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Abstract

A monopolist curates a database of current and historical obser-

vations for users who want to learn some parameter. “Nowcasters”

(“forecasters”) wish to learn its current (long-run) value. The mo-

nopolist chooses the size of each data type, facing constant marginal

storage cost, and a menu of contracts, consisting of a fee and access

level to each data type. The optimal menu offers full access to his-

torical data, but discriminates access to current data: either full to

all consumers or full to nowcasters and none to forecasters. Relative

to social optimum, there is too much (little) historical (current) data,

and sometimes too much total data.
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1 Introduction

Production of digital data has exploded in recent years. Data has many uses:

Consumption of textual and audio-visual content, individual-specific infor-

mation that facilitates targeted advertising, training predictive AI models,

etc. Several commentators have pointed out that the current pace of data

production may outstrip our ability to store it. To quote Davidson et al.

(2023):

“Although the Big Data revolution has enabled incredible ad-

vances in areas such as medicine, commerce, transportation, and

science, we are facing an inflection point: The ability to collect

data outstrips our ability to effectively use it and will eventually

outstrip our ability to store it.”

If data storage space is a scarce resource, then its allocation becomes an

economic problem. How much data should society keep, and which kinds

of data should it dump? How should this decision reflect the preferences of

data users? Are there incentive issues that might distort the decision? How

would a profit-maximizing owner of databases price and allocate access to

the stored data? This paper offers a simple theoretical model that addresses

this problem.

A model of data-storage management should articulate its scope by defin-

ing two aspects: (1) what the data is used for; and (2) who curates the data

and controls its access, and what is their motivation?

Regarding aspect (1), demand for data in our model originates from users’

interest in training predictive statistical models. Our data users do not seek

information about individuals; rather, they wish to learn parameters of some

predictive statistical model. Specifically, we assume that there are two types

of data users: “nowcasters”and “forecasters”. The former want to learn the

current value of a parameter, whereas the latter want to learn its long-run

value. A database consists of two random samples from two time periods:
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the present and the past. Each data point has both time-specific and idio-

syncratic, observation-specific noise components. Thus, all observations from

some time period share the same time-specific noise realization, while having

independent observation-specific noise realizations. The parameter and the

noise terms follow independent Gaussian distributions. Each user type aims

to minimize the mean squared error of the prediction he is interested in. This

objective function induces a value that each user type attaches to a sample

defined by the number of historical and current observations.

This account of user demand broadly fits real-life data usages such as

training AI models; consumer research; and macroeconomic, epidemiological

or political forecasts. Our distinction between nowcasters and forecasters

captures the idea that data users are differentiated in terms of the time

or domain specificity of their predictions. For example, a business may be

interested in data about consumer behavior for the purposes of designing a

campaign to market an existing product or designing a new product; the

former use requires short-term prediction, while the latter requires long-term

predictions. Likewise, academic researchers demand data for policy-oriented

or basic research; the former aims at precise short-term predictions, while

the latter aims at learning long-term fundamentals. Finally, an AI language

model may be trained to “understand” general texts or texts in a specific

professional domain.

As to aspect (2), data in our model is curated by a monopolistic, profit-

maximizing firm, which controls users’access to the data. Storing a data

point has a constant marginal cost. The firm chooses the total size of its

database and its composition, between current and historical data. If the

firm were perfectly informed of users’type, it would offer all users full access

to the data and charge each user his ex-ante value of the information inherent

in a sample of the given size and composition. However, our main model

assumes that users’type is their private information. Accordingly, the firm

offers a menu of data-access plans. Each plan consists of a fee as well as a
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level of access to the two parts of the database.

Our main results characterize the optimal menu. We first establish that

nowcasters are like “high”types in a standard second-degree price discrimi-

nation model: They always have a higher willingness to pay for any sample

than forecasters. However, our user typology does not satisfy a single-crossing

property: The difference between the two types’willingness to pay increases

with the size of the current sub-sample, but decreases with the size of the

historical sub-sample.

Using this characterization, we show that the optimal menu always gives

all user types full access to historical data. Nowcasters get full access to

current data as well. As to forecasters, when their fraction is above some

threshold, the optimal menu pools them with the nowcasters and offers both

types the same full-access plan. However, if their fraction is below the thresh-

old, then the optimal menu discriminates between the two types, such that

forecasters get no access to current data, in return for a lower fee.

Finally, we analyze the distortions of the database size and composition

that arise from second-degree price discrimination, relative to the socially

effi cient allocation. First, the historical sub-sample is too large and the

current sub-sample is too small. In other words, the firm dumps too much

new data and too little old data. This effect can be so large that we may

end up having more historical than current data, whereas the opposite is

always true under the social optimum. As to the total size of the database,

there is no clear-cut comparison. Using a numerical illustration, we show that

somewhat surprisingly, our firmmay end up curating a database that is larger

than its socially optimal level. In other words, one potential consequence of

relying on users’incentives to manage data access is that too little data is

dumped.
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Related literature

Computer scientists have begun addressing the data-storage challenge in the

age of big data (e.g., Milo (2019), Davidson et al. (2023)). This literature

attempts to devise effective and computationally effi cient algorithms for de-

termining which pieces of data to delete. For examples of recent attempts

to quantify the cost of training AI models (which is partly a function of

training-set size), see Guerra et al. (2023) and Cottier et al. (2024).

Within economic theory and IO, our paper is closest to the growing lit-

erature on markets for information (see a review by Bergemann and Bonatti

(2019)). The focus of this literature is on the buying and selling of personal

data, mainly for the purpose of personalized advertising and price discrimi-

nation. By contrast, our focus is on the use of statistical data for the purpose

of making general (i.e., not individual-specific) predictions. Our focus on the

data-dumping problem is also new to this literature, to our knowledge.

