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Abstract

In order to thrive, organizations need to build and maintain an

ability to meet unexpected external challenges. Yet, many organi-

zations are sluggish: their capabilities can only undergo incremental

changes over time. What are the stochastic processes governing “rou-

tinely occurring”challenges that best prepare a sluggish organization

for unexpected challenges? We address this question with a stylized

principal-agent model. The “agent” represents a sluggish organiza-

tion that can only change its capability by one unit at a time, and the

“principal” represents the organization’s head or its competitive en-

vironment. The principal commits ex-ante to a Markov process over

challenge levels. We characterize the process that maximizes long-

run capability, for both myopic and arbitrarily patient agents. We

show how stochastic, time-varying challenges dramatically improve a

sluggish organization’s preparedness for sudden challenges.

∗This is a substantial revision of a paper formerly titled “Anabolic Persuasion” and
“Training a Sluggish System”. We acknowledge financial support from the Foerder Insti-
tute. We thank Martin Cripps, Michael Crystal, Tuval Danenberg, Israel Halperin, Nathan
Hancart, Ron Peled, Ariel Rubinstein, Mickey Scheinowitz, the editor and referees of this
journal and seminar audiences for helpful comments.
†Eliaz: Tel-Aviv University and University of Utah. Spiegler: Tel-Aviv University and

UCL.
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1 Introduction

To thrive in the long run, organizations need to cope with unexpected chal-

lenges. In the private sector, a firm that can quickly adapt to new circum-

stances will gain a competitive advantage. The strategy literature refers to

this trait as dynamic capabilities, which can be broadly described as “the

firm’s ability to integrate, build, and reconfigure internal and external com-

petences to address rapidly changing environments”(Teece et al. (1997, p.

516). In the public sector, organizations like the military or emergency-

response agencies must have the expediency to respond to unexpected crises

such as wars, natural disasters or epidemics. Their effectiveness is tested

precisely when rare, unanticipated challenges arise.

However, organizations tend to be “sluggish”in their response to external

challenges. As Hannan and Freeman (1984, p. 149) write, “organizations are

subject to strong inertial forces. . . they seldom succeed in making radical

changes in strategy and structure in the face of environmental threats”.1

How, then, do organizations overcome their innate sluggishness and manage

to build and maintain preparedness for random challenges?

We consider two perspectives into this question. First, an organization’s

dynamic capabilities are shaped by its natural environment. As Eisenhardt

and Martin (2000, p. 1110) note: “The pattern of effective dynamic capabil-

ities depends upon market dynamism”. A market environment that involves

volatile changes in competition, technology or regulation may be more con-

ducive for building and maintaining dynamic capabilities.

Second, organizations can actively simulate random challenges via sys-

tematic “training programs”. This is particularly relevant for military and

emergency-response organizations. Unable to quickly adapt to sudden real

challenges, such an organization’s level of preparedness will gradually dete-

riorate unless its training regimen summons simulated ones. As noted by

1Other articles articulate similar ideas - see Hollnagel, Woods and Leveson (2006) for
a collection of papers.
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Lakoff (2007, p. 254) in the context of planning for emergencies, “since the

probability and severity of such events cannot be calculated, the only way to

avert catastrophes is to have plans to address them already in place and to

have exercised for their eventuality – in other words, to maintain an ongoing

capability to respond appropriately”.

The first perspective raises a natural question: What kind of stochastic

environment is best for nurturing dynamic capabilities in sluggish organiza-

tions? The second perspective rephrases the question: What is the optimal

way to “train”a sluggish organization to meet unexpected challenges?

This paper addresses both versions of this question with an economic-

theory approach.2 We construct a stylized, dynamic principal-agent model,

in which the agent represents an organization that can only sluggishly re-

spond to exogenous challenges. The agent trades off the cost of failing to

meet a challenge and the cost of maintaining a capability. The principal can

be interpreted literally as a sluggish organization’s head, who designs a dy-

namic “training program”that simulates challenges in order to develop and

sustain the organization’s capabilities. Alternatively, the principal can be

viewed as a fictitious entity representing the organization’s “regular” com-

petitive environment, which generates time-varying challenges according to

a stable stochastic pattern. This environment is like a crucible that forges

the organization’s dynamic capabilities, which would be tested against “ir-

regular”challenges that arise unexpectedly and independently of the regular

process.

More specifically, we represent capability and challenge levels by integers

and measure them on the same scale. Time is discrete, and the agent ad-

justs its capability at every period after learning the current challenge level.

Incremental, sluggish adjustment means that the agent can change its capa-

bility (in either direction) only by one unit at any time period. Even when

2For very different economics-based approaches to the subject of dynamic capabilities,
see Sutton (2012) and Gans (2017).
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external stimuli change dramatically from one period to the next, capability

adjusts slowly. For illustration, a firm may be unable to take immediate

advantage of a large competitor’s sudden demise. Conversely, when the firm

faces prolonged low demand, its production capabilities will not disappear

overnight but gradually decay (“use it or lose it”).

The agent’s adjustment process balances two opposing forces. On the one

hand, maintaining capability is costly. For example, effective response to a

technical challenge requires constant availability of skilled staff or computing

resources. This maintenance cost exerts a downward force on capability. On

the other hand, when capability falls below the challenge, this is recorded as a

cost that exerts an upward pull on capability. Under the “fictitious principal”

interpretation, this performance-gap cost can be viewed as an opportunity

cost of foregoing a source of revenues, or as a reputational loss when a firm

fails to rise up to a technical challenge. Under the literal, “organizational

training” interpretation, the cost may be part of a mechanism that incen-

tivizes the organization’s preparedness (e.g., performance-based bonuses and

promotion prospects for the organization’s members). However, we take it

as given and focus on the dynamic training regime itself.

