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Abstract

The COVID-19 pandemic demonstrated that the process of global vaccination against a

novel virus can be a prolonged one. Social distancing measures, that are initially adopted to

control the pandemic, are gradually relaxed as vaccination progresses and population

immunity increases. The result is a prolonged period of high disease prevalence combined

with a fitness advantage for vaccine-resistant variants, which together lead to a considerably

increased probability for vaccine escape. A spatial vaccination strategy is proposed that has

the potential to dramatically reduce this risk. Rather than dispersing the vaccination effort

evenly throughout a country, distinct geographic regions of the country are sequentially vac-

cinated, quickly bringing each to effective herd immunity. Regions with high vaccination

rates will then have low infection rates and vice versa. Since people primarily interact within

their own region, spatial vaccination reduces the number of encounters between infected

individuals (the source of mutations) and vaccinated individuals (who facilitate the spread of

vaccine-resistant strains). Thus, spatial vaccination may help mitigate the global risk of vac-

cine-resistant variants.

Author summary

The COVID-19 pandemic demonstrated that the process of global vaccination against a

novel virus can be a prolonged one. During the period of vaccination, the level of infection

remains high, and each infection has a small chance to mutate into a vaccine-resistant var-

iant. Moreover, the fact that large numbers of people are being vaccinated generates an

evolutionary advantage to vaccine resistance, such that even one infection with a resistant

variant will likely spread within the population and become the dominant variant. Thus, a

prolonged vaccination campaign can result in vaccine escape. To reduce this risk, we
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propose a spatial vaccination strategy. Rather than dispersing the vaccination effort evenly

throughout a country, distinct geographic regions of the country are sequentially vacci-

nated, quickly bringing each to effective herd immunity. Regions with high vaccination

rates will then have low infection rates and vice versa. Since people primarily interact

within their own region, spatial vaccination reduces the number of encounters between

infected individuals (the source of mutations) and vaccinated individuals (who facilitate

the spread of vaccine-resistant strains). Thus, even if a global vaccination campaign

requires a prolonged period of time, the risk of vaccine escape is reduced when using a

spatial strategy.

1. Introduction

A prime goal of vaccination during an ongoing pandemic is the rapid attainment of herd

immunity, a state in which the proportion of immunized individuals is large enough to block

the spread of the virus. The literature has focused on optimization strategies for efficient vacci-

nation campaigns of large populations during a pandemic. These strategies are often designed

to exploit the structure of social networks, based on the idea that the transmission dynamics

are strongly intertwined with the network’s intrinsic connectivity patterns [1]. Thus, for exam-

ple, network heterogeneity motivates the prioritized vaccination of “super-spreaders” [2]. At

the mesoscopic scale, it was found that pandemic intervention strategies that target local net-

work structures significantly outperform those that solely focus on the entire network struc-

ture simultaneously [3].

In addition to rapid eradication of the current pathogenic strain, an important aim of a vac-

cination campaign should be to minimize the chance of emergence, due to mutation, of a next

strain, and in particular a vaccine-resistant strain that may undermine the entire campaign [4–

17]. Indeed, if a vaccine-resistant variant appears by spontaneous mutation during a vaccina-

tion campaign it may have a clear advantage over the original strain, against which vaccines

were targeted, since it can infect both vaccinated and unvaccinated individuals. Recent mathe-

matical modeling has, in fact, shown that averting such escape scenarios is only possible under

a combination of rapid vaccination and strict social distancing [18], a situation which the cur-

rent campaign has shown to be unfeasible.

Given the relatively slow pace of vaccination, is it possible to mitigate the risk that vaccine

resistance will emerge? The solution proposed here is based on spatial vaccination, a new vac-

cination strategy that has the potential to dramatically reduce the probability of this undesired

evolutionary development. We focus on the current COVID-19 pandemic as a case study and

in particular on the period preceding the appearance of the highly contagious though less

severe Omicron variant.

Since the initial COVID-19 strains (namely, Wuhan and Alpha) were relatively severe, and

since no vaccine existed at the time, strict social distancing measures were employed to keep

the pandemic under control and prevent it from proliferating. These measures were both

imposed by the authorities and also driven by individuals’ independent response to the spread.

The result was an ongoing adaptive behavior that reacted to the severity of the spread, thus

maintaining the effective reproduction number R at around unity (Fig 1) [19]. In particular,

social distancing measures were gradually relaxed as vaccination progressed and population

immunity increased. Such a combination of vaccination and adaptive social distancing may

have crucial implications for vaccine escape. Indeed, we depart from the canonical SIR models

and explicitly take into account adaptive social distancing.
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To understand the effect of adaptive social distancing more clearly, consider the gradual

buildup of population immunity as vaccination gains prevalence. Instead of consistently push-

ing R to below 1, the increase in population immunity is offset by a relaxation of social distanc-

ing, keeping R around 1 and maintaining a significant rate of infection, a rate that will likely

persist until vaccination prevalence approaches herd immunity levels [20]. Indeed, such a pat-

tern has can be observed in countries such as the UK and the US (Fig 2).

These conditions create a potentially fertile breeding ground for vaccine escape [22]. Once

a significant share of the population is vaccinated, a vaccine-resistant variant, which can poten-

tially infect anyone, whether vaccinated or not, has a selective advantage relative to the wild-

type strain, as the latter can only infect unvaccinated individuals. Since the wild type’s R is

maintained around 1, this relative advantage translates into an absolute positive growth rate of

R>1 for the resistant variant, allowing it–if it occurs by a random mutation–to quickly spread

throughout the population. This, together with the large number of infections expected during

the slow vaccination process, might create a high probability that a mutation will occur and

take over the population. Such a mechanism for vaccine escape is, indeed, unique to situations

Fig 1. The global reproduction rate (R) during the period 2/20 to 8/21 [20,21]. As a result of adaptive social distancing, society converges to a state in which

R is maintained in the vicinity of unity (dashed line). It can therefore be expected that as vaccination progresses and population immunity is gradually

acquired, social distancing practices will be relaxed, thus maintaining R at about 1.

https://doi.org/10.1371/journal.pcbi.1010391.g001

Fig 2. Actual vs. predicted pandemic status in the UK and US during the vaccination campaign. As the fraction of the (first-dose) vaccinated (green line)

increases, the extrapolated R (dotted blue line) declines. This extrapolation assumes that factors such as the social distancing restrictions, variant composition,

weather, etc. remain unchanged from the start of the vaccination campaign. The empirically measured R (solid blue line) has remained in the vicinity of unity

(with a temporary jump to 1.5 just after the introduction of the more infectious delta variant). Furthermore, the extrapolated number of infections (dotted red

line) declines much faster than the actual number (solid red line). These trends indeed confirm that adaptive social behavior leads to a relaxation in

prophylactic measures, in response to the accumulation of population immunity.

https://doi.org/10.1371/journal.pcbi.1010391.g002
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in which mitigation involves both vaccination and social distancing, with the latter being

relaxed in response to the progress of the former [19,20,22,23].

The straightforward solution is to avoid the extended period in which high vaccination

prevalence coexists alongside a high rate of infection. Ideally, this would dictate a policy to vac-

cinate the entire population within a short period of time. Such a solution, however, ignores

the main bottleneck to vaccine rollout, namely the inherent limitations on vaccination capac-

ity. To overcome this obstacle, we propose a spatial vaccination strategy which will be shown

to dramatically reduce the risk of vaccine escape, even under the existing constraints on the

vaccination rate.

The proposed spatial strategy takes advantage of the geographic segregation that often char-

acterizes the population distribution, and the fact that people mainly interact within the region

they reside in. We propose to divide each country (or possibly a smaller geographic unit such

as a state) into smaller regions that are sufficiently disconnected in terms of social interactions

and then sequentially vaccinate one region at a time, thus concentrating the entire country’s

vaccination capacity in order to quickly bring that region towards herd immunity. Such parti-

tioning would replace the gradual accumulation of nationwide herd immunity. The obvious

advantage is that the rapid achievement of herd immunity in each individual region should

avoid the prolonged period of interaction between infected individuals and the vaccinated

population. Thus, the dangerous combination of high infection rates (the source of mutations)

and high vaccination rates (which provide an advantage to resistant strains) is dramatically

reduced. Since the majority of infectious interactions are local in nature [24], namely they

occur within a single region; cross-infection between regions is rare. Therefore, vaccinating all

regions one by one may be able to facilitate a safe and rapid accumulation of local herd immu-

nity in each region, until it is finally achieved for the entire population. The result will be to

reach country-level immunity in roughly the same amount of time, but with a significantly

lower risk of an escaping variant.