At a high level, our model is an example of monopolistic pricing of ex-

cludable public goods (as in Brito and Oakland (1980) and Norman (2004)).

What is new is that the public good in our model is statistical data. It

has two dimensions (historical and current data), and users’demand for the

public good originates from the informational value of statistical data, which

generates a structured violation of the single-crossing property. As an ex-

ample of a two-type monopolistic screening problem without single crossing,

our paper is also related to Siegel and Haghpanah (2025).

2 The Model

A monopolistic firm designs a dataset and controls its access to users. The

population of users has measure one. There are two types of users: “now-

casters”(denoted S) interested in short-term prediction, and “forecasters”

(denoted L) interested in long-term prediction. Let λ ∈ [0, 1] denote the

fraction of type-S users in the population.
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Let µ ∼ N(0, σ2µ) be a fixed parameter of interest. There are two time

periods, denoted 1 (“the present”) and 0 (“the past”). A database is described

by a pair of non-negative numbers (n0, n1), where nt indicates the size of a

sample consisting of observations from period t. For analytical convenience,

we allow nt to take any non-negative real value.

Each observation i = 1, ..., nt from the period-t sample is a realization

yt,i = µ+ xt + εt,i

where xt ∼ N(0, 1) and εt,i ∼ N(0, σ2ε). The variance of xt is a normalization

that entails no loss of generality. The value of xt is drawn independently for

each period t, but its value is the same for all observations that belong to

the period-t sample. The value of εt,i is drawn independently for every t, i.

Each data point in the database carries a storage cost of c > 0.

As implied by their description, the two types of users differ in what they

try to learn. After learning from whatever sample he gets access to, each

type chooses an action a ∈ R. The two types’payoff functions are:

uS(a, µ, x1) = −(a− µ− x1)2

uS(a, µ) = −(a− µ)2

The interpretation is that µ + x1 is the true current value of a variable of

interest. Nowcasters, with their short-term prediction horizon, try to learn

this value. In comparison, µ is the variable’s true long-run value. Forecasters,

with their long-term prediction horizon, try to learn this value.

Users are Bayesian expected-utility maximizers. Their willingness to pay

for access to a database given by (n0, n1) is equal to expected-utility gain that

the information in the database generates. Let VS(n0, n1) and VL(n0, n1) de-

note this willingness to pay for the two types. We will derive exact expressions

for these quantities in Section 3.

A perfect monopolist can identify user types, give them access to the
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database and charge them their willingness to pay. It is clear that users will

receive full access, because their willingness to pay is increasing in the amount

of information provided. Therefore, the perfect monopolist will choose the

database (n0, n1) to solve the following maximization problem:

max
n0,n1

{λVS(n0, n1) + (1− λ)VL(n0, n1)− c(n0 + n1)} (1)

We refer to a solution to this problem as the first-best solution, and use it as

a benchmark.

The main problem we analyze is based on the assumption that users’type

is their private information. Consequently, applying the revelation principle,

the monopolist offers a menu M of access plans mk = (qk0 , q
k
1 , p

k), where

qkt ∈ [0, nt] represents the amount access that user type k gets to the period-t

sample, and pk ≥ 0 is the fixed access fee he pays. The usual participation

and incentive constraints must hold.

Thus, our monopolist’s maximization problem is

max
n0,n1,(qk0 ,q

k
1 ,p

k)k=S,L

{λpS + (1− λ)pL − c(n0 + n1)} (2)

subject to the constraints

nt ≥ qkt ≥ 0

Vk(q
k
0 , q

k
1)− pk ≥ 0

Vk(q
k
0 , q

k
1)− pk ≥ Vk(q

−k
0 , q−k1 )− p−k

for every t = 0, 1, k = S, L (−k denotes the other user type).
The first constraint means that users get potentially partial access to the

database that the monopolist chooses to curate. The second constraint is

user type k’s participation (IR) constraint, and the third constraint is type

k’s incentive-compatibility (IC) constraint. We refer to a solution to (2) as

the second-best solution.
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The monopolist in our model chooses the size and composition of a data-

base, as well as how to price user access to the database. We regard the

first component as a “data dumping” decision. Our interpretation is that

the monopolist controls an extremely large set of data points from both time

periods. The data is prohibitively costly to store, and so the monopolist has

to decide how much data from each time period to delete.

3 Preliminary Analysis: Value of Data

In this section we derive formulas for users’willingness to pay for data access,

and highlight their key properties.

Let θk denote user type k’s target – i.e., θS = µ+ x1 and θL = µ. Each

type’s prior belief over his target is Gaussian. Since signals are Gaussian as

well, each type’s posterior belief also falls into this class. Moreover, since

a user’s optimal action is to match the mean of his Gaussian belief over

his target, it follows that his expected payoff given a Gaussian posterior

distribution is the variance of this distribution.

Therefore, a user type’s willingness to pay for (n0, n1) is equal to the

reduction in the variance of his belief over his target (i.e., the difference

between the posterior and prior variance). The prior variances over θS and

θL are σ2µ + 1 and σ2µ, respectively. Let us now calculate the variance of the

types’posterior beliefs.