We assume that the principal commits ex-ante to a Markov process that

governs the evolution of the challenge level over time. The agent knows the

process and monitors it throughout its evolution. We hold fixed the average

challenge that the Markov process induces, such that this is a parameter

of the principal’s problem. Under the “fictitious principal” interpretation,

this parameter is a characteristic of the organization’s environment (similar

in spirit to the distinction between “moderate”and “high-velocity”markets

made by Eisenhardt andMartin (2000)). Under the “training program”inter-

pretation, the parameter may represent an allotted monthly amount of time

for training. The principal’s objective is to maximize the agent’s long-run

capability - defined as the lowest value it gets under the long-run distribution

induced by the principal’s Markov process and the agent’s response.
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To complete the model, we must specify the agent’s planning horizon.

We consider two extreme cases. The first case involves a myopic agent that

balances the two cost components only for the current period. This effectively

means that the agent’s adjustment process is mechanistic: when capability

is below (above) the current challenge, it goes up (down). That is, capability

always changes incrementally in the direction of the current challenge level.

The second case involves a forward-looking agent that minimizes the long-

run average cost. Unlike the first case, here the agent’s behavior is not

mechanistic: it involves dynamic optimization that takes into account the

agent’s knowledge of the “regular”stochastic evolution of future challenges

and the constraints on its own ability to adjust.3

Although the two cases require different proof methods, they share im-

portant commonalities. First, in a benchmark model with no sluggishness (in

which the agent can adopt any capability at any period), the maximal capa-

bility that the principal can implement coincides with the average challenge

level. The principal can attain this level with a constant challenge, which

elicits the same response from the agent whether it is myopic or forward-

looking. Thus, the model is trivial in the flexible-adjustment benchmark.

Second, the principal’s optimal Markov process under sluggish adjustment

exhibits similar features in the two cases. It has two states: a “rest” state

with a zero challenge level and a “high intensity” state. Some transitions

between the two states are stochastic. For instance, in the myopic case

(and for some parameter values in the forward-looking case), a high-intensity

period is followed by another one with positive probability. However, the

role of stochastic transitions is different in the two cases. In the myopic

case, it ensures that the agent’s long-run capability is insensitive to initial

conditions. In the forward-looking case, it manages the agent’s dynamic

incentives. Randomization keeps the agent “on its toes”, deterring it from

3Characterizing the optimum for an intermediately patient agent is a challenging tech-
nical problem that remains an open question.
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lowering its capability during idle periods. As we discuss in Section 4, this

effect has a subtle relation to models of auditing and inspection.

In both cases, the principal’s optimal plan sustains a long-run capabil-

ity that is considerably higher than what she could achieve in the flexible-

adjustment benchmark. In the myopic case, long-run capability is nearly

twice as large. In the forward-looking case, the factor of increase can be

arbitrarily large when the agent’s “maintenance cost” is small. Thus, our

main theoretical insight is that in the presence of sluggish adjustment, a

high-variance “regular”process that involves zero- and high-intensity phases

enhances long-run capability. Furthermore, sluggish adjustment leads to an

increase in the organization’s long-run capability. At the optimum, there

will be periods in which the agent holds idle capabilities, which may appear

wasteful to an outside observer. Nevertheless, this idleness is a feature of

sluggish organizations’optimal preparedness.4

2 The Model

We formulate our model as a principal-agent problem, in which the agent (it)

is an organization or an organizational unit. For expositional focus, through-

out Sections 2-4 we refer to the principal as a “trainer” (she) and adhere

to the literal interpretation of the trainer as an organizational leader who

wishes it to attain and maintain a high level of preparedness for unexpected

external challenges. We discuss alternative interpretations in Section 6.

The trainer commits ex-ante to a pair (P, f), where P is a discrete-time,

finite-state Markov process over some finite set of states S, and f : S → N+
is an output function that assigns a challenge level to every state s ∈ S. The
set of states S is endogenous: the trainer can choose a set of any finite size.

We denote by st and dt the state and challenge level at period t. In keeping

with the literal interpretation of the trainer, we sometimes refer to (P, f) as

4See Iliev and Welch (2013) for a complementary rationale for “optimal idleness”.
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a “training program”and to d as “training intensity”.

We impose the following constraints on (P, f). First, P is irreducible.

This ensures that it has a unique invariant distribution λP , and therefore

enables us to talk about long-run average quantities unambiguously. Second,∑
s∈S

λP (s)f(s) ≤ µ+ ε (1)

where µ ≥ 1 is an integer and ε ∈ (0, 1) can be arbitrarily close to zero. That
is, the long-run average challenge level administered by the training program

cannot exceed µ by more than a negligible amount. The approximate formu-

lation of the constraint is due to µ getting integer values.

After the trainer chooses (P, f) at period 0, the agent chooses a non-

negative integer mt ∈ {mt−1 − 1,mt−1,mt−1 + 1} at every t = 1, 2, 3, ....

The agent’s choice at period t takes place after the realization of st. We

refer to mt as the agent’s capability at time t. Let m0 ∈ N+ be the agent’s
initial capability. The restricted choice set formt reflects sluggish adaptation.

Note that the Markov process P does not condition on the agent’s history of

capability realizations. In particular, it is insensitive to the initial condition

m0. We discuss this assumption in Section 6.2.

Define

Ct = cmt +max(0, dt −mt)

where c ∈ (0, 1). This is the total cost that the agent incurs at period t. It
consists of two terms. First, cmt is the “maintenance cost”of the capability

level. Second, the gap between mt and dt (when the latter is higher) repre-

sents a “performance gap”cost that arises when the agent’s capability is lower

than the challenge it faces. Under the “training program”interpretation of

the model, the performance-gap cost captures a disutility that members of

the organization experience when failing to meet the program’s challenges

(foregone performance-based bonuses, thwarted promotion prospects, repu-

tational damage, etc.). This disutility can be part of a broader incentive
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scheme. However, unlike most of the economic literature on organization de-

sign (e.g. Bolton and Dewatripont (2005)), we take these incentives as given

and focus on the problem of designing a dynamic, stochastic challenge.