Other considerations may also be important in devising an effective vaccination strategy,

and in particular the prioritization of the vulnerable population. We therefore also examine

the application of spatial vaccination only after a uniform vaccination of up to 15% of the pop-

ulation (i.e. the most vulnerable groups). As we demonstrate, this has limited impact on the

outcome of the proposed spatial vaccination strategy. The reason for this is that most of the

additional risk of vaccine escape due to uniform vaccination occurs only once the vaccine cov-

erage is well above 15%–prior to that the resistant variant’s selective advantage is small.

Spatial vaccination allows for additional (relatively low-cost) measures that further reduce

the risk of vaccine escape and are not applicable or are too costly under a uniform vaccination

regime. First, an effort can be made to identify and isolate infections by the resistant variant in

the vaccinated areas. Such variant contact tracing is likely to be successful since in vaccinated

areas, which are clear of wild-type infections, every short infection chain is highly likely to origi-

nate from the resistant variant. This measure is difficult to apply under the current vaccination

regime, in which resistant variant infections may be hidden among the predominant wild-type

infections. Second, the authorities can impose limitations on population movement between

the vaccinated and unvaccinated regions. Such limitations would not be overly burdensome if

the order of vaccination is wisely planned, with the goal of keeping the vaccinated and unvacci-

nated areas geographically contiguous, with one (moving) border between them. Third, the

authorities may impose a short, moving lockdown that is applied in each region during or just

prior to vaccination. Such a localized and brief lockdown can be more easily enforced relative to

prolonged countrywide lockdowns, which impose a devastating individual and societal burden.

Finally, the spatial strategy is effective not only in mitigating vaccine escape, but also in

reducing the overall number of infections. This is because, as vaccination progresses, the
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infections in regions that reach herd immunity will cease much earlier than under uniform

vaccination. In fact, if the number of regions is sufficiently large, the total number of infections

is reduced by close to 50%, since the infections in a region will on average end after half of the

nationwide vaccination time.

Looking to the future, spatial vaccination may be useful if humanity will face a virus with

two crucial properties. First, it is sufficiently harmful that–until vaccination can control it–

social distancing must be imposed until a vaccine is developed. This is because it is the relaxa-

tion of social distancing following vaccination that generates the increased risk of resistant var-

iants. Second, that R0 is not sufficiently high to prevent the vaccination from achieving herd

immunity. The ability to quickly bring each specific region to herd immunity, so that infec-

tions cease there, is at the core of spatial vaccination. A future pandemic with these two prop-

erties may involve a completely new virus or a new variant of COVID-19 which escapes the

immunity conferred by infection with the current strains or by vaccination, yet has a much

lower R0 (Note than an escape variant can proliferate even if it is deficient relative to the cur-

rent strain).

Illustrative example

To demonstrate the merits of the spatial vaccination strategy, in Fig 3 we illustrate the different

vaccination scenarios for K = 3 regions over a one-year vaccination phase. First, we examine

simultaneous vaccination, in which all three regions are treated concurrently (Fig 3A and 3C).

The vaccine rollout (green line) occurs at the same pace in all three regions over the course of

the year. During this period, as the population adapts its behavior to maintain R at around 1,

we continue to observe a roughly constant stream of infection (red line) in all regions. This

roughly stable level declines sharply once the herd immunity threshold is crossed (the dashed

Fig 3. Illustration of uniform vaccination (top panels) vs. spatial vaccination (bottom panels) with 3 regions. As the proportion of

the vaccinated population (green line) increases from 0 to 1, social distancing measures are gradually relaxed. Thus, the resistant

variant’s R increases and with it the chance that a mutation will survive and become dominant (degree of orange shading). The large

number of wild-type infections (red line) remains roughly constant until vaccination crosses the herd immunity level (dashed line). At

that point, infections quickly decline and the risk of escape (orange shading) diminishes. Four potential instances of resistant mutants

(1–4, black lines) are considered and the random walks of the (very small) number of infections in their early stages are illustrated.

Under uniform vaccination (top panels), instances 2 and 4 occur in an environment with a large R (dark shading) and succeed in

proliferating to numbers from which takeover is almost guaranteed. Under spatial vaccination (bottom panels), in instance 4 the

mutation encounters a low R and dies out; mutation 2 does not even occur since in region 1 the stream of wild-type infections ends early

on due to the rapid vaccination campaign. Instances 1 and 3 occur, under both scenarios, in environments with a small R and therefore

die out.

https://doi.org/10.1371/journal.pcbi.1010391.g003
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grey line). (Note that the different variables have different scales and are presented together in

order to show the interplay between them.)

Sporadic instances of the resistant strain (the black lines) occur at random locations/points

in time, denoted by 1,2,3 and 4. For example, instance 1 occurs in Region 1 one month after

the start of the vaccination campaign (t = 1). At that time, the vaccine prevalence is still low.

The resistant mutant thus has no significant selective advantage and therefore fails to prolifer-

ate. A similar pattern is observed in instance 3, which occurs at t = 3 months in Region 2. How-

ever, as the vaccination rollout progresses, the effective reproduction number of the resistant

variant increases. Thus, the risk that a mutant will survive and proliferate, indicated by the

shaded background, increases from low (light shading) to high (dark shading). This risk then

rapidly drops again after herd immunity is surpassed and the infection streams cease. Indeed,

instances 2 and 4, which occur at t = 9 months and t = 7 months, respectively, both have a sig-

nificant selective advantage and are hence able to spread (steep ascent of black lines). These

mutants eventually reach a number of infections beyond which it becomes inevitable that they

will take over the population. As a result, we witness vaccine escape, and the simultaneous vac-

cination campaign fails.

We next consider the same scenario, except that instead of vaccinating the entire popula-

tion over the course of one year, we sequentially vaccinate the regions in three rounds, with

each campaign lasting four months (Fig 2D–2F). The two escaping variants in instances 2 and

4 are now averted. Instance 2 does not occur since at t = 9 months Region 1 is already cleared

of the virus. Instance 4, on the other hand, also occurs in this scenario. However, it fails to pro-

liferate since at the time of its appearance, i.e. at t = 7 months, Region 4 has not yet begun to

vaccinate, and therefore, in contrast to the previous scenario, this mutant has a low reproduc-

tion number (light rather than dark shading), and poses little risk of escape.

Hence, by splitting the yearly nationwide vaccination cycle into shorter regional ones, we

significantly reduce the risk of vaccine escape, thus replacing the extended high-risk time win-

dow of potential vaccine escape (Fig 2A–2C) with a sequence of narrow time windows, one in

each region (Fig 2D–2F).

2. Results and discussion

We consider the susceptible-infected-recovered (SIR) model and augment it with vaccination

and mutations (see Methods section) [25,26]. The population is assumed to adapt its behavior

by means of social distancing in order to maintain R at approximately 1. As a result, we

observe a roughly constant rate of new infections, which we set at 10% of the population per

year. Following one year of such dynamics, we introduce the vaccine whose rollout and pro-

duction rates make it possible to vaccinate the population within one additional year (For sim-

plicity, we consider one-dose vaccination and immediate full immunity following

vaccination). The vaccinated territory (a country, state or other distinct geographic unit) is

divided into K regions such that, on average, only C = 1% of a person’s interactions are out-of-

region. We vaccinate all regions sequentially up to 80% coverage. Hence, a specific region k

(k = 1,. . .,K) can be in one of three states at any given moment: pending vaccination as it

awaits its turn, undergoing vaccination, and post-vaccination, at which point the campaign

progresses to vaccinating region k+1. Regions that are pending vaccination continue to accu-

mulate infections at the constant rate of 10%/year. Similarly, regions undergoing vaccination

also experience a constant 10% annual infection rate until they reach herd immunity. This is a

consequence of their adaptive social distancing, which is relaxed as immunity accumulates

[19,20]. After herd immunity is surpassed, infections quickly decrease and social distancing

ceases.
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Mutations occur with a small probability, denoted by μ, at each infection event. Hence, an

individual carrying the wild type may infect a susceptible individual who may then, with prob-

ability μ, acquire a vaccine-resistant strain. (This simplistic model of resistant variant emer-

gence ignores various biological facts, which are discussed in detail in Section 2G.) If such a

mutant occurs, we model the process of subsequent infection using a discrete random walk

process until it either dies out or takes over (see below). For expositional simplicity, we assume

for now that the resistant strain (1) has the same basic reproduction number as the wild-type

strain, (2) is fully resistant to the vaccine, and (3) cannot infect those who have recovered from

prior infection with the wild type. These assumptions are relaxed in Section 2F.