From type L’s point of view, a period-t sample generates a conditionally

independent signal ȳt = θL + xt + ε̄t, where

ε̄t =
∑ εt,i

nt

is the average observational noise in the period-t sample. The variance of

the period-t signal conditional on θL is 1 + σ2ε/nt. Applying the standard

Gaussian signal extraction formula to the conditionally independent signals
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provided by the two periods’samples (a detailed derivation is relegated to a

supplementary appendix), the variance of the posterior belief of θL is

σ2µ −
σ4µ

(
2 + σ2ε

n1
+ σ2ε

n0

)
σ2µ

(
2 + σ2ε

n1
+ σ2ε

n0

)
+
(

1 + σ2ε
n1

)(
1 + σ2ε

n0

)
Let us now turn to type S. From his point of view, the two periods’

samples generate the signals ȳ1 = θS + ε̄1 and ȳ0 = θS + x0 − x1 + ε̄0, where

ε̄0 is defined as before. Note that unlike the case of type L, the error term

in ȳ0 is not independent of θS because both include x1. Again, using the

signal-extraction formula, the variance of the posterior belief of θS is

σ2µ + 1−
(σ2µ + 1)

[
(σ2µ + 1)(σ2µ + 1 + σ2ε

n0
)− σ4µ

]
+ σ4µ

σ2ε
n1(

σ2µ + 1 + σ2ε
n0

)(
σ2µ + 1 + σ2ε

n1

)
− σ4µ

From now on, let us normalize σ2ε = 1. Since we have already normalized

the variance of xt, this additional normalization may appear to carry a loss

of generality. However, note that we can regard it as a redefinition of the

unit of measurement of database size: nt is effectively measured in terms of

multiples of σ2ε . Using this normalization and simplifying the expressions for

the posterior variances of θS and θL, we obtain the following result.

Remark 1 The two user types’willingness to pay for (n0, n1) is

VL(n0, n1) =
σ4µ(n1 + n0 + 2n0n1)

σ2µ(n1 + n0 + 2n0n1) + (1 + n0)(1 + n1)
(3)

VS(n0, n1) =
σ4µ(n1 + n0 + 2n0n1) + [3σ2µn0n1 + 2σ2µn1 + n1 + n0n1]

σ2µ(n1 + n0 + 2n0n1) + (1 + n0)(1 + n1)
(4)
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While these formulas may appear unpalatable, they have simple, inter-

pretable properties that will serve us in the sequel. The following result

collects these properties.

Remark 2 The functions VL and VS satisfy the following properties:
(i) VL and VS are strictly increasing in both arguments.

(ii) VL and VS are strictly concave. In particular, ∂2Vk(n0, n1)/∂nt and

∂2Vk(n0, n1)/∂n0∂n1 are strictly negative for every type k and period t.

(iii) VL is symmetric. In contrast, for every (n0, n1), VS(x, y) > VS(y, x) if

y > x, and
∂VS(n0, n1)

∂n1
>
∂VS(n0, n1)

∂n0

(iv) VS(0, 0) = VL(0, 0) = 0, and VS(n0, n1) > VL(n0, n1) for every (n0, n1) 6=
(0, 0).

(v) For every (n0, n1),

∂VS(n0, n1)

∂n1
>
∂VL(n0, n1)

∂n1
∂VL(n0, n1)

∂n0
>
∂VS(n0, n1)

∂n0

Since the proofs involve no more than elementary investigation of the

functions up to their second derivatives, they are relegated to a supplemen-

tary appendix. However, the intuition behind the properties is important for

the subsequent analysis, and therefore we explain it here.

Parts (i) and (ii) of Remark 2 are simple consequences of VL and VS

being value-of-information functions. First, they are strictly increasing in

sample size because information always has positive marginal value in this

environment. Second, the functions are strictly concave because information

10



has diminishing marginal value in this environment: The marginal variance

reduction that an additional sample point from any period generates gets

smaller as we increase any period’s sample size.

Part (iii) articulates a difference in how the two types regard sample

points from each period. For type L, the two periods are symmetric: If

we permute n0 and n1, the sample is equally informative for this type. In

contrast, for type S, a present sample point is always more informative than a

historical sample point, because the latter has another layer of independent

noise (given by x0 − x1) relative to the former. This is unsurprising: A

nowcaster, who is trying to learn something about the present, will intuitively

prefer a current observation to a historical one.

Part (iv) means that type S is a “high” type relative to type L: His

willingness to pay for non-null samples is always strictly higher. The reason

is that the time-specific component x1 is part of what type S tries to learn,

whereas for type L it is mere additional noise. Therefore, even when the

two types get access to the same data, type S regards it as less noisy (hence

more informative) than type L. Thus, nowcasters value information more

than forecasters.

However, as part (v) articulates, this classification of the two types into

“high”and “low”does not translate to a standard single-crossing property

with respect to the natural partial ordering of pairs (n0, n1). On one hand,

both VL and VS increase in this order (by part (i) of the remark). However,

while an increase in n1 leads to an increase in the difference VS(n0, n1) −
VL(n0, n1) – as a standard single-crossing property would prescribe – an

increase in n0 leads to a decrease in VS(n0, n1)−VL(n0, n1), which goes against

the single-crossing property. The intuition is that a current sample point is

more informative for type S than for type L, given that the term x1 is part

of what type S tries to learn while it is mere noise for type L. On the other

hand, historical observations are more informative for type L, because for

him the noise level of such observations is x0 + ε, whereas for type 1 their
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noise level is x0 − x1 + ε – i.e., they have an additional noise term.

The fact that nowcasters value statistical data more than forecasters,

coupled with the two types’radically different marginal attitude to the two

kinds of statistical data, will drive our results in the next section.

4 Main Results

This section characterizes the monopolist’s optimal policy, including the size

and composition of the database, the level of access offered to each user type,

and the structure of access fees.