The agent faces a trade-offwhenever its current capability is not enough to

meet the current challenge: increasing capability requires higher maintenance

costs but lowers the performance gap. Our piece-wise linear cost specification

implies that moving up to the next capability rung reduces net costs by 1− c
in the current period, regardless of the agent’s current capability (as long as

it is below the current challenge). Of course, a forward-looking agent still

has to take into account that increasing m today will delay its ability to scale

it back down in response to low future challenge levels.

We consider two alternative specifications of the agent’s intertemporal

aggregation.

Myopic/mechanistic adjustment. At every period t ≥ 1, the agent chooses
mt to minimize Ct. That is, the agent is myopic: it does not take into ac-

count future costs. Because c ∈ (0, 1), this immediately implies the following
strategy for the agent:

mt =


mt−1 + 1 if dt > mt−1

mt−1 if dt = mt−1

max{0,mt−1 − 1} if dt < mt−1

(2)

That is, capability always moves in the direction of the current challenge

level. This adjustment rule is mechanistic: it does not require the agent to

know the trainer’s Markov process or to monitor the evolution of its state.

Forward-looking adjustment. The agent knows the trainer’s choice of (P, f).

At every period t, it observes the realized state st before choosing mt. The

agent’s objective is to minimize

lim
T→∞

sup
1

T

T∑
t=1

Ct (3)
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This is the long-run average cost that the agent incurs. The lim sup criterion

reflects the assumption that the agent is not only forward-looking but also

arbitrarily patient.

Under both rules of adjustment, the agent faces an extended Markov

problem, in which the state at period t is (mt−1, st). Therefore, the agent

has an optimal response that is also Markovian with respect to this extended

state space. In the myopic case, this strategy is explicitly given by (2).

We assume that the agent plays a Markovian best-response in the forward-

looking case as well. This ensures that the extended Markov process induced

by the two parties’strategies has a unique invariant distribution over (dt,mt).

Consequently, all the limit quantities we will invoke below are well-defined.

In particular, let m∗ be the lowest value that m takes beyond a suffi ciently

large t. This quantity is well-defined, independently of the initial condition

m0. We refer to m∗ as the lowest long-run capability that is induced by the

extended Markov process.

The trainer’s objective is to maximize m∗ subject to the feasibility con-

straint (1). A higher m∗ means that the system has greater preparedness -

i.e., it can consistently meet bigger actual challenges that may arise unex-

pectedly, outside the “regular”process defined by (P, f).

Comment on the feasibility constraint

Under the literal “training program”interpretation, we can regard (1) as a

hard “budget constraint”that limits the resources (hours, ammunition) that

the trainer can devote to training. We can also view µ as a parameter that

the trainer controls at a cost. Our analysis characterizes the trainer’s gross

payoff as a function of µ, and a more complete analysis would trade off this

payoff against the cost of increasing µ.

Comment on the cost function

The key assumption embodied by the cost function Ct is that if dt ≥ mt−1,

the maintenance cost saved when the agent lowersm by one unit is more than

offset by the increase in the “performance gap”cost. In the case of a myopic
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agent, this feature leads to the mechanistic adjustment rule (2) - namely,

mt always chases dt. In the case of a forward-looking agent, our analysis in

Section 4 will also make use of the piece-wise linearity of the performance-

gap cost component. We conjecture that our results will remain intact if

we replace the term max(0, dt − mt) by g(max(0, dt − mt)), where g is an

increasing, convex function satisfying g(0) = 0 and g(1) > c.

2.1 Benchmark: Completely Flexible Adjustment

Suppose the agent could choose any mt ∈ N+ at every period, regardless of
mt−1. In particular, it could always choose mt to minimize Ct. Recall that

the agent chooses mt after observing dt. Therefore, it would set mt = dt

at every t. Under this flexible-adjustment rule, the long-run average of mt

coincides with the long-run average of dt, which by assumption cannot exceed

µ (more than negligibly). Therefore, the trainer cannot do better than play

a constant strategy dt = µ at every period, such that mt = µ at every t as

well. When the agent is sluggish, this deterministic process attains the same

long-run capability of µ. The reason is that the agent will eventually reach

this capability level and stay there indefinitely. The question is whether

the trainer can outperform this benchmark with a non-degenerate Markov

process.

3 Myopic/Mechanistic Adjustment

In this section we analyze the trainer’s problem when the agent behaves

according to the myopic/mechanistic adjustment model. Proofs of all formal

results are relegated to Section 5.

Proposition 1 Assume the agent follows the strategy given by (2). Then:

(i) For any trainer strategy, the lowest long-run capability is at most 2µ− 1.
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(ii) This upper bound can be implemented by the following (P, f). The Markov

process P has two states, H and L, and a transition matrix given by

Pr(st → st+1) L H

L 0 1

H β 1− β

where β is arbitrarily close to 1. The output function is f(H) = 2µ and

f(L) = 0. In the β → 1 limit, the invariant capability distribution assigns

probability 1
2
to m = 2µ and m = 2µ− 1.

Thus, a slightly perturbed cyclic training program can dramatically in-

crease the long-run capability of a sluggish agent, relative to the flexible-

adjustment benchmark. When µ is large - corresponding to a very sluggish

agent, given that we normalized the adjustment increment to 1 - the increase

is by a factor of nearly 2.

The training regime approximately consists of alternating periods of “high

intensity” (d = 2µ) and “rest” (d = 0). After a period of high-intensity

training, there is a small chance 1 − β that the high-intensity episode will

be repeated. This stochastic perturbation ensures that the set of capabil-

ity values {2µ, 2µ − 1} is absorbing: the agent will reach it in finite time
with probability one, regardless of m0. The only role of randomness is thus

to ensure that the agent’s long-run behavior is insensitive to initial condi-

tions. Note that the long-run average intensity under the trainer’s strategy

is 2µ/(1 + β). Therefore, for every ε > 0, we can select β to be suffi ciently

close to 1 such that average intensity will not exceed µ+ ε.