A. The basic simulation

We now turn to computing the probability of vaccine escape. The risk of such an event

depends, first and foremost, on the probability of a resistant mutation μ. It is worth emphasiz-

ing that vaccine escape is a global problem, since a mutation in any country, even outside the

territory currently being vaccinated, will eventually reach all countries and potentially under-

mine the vaccination campaign globally. Therefore, even if μ is extremely small, given the

large-scale transmission of infection worldwide, the risk is not negligible. To account for this

in our analysis, we focus not only on instances of mutation within the population of our simu-

lated territory, but rather on all potential mutations on a global scale, i.e. among a population

of N = 7.8×109. The challenge is that the value of μ is unknown. Thus, while the probability of

a single point mutation in SARS-COV-2 can be computed from its genetic properties, the

probability that a combination of mutations will generate a variant resistant to the current vac-

cines cannot be calculated. We thus consider a broad range of mutation probabilities, spanning

three orders of magnitude, from extremely rare (μ = 10−10) to highly frequent (μ = 10−7).

Under a mutation rate of μ<10−10(<N−1), it is unlikely that even one mutation will occur,

even in the case that 10% of the world population is infected over the course of one year, and

therefore escape is very unlikely. With a rate of μ>10−7 mutants are present at any given

moment among the estimated 107 infected individuals in each infection cycle, and therefore

an escape is almost certain even under instantaneous vaccination. For each value of μ within

the range of interest, namely 10−10<μ<10−7, we simulated 50000 realizations and calculated

the escape probability P from the number of realizations in which a resistant strain was able to

propagate and take over the population. (Additional parameter values for the simulation are:

R0 = 4; infection cycle of 4 days.)

The results are presented in Fig 4. We first consider the ideal scenario in which the entire

population is vaccinated instantaneously, i.e. in a single day (the black curve). Under these

conditions, the only risk of vaccine escape originates from mutations that occurred prior to

the vaccination campaign. We find that for μ>10−7 escape is practically unavoidable (P = 1).

This marks the upper bound on μ, beyond which we cannot hope to avert vaccine escape. Of

course, instantaneous vaccination is unattainable in practice. Therefore, the black curve in Fig

4 represents our ideal benchmark to which we will compare the different strategies.

We next consider simultaneous vaccination over the course of one year (the red curve). As

expected, we find that the extended vaccination period exhibits a higher probability of escape.

Specifically, we observe a window of 10−7>μ>10−10 in which the year-long vaccination cam-

paign leads to significant additional risk.

Finally, we consider our proposed spatial vaccination strategy, which divides the vaccinated

territory into K = 10 regions, each with ~10% of the population (the dark blue curve). The

results clearly show that spatial vaccination eliminates a large part of the excess risk, bringing

us closer to the desired benchmark. For K = 100 (light blue curve), we only observe a marginal
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additional benefit, which is an indication of the bounds on the potential benefit of spatial

vaccination.

A measure for differences in escape risk. Obtaining a single number that measures the

differences in escape risk under the various vaccination regimes is not straightforward. For

example, the difference in escape probability is large for intermediate mutation rates but small

for very low or very high ones. Using the ratio of escape probabilities does not solve the prob-

lem either since again its value is not constant, becoming smaller at high mutation rates. We

therefore propose a more suitable metric for comparing vaccination regimes: the difference in
the respective mutation rates that lead to the same escape probability under the two regimes.
Below, we formally prove that this measure is constant across different escape probabilities.

Thus, the curves in Fig 4 are lateral shifts of one another, and one number, i.e. the horizontal

distance, suffices to compare two regimes.

Formally, given a configuration c (vaccination regime and model parameters except for μ),

denote the stream of new infections at time t by xk(t, c) and the probability of takeover by a

mutant that occurs at time t (and assuming that no other mutant occurs any time) by pk(t, c).
The probability of escape (i.e. at least one mutant occurring and taking over) is:

Pðc;mÞ ¼ 1 �
QT

t¼0
ð1 � pkðt; cÞÞ

mxkðt;cÞdt, where ∏ here denotes the geometric integral—the

continuous version of the usual product sign.

Claim: If P(c1, μ1) = P(c2, μ2), then P(c1, αμ1) = P(c2, αμ2)

Proof: Taking the natural logarithm of 1−P(c, μ) computed above we obtain:

lnð1 � Pðc; mÞÞ ¼ m
Z T

t¼0

xkðt; cÞlnð1 � pkðt; cÞÞdt:

Fig 4. Probability of vaccine escape as a function of the mutation rate under various vaccination regimes. For mutation rates between 10−10 and 10−7, the

probability of escape under the current regime of uniform one-year vaccination (red curve) is far higher than under the benchmark of instantaneous world

vaccination (black curve). Spatial vaccination with K = 10 regions (dark blue curve) subject to the same one-year constraint restores about 50% of the excess

risk. Increasing the number of regions to K = 100 (light blue curve) generates a modest additional gain.

https://doi.org/10.1371/journal.pcbi.1010391.g004
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Thus, P(c1, μ1) = P(c2, μ2) is equivalent to:

m1

Z T

t¼0

xkðt; c1Þlnð1 � pkðt; c1ÞÞdt ¼ m2

Z T

t¼0

xkðt; c2Þlnð1 � pkðt; c2ÞÞdt

while P(c1, αμ1) = P(c2, αμ2) is equivalent to:

am1

Z T

t¼0

xkðt; c1Þlnð1 � pkðt; c1ÞÞdt ¼ am2

Z T

t¼0

xkðt; c2Þlnð1 � pkðt; c2ÞÞdt:

Clearly, the first equation implies the second. QED.

Quantifying the differences in escape risk. With this metric in hand, we can quantify the

results of the simulation above. The excess risk due to a uniform one-year vaccination regime rela-

tive to the instantaneous vaccination benchmark is 0.8 orders of magnitudes. That is, uniform vac-

cination increases the escape risk to the same extent as in the case that mutations were 100.8 = 6.3

times more frequent. Spatial vaccination with K = 10 regions restores 0.42 orders of magnitudes

or in other words about 50% of the excess risk. Thus, moving from uniform to spatial vaccination

allows for a mutation rate that is 100.42 = 2.6 times higher for the same escape risk.

The importance of reducing the risk by 0.4 orders of magnitudes depends on our assump-

tion regarding the probability distribution of μ. We discuss ways to address this issue in Sec-

tion 2G. Note also that this result hinges on the simplistic assumption that resistant variants

are as infectious as the wild type, which was made for purposes of simplifying the exposition.

In Section 2F, we make a more realistic assumption that the escape variant has a lower basic

reproductive number than the wild type in view of the fact that immune evasion may require

deleterious mutation in the virus [27,28]. Under such assumptions, we obtain an even stronger

advantage of spatial over uniform vaccination. Moreover, we show in Section 2C that using

spatial vaccination makes it possible to employ a number of complementary measures that are

infeasible under uniform vaccination. These measures improve the effectiveness of the spatial

strategy to an even greater extent.

Reducing the total number of infections. Apart from reducing the risk of vaccine escape,

spatial vaccination has a second advantage: a dramatic reduction in the number of infections

with the wild-type strain. This is because in vaccinated regions which reach herd immunity,

the stream of infections ceases much earlier than under uniform vaccination. As a rough

approximation, if the number of regions is sufficiently large, the total number of infections is

reduced by close to 50% as compared to the uniform vaccination regime. To see this, note that

region k = 1. . .K experiences infection from time 0 until time k/K and thus, for the average

region infections end at time (1+K)/K, which approaches ½ for large K. Thus, for the average

region, infections last for half a year rather than one year, as under uniform vaccination.

B. The partition into regions

The setting of the parameter K, i.e. the level of spatial partitioning, involves a critical tradeoff.

On the one hand, the larger K is, the smaller each region will be and therefore the faster will be

a region’s attainment of herd immunity. This limits the time window in which vaccinated and

infected individuals are interacting and thus reduces the escape risk for each region. At first

glance, it would thus seem preferable to partition the territory into as many regions as possible.

However, increasing K comes at a price: if the regions are too small they may not be socially

separable. For example, if we try to partition a city or a densely populated country, individuals

from different regions are likely to interact, undermining the potential benefit of the spatial

strategy. We therefore need to seek an optimal balance between the number of regions (K) and

the level of inter-regional coupling (C).
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To systematically examine this tradeoff, in Fig 5 we present the escape probability P vs. the

number of regions K, under various values of the coupling parameter C. We first observe that

the benefit from increasing K reaches saturation for K > 20, which is in line with our previous

results in Fig 4, which showed only a marginal gain from increasing K from 10 to 100. As

expected, we also find that as C increases the effectiveness of the spatial strategy declines. Spe-

cifically, for C> 5% the spatial vaccination strategy ceases to offer a significant benefit.