4.1 First-Best

As a benchmark, let us present the solution to the first-best problem (1).

Since VL and VS are strictly concave, the optimal database (n∗0, n
∗
1) is uniquely

given by first-order conditions:

(1− λ)
∂VL(n0, n1)

∂n1
+ λ

∂VS(n0, n1)

∂n1
= c (5)

(1− λ)
∂VL(n0, n1)

∂n0
+ λ

∂VS(n0, n1)

∂n0
= c

whenever n∗0, n
∗
1 > 0. Moreover, it is optimal for the firm to offer users

full access to the database, and charge each type k his willingness to pay

Vk(n
∗
0, n

∗
1) as an access fee. The following result characterizes the composition

of the optimal database.

Remark 3 The optimal database (n∗0, n
∗
1) satisfies n

∗
1 ≥ n∗0. Moreover, the

inequality is strict when n∗0 > 0.

Thus, the first-best database contains more current data points than his-

torical ones.
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4.2 Second-Best

In this section we characterize the key features of the second-best solution

and compare it to the social optimum.

Proposition 1 The second-best solution has the following properties:
(i) qS0 = qL0 = n0.

(ii) qS1 = n1, and there exists a threshold λ∗ ∈ (0, 1) such that qL1 = n1 if

λ ≤ λ∗ and qL1 = 0 otherwise.

(iii) There exists a cost level ĉ and a threshold λ̂ ∈ (λ∗, 1) such that for all

c < ĉ and λ ≥ λ̂, n0 decreases in λ, n1 increases in λ, and n1 > n0.

(iv) The access fees paid by each user type are

pL = VL(n0, q
L
1 )

pS = VS(n0, n1)− VS(n0, q
L
1 ) + VL(n0, q

L
1 )

This result highlights key features of monopolistic data dumping. First,

discrimination exhibits a “bang-bang”property. When the fraction of now-

casters in the user population is below some threshold, there is no discrimi-

nation: both types are offered full access to the data for a uniform fee that

extracts the forecasters’ entire surplus. When the fraction of nowcasters

exceeds the threshold, forecasters pay a lower in return for full access to his-

torical data and no access to current data, while nowcasters pay a premium

to get full access to all data.

In addition, the amount of data dumping is monotone in the fraction of

nowcasters but goes in opposite directions for the two kinds of data. As

λ increases, there is less dumping of current data and more dumping of

historical data. Furthermore, when λ is high enough, more current data

is stored than historical data, as in the first-best. Interestingly, for some
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parameter values, the opposite is true for a range of low λ values (e.g., when

c = 0.3, σµ = 1.2 and λ ∈ (0.25, 0.3)).

To understand the distortions that arise in the second-best solution, we

compare it the social optimum given by the first-best solution. For brevity,

we focus on the case in which the latter is interior.

Proposition 2 Let (n∗0, n
∗
1) and (n′0, n

′
1) be the first-best and second-best

databases, respectively. Suppose n∗t > 0 for both t = 0, 1. Then, n′0 > n∗0

and n′1 < n∗1.

Thus, relative to the social optimum, under a profit-maximizing monop-

olist there are “over-dumping”of current data and “under-dumping”of his-

torical data.

The proof of Proposition 2 proceeds by considering the two first-order

conditions (one with respect to n1 and another with respect to n0) of the

first-best problem. Each of these conditions can be thought of as an “iso-

marginal value”curve that traces (n0, n1) pairs which yield a marginal value

of c. If we graph these curves in R2++, where n0 and n1 are represented by the
horizontal and vertical axes, respectively, they are both downward sloping

and intersect only once at (n∗0, n
∗
1).

Suppose that the second-best solution satisfies qL1 = 0. Using the prop-

erties described in Remark 2, we first show that to the right of (n∗0, n
∗
1), the

“iso-marginal value”curve representing the first-order condition with respect

to n1 (FOCFB(n1)) lies above the curve representing FOCFB(n0). Because

the two curves intersect once, this means that to the left of (n∗0, n
∗
1), the curve

representing FOCFB(n1) lies below the curve representing FOCFB(n0). We

then show that the properties in Remark 2 imply that the iso-marginal value

curves representing the first-order condition with respect to n1 in the second-

best problem (FOCSB(n1)) can be thought of as a downward shift of the

FOCFB(n1), whereas the iso-marginal value curve representing FOCSB(n0)
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can be thought of as an upward shift of the FOCFB(n0) curve. This double

curve shifting means that the solution (which continues to be unique, because

the second-best objective function with qL1 = 0 is strictly concave) satisfies

n′0 > n∗0 and n
∗
1 > n′1. A separate argument, which also uses Remark 2, shows

that the same conclusion holds when qL1 = n1.

Finally, let us turn to the total second-best database size n∗0 + n∗1. One

might expect that the cost of screening user types will lead to an effi ciency

loss in the form of data under-storage. It turns out that this is not the case:

The comparison between the first-best and second-best total database size

is not clear-cut. For instance, the following figure shows how n∗0 + n∗1 varies

with λ, for the parameter values c = 0.1 and σ2µ = 2:

This is not an isolated pattern; it arises under several configurations of (c, σ2µ).

The reason over-storage of data may arise in the second-best problem

is that to compensate for type L’s lack of access to current data, the firm

inflates the historical database. This increase may be so big that it outweighs

the reduction in the size of the current database. Thus, although incentive

constraints dissipate the value of available data for some users (specifically,
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the forecasters who are interested in long-run predictions), the monopolist’s

reaction to this effect can result in too little data dumping relative to the

social optimum.