The intuition for the result is that changes in m depend only on the sign

of d−m, whereas the trainer’s “budget constraint”is expressed in terms of the
average of d. The contrast between the cardinal constraint and the ordinal

adjustment rule - which itself is a consequence of the agent’s sluggishness - is

the key to our result. The most economical way to get the agent’s capability
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to go up at period t is to set dt = mt−1+1; and the most economical way to

bring it down is to set dt = 0. In the long run, since the agent’s capability

moves around in increments of one unit, m goes up and down with equal

frequencies. This explains the approximate factor 2 by which the trainer can

increase long-run capability, relative to the flexible-benchmark µ.

4 Forward-Looking Adjustment

In this section we characterize the solution to the trainer’s problem when the

agent is forward-looking. For expositional convenience, we assume µ/c is an

integer.

Proposition 2 Assume the agent evaluates cost streams by (3). Then:

(i) The lowest long-run capability is at most µ/c− 1.

(ii) This upper bound can be implemented by the following (P, f). The Markov

process P has two states, H and L, and a transition matrix given by

Pr(st → st+1) L H

L 1− α α

H β 1− β

where α = 1 if c ≥ 1
2
, β = 1 if c < 1

2
, and α/(α + β) is arbitrarily close

to c from above. The output function is f(H) = µ/c and f(L) = 0. In the

α/(α + β)→ c limit, the invariant capability distribution assigns probability

c to m = µ/c and probability 1− c to m = µ/c− 1.

When c < 1
2
, the upper bound on the agent’s lowest long-run capability

is higher than in the myopic case. Moreover, it gets arbitrarily high when

c → 0. As c gets closer to one, the highest minimal long-run capability
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approaches the flexible-agent benchmark µ.5 Note that the long-run average

intensity under the trainer’s strategy is

α

α + β
· µ
c

For every ε > 0, we can set α/(α+ β) to be suffi ciently close to c, such that

the average intensity does not exceed µ+ ε.

The Markov process that attains the upper bound is similar to the one

in Section 3. However, the reasoning behind the result is different. Because

the mechanistic agent of Section 3 responds only to the current realization

of d, the only role of randomization in that case is to ensure insensitivity

to initial conditions. In contrast, a forward-looking, patient agent responds

to the trainer’s entire continuation strategy. Randomization serves as an

incentive to keep the agent “on its toes”and deter it from lowering its level

of preparedness during periods of rest. In particular, when c < 1
2
, a rest

period is followed by another one with probability approximately equal to

(1− 2c)/(1− c). Hence, the trainer’s optimal program allows for a streak of

d = 0 realizations. When this happens, the agent does not lower its capability

below µ/c−1 because it takes into account the future loss d−m in the event

that d switches from zero to µ/c.

The trainer designs the transition probabilities such that the agent’s in-

tertemporal trade-offs lead it to be nearly indifferent between lowering its

capability and remaining at m = µ/c− 1. In contrast, the mechanistic agent
cannot be made indifferent when faced with a streak of d = 0 realizations:

it repeatedly lowers its capability. This difference enables the trainer to

achieve higher long-run capability when the agent is forward-looking, as long

as c < 1
2
.

5By requiring µ/c to be an integer, we effectively rule out the case that c is arbitrarily
close to one. In that case, the trainer would be unable to outperform the flexible-agent
benchmark of µ.
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To further elucidate why randomization is necessary, consider the fol-

lowing example, which shows that the minimal long-run capability attained

by the optimal stochastic strategy cannot be sustained by a particular de-

terministic strategy with the same long-run distribution over d. Suppose

µ = 4 while c is slightly below 4
11
. Then, the optimal training strategy of

Proposition 2 induces an invariant distribution that assigns probability 4
11

to d = 11 and probability 7
11
to d = 0. This strategy sustains a minimal

long-run capability level of m = 10.

Now consider a deterministic strategy that induces the same long-run

frequencies of d. The strategy follows an 11-period cycle consisting of four

consecutive periods of d = 11 and seven consecutive periods of d = 0. If the

agent plays m = 11 when d = 11 and m = 10 when d = 0 - as it does against

the strategy presented in Proposition 2 - the minimal long-run capability is

m = 10. Moreover, this strategy is optimal for the agent among all strategies

that induce this minimal long-run capability. However, given the predictable

evolution of d under the cyclic deterministic strategy, a forward-looking agent

can do better. Suppose that it plays the following sequence of m against the

cyclic sequence of d:

d 11 11 11 11 0 0 0 0 0 0 0

m 11 11 11 10 9 8 7 7 8 9 10

Compared with the benchmark strategy of playing m = 11 (10) against

d = 11 (0), the agent saves approximately

c · (1 + 1 + 2 + 3 + 3 + 2 + 1)− 1 ≈ 41
11

per cycle. It follows that the agent’s best-reply to the cyclic deterministic

strategy leads to a minimal long-run capability below m = 10.

This example highlights a key role of the stochasticity of the trainer’s

optimal strategy in the forward-looking case. The fact that there is always
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a chance that the agent will face a big challenge following a rest period

incentivizes the agent not to lower its capability. In contrast, the predictable

nature of the cyclic deterministic strategy allows the agent to gradually lower

its capability and gain it back by the time the big challenge arrives. In

particular, it is profitable for the agent to lower its capability already in the

final period of the high-intensity phase of the cycle, even though this involves

a costly performance gap during that period, because this is more than offset

by the cumulative maintenance-cost saving over the cycle.

A random-audit analogy

The literal “training program”interpretation of our model invites an analogy

to models of auditing or inspections. Think of dt as the audit’s intensity, such

that the “budget constraint” (1) represents limited resources for auditing.

The organization adapts its capability to the auditing regime because of

underlying incentives, which are captured by the cost function C.

The idea that optimal inspection may involve random audits is familiar in

game theory and economics: when auditing is costly, making it unpredictable

deters the agent from shirking (e.g., Lazear (2006), Eeckhout et al. (2010),

Varas et al. (2020), Solan and Zhao (2021)).