This makes it possible to establish guidelines for spatial partitioning. Each country or equiv-

alent geographic unit should seek to establish naturally separated regions that satisfy Cffi1%,

Fig 5. The number of regions vs. the separation between regions (for μ = 10−8): In the case of a contact ratio of 1% (blue line) or 2% (light blue line) we

observe a steep reduction in the probability of escape as the number of regions K increases up to about 20; the benefit of increasing K further is limited (the

curves almost flatten out). With a contact ratio of 5% (orange) or 10% (red) the benefit of increasing K is small, so that C = 5% and K = 10 is equivalent to

C = 1% and K = 3. The black line indicates the ideal limit at which there are no contacts between regions (C = 0).

https://doi.org/10.1371/journal.pcbi.1010391.g005

PLOS COMPUTATIONAL BIOLOGY A spatial vaccination strategy to reduce the risk of vaccine-resistant variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010391 August 10, 2022 10 / 27

https://doi.org/10.1371/journal.pcbi.1010391.g005
https://doi.org/10.1371/journal.pcbi.1010391


namely that only 1% of the population’s interactions are out-of-region. Therefore, partitioning

for example a city or large metropolitan area is likely to be inefficient, while separating at the

county, province or state level is more likely to achieve the desired effect.

It is important to note that even if a considerable percentage of the population lives in a

large metropolitan area that cannot be divided for purposes of partial vaccination, it is still

beneficial to divide the remaining population according to region. This is because the escape

risk from each region is cumulative. That is, the factor that determines the probability of a

resistant variant takeover is the proportion of infections (i.e. mutation opportunities) that will

occur while there is a highly vaccinated population in that region (resulting in a high repro-

duction rate for resistant variants). Thus, for example, if 25% of the population lives in a met-

ropolitan area that takes three months to vaccinate, and the remaining 75% can be divided

into 9 regions that take one month each to vaccinate, then 75% of the K = 1 probability is

reduced by the factor that K = 12 generates, and 25% is reduced by the factor that K = 4

generates.

Estimating C. To estimate the value of the inter-regional coupling parameter C, we rely

on recent observations which show that–almost universally–mobility fluxes decay with dis-

tance according to d−2, an inverse square law [24]. We can use this to evaluate the desired

radius ρ of the vaccination regions. Specifically, we seek the percentage C of individuals that,

within the typical duration τ of an infection cycle, travel a distance that exceeds ρ, and hence

can potentially cross-infect between two or more regions. Denoting the average individual trip

within the τ-timeframe by �r, we can use the inverse square law to approximate C rð Þ � �r

r

� �2

,

thus capturing the fraction of the population that travel beyond a radius ρ within the transmis-

sion window τ. Extracting ρ from this relationship we arrive at r ¼ ð1=
ffiffiffiffi
C
p
Þ �r. Therefore, to

achieve, for example, C = 5%, we must set r � 5�r, five times the typical individual distance

travelled. For C = 1%, we get r � 10�r, a ten-fold factor. Taking �r � 30 km [29], we obtain

ρ~102 km in order to ensure C within the range of 1−5%. For a typically-sized country, this is

well within the desired boundaries of K~10 regions, which captures the safe operating zone

shown in Fig 5.

Note that while the above analysis considers the coupling parameter C under unrestricted

mobility patterns, in practice, we can employ active interventions to drive C towards a desired

value (see the discussion in Section 2C).

The role of inter-region coupling and the order of vaccination. To better understand

the role of inter-region coupling C, consider a region that has already been vaccinated. Having

reached local herd immunity, infections in that region have ceased and hence, given adaptive

social behavior, practically all restrictions have been lifted. Due to the vaccination, the wild-

type’s reproduction number is kept below one, and thus any wild-type infection that arrives

from another region dies out quickly. However, if the resistant strain arrives, then, absent

social distancing, it benefits from a very high R (which equals R0) and therefore quickly ignites

a new breakout of infection. Note that for any region, this risk only exists post-vaccination

since prior to vaccination social distancing restrictions limit the ability of a mutant to take off,

and incoming infections are negligible relative to the flow of within-region infections.

The implication is that interactions between vaccinated regions or between unvaccinated

regions do not pose a problem. What matters is the separation, at each point in time, between

the vaccinated regions and the not-yet-vaccinated regions. Thus, the partitioning into regions

and the order of vaccination should be designed such that bordering regions, which are likely

to have a high level of contact, are vaccinated adjacently in time, so that there is one “moving”

border between the vaccinated and unvaccinated regions. Therefore, C should be interpreted

as the ratio of an average person’s interactions with people on the other side of the “border” to
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his interactions with people on his own side of the border. Under this interpretation, C*1%

or lower appears to be reasonable.

The spatial vaccination strategy makes it possible to employ a few simple and relatively low-

cost complementary measures that reduce the risk of vaccine escape even further, including

travel limitations between vaccinated and unvaccinated regions, contact tracing for resistant

variants and temporary regional lockdowns during vaccination. Importantly, these measures

are not applicable or are too costly under a uniform vaccination regime. We assess the effec-

tiveness of each of these measures by repeating the simulation carried out in Section 2A with

the necessary modifications (see formal treatment in the Methods section).

Limitations on travel between vaccinated and unvaccinated regions. The authorities

can impose temporary limitations on travel between vaccinated and not-as-yet vaccinated

regions. This will avoid the potential spillover of mutations from unvaccinated to vaccinated

regions. In the latter restrictions are lifted and any entering mutant will enjoy a large reproduc-

tion number and a high likelihood of success. Indeed, the coupling between same-type regions

has only little effect and thus the effect of reducing travel just between vaccinated and not-as-

yet vaccinated regions is almost the same as that of a reducing travel between all the regions

(i.e., reducing the coupling parameter C). Importantly, if the vaccinated regions as a whole and

the unvaccinated regions as a whole are each kept contiguous, with one moving border

between them as explained above, then the limitations on travel–only across that border–will

not be overly burdensome.

Fig 6A presents the effect of travel limitations between vaccinated and unvaccinated

regions. The red and black lines represent, as they did in Fig 4 above, the escape probabilities

under uniform vaccination and instantaneous vaccination, respectively. We observe that the

probability of escape under spatial vaccination with K = 10 regions and c = 1% (blue curved) is

reduced when travel is restricted by a factor of 5 (light blue curve). We also consider the case

of C = 5% (brown curve). We see that restricting travel between vaccinated and unvaccinated

regions by a factor of 5 (light brown) is almost as effective as having C = 1% initially (blue

curve).

Contact tracing of the resistant variant. Recall that, in vaccinated regions, the wild-type

strain has been eradicated and moreover, any wild-type infection imported from other regions

dies quickly due to the high vaccination level. Therefore, any infection chain among vaccinated

individuals–even if short–is highly suspected of belonging to the resistant strain. As a result,

contact tracing targeted specifically at resistant variants will be highly effective. It is worth

emphasizing that variant contact tracing can be effective only under the spatial vaccination

strategy. Indeed, under uniform vaccination resistant-variant infections are hidden among the

many wild-type infections, and hence contact tracing becomes infeasible.

We repeat the simulation under the assumption that contact tracing of infections with the

resistant strain can be effectively applied only when–due to vaccination–the stream of new

wild-type infections in region k falls to below 1/10 of the pre-vaccination level and that when

contact tracing is implemented it reduces the resistant variant’s reproduction number by a fac-

tor of 2. The outcome is depicted by the green line in Fig 6B.

A moving temporary lockdown. A third measure that can further reduce the escape risk

under spatial vaccination is the application of a short-term, moving lockdown of the region

currently being vaccinated. Indeed, a month-long lockdown will be more acceptable to the

population than the year-long lockdown required to achieve the same objective under uniform

vaccination, and it has a much better cost-benefit ratio. Fig 6B (purple line) presents the out-

come under stricter temporary restrictions, only in the region being vaccinated, such that the

reproduction number there is further reduced to 0.8 (rather than 1).
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Note that an alternative scenario which leads to the same outcome is a delay in the behav-

ioral response to the increased level of vaccination. Since the increasing beneficial effect of vac-

cination is counteracted by a delayed relaxation of social distancing, the region being

vaccinated will enjoy a reproduction number of less than 1.

D. Practical and ethical concerns

Although a spatial vaccination strategy will reduce the likelihood of escape variants, policy

makers may have other considerations as well. Thus, they may also care about the total level of

infection among the population, including of course infection with the current variant. There-

fore, they may want to vaccinate certain populations sooner, either due to their increased

Fig 6. Complementary measures. (a) Restricting travel between vaccinated and unvaccinated regions by a factor of 5 reduces the probability of escape (light

brown vs. dark brown and light blue vs. blue curves). In particular, if the initial inter-region coupling is large (C = 5%, dark brown), the outcome under travel

restrictions (light brown) is almost as good as in the case of C = 1% (blue), i.e. implying that travel between same-type regions has little effect. (b) A short

temporary lockdown of the region being currently vaccinated, that reduces the effective reproduction number there to 0.8 (rather than 1) reduces the escape

probability (purple vs. blue curves). Contact tracing for the resistant variant–which is assumed to be feasible only in vaccinated regions that are almost clear

from wild-type infections, and in that case reduces the variant’s effective reproduction number R by a factor of 2 –has a dramatic effect on the escape

probability (green vs. blue curves).

https://doi.org/10.1371/journal.pcbi.1010391.g006
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vulnerability or higher contact rate. Furthermore, they may want to adopt a policy that is fair

and also perceived to be so.