Comment on the model’s temporal interpretation

Throughout the exposition, we have interpreted n0 and n1 as “old” and

“current”data. If we think of the interaction between the monopolist and

users as a one-off event, this interpretation is airtight. However, perhaps

a more realistic interpretation would be that the monopolist is a long-run

player interacting with a sequence of generations of short-lived users of both

types. At every time period t, there is an arbitrarily large inflow of new

datapoints, and the monopolist decides how many of them to curate in the

“current”database as well as how many of the previously stored datapoints

to dump. Datapoints that are more than two-periods old are eliminated

automatically.

Under this “Markovian”interpretation, “current”data at a time period

t becomes “old”data at time period t + 1. This means that n0 can never

exceed n1. While this property holds anyway under the first-best solution,

we saw that it can be violated under the second-best solution. Therefore, if

we want our model to be consistent with the Markovian interpretation, we

should add the constraint n0 ≤ n1.

Of course, as we noted in the Introduction, our model has an alterna-

tive, non-temporal interpretation, according to which n1 and n0 represent

databases that belong to narrow and broad domains, respectively. This in-

terpretation does not pose the problem discussed here.
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Appendix I: Proofs

Remark 3

Suppose n∗0 > n∗1. Suppose the firm deviates to (n′0, n
′
1) such that n

′
0 = n∗1 and

n′1 = n∗0. By Remark 2(iii), VL(n′0, n
′
1) = VL(n∗0, n

∗
1), whereas VS(n′0, n

′
1) >

VS(n∗0, n
∗
1). Obviously, c(n

′
0 + n′1) = c(n∗0 + n∗1). Therefore, the deviation

increases the value of the objective function given by (1).

Now suppose n∗0 = n∗1 > 0. Then, the optimum is given by (5). By

Remark 2(iii),

∂VL(n∗0, n
∗
1)

∂n1
=
∂VL(n∗0, n

∗
1)

∂n0
∂VS(n∗0, n

∗
1)

∂n1
>
∂VS(n∗0, n

∗
1)

∂n0

contradicting (5). �

Proposition 1

The proof proceeds by a series of claims about solutions to the second-best

problem. Some of these claims are devoted to establishing which constraints

are binding. Since VS − VL is not increasing in (q0, q1), we cannot invoke

standard arguments toward this end.1

Claim 1. ICS binds, whereas IRS holds with slack whenever qL 6= (0, 0).

Proof. By ICS and part (iv) of Remark , we have:

VS(qS0 , q
S
1 )− pS ≥ VS(qL0 , q

L
1 )− pL ≥ VL(qL0 , q

L
1 )− pL ≥ 0

where the last inequality follows from IRL. When qL = (0, 0), ICS coincides

with IRS. If it does not bind, then the monopolist can slightly raise pS

1We are also unable to apply recent tools introduced by Haghpanah and Siegel (2025),
because users’object of consumption q is not uni-dimensional.
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without violating any of the constraints (it only relaxes ICL, and IRS has

slack). When qL 6= (0, 0), the second inequality is strict, which implies that

IRS holds with slack. Here, too, if ICS does not bind, then the monopolist

can slightly raise pS without violating any of the constraints (it only relaxes

ICL, and IRS has slack), contradicting optimality. �

Claim 2. ICL holds with slack when qS 6= qL.

Proof. Suppose qL = (0, 0). Then, as we saw in the proof of Claim 1, ICS
binds and coincides with IRS, and IRL binds. By part (iv) of Remark 2,

VS
(
qS
)
> VL

(
qL
)
. Therefore, ICL holds with slack.

Now suppose qL 6= (0, 0), such that IRS holds with slack, by Claim 1.

Define

∆ (q0, q1) = VS (q0, q1)− VL (q0, q1)

This is the difference between the two types’willingness to pay. By part (iv)

of Remark 2, ∆ (q0, q1) ≥ 0 (strictly so when q 6= 0). Suppose that qS 6= qL

and yet ICL binds. Then, ∆(qS0 , q
S
1 ) = ∆(qL0 , q

L
1 ). By part (v) of Remark

2, ∆ (q0, q1) decreases in q0 and increases in q1. Therefore, it cannot be the

case that either
(
qS0 ≥ qL0 ∧ qS1 ≤ qL1

)
(with at least one strict inequality), or(

qS0 ≤ qL0 ∧ qS1 ≥ qL1
)
(with at least one strict inequality).

Suppose
(
qS0 ≥ qL0 ∧ qS1 ≥ qL1

)
(with at least one strict inequality). W.l.o.g,

assume qS0 > qL0 . Since this means that q
L
0 < n0, there exist ε, δ > 0 suffi -

ciently close to zero such that qL0 + ε < n0, VL(qL0 + ε, qL1 )−
(
pL + δ

)
≥ 0 and

vS(qS0 , q
S
1 )−

(
pS + δ

)
≥ 0 (because IRS originally holds with slack). But this

means that the monopolist can raise both prices without increasing its costs

and without violating any of the constraints, a contradiction.

Suppose
(
qS0 ≤ qL0 ∧ qS1 ≤ qL1

)
(with at least one strict inequality). Since

VS increases in both of its arguments, VS(qS0 , q
S
1 ) < VS(qL0 , q

L
1 ), and by ICS,

pS < pL. Hence, the monopolist can remove the contract
(
qS0 , q

S
1 , p

S
)
from the

menu, which raises revenues without affecting costs and without violating any

of the constraints (IRL is unaffected, IRS holds since IRL holds and there
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are no incentive constraints because the menu is a singleton). �

Claim 3. qSt = nt for every t = 0, 1.