Despite this analogy, there is a crucial difference between conventional

models of auditing and the present model, where the agent’s move at period

t is taken after dt is realized. That is, the agent can condition its action on

the principal’s “auditing”choice. In a standard auditing model, this would

entirely rob audits of their potency. Indeed, in the flexible-agent benchmark

described in Section 2.1, randomizing over d is useless for the trainer. What

makes randomization valuable in our model is the element of sluggish adjust-

ment. Successive periods of shirking can magnify the agent’s failure at an

audit, and sustained effort may be required to rebuild the ability to pass it.

To use a metaphor, a restaurant chef may learn on Monday that a famous

food critic will come for dinner on Friday, yet she cannot realistically raise

the quality of her staff and recipes in this tight time frame. If she had a
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longer notice, she would have more time to ramp up quality.

What our results demonstrate is that when faced with a sluggish agent,

an “auditor” can use randomization as if she were facing a simultaneously

moving, flexible agent. However, as Propositions 1 and 2 demonstrate, this

is not an exact equivalence: the details of the optimal random “auditing”

strategy depend on the agent’s patience; and in addition, the optimal strategy

does not involve i.i.d randomization.

Basic ideas behind the proof of Proposition 2

In part (i) we actually prove something stronger than the stated result: to

attain a strictly positive minimal long-run capability, the average long-run

capability cannot exceed µ/c − 1 + c. The Markov process we construct in

part (ii) approximates this upper bound. This means that among all trainer

strategies that attain the minimal long-run capability of µ/c−1, this process
cannot be outperformed in terms of average capability.

The proof of part (i) proceeds in several steps. First, note that by playing

a constant d = µ, the trainer can attain a long-run capability of µ. Therefore,

the trainer can attain a minimal long-run capability that is at least as large

as µ. Hence, the invariant distribution over (m, d) - induced by an optimal

trainer strategy and an agent’s best-reply - satisfies Pr(m > 0) = 1.

Second, we establish a lower bound on the long-run frequency of positive

training intensity: under the invariant distribution induced by the two parties’

strategies, Pr(d > 0) ≥ c. To prove this, we consider the following possible

deviation by the agent: pick a history in which m is at its lowest long-run

value (which is positive, as we saw); move one notch below the original plan;

afterwards, proceed as if the deviation never took place. The piece-wise

linearity of the cost function enables a simple calculation of the net long-run

profit from this deviation: it saves c per period, but raises the “performance

gap”cost by one unit whenever d ≥ m under the original strategy. When the

agent is forward-looking, this deviation is unprofitable only if Pr(d ≥ m) ≥ c.

Since Pr(m > 0) = 1, we have that Pr(d > 0) ≥ Pr(d ≥ m) ≥ c.
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The third and final step of the proof shows that the long-run average

capability cannot exceed µ/c− 1 + c. If this were not true, then the average
long-run cost would exceed µ − c(1 − c). But then, using the previous step,
we obtain that the following deviation is profitable for the agent: descend all

the way to m = 0 and play m = 1(d > 0) thereafter. The upper bound on

the lowest long-run capability then immediately follows.

The proof of part (ii) begins by noting that the agent has a best-reply

to the trainer’s strategy that induces two (and therefore adjacent) long-run

values of m (this is a consequence of the fact that P has two states and that

αβ = 0). We then show that by the piecewise linearity of the agent’s cost

function and the condition on α, β, c, the two long-run capability values are

µ/c and µ/c−1. The induced long-run average capability is then µ/c−1+c.

5 Proofs

This section provides proofs of the formal results in Sections 3-4.

5.1 Proof of Proposition 1

Proof of part (i)
Consider an arbitrary strategy for the trainer. Let (mt−1, dt)t=1,2,... be a

possible sample path that results from the extended process. The long-run

frequency of every (m, d) in the sample path, denoted λ(m, d), coincides with

the probability of this pair according to the invariant distribution induced

by the two parties’strategies. Let X be the set of recurrent pairs (m, d) in

the sample path. Partition X into three classes:

X+ = {(m, d) ∈ X | d > m}
X− = {(m, d) ∈ X | d < m}
X0 = {(m, d) ∈ X | d = m}
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The proof now proceeds by a series of steps. Recall that we use the notation

d(s) as a substitute for f(s).

Step 1: λ satisfies∑
(m,d)∈X+

λ(m, d)(m+ 1) =
∑

(m,d)∈X−
λ(m, d)m (4)

Consider some period t along the sample path such that (mt, dt+1) ∈ X+.

By definition, this pair is recurrent. Therefore, mt must be visited again in

some later period. Let t′ + 1 be the earliest such period (while mt′+1 = mt,

we do not require dt′+2 = dt+1). Since (mt, dt+1) ∈ X+, ms > mt for every

s = t + 1, ..., t′. Therefore, by the definition of t′, it must be the case that

mt′ = mt + 1 and (mt′ , dt′+1) ∈ X−. In other words, since the trajectory of
m is upward at t, it must be downward at t′ by the definition of this period.

We have thus defined a one-to-one mapping from periods t for which

(mt, dt+1) ∈ X+ to periods t′ for which (mt′ , dt′+1) ∈ X−, such that mt′ =

mt + 1. It follows that

lim
T→∞

∑T
t=1 1[(mt, dt+1) ∈ X+] · (mt + 1)

T
= lim

T→∞

∑T
t=1 1[(mt, dt+1) ∈ X−] ·mt

T

we can rewrite this equation as (4), since

lim
T→∞

∑T
t=1 1[(mt, dt+1) = (m, d)]

T
= λ(m, d)

�

Step 2: The average long-run m is at most 2µ (approximately)

The long-run average of m induced by the trainer’s strategy can be written

as

E(m) =
∑

(m,d)∈X+

λ(m, d)m+
∑

(m,d)∈X−
λ(m, d)m+

∑
(m,d)∈X0

λ(m, d)m (5)
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By the feasibility constraint,∑
(m,d)∈X+