The total number of infections. It turns out that the spatial strategy is effective not only

in mitigating vaccine escape, but also in reducing the overall number of infections. This is

because, as vaccination progresses, the spread of infection in regions that reach herd immunity

will cease much earlier than under uniform vaccination. In fact, if the number of regions is

sufficiently large, then the total number of infections will be reduced by close to 50%,

since infections in a specific region will on average end after half of the nationwide vaccination

time.

On the other hand, spatial vaccination might slow the vaccination process. Thus, there are

two kinds of limitations on the ability to concentrate effort in small regions in order to acceler-

ate vaccination: vaccine production capacity and logistic capabilities. The former is in fact a

global constraint and therefore there is no difficulty in directing global output to specific

regions. Therefore, this constraint does not limit the effectiveness of the spatial strategy. The

second and binding constraint is dependent on logistics, such as how easily medical personnel

can be moved from one region to another, or the availability of facilities in which vaccination

can take place. Thus, the overall pace of vaccination might be slowed by adopting the spatial

strategy, and policymakers need to take this into account. However, the experience with

COVID-19 shows that although vaccination is slow at first, the pace quickly improves. There-

fore, it may turn out to be more effective to create the necessary logistics infrastructure and

move it from region to region, thereby saving time.

Prioritizing selected populations. Considerations of morbidity and mortality might

argue for prioritizing the vaccination of vulnerable populations, such as the elderly or those

with certain pre-existing conditions, while the desire to lower infection rates may lead to ear-

lier vaccination of populations with high contact rates, such as doctors or teachers (see [3]).

We therefore consider a mixed vaccination regime, in which a policy of uniform vaccination is

initially adopted for some proportion of the population (the prioritized group), followed by

spatial vaccination of the remaining population.

The outcome is presented in Fig 7. It can be seen that in the case where the prioritized

group accounts for 15% of the population, most of the benefit of spatial vaccination is pre-

served. This is because most of the additional risk of vaccine escape due to uniform vaccination

occurs only once the vaccine coverage is well above 15%; prior to that the resistant variant has

little selective advantage, if any.

Fairness considerations. Is the spatial vaccination policy “fair”? Section 2B described the

benefit of a spatial strategy in which a minimal moving border is maintained between vacci-

nated and unvaccinated regions. However, people may prefer a policy that randomizes equally

across the population, or within groups that are ordered according to some clear policy consid-

eration. Note that the minimal-border policy does not preclude randomizing since the cam-

paign can proceed in any direction–for example, from north to south or south to north–

thereby maintaining some degree of fairness. However, this is not the case for a policy that pri-

oritizes groups by, for example, degree of vulnerability, and hence the spatial vaccination pol-

icy may not be suitable when the ethical considerations of “fairness” dominate.

E. Viral environments in which spatial vaccination is advantageous

Range of R0. The advantage of spatial vaccination crucially depends on the feasibility of

bringing regions to herd immunity, thus putting an end to infection and to the potential emer-

gence of mutants. In the ideal case of a vaccine that provides perfect immunity against the wild

type, achieving herd immunity requires that a proportion of at least 1-1/R0 of the population
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be vaccinated or infected. That level might be hard to reach in the presence of vaccine hesi-

tancy or of populations that cannot be vaccinated.

Thus, in the case of the COVID-19 pandemic, the spatial vaccination strategy would have

been advantageous in the case of the original Wuhan strain (R0 of between 2 and 3) and the

Alpha variant (R0 of between 3 and 4). Since in the case of these strains the Moderna and Pfizer

vaccines were almost full proof in preventing transmission, herd immunity could have been

reached with between 60% (Wuhan) and 70% (Alpha) of the population being vaccinated.

However, in the case of variants such as Delta (R0 of between 5 and 8) or Omicron (R0 well

above 10 and significantly reduced vaccine effectiveness) herd immunity is not feasible before

a large proportion of the population is infected, and thus spatial vaccination is not helpful.

The effect of the unvaccinated proportion of the population on the probability of vaccine

escape (in the case of a vaccine that provides perfect immunity against the wild type and with

R0 = 4) is described in Fig 8A. It can be seen that the benefit of spatial vaccination vs. uniform

vaccination diminishes once the proportion of the unvaccinated exceeds 0.25 (which is about

1/R0) and is completely lost above 0.35.

The difficulty of reaching herd immunity will be exacerbated when the vaccine is imperfect.

This can occur in two cases: when the vaccine is “leaky,” i.e., less than fully effective in prevent-

ing transmission, or when its effectiveness wanes over time.

“Leaky” vaccines. Even at a reasonable level of R0, herd immunity is harder to reach with

“leaky” vaccines. One would expect that with vaccines that have greater than 95% effectiveness,

as in the case of the Moderna and Pfizer vaccines, the advantage of the spatial vaccination strat-

egy will remain significant, though not in the case of less effective vaccines. Fig 8B describes an

extension of our model to a leaky vaccine (assuming no unvaccinated). The qualitative effect of

employing an imperfect vaccine is similar to that of having less than 100% vaccinated (Fig 8A).

Vaccine waning. A related form of vaccine imperfection is that its effect may wane over

time. Thus, vaccine effectiveness will be diminished for those vaccinated early by the time the

Fig 7. Prioritizing a defined population. Allowing 15% of the population (such as the more vulnerable) to be vaccinated first and only then proceeding to the

spatial vaccination strategy eliminates only a small part of the benefit from spatial vaccination.

https://doi.org/10.1371/journal.pcbi.1010391.g007
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entire population has been vaccinated. Since our focus is whether herd immunity can be

achieved, the question becomes the extent to which the vaccine’s effectiveness wanes during

the time it takes to vaccinate the entire population.

The effect of waning is demonstrated in Fig 8C. The waning parameter (on the horizontal

axis) captures the speed of decline (assumed to be linear) in vaccine effectiveness (leakage)

over a period of one year. The simulation assumes that it takes one year to vaccinate the entire

population and that it is re-vaccinated yearly. Thus, while the group of people vaccinated at

time T is fully protected at that point in time, the average vaccine effectiveness for them at

time T+t (where 0<t<1 is the time in years after T) is 1−wt due to waning. At time T+1 the

group is vaccinated again and vaccine effectiveness returns to 1, and so forth. We immediately

see that as long as the waning is not excessively fast (not more than about 35% per year), spatial

vaccination dominates uniform vaccination, as in the case without waning.

At some level of waning, the ability to reach herd immunity is lost. With uniform vaccina-

tion, this occurs when w reaches ½. To see this, note that after one year or more, at each point

in time the population is always a mix of people who were vaccinated at different dates, from

one year earlier (so that their leakage is w) to just now (so that their leakage is 0). On average,

the leak is w/2, and if it is greater than 0.25 (= 1−R0) then herd immunity is not achieved.

Thus, at w>½ we see a jump in the escape probability.

In the case of spatial vaccination, the loss of herd immunity occurs earlier. This is because

the groups (which are differentiated by the period of time since their vaccination) do not mix,

unlike in the case of uniform vaccination. Thus, the average protection in the regions vacci-

nated early on is below herd immunity, even when w<½. Importantly, note that when a region

falls below the herd immunity level, it is quickly re-infected through travel to and from other

regions where infection is occurring. Unlike the small chance that a rare mutant will move

between regions, it is very likely that some people infected with the wild type will travel across

regions, unless there are severe limitations on movement.

Thus, there is an intermediate range of w where uniform vaccination dominates spatial vac-

cination. However, once w is sufficiently high that herd immunity is lost even under uniform

vaccination, the outcome under spatial vaccination dominates. The reason for this is straight-

forward: under uniform vaccination all regions have the same average protection, which is a

Fig 8. The effect of incomplete or imperfect vaccination (for μ = 10−9). (a) When the proportion of unvaccinated people exceeds 1/R0, such that herd

immunity is not attained, the advantage of spatial vaccination is lost. (b) A similar outcome is achieved if the vaccine is not fully effective in preventing

transmission (“leakage”). (c) If the vaccine’s effectiveness wanes over time, the advantage of spatial vaccination is lost for an intermediate rate of waning.

https://doi.org/10.1371/journal.pcbi.1010391.g008
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little below herd immunity, implying both a maximal flux of infections and a high R0 for the

escape variant. Under spatial vaccination, some regions have higher than average protection

while others have less than average. Thus, some regions will be above the herd immunity level

(and therefore will have no infections) while regions with lower protection will have the same

number of infections but with a lower R0, which translates into a lower likelihood for a new

escape variant to survive. Both effects are in favor of spatial vaccination.