Proof. Suppose qL = (0, 0). Then, type L is effectively excluded; ICS
coincides with IRS, such that the monopolist acts as if it only faces type S.

In this case, it is clearly optimal to set qSt = nt for every t.

Suppose now qL 6= (0, 0) and yet qSt < nt for some t ∈ {0, 1}. Then,
since VS is continuous and increases in both of its arguments, and since ICL
holds with slack, there exist ε, δ > 0 suffi ciently close to zero such that

qSi + ε < n0 and

VS(qSi + ε, qS−i)− VS(qSi , q
S
−i) > δ

VL(qL0 , q
L
1 )− pL > VL(qSi + ε, qS−i)−

(
pS + δ

)
This means that if the monopolist replaces the contract

(
qSi , q

S
−i, p

S
)
with(

qSi + ε, qS−i, p
S + δ

)
, then type S will prefer

(
qSi + ε, qS−i, p

S + δ
)
to (qL0 , q

L
1 , p

L)

but not type L (i.e., ICS and ICL both hold). The new S contract satis-

fies IRS (because of our choice of (ε, δ) and because the original contract

(qL0 , q
L
1 , p

L) satisfied IRS with slack). But then the new menu increases rev-

enues without affecting costs, a contradiction. �

Claim 4. IRL binds.

Proof. If qS = qL, then qSi = qLi = ni, implying that the monopolist does

not discriminate between types. Hence, it is optimal for it to set a uniform

access fee that is equal to VL (n0, n1) .

Suppose next that qS 6= qL and yet IRL holds with slack. Then, the

monopolist can raise pL by a suffi ciently small ε > 0 so as to still preserve

IRL and ICL that held with slack. Since pL increases without changing type

L’s data access, this only relaxes ICS and raises profits, a contradiction. �

Claim 5. qL0 = qS0 = n0.
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Proof. By Claims 1-4, we can use the binding constraints to substitute for
the access fees:

pL = VL(qL0 , q
L
1 )

pS = VL(qL0 , q
L
1 ) + VS(n0, n1)− VS(qL0 , q

L
1 )

and rewrite the monopolist’s relaxed problem as follows:

max
(n0,n1,qL0 ,qL1 )

[
λVS (n0, n1) + (1− λ)VL(qL0 , q

L
1 )− c(n0 + n1)− λ∆(qL0 , q

L
1 )
]
(6)

subject to qLi ∈ [0, ni]. Suppose qL0 < n0. Since raising qL0 increases VL and

decreases ∆(qL0 , q
L
1 ), raising qL0 to n0 improves the objective function, a con-

tradiction. �

Claim 6. ∃λ∗ ∈ (0, 1) , such that qL1 = n1 if λ ≤ λ∗ and qL1 = 0 otherwise.

Proof. From (3) and (4), it follows that

∂VL(qL0 , q
L
1 )/∂qL1

∂VS(qL0 , q
L
1 )/∂qL1

= σ4µ

(
n0 + 1

n0 + 1 + σ2µ(2n0 + 1)

)2
This ratio is independent of n1. As a result, there exists λ∗ such that the

derivative of the objective function in the relaxed problem (7) is positive for

λ < λ∗ and negative for λ > λ∗. This means that the optimal solution for qL1
is extreme: qL1 = n1 for λ < λ∗, and qL1 = 0 for λ > λ∗. �

Claim 7. When qL1 = 0, the relaxed objective function is strictly concave.

Proof. Since ∆(n0, 0) = 0, when qL1 = 0 the relaxed objective function is:

(1− λ)VL(n0, 0) + λVS(n0, n1)− cn0 − cn1 (7)

By Remark 2, VL and VS are concave, hence a convex combination of them

is also concave. �
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Claim 8. ∃ĉ > 0 and ∃λ̂ ∈ (0, 1) such that for all c < ĉ and λ ≥ λ̂: n0
decreases in λ, n1 increases in λ, and n1 > n0.

Proof. Clearly, if c is high enough, it is optimal not to store any data. For
c small enough and for λ > λ∗ (where λ∗ is as defined in the proof of Claim

6), there are positive (n0, n1, q
L
1 ) that solve the monopolist’s problem. By

Claim 7, this solution is unique and given by the solution to the first-order

conditions,

λ
∂VS(n0, n1)

∂n1
= c

(1− λ)
∂VL(n0, 0)

∂n0
+ λ

∂VS(n0, n1)

∂n0
= c

which by (3) and (4) are given by

λ
(
n0 + σ2µ + 2n0σ

2
µ + 1

)2(
n0 + n1 + n0σ2µ + n1σ2µ + n0n1 + 2n0n1σ2µ + 1

)2 = c (8)

and

λσ4µ(
n0 + n1 + n0σ2µ + n1σ2µ + n0n1 + 2n0n1σ2µ + 1

)2 +
(1− λ)σ4µ(

n0σ2µ + n0 + 1
)2 = c

(9)

From these equations it follows that

n1 =

√
λ

c
−

n0 + n0σ
2
µ + 1

n0 + σ2µ + 2n0σ2µ + 1
(10)

Differentiating the R.H.S. w.r.t n0, we can see that as n0 decreases, n1 in-

creases. Thus, if n0 decreases when λ increases, then whenever n1 > n0 for

some (λ, σµ, c) , this continues to be true for λ′ > λ.
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We now show that indeed, n0 decreases in λ. Plugging equation (10) into

equation (9) and rearranging yields

(1− λ)
σ4µ(

n0σ2µ + n0 + 1
)2 + c

σ4µ(
n0 + σ2µ + 2n0σ2µ + 1

)2 = c

Note that the L.H.S. of this equation decreases in λ and also decreases in n0.