λ(m, d)d+
∑

(m,d)∈X−
λ(m, d)d+

∑
(m,d)∈X0

λ(m, d)d / µ

By definition, d ≥ m+1 for every (m, d) ∈ X+, d ≥ 0 for every (m, d) ∈ X−,
and d = m for every (m, d) ∈ X0. Therefore,∑

(m,d)∈X+

λ(m, d)(m+ 1) +
∑

(m,d)∈X−
λ(m, d) · 0 +

∑
(m,d)∈X0

λ(m, d)m / µ

This means that∑
(m,d)∈X+

λ(m, d)m ≤
∑

(m,d)∈X+

λ(m, d)(m+ 1) / µ−
∑

(m,d)∈X0

λ(m, d)m

By (4), it follows that∑
(m,d)∈X−

λ(m, d)m / µ−
∑

(m,d)∈X0

λ(m, d)m

as well. Plugging the last two inequalities in (5), we obtain

E(m) / 2µ−
∑

(m,d)∈X0

λ(m, d)m ≤ 2µ

�

Step 3: The minimal long-run m is at most 2µ− 1
Suppose the long-run distribution over d is degenerate at some d∗. Therefore,

d∗ / µ. The agent’s myopic best-reply implies that eventually, its capability

coincides with d∗. It follows that to reach a minimal long-run capability

above µ, the long-run distribution over d must assign positive probability to

at least two values. This means there are infinitely many periods t in which

dt 6= mt−1. By myopic best-replying, this precludes the possibility that the
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long-run distribution over m is degenerate. Since the long-run average of

m cannot exceed 2µ by more than an infinitesimal amount, there must be

infinitely many periods t in which mt ≤ 2µ− 1. This completes the proof of
part (i). �

Proof of part (ii)
Consider the trainer’s strategy described in part (ii) of the statement of the

result. As long as β ∈ (0, 1), the Markov process over m that is induced

by the strategy and the agent’s best-reply (given by Step 1) has a unique

invariant distribution, with m = 2µ and m = 2µ−1 being the only recurrent
capability values. The reason is that ifmt > 2µ,mt+1 = mt−1 with certainty;
if mt < 2µ − 1, there is a positive probability that there will be a streak of
realizations d = 2µ such that m will keep adjusting upward until it reaches

m = 2µ; and finally, if dt = 0 then dt+1 = 2µ for sure, which means that once

m hits 2µ and later goes down to 2µ − 1, it will return to 2µ immediately
in the next period. As the exogenous upper bound on average intensity gets

arbitrarily close to µ, β can be made arbitrarily close to one. In the β → 1

limit, the invariant distribution over m assigns probability 1
2
to each of the

values m = 2µ and m = 2µ− 1. �

5.2 Proof of Proposition 2

Proof of part (i)
Let p be the unique invariant distribution over (dt,mt) that results from the

trainer’s strategy and the agent’s best-replying strategy. (Note the different

time subscripts of d and m, compared with the proof of Proposition 1; our

different notation highlights this difference.) We abuse notation and write

p(d), p(m) and p(d | m) to represent marginal and conditional distributions
induced by p. As in the myopic-agent case, we first derive an upper bound

on the expected capability according to p, which we use to derive the upper

bound on the minimal long-run capability. Then, we show how to implement

this upper bound.
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In Section 2, we saw that the trainer can implement a minimal long-run

capability of at least µ (by playing d = µ at every period). Therefore, we

take it for granted that the minimal value of m in the support of p is at least

µ ≥ 1.

Step 1: p(d > 0) ≥ c

Consider the following deviation by the agent. Pick some period-t history

for which mt−1 ≥ 1 is at the lowest value according to p. Therefore, mt =

m ∈ {mt−1,mt−1 + 1}. At this history, the agent deviates to m′t = m − 1.
Subsequently, the agent behaves according to its original strategy as if the

deviation did not occur.

This deviating strategy induces an invariant distribution p′ such that for

every (d,m) in the support of p, p′(d,m − 1) = p(d,m). Therefore, the

deviation saves c at every period, but raises costs by one unit per period

whenever d ≥ m under the original strategy. In order for this deviation

to be unprofitable for an arbitrarily patient agent, it must be the case that

p(d ≥ m) ≥ c. Since m > 0 with probability one, p(d > 0) ≥ p(d ≥ m),

hence p(d > 0) ≥ c. �

Step 2: The expectation of m according to p is at most µ/c− 1 + c

Assume the contrary. Then, the agent’s average long-run cost exceeds

c · [µ
c
− 1 + c] = µ− c(1− c)

Now consider a deviation to the following strategy. Descend from m0 to

m = 0, and then implement the following rule: mt = 0 whenever dt = 0, and

mt = 1 whenever dt > 0. When the agent is arbitrarily patient, the average

long-run cost from this strategy is approximately

p(d = 0) · 0 + p(d > 0) · [c+
∑
d>0

p(d | d > 0)d− 1]

/ p(d > 0)(c− 1) + µ
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Since c < 1, Step 1 implies that

p(d > 0)(c− 1) + µ < µ− c(1− c)

such that the deviation is profitable, a contradiction. �

Step 3: The minimal long-run capability is at most µ/c− 1
Since µ/c is an integer, µ/c− 1 + c is not an integer. Hence, in order for the
average long-run cost to be weakly below µ/c− 1 + c, the minimal long-run

capability cannot exceed µ/c− 1.6 �

Proof of part (ii)
Consider the strategy described in the statement of part (ii). Our objective is

to show that given this strategy, there is a best-reply for the agent such that

for every suffi ciently high t, mt = µ/c whenever st = H and mt = µ/c − 1
whenever st = L.

Since the agent faces a Markovian decision problem with an extended

state space (s,m), there exists a best-reply that is Markovian with respect

to this state space. To derive such a best reply, we proceed in four steps.

Step 1: There is no best-reply in which the invariant distribution assigns
probability one to a single m.