To compete the picture, it is worth emphasizing that if waning is fast and the disease is suffi-

ciently severe that society is willing to bear the costs of achieving extinction, then spatial vacci-

nation–coupled with a severe travel ban between vaccinated and unvaccinated regions–

becomes the preferred policy. By quickly vaccinating regions successively, herd immunity is

achieved before waning precludes it. And when protection in those regions declines to below

herd immunity because of waning, reinfection is prevented thanks to the restrictions on move-

ment between regions.

F. Effect of parameters

To simplify the exposition, we have so far assumed that an “ideal” escape variant, which (1)

has the same basic reproduction number as the wild type, (2) cannot infect people with anti-

bodies from a prior wild-type infection (i.e. we assumed two-way cross immunity) and (3) is

fully resistant to the vaccine. In reality, there are a large number of conceivable combinations

of mutations, in which each of the above assumptions may be violated. In this section, we

examine the consequences of relaxing these assumptions.

Escape is costly. It is reasonable to assume that a vaccine-resistant variant will be deficient

relative to the wild type with respect to its ability to infect unvaccinated individuals. This fol-

lows from our definition of the wild type, as the dominant variant prior to vaccination, i.e. the

one with the maximal R0 vs. unvaccinated among all variants. The resistant variant, which is

selected from a strict subset of the variants–those resistant to the vaccine, will typically have a

lower R0 vs. unvaccinated. Moreover, vaccines such as Moderna’s and Pfizer’s SARS Cov2 vac-

cines are designed to target a conserved protein, such as the spike protein. This design is based

on the rationale that targeting conserved and highly essential viral proteins is likely to impose

a high cost on immune-evading mutations [30]. (Mutant binding data of the type produced in

[13,31] may be used to assess the existence and sign of potential correlation between, for exam-

ple, antibody and receptor binding.)

We capture this idea using the deficiency ratio, denoted by d, which is the ratio between the

reproduction number of the mutant strain and that of the wild type, both in a naive popula-

tion. Hence, d = 1 implies no deficiency, which is what has been assumed up to this point,

while d = 0.5, for example, means that the variant’s reproduction number is half that of the

wild type. In Fig 9A and 9B we present the probability of vaccine escape vs. the variant’s defi-

ciency ratio d and the mutation rate μ, under simultaneous vaccination (Fig 9A) and spatial

K = 10 vaccination (Fig 9B). For completeness we consider the range 0.4�d�1.2; however, as

argued above, the middle of this range should be seen as more probable. As expected, in both

cases we observe low risk (blue) in the bottom-right corner, either because mutations are rare

(small μ) or because they are deleterious to the virus (small d). In the opposite corner, where μ
and d are large, we observe a high risk (red) under both regimes. The two areas are separated

by a band of intermediate risk (green). The crucial point is that under spatial vaccination the

low-risk blue area is expanded, while the high-risk red area contracts to only the extreme

upper-left corner. This clearly shows that spatial vaccination consistently mitigates the risk of

vaccine escape throughout the entire range.
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Importantly, it can be seen that the benefit of spatial vaccination, namely how far it shifts

the green and red areas to the right, is greater when the variant has higher deficiency (smaller

d): while for d = 1 the rightward shift is about 0.42 orders of magnitude (×2.6) of μ, for d = 0.8

it is about 0.56 orders of magnitude (×3.6) of μ (these are the respective horizontal distances in

between the dotted and solid black curves in Fig 9B). The reason for the difference lies in the

Fig 9. Probability of escape for different mutation rates under spatial uniform vaccination (left) vs. spatial vaccination (right). (a,b) As a function

of the variant’s deficiency ratio d relative to the wild-type strain. (c,d) Same as (a,b) except that the variant can infect individuals who have recovered

from infection with the wild type. (e,f) As a function of the variant’s escape capability e.

https://doi.org/10.1371/journal.pcbi.1010391.g009
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variant’s ability to survive before vaccination gives it an advantage. With d<<1, the variant

has an R<<1 before vaccination and in its early stages. Thus, if it appears in these early stages

then it will likely not survive. Only variants born late in the vaccination process, when their R

exceeds unity, are able to survive, implying that spatial vaccination has a major advantage due

to the shortening of the high-risk period. With d = 1, in contrast, variants born in the earlier

stages have a higher chance of survival–under any vaccination regime–thus reducing the rela-

tive advantage of spatial vaccination.

A variant that also infects the recovered. We next examine the effect of the variant’s abil-

ity to also infect individuals with antibodies from prior infection with the wild type. As

expected, the results, for both K = 1 (Fig 9C) and K = 10 (Fig 9D), indicate that such a scenario

increases the risk of escape relative to the case in which the variant cannot infect the recovered

(Fig 9A and 9B). Note however that even under this scenario, in which the variant also infects

the recovered, the spatial vaccination continues to maintain a clear advantage, as can be seen

in the enlarged low-risk area (blue) and the diminished high-risk area (red).

Escape is partial. Another important issue we examine is partial vaccine escape, i.e. the

vaccine provides some protection against the escape variant. This scenario appears to fit our

current experience with some of the SARS-CoV-2 variants [32,33].

To quantify this scenario, we introduce a parameter measuring the severity of vaccine

escape, denoted by e. Setting e = 1 represents full escape, which is the scenario considered up

to this point; e = 0.5, for example, means that the vaccine is partially effective against the vari-

ant so that the variant escapes it with only 50% probability. In Fig 9E and 9F, we set d = 0.7

and examine the impact of introducing e<1. It can be seen that the contour lines now have a

steep, almost vertical slope in both heat maps. Hence, the risk is largely independent of e
within the range 0.4�e�1. Importantly, this risk continues to fall as we shift from simulta-

neous vaccination (K = 1) to spatial vaccination (K = 10).

A combined parameter space. To complete the analysis, a combined parameter space is

considered in which we vary both the deficiency and escape parameters. Thus, for each combi-

nation of d2[0.4,1.2] and e2[0.4,1], the mutation rate μ that generates an escape probability of

P = 50% is plotted. Fig 10A indeed shows that–over the entire parameter range–spatial

Fig 10. Mutation rate that leads to 50% escape probability (as a function of the variant’s deficiency d and escape capability e). (a) Spatial vaccination

dominates over the entire parameter space. (b) The advantage is maximized for large e and intermediate d, and minimized for low e and extreme d.

https://doi.org/10.1371/journal.pcbi.1010391.g010
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vaccination tolerates a higher mutation rate for the same escape probability. Fig 10B investi-

gates how we investigate how the advantage of spatial vaccination depends on the two parame-

ters, by computing the ratio of the above mutation rates. Thus, while a higher rate of evasion

increases the advantage of spatial vaccination, that advantage is maximized at intermediate val-

ues of the deficiency parameter.

G. Concluding remarks

A uniform global SIR model. The simplified SIR model we present assumes a homoge-

neous world in which social distancing maintains the reproduction number R at unity and the

stream of infections is identical in all countries and regions. Of course, the real world is charac-

terized by a high degree of heterogeneity even across proximate regions [20,21]. Nonetheless,

we believe that our qualitative results still hold. The key idea is that a slow and uniform vacci-

nation regime, and in view of the adaptive nature of social distancing measures, the outcome is

inevitably a continued high infection rates for an extended period of time. A significant pro-

portion of these infections will occur when vaccination levels are high, implying a high repro-

duction rate and therefore a high probability of survival for an escape variant. Our analysis,

which “mistakenly” uses the average R in each of the regions, ignores the nonlinearity of the

mutant’s survival probability in R (which is approximately 1/(1+1/R) for sufficiently large R).

However, this effect is small and more importantly, the effectiveness of spatial vaccination–

which in each locality dramatically shortens the time during which a high infection level and a

high R coexist–remains.

However, if different localities have different infection rates, this can be exploited by the

spatial vaccination strategy. Fig 11 shows a situation in which 10 regions have different infec-

tion rates (specifically, region i>1 has i times more infections than region 1). It can be seen

that there is a slight advantage to vaccinating the regions with higher infection rates first.