Hence, for (λ, σµ, c) such that λ > λ∗, if λ increases, n0 decreases and so n1
increases. Therefore, if n1 > n0 at some λ > λ∗, this continues to hold for

λ′ > λ.

Finally, note that when λ = 1, the monopolist’s problem reduces to

max
n0,n1

[λVS(n0, n1)− c(n0 + n1)]

Since the objective function is strictly concave, there is a threshold cost c̄

such that for all c < c̄, there is a unique interior solution given by the solution

to the first-order conditions:

λ
∂

∂n1
VS(n0, n1) = λ

∂

∂n0
VS(n0, n1) = c

By properties (ii) and (iii) of Remark 2, the solution satisfies n1 > n0. By

continuity, there exists ε > 0 such that for all λ ∈ (1 − ε, 1], the solution(
n′0, n

′
1, q

L
1

)
to the monopolist’s problem will also satisfy n′1 > n′0. �

Proposition 2.

Throughout this proof, we take it as given that the first-best and second-best

databases are strictly positive.

Let f1 (n0;x) be a function that maps each value of n0 to a value of n1
that solves the equation,

(1− λ)
∂VL(n0, n1)

∂n1
+ λ

∂VS(n0, n1)

∂n1
= x (11)
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Likewise, let f0 (n0; y) be a function that maps each value of n0 to a value of

n1 that solves the equation,

(1− λ)
∂VL(n0, n1)

∂n0
+ λ

∂VS(n0, n1)

∂n0
= y (12)

The L.H.S. of equations (11) and (12) are the derivatives of the first-best

objective function (1) w.r.t n1 and n0, respectively.

By part (ii) of Remark 2, f0 (n0;x) and f1 (n0; y) are both decreasing

in n0 for every x and y, and there is a unique pair (n∗0, n
∗
1) (the unique

solution to the first-best problem, which is interior by assumption) satisfying

n∗1 = f1 (n∗0; c) = f0 (n∗0; c) . We claim that f1 (n0; c) < f0 (n0; c) for n0 < n∗0

and f1 (n∗0; c) > f0 (n∗0; c) for n0 > n∗0.

To see why, recall that n∗1 > n∗0 for all λ > 0. By part (iii) of Remark 2,

for n0 = n1 = a satisfying a = f1 (a; c) we have a = f0 (a; c′) for some c′ < c.

Hence, by part (ii) of Remark 2, f0 (a; c) < a. Since there is a unique solution

to f1 (n∗0; c) = f0 (n∗0; c) , it follows that f1 (n0; c) > f0 (n0; c) for n0 > n∗0 while

f1 (n0; c) < f0 (n0; c) for n0 < n∗0.

It will be useful to visualize f0 (n0;x) and f1 (n0; y) as downward-sloping

“iso-marginal value”curves in the space R2+, where the horizontal and vertical
axes represent n0 and n1, respectively. We have thus established that the

curve that represents f1 (n0; c) intersects the curve that represents f0 (n0; c)

from below at a single point (n∗0, n
∗
1).

We now argue that this observation implies that the second-best database

(n′0, n
′
1) satisfies n

′
0 > n∗0 and n

′
1 < n∗1 when the second-best solution satisfies

qL1 = 0. To see this, let g1(n0;x) and g0(n0; y) be the functions that map each

value of n0 to the values of n1 that solve the equations

λ
∂VS(n0, n1)

∂n1
= x (13)
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and

(1− λ)
∂VL(n0, 0)

∂n0
+ λ

∂VS(n0, n1)

∂n0
= y (14)

respectively. The L.H.S. of equations (13) and (14) are the derivatives of

the relaxed second-best objective function (7) w.r.t n1 and n0, respectively.

By part (ii) of Remark 2, both g1(n0;x) and g0(n0; y) are decreasing in

n0. Thus, both are represented by downward-sloping “iso-marginal value”

curves in the same R2++ space we used to represent f0 (n0;x) and f1 (n0; y).

By Claim 7 in the proof of Proposition 1, there exists a unique (n′0, n
′
1)

satisfying n′1 = g1(n
′
0; c) = g0(n

′
0; c). We will now show that n′0 > n∗0 and

n′1 < n∗1 when q
L
1 = 0.

For any (n0, n1), the L.H.S. of (13) is lower than the L.H.S. of (11). By

part (ii) of Remark 2, ∂
∂n1

∂VS(n0, n1) is decreasing in n1. Therefore, the

iso-marginal value curve that represents g1(n0;x) lies below the curve that

represents f1(n0;x). In a similar vein, part (ii) of Remark 2 implies that
∂
∂n0

VL(n0, n1) < ∂
∂n0

VL(n0, 0), such that the L.H.S. of (14) is higher than

the L.H.S. of (12). Since ∂
∂n1

∂VS(n0, n1) is decreasing in n1, it follows that

the iso-marginal value curve that represents g0(n0;x) lies above the curve

that represents f0(n0;x). As a result of the directions in which the curves

that represent g1(n0;x) and g0(n0; y) are shifted relative to the curves that

represent f1(n0;x) and f0(n0; y), the unique intersection (n′0, n
′
1) of the curves

that represent g1(n0; c) and g0(n0; c) satisfies n′0 > n∗0 and n
∗
1 > n′1.