Proof. Assume the contrary. If m < µ/c, then it is profitable for the agent

to deviate to a strategy that plays m + 1 whenever s = H and m whenever

s = L. Likewise, if m > 0, it is profitable for the agent to deviate to a

strategy that plays m whenever s = H and m− 1 whenever s = L. �

Step 2: The set of recurrent values of m (according to the unique invariant

distribution induced by the two parties’ strategies) is a set of consecutive

numbers m,m+ 1, ...,m, where m ≤ µ/c.

6The proof of this step utilizes the convenient assumption that µ/c is an integer. An
alternative proof that does not rely on this assumption is analogous to Step 3 in the proof
of Proposition 1 (i).
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Proof. The agent’s sluggishness implies that if the agent visits two non-

adjacent capabilities m and m′, then it must also visit every m′′ between

them. Therefore, if m and m′ are recurrent, so is m′′. Suppose m > µ/c.

Then, there is a profitable deviation for the agent that instructs to remain

at m− 1 whenever the original strategy instructs to switch to m. �

Step 3: There is a best-reply that induces an invariant distribution that
assigns positive probability to exactly two values of m.

Proof. Consider the invariant distribution over (d,m) induced by the trainer’s

strategy and the agent’s best-reply. By Step 1, m −m ≥ 1. If m −m = 1,

we are done. Therefore, assume m−m > 1. There are two cases to consider.

First, let α = 1 (this fits the case of c ≥ 1/2). This means that whenever
s = L, the state switches immediately to s = H in the next period. Consider

the top two values ofm in the invariant distribution, namelym andm−1. By
Step 2, m ≤ µ/c. Moreover, when s = L (at which d attains its lowest value

according to the trainer’s strategy), the agent strictly prefers m − 1 to m.
Consider some t for which mt = m (there are infinitely such periods because

m is recurrent). If st+1 = L, the agent necessarily switches to mt+1 = m− 1.
If, on the other hand, st+1 = H, we need to consider two possibilities.

• Suppose that when st+1 = H, it is not optimal for the agent to play

mt+1 = m. That is, the agent switches from mt = m to mt+1 = m− 1
for any realization of st+1. But this also means that if mt′ = m − 1
at some period t′ and st′+1 = H, it cannot be optimal for the agent to

switch to mt′+1 = m. The reason is that by revealed preference, the

agent prefers being at m− 1 to being at m when the state is H. And

since we already saw that the agent prefers being at m − 1 to being
at m when the state is L, this means that the agent will never switch

from m−1 to m, contradicting the definition of m as a recurrent state.

• Suppose that when st+1 = H, it is optimal for the agent to playmt+1 =

m. This reveals a weak preference form overm−1 when the state isH.
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Therefore, there is a best-reply for the agent that prescribes mt+1 = m

whenever the extended state (st+1,mt) is (H,m − 1) or (H,m). We
already saw that when the extended state is (L,m), the agent switches

to m − 1. Since α = 1, this means that we have constructed a best-

reply for the agent such that once it reaches m, it will only visit m and

m−1 from that period on, contradicting the assumption that there are
additional recurrent values of m.

Thus, we have ruled out the possibility that m − m > 1 when α = 1.

Now suppose β = 1 (this fits the case of c ≤ 1/2). An analogous argument
establishes that there is a best-reply for the agent that induces an invariant

distribution with only two recurrent capability values, m and m+ 1.

It follows that we can restrict attention to strategies of the agent that in-

duce an invariant distribution which assigns positive probability to precisely

two consecutive capability values, m and m− 1, where 0 < m ≤ µ/c. �

Step 4: There is a best-reply for the agent that induces an invariant distri-
bution on the capability values µ/c and µ/c− 1.
Proof. Given Step 3, it is clearly optimal for the agent to be at m when

s = H and at m− 1 when s = L. In addition, when m > µ/c (m < µ/c− 1),
the agent clearly wants to move downward (upward).

The invariant distribution of the trainer’s two-state Markov process as-

signs probability α/(α+ β) to state H and β/(α+ β) to state L. Therefore,

since the agent is arbitrarily patient, its long-run expected payoff is approx-

imately

− α

α + β
· (cm+ µ

c
−m)− β

α + β
· c(m− 1)

It is now easy to see that given that α/(α+ β) > c, this expression increases

with m, such that the optimal value of m is µ/c. The expected value of m

according to this strategy is

α

α + β
· µ
c
+

β

α + β
· (µ
c
− 1)
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which is arbitrarily close to the upper bound. �

6 Discussion

In this section we discuss the interpretation and two features of our model.

6.1 The Competitive-Environment Interpretation

In Sections 2-4, we adopted the literal interpretation of the principal as an

actual trainer. Accordingly, we interpreted the trainer’s Markov process as

a “training program”. However, recall that in the Introduction we proposed

an alternative interpretation of the principal as a fictitious entity that rep-

resents the organization’s competitive environment. From this point of view,

the Markov process is an autonomous process that generates “regular”chal-

lenges. Our results then suggest that when organizational adjustment is

sluggish, the processes that maximize the organization’s dynamic capabili-

ties are those that have high variance, fluctuating between two states of zero

and high intensity. Organizations that adapt to such environments are also

better prepared for unexpected, “irregular”challenges - certainly in compar-

ison with static environments in which challenges remain at a constant level.

It should be emphasized that this distinction arises when the organization is

sluggish; as we saw in Section 2.1, it vanishes in the flexible-adjustment case.

6.2 Conditioning on the Agent’s Past Capability

In our model, the trainer does not condition the choice of d on past realiza-

tions of m. There are several reasons for this modeling decision. To begin

with, under one interpretation (discussed in the previous sub-section), (P, f)

is an autonomous process over “states of Nature”, and allowing this process

to condition on m would be nonsensical. However, even under the literal
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interpretation of (P, f) as a training program, there are good reasons to rule

out conditioning on m.