Fig 11. Exploiting heterogeneous infection rates. Even up to a 10-fold difference in infection rates, there is only a slight benefit in vaccinating regions with

higher infection rates first.

https://doi.org/10.1371/journal.pcbi.1010391.g011

PLOS COMPUTATIONAL BIOLOGY A spatial vaccination strategy to reduce the risk of vaccine-resistant variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010391 August 10, 2022 20 / 27

https://doi.org/10.1371/journal.pcbi.1010391.g011
https://doi.org/10.1371/journal.pcbi.1010391


However, optimizing the order of spatial vaccination has a much smaller added benefit than

that achieved by spatial vaccination over uniform vaccination.

The mutation process. Our model treats the complex process of mutation in a highly sim-

plified manner, assuming that upon each instance of infection, the virus mutates with some

probability. In reality, a complex mutation that enables vaccine escape does not take place at

the time of infection, but rather it is the result of a combination of single-point mutations

occurring within the host, as the virus reproduces within his body. However, this internal pro-

cess is of little relevance to our analysis since–apart from very rare cases–infections almost

always involve a single strain randomly drawn from the cloud of mutations within the infector.

Hence, for simplicity we assume that with probability μ, a specific host acquires a vaccine-

resistant mutation, which is then passed on to other individuals via further infection. We

model this hidden process as if the virus mutates upon infection. (Note that the characteristics

of the internal process are more important in studying drug resistance, as in [34,35], or in

studying partial (one-dose) vaccination which may generate an inter-host fitness advantage for

a resistant variant together with a continued increased viral load [36].)

A limitation of our model, however, is that it ignores the possibility of a drift by which a

sequence of single-point mutations occurs during the transmissions between individuals, such

that only the sum of these mutations generates vaccine escape.

The range of the mutation rate and the significance of the reduction in escape risk.

While the probability of a single-point mutation in the case of the SARS-COV-2 virus can be

computed from its genomic properties, the probability that a combination of mutations gener-

ates a variant that is resistant to the current vaccines is unknown at this stage. On the optimis-

tic side, none of the currently prevailing variants fully escapes the current vaccines [37,38], and

it appears that most of them are simply improvements of the virus that are to be expected in its

adaptation process in the human host. On the pessimistic side, this can be explained by the

fact that mass vaccination, which leads to selective pressure for vaccine resistance, has taken

place until recently only in countries that account for a small proportion of the world’s popula-

tion [7,18].

Along this paper, we showed that the type of vaccination regime matters when the mutation

rate μ is within the range of 10−10 to 10−7. That is, within that range there is a gap between the

best-case instantaneous vaccination benchmark and the worst-case slow vaccination regime

that has actually been adopted. We have shown that spatial vaccination eliminates 50% of the

excess risk (and even more with the help of the complementary measures described in Section

2C).

Another way to assess the benefit of spatial vaccination is to consider the metric introduced

in Section 2A, according to which spatial vaccination permits a higher mutation rate for the

same escape risk–by about 0.5 orders of magnitude on average (across possible values of d)

before taking into account complementary measures. Translating this number into a probabil-

ity that escape will be avoided depends on our prior on μ, namely what range of values do we

view as being reasonable. Lobinska et al. [7] provides a methodology to compute an upper

bound based on the fact that a vaccine-resistant variant has not appeared until now in the

highly vaccinated countries (which currently account for 5–10% of world population) and arri-

ves at an estimate of about 10−6. However, without a lower bound it is hard to justify employ-

ing the spatial strategy. Such a lower bound will be generated if we encounter the adverse

scenario that a resistant variant emerges during the first round of global vaccination (and the

lower bound will be stricter the earlier the variant is encountered). If this leads to a second

round of vaccination with an updated vaccine, then the spatial strategy might be considered.

Moreover, the combination of the lower and upper bounds may provide us with a fairly nar-

row range, which will justify the use of spatial vaccination.
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3. Methods

SIR model with regions and mutations

A world with population N is naturally divided into K identical regions k = 1...K with little

interaction between them. Let 0<c<<1 (the contact ratio) denote the proportion of a person’s

interactions that are with people living outside of her own region. The dynamics of the wild-

type infection in each region follows a deterministic SIR model, with interactions between the

regions. We set the recovery rate r to 1 so that time is measured in infection cycles (about 4

days in the COVID-19 case) and for simplicity set the death rate to 0. The wild type’s basic

reproduction rate R0 is set to 4, which is about that of the current dominant strains, so that the

infection rate is β0 = rR0 = 4. We assume that social distancing measures–multiplicative factors

lk−are set such that the rate of infection in each region does not exceed an acceptable propor-

tion h of the population (per 4-day infection cycle).

We augment the model with a vaccination process vk(t) that starts at time t0 (= one year

after the pandemic’s start) and is subject to an aggregate capacity constraint Svk(t)�v such

that 80% of the population can be vaccinated within one year (i.e., v = 80%�4/365 is the propor-

tion vaccinated per infection cycle). Both the susceptible and the recovered are vaccinated.

Under uniform vaccination, vk(t) = v, i.e. a proportion v of every region’s population is vacci-

nated per infection cycle. Under spatial vaccination, vk(t) = v�K for tk−1�t�tk, where tk is the

point in time at which 80% of region k’s population is vaccinated; otherwise vk(t) = 0. Thus,

when it is region k’s turn, it is vaccinated at a K-fold faster rate than under uniform vaccina-

tion. Under “mixed” vaccination, we start at time t0 with the uniform regime until 15% of the

population in each region is vaccinated and then switch to the spatial regime.

Each wild-type infection has a probability μ of turning into a vaccine-resistant variant

(“mutant”). While the wild type cannot infect vaccinated individuals, the mutant can. How-

ever, it suffers a fitness deficiency such that its basic reproduction number Rm
0

equals d�R0

(while we typically expect d to be lower than 1, we also analyze the case in which it is above 1).

If a new mutant occurs, we track the (discrete) number of infections using a random walk pro-

cess until it either dies out or succeeds in generating a large number of infections (and then

becomes dominant). The parameter e�1 captures the degree of the variant’s escape from the

vaccine (1 means full escape; 0 means no escape). We also consider two cases: that the resistant

variant can or cannot infect individuals who have recovered.

The different states of the augmented SIR model and the transition flows between different

states are shown in Fig 12:

The deterministic SIR equations for the wild-type strain in each region k are as follows

(all state variables are defined as proportions of the population, i.e. between 0 and 1):

W1. Infected: _Ik ¼ lkb0SkÎ kð1 � mÞ � rIk

W2.

where Î k ¼ 1 � cð ÞIk þ c
K� 1

Sj6¼kIj is the effective infection pool for region k,

and where lk ¼ min 1; h
b0Sk Î kð1� mÞ

� �
so that _Ik ¼ minðb0SkÎ kð1 � mÞ; hÞ � rIk

W3. Susceptible: _Sk ¼ � lkb0SkÎ k 1 � mð Þ � vk
Sk

SkþRk

W4. Recovered: _Rk ¼ rIk � vk
Sk

SkþRk

W5. Vaccinated (and were not infected earlier): _VS
k ¼ vk

Sk
SkþRk

W6. Vaccinated (and were infected and recovered earlier): _VR
k ¼ vk

Rk
SkþRk
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W7. The initial conditions are: Ik ¼ h; Sk ¼ 1 � h; Rk ¼ VS
k ¼ VR

k ¼ 0.

(Note that the separation between the two types of vaccinated individuals is needed only for

the case in which the resistant variant cannot infect people who have already recovered from

the wild type (see Case 1 below). In this case it can infect only those in VS. If the variant is resis-

tant to wild-type antibodies, i.e. it also infects the recovered (Case 2), then we can merge VS

and VR into one group V.)

The process for the resistant strain is discrete. Initially, the (absolute) number Imk of mutant

infections in region k is 0. Each Imk evolves according to a random walk, dictated by three Pois-

son processes: (1) arrival of new mutations; (2) infections by the resistant variant; and (3)

recoveries. The arrival rate of these processes are given by:

M1. Mutation (Imk increased by 1): m � lkb0SkÎ k � NK
(Note that for not yet vaccinated regions his is simply m � h � NK.)

M2. Infections (Imk increased by 1):

� Case 1 (variant does not infect the recovered): lkb
m
0
ðSk þ eVS

kÞÎmk

� Case 2 (variant infects the recovered): lkb
m
0
ðSk þ eðVS

k þ V
R
k þ RkÞÞÎmk

where b
m
0

equals d�β0 and where Îmk ¼ 1 � cð ÞImk þ
c

K� 1
Sj6¼kImj is the effective infection pool

for region k.

Fig 12. The flows between the different states–within a given region k and in between regions.

https://doi.org/10.1371/journal.pcbi.1010391.g012
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(For simplicity we assume that the variant cannot infect people currently infected by the

wild type.)

M3. Recoveries (Imk decreased by 1): r � Imk

Definition of the outcome (of one iteration of the simulation)

• We say that the pandemic is over and the variant has died out when SkIk<1/N and

SkImk ¼ 0.

