk−1
l ,zi,−l)

)
, (F.13)

where nl(k) is the number of observations that fall into the interval [xk
l ,x

k−1
l ]. In the next step we centralize ĝl,ALE(·)

by calculating the discrete version of equation (E.8) as follows:23

23In the R package ALEPlot, which implements Apley and Zhu (2020), this is done a bit differently as the package always assumes that zl is a
continuous variable.
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ˆ̄Sl,ALE(xm
l ) = ĝl,ALE(xm

l )−
1
N

N

∑
i=1

ĝl,ALE(zi,l), (F.14)

where ĝl,ALE(zi,l) is well defined as zl is a discrete variable.

At this stage we finish applying ALE to the proxy predictor S(z). The final step is to calculate B̂LPl,ALE(xm
l ) using

equation (F.12), which is the ALE of BLP centered around the ATE, and its CI. As before, we aggregate the results

over the splits using the VEIN method and draw the median estimate and the median CI (with an adjusted confidence

level).

Appendix G General Social Survey Questions

Below we provide the full wording of the questions used in the GSS wording experiment.

The question reads:

"We are faced with many problems in this country, none of which can be solved easily or inexpensively.

I’m going to name some of these problems, and for each one I’d like you to tell me whether you think

we’re spending too much money on it, too little money, or about the right amount."

This was followed by:

"are we spending too much, too little, or about the right amount on (ITEM)?"

(ITEM) was replaced with different spending categories. Specifically, in the experiment, for some respondents,

which were randomly chosen, (ITEM) was replaced with "welfare" (defined in our analysis as the treatment group),

and for others with "assistance to the poor" (the control group).
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