First, in the myopic/mechanistic case, monitoring m is irrelevant because

the agent’s adjustment rule is not forward-looking and hence does not re-

spond to threats to change the evolution of d if m fails to meet some target.

Therefore, in what follows we focus on the case of a forward-looking agent.

For expositional ease, we will let ε = 0 when discussing the trainer’s “budget

constraint”(1).

Second, the trainer’s gain (in terms of her objective function) from condi-

tioning on m can only be modest. Recall that the max-min capability in the

case of forward-looking adjustment is µ/c − 1. By playing mt = 0 for every

suffi ciently large t, the agent can guarantee a long-run cost of E(d) ≤ µ, be-

cause of the trainer’s budget constraint (where E(d) is the long-run average
d). Therefore, the highest minimal capability that the trainer can hope to

sustain with a more complex policy is µ/c. This means a maximal gain of

one capability unit. This gain may be outweighed by the implicit cost of a

more complex training program that monitors m.

Finally, training programs that condition on m and attain a minimal

capability of µ/c are not credible, in the following sense. In order to incen-

tivize the agent not to deviate to a capability below µ/c, the trainer needs

to threaten the agent that such a deviation would trigger a “punishment”

phase in which d > µ/c with some probability. Impose the restriction that

the constraint (1) holds after every history. The following is an example of a

punishment phase that satisfies these properties: at every period, the trainer

plays d > µ/c with probability p < c and d = 0 with probability 1− p, such
that pd = µ. By the same methods as in the proof of part (ii) of Proposition

2, it can be shown that the agent’s best-reply to the punishment phase is

mt = 1(dt > 0). Clearly, near-zero long-run capability is a bad outcome for

our trainer. Therefore, if the trainer is interested in meeting her objective

after any history - including those that result from trembles by the agent -
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she would not want to use a strategy that relies on such punishments.

Although we demonstrated this argument for a particular punishment

strategy, the argument holds for any policy that sustains a long-run capability

of m = µ/c on the equilibrium path (and satisfies (1) after every history). It

follows that designing a Markov training policy that does not condition on

the history of m entails no loss of generality if the trainer wants to maximize

the minimal level of m both on and off the equilibrium path. This also

means that the trainer’s optimal policy in Section 4 is robust to relaxing the

assumption that the trainer commits to her policy ex-ante, whereas policies

that condition on m and implement a minimal capability above µ/c− 1 fail
this criterion.

6.3 The maxmin Criterion

In our model, the trainer’s objective is to maximize the agent’s minimal

long-run capability. Alternatively, we could use the long-run average m as

a criterion. However, this criterion is less attractive in our context because

it does not reflect the ideas of “preparedness” and “dynamic capabilities”.

In particular, the average criterion allows zero to be a recurrent value for

m, which means that the agent will sometimes be completely unprepared for

any surprise challenge.

A by-product of our analysis in Section 3 is that in the myopic case, 2µ is

an upper bound on the average long-run capability that the trainer can attain.

It can be shown that this upper bound can be approximated arbitrarily well,

but this must come at the price of arbitrarily long recurrent stretches of

m = 0 (which are compensated for by periods in which m reaches arbitrarily

high values). Obviously, such paths imply that the agent’s minimal long-run

capability is zero. By comparison, the process we constructed in Section 3

induces an average long-run capability of approximately 2µ− 1
2
and a minimal

long-run capability of 2µ− 1.
A similar diagnosis pertains to the forward-looking case (let ε = 0, for the
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sake of the argument). An upper bound on the average long-run capability

is µ/c. The reason is that if average m exceeds this value, it implies that the

agent’s average long-run cost is above µ. However, the agent can ensure an

average cost of µ by always playing m = 0, hence a long-run capability in

excess of µ/c is inconsistent with the agent’s best-replying. We believe that

as in the myopic case, this upper bound can be approximated arbitrarily well,

at the same price of long stretches of m = 0. By comparison, the process

we constructed in Section 4 induces an average long-run m of approximately

µ/c − 1 + c, and a minimal long-run m of µ/c − 1. It follows that many
combinations of the minimal and average criteria would lead to the same

result.

6.4 A “Body Building”Interpretation

Taking the literal “training program”interpretation even more literally, our

model can be read through a very different lens. Instead of an organization,

the agent in our model can be viewed as a physiological system, such as a

muscle or a cognitive function. The capability m thus stands for things like

muscle mass. The trainer engages in physical or cognitive training. The vari-

able d represents a physical or cognitive challenge, and the system adjusts

its capability m in a way that trades off the energy cost of maintaining capa-

bility against a cost of failing to meet the challenge. For illustration, when

mt represents muscle mass, cmt captures the caloric cost of maintaining it,

whereas dt − mt may represent physical damage (inflammation, torn tis-

sue) due to excessive stress that occurs when training intensity exceeds the

muscle’s capability. The system’s energy-saving motive creates an agency

problem, because the trainer does not share this motive. Note that under

this interpretation, the agent is the biological system itself, not the person

of which it is part of.

In light of this physiological interpretation, our optimal training plan

may be viewed as a stochastic variant on “periodization”training techniques
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familiar from exercise physiology. Numerous studies have documented the

success of periodization in terms of increased muscle mass and athletic per-

formance (Bompa and Buzzichelli (2018), Issurin (2010), Kiely (2012), Kiely

et al. (2019)). While the literature offers biological explanations for the

superiority of cyclical training (e.g., Issurin (2019)), our results provide a

complementary perspective, by deriving the effectiveness of stochastic peri-

odization as a logical conclusion of sluggish adaptation (resulting from ratio-

nal cost-benefit calculus) to random physical stimuli. To our knowledge, this

perspective is new: we are not aware of life-science studies that examined the

hypothesis that building and maintaining long-run physiological or neurolog-

ical capabilities involves optimizing mechanisms. This theoretical conclusion

does not require knowledge of details of the adjustment mechanism of the

system in question (although it does make use of a number of simplifying

assumptions). Therefore, it might be relevant for various biological systems

that exhibit sluggish adjustment.
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