• We say that the variant has taken over when SkImk grows to beyond 30.

(Note that, since mutations are rare, infections can reach 30 only if the reproduction number

is much larger than 1. Moreover, since the lockdown is further eased as vaccinations proceed,

the mutation’s effective reproduction number can only grow. Thus, the path from 30 to taking

over is almost guaranteed. Indeed, simulations show that setting a higher threshold does not

result in a lower probability of reaching it.)

The complementary measures (see Section 2C) are modeled using the following

modifications:

a. Travel restrictions: Let c−<c denote the reduced interaction rate between regions with dif-

ferent vaccination statuses and denote the region being currently vaccinated by k�. We

change the definition of Î k as follows:

b. Î k ¼ 1 �
ðk�� 2ÞcþðK� k�þ1Þc�

K� 1

� �
Ik þ c

K� 1
Sj<k� ;j6¼kIj þ c�

K� 1
Sj�k�Ij if k<k�

Î k ¼ 1 � c�ð ÞIk þ c�
K� 1

Sj6¼kIj if k = k�

Î k ¼ 1 �
k�c� þðK� k�� 1Þc

K� 1

� �
Ik þ c�

K� 1
Sj�k� Ij þ c

K� 1
Sj>k� ;j6¼kIj if k>k�

and correspondingly the definition of Îmk .

c. Contact tracing for the resistant strain: In regions that have already been vaccinated and in

which the total number of wild-type infections has been significantly reduced, i.e.

_Ik < 0:1h, we further multiply the resistant strain’s infection rates (cases 1 and 2 in M2

above) by lCT = 0.5.

d. A moving temporary lockdown: For the region k� being vaccinated, we replace the defini-

tion of lk (W1 above) with lk� ¼ min 0:8; 0:8 1

b0Sk

� �
which implies that the reproduction

number is pushed down to 0.8 rather than to 1.
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24. Schläpfer M, Dong L, O’Keeffe K, Santi P, Szell M, Salat H, et al. The universal visitation law of human

mobility, Nature. 2021; 593: 522–527. https://doi.org/10.1038/s41586-021-03480-9 PMID: 34040209

25. Luong TH, Mathematical Modeling of Vaccinations: Modified SIR Model, Vaccination Effects, and Herd

Immunity. ( Portland State University, 2019). https://doi.org/10.15760/honors.712

26. Huppert A, Katriel G. Mathematical modelling and prediction in infectious disease epidemiology. Clinical

Microbiology and Infection. 2013; 19: 999–1005. https://doi.org/10.1111/1469-0691.12308 PMID:

24266045

27. Melnyk AH, Wong A, Kassen R. The fitness costs of antibiotic resistance mutations. Evol Appl. 2015; 8:

273–283. https://doi.org/10.1111/eva.12196 PMID: 25861385

28. Li Q, Nie J, Wu J, Zhang L, Ding R, Wang H, et. al. SARS-CoV-2 501Y.V2 variants lack higher infectivity

but do have immune escape. Cell. 2021; 184: 2362–2371.e9. https://doi.org/10.1016/j.cell.2021.02.

042 PMID: 33735608

29. Charlynn B, Burrows M, McKenzie B. Travel time to work in the United States: 2019. American Commu-

nity Survey Reports. 2021; ACS-47, U.S. Census Bureau, Washington, DC.

30. Swanson KA, Rainho-Tomko J, Williams ZP, Lanza L, Peredelchuk M, Kishko M, et. al. A respiratory

syncytial virus (RSV) F protein nanoparticle vaccine focuses antibody responses to a conserved neu-

tralization domain. Science Immunology. 2020; 5: 47. https://doi.org/10.1126/sciimmunol.aba6466

PMID: 32358170

31. Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD Chu HY, et. al. Comprehensive mapping of

mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human

plasma antibodies. Cell Host & Microbe. 2021; 29: 463–476. https://doi.org/10.1016/j.chom.2021.02.

003 PMID: 33592168

32. Nasreen S, Chung H, He S, Brown KA, Gubbay JB, Buchan SA, et. al. Effectiveness of COVID-19 vac-

cines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in

Ontario. Nature Microbiology. 2022; 7: 379–385. https://doi.org/10.1038/s41564-021-01053-0 PMID:

35132198

33. Public Health England, https://www.gov.uk/government/news/vaccines-highly-effective-against-b-1-

617-2-variant-after-2-doses

34. Iwasa Y, Michor T, Nowak MA. Evolutionary dynamics of escape from biomedical intervention, Pro-

ceedings of the Royal Society of London. Series B: Biological Sciences. 2003; 270.1533: 2573–2578.

35. Plowright RK, Field HE, Smith C, Divljan A, Palmer C, Tabor G, et. al. Reproduction and nutritional

stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus), Proceed-

ings of the Royal Society B: Biological Sciences. 2008; 275.1636: 861–869.

PLOS COMPUTATIONAL BIOLOGY A spatial vaccination strategy to reduce the risk of vaccine-resistant variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010391 August 10, 2022 26 / 27

https://doi.org/10.1016/j.chom.2020.11.007
http://www.ncbi.nlm.nih.gov/pubmed/33259788
https://doi.org/10.1016/S1473-3099%2821%2900202-4
http://www.ncbi.nlm.nih.gov/pubmed/33861968
https://doi.org/10.1101/2021.03.27.21254453
https://doi.org/10.1101/2021.03.27.21254453
https://doi.org/10.1038/s41577-021-00544-9
https://doi.org/10.1038/s41577-021-00544-9
http://www.ncbi.nlm.nih.gov/pubmed/33795856
https://doi.org/10.1038/s41562-021-01281-8
https://doi.org/10.1038/s41562-021-01281-8
http://www.ncbi.nlm.nih.gov/pubmed/35210582
https://doi.org/10.1073/pnas.2009911117
http://www.ncbi.nlm.nih.gov/pubmed/33262277
https://doi.org/10.1371/journal.pone.0244474
https://doi.org/10.1371/journal.pone.0244474
http://www.ncbi.nlm.nih.gov/pubmed/33439880
https://ourworldindata.org/explorers/coronavirus-data-explorer
https://doi.org/10.1007/s00466-020-01880-8
https://doi.org/10.1007/s00466-020-01880-8
http://www.ncbi.nlm.nih.gov/pubmed/32836597
https://doi.org/10.1038/s41586-021-03480-9
http://www.ncbi.nlm.nih.gov/pubmed/34040209
https://doi.org/10.15760/honors.712
https://doi.org/10.1111/1469-0691.12308
http://www.ncbi.nlm.nih.gov/pubmed/24266045
https://doi.org/10.1111/eva.12196
http://www.ncbi.nlm.nih.gov/pubmed/25861385
https://doi.org/10.1016/j.cell.2021.02.042
https://doi.org/10.1016/j.cell.2021.02.042
http://www.ncbi.nlm.nih.gov/pubmed/33735608
https://doi.org/10.1126/sciimmunol.aba6466
http://www.ncbi.nlm.nih.gov/pubmed/32358170
https://doi.org/10.1016/j.chom.2021.02.003
https://doi.org/10.1016/j.chom.2021.02.003
http://www.ncbi.nlm.nih.gov/pubmed/33592168
https://doi.org/10.1038/s41564-021-01053-0
http://www.ncbi.nlm.nih.gov/pubmed/35132198
https://www.gov.uk/government/news/vaccines-highly-effective-against-b-1-617-2-variant-after-2-doses
https://www.gov.uk/government/news/vaccines-highly-effective-against-b-1-617-2-variant-after-2-doses
https://doi.org/10.1371/journal.pcbi.1010391


36. Saad-Roy CM, Morris SE, Metcalf CJE, Mina MJ, Baker RE, Farrar J, et al. Wagner, Epidemiological

and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes. Science. 2021; 372: 363–

370. https://doi.org/10.1126/science.abg8663 PMID: 33688062

37. Rella SA, Kulikova YA, Dermitzakis ET, Kondrashov FA. SARS-CoV-2 transmission, vaccination rate

and the fate of resistant strains. medRxiv preprint https://doi.org/10.1101/2021.02.08.21251383 (2021).

38. Kennedy DA, Read AF. Why does drug resistance readily evolve but vaccine resistance does not? Pro-

ceedings of the Royal Society of London. Series B: Biological Sciences. 2017; 284: 20162562.

PLOS COMPUTATIONAL BIOLOGY A spatial vaccination strategy to reduce the risk of vaccine-resistant variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010391 August 10, 2022 27 / 27

https://doi.org/10.1126/science.abg8663
http://www.ncbi.nlm.nih.gov/pubmed/33688062
https://doi.org/10.1101/2021.02.08.21251383
https://doi.org/10.1371/journal.pcbi.1010391