We next show that n′0 > n∗0 and n′1 < n∗1 also when qL1 = n1. Recall

that in this case, the monopolist offers a single contract (n′0, n
′
1, p), where

p = VL (n′0, n
′
1) . Therefore, since VL is strictly concave, (n′0, n

′
1) solve

∂VL
∂n0

(n′0, n
′
1) =

∂VL
∂n1

(n′0, n
′
1) = c (15)

By the symmetry of VL, n′0 = n′1 = b. We claim that n∗0 < b < n∗1. To see

why, assume first that b ≥ n∗1 (which implies that b > n∗0 since n
∗
1 > n∗0).
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Then,

c = (1− λ)
∂VL(n∗0, n

∗
1)

∂n1
+ λ

∂VS(n∗0, n
∗
1)

∂n1
>
∂VL(n∗0, n

∗
1)

∂n1
>
∂VL(b, b)

∂n1

where the first and second inequalities follow from parts (v) and (ii), re-

spectively, of Remark 2. But the above inequality violates equation (15), a

contradiction.

Next, assume b ≤ n∗0 (and hence, b < n∗1). Then again by Remark 2,

c = (1− λ)
∂VL(n∗0, n

∗
1)

∂n0
+ λ

∂VS(n∗0, n
∗
1)

∂n0
<
∂VL(n∗0, n

∗
1)

∂n0
<
∂VL(b, b)

∂n0

violating equation (15). �

Appendix II: Omitted Derivations

Derivation of Posterior Variances in Section 3

Recall the following independent Gaussian variables: µ ∼ N(0, σ2µ), xt ∼
N(0, 1) and εt,i ∼ N(0, σ2ε), where t = 0, 1 and i ∈ {1, ..., nt}. Also recall
that an observation i from the the period t sample is a realization yt,i =

µ+xt + εt,i, and that types S and L are interested in forecasting θS = µ+x1

and θL = µ, respectively. The prior variances over θS and θL are σ2µ + 1 and

σ2µ, respectively.

From type L’s point of view, a period-t sample generates a conditionally

independent signal ȳt = θL + xt + ε̄t, where ε̄t is the average observational

noise in the period-t sample. The variance of the period-t signal conditional

on θL is 1+σ2ε/nt. From S’s point of view, the two periods’samples generate

the signals ȳ1 = θS + ε̄1 and ȳ0 = θS + x0 − x1 + ε̄0. We now calculate the

variance of the types’posterior beliefs.

For c ∈ {0, 1}, we have the following joint normal distribution (where
c = 0 gives us the joint distribution with µ as the first variable and c = 1
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gives us the joint distribution with µ+ x1 as the first variable).µ+ cx1

ȳ0

ȳ1

 ∼ N


0

0

0

 ,

σ
2
µ + c σ2µ + c σ2µ

σ2µ + c σ2µ + 1 + σ2ε
n0

σ2µ

σ2µ σ2µ σ2µ + 1 + σ2ε
n1


 .

Denote

A :=

(
σ2µ + 1 + σ2ε

n0
, σ2µ

σ2µ, σ
2
µ + 1 + σ2ε

n1

)
Then

det(A) = (σ2µ + 1 +
σ2ε
n0

)(σ2µ + 1 +
σ2ε
n1

)− σ4µ (16)

= σ2µ(2 +
σ2ε
n0

+
σ2ε
n1

) + (1 +
σ2ε
n0

)(1 +
σ2ε
n1

)

and

A−1 =
1

det(A)

(
σ2µ + 1 + σ2ε

n1
,−σ2µ

−σ2µ, σ2µ + 1 + σ2ε
n0

)
(17)

Therefore,

V ar(µ+ cx1|ȳ0, ȳ1) = σ2µ + c−
(
σ2µ + c, σ2µ

)
A−1

(
σ2µ + c

σ2µ

)

Plugging (17) into this expression yields that V ar(µ+ cx1|ȳ0, ȳ1) reduces to

−
[(σ2µ + 1 + σ2ε

n1
)c+ σ2µ(1 + σ2ε

n1
)](σ2µ + c) + [−cσ2µ + σ2µ(1 + σ2ε

n0
)]σ2µ

det(A)
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When c = 0 we have

V ar(µ|ȳ0, ȳ1) = σ2µ −
σ4µ

(
2 + σ2ε

n1
+ σ2ε

n0

)
σ2µ

(
2 + σ2ε

n1
+ σ2ε

n0

)
+
(

1 + σ2ε
n1

)(
1 + σ2ε

n0

)
When c = 1 we have

V ar(µ+ x1|s1, s2) = σ2µ + 1−
(σ2µ + 1)

[
(σ2µ + 1)(σ2µ + 1 + σ2ε

n0
)− σ4µ

]
+ σ4µ

σ2ε
n1(

σ2µ + 1 + σ2ε
n0

)(
σ2µ + 1 + σ2ε

n1

)
− σ4µ

Proof of Remark 2.

Proof of (i). This follows from noting that

∂

∂n0
VL(n0, n1) =

σ4µ (n1 + 1)2(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)2 > 0

(18)

∂

∂n1
VL(n0, n1) =

σ4µ (n0 + 1)2(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)2 > 0

(19)

∂

∂n0
VS(n0, n1) =

σ4(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)2 > 0

(20)

∂

∂n1
VS(n0, n1) =

(
n0 + σ2µ + 2σ2µn0 + 1

)2(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)2 > 0

(21)
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Proof of (ii). We begin by verifying that VL(n0, n1) is strictly concave. Its

Hessian matrix is given by

∂2

∂(n0)
2VL(n0, n1) VL(n0, n1)

∂2

∂n1∂n0
VL(n0, n1)

∂2

∂(n1)
2VL(n0, n1)

The expressions for the terms in each cell are as follows:

∂2

∂ (n0)
2VL(n0, n1) =

−2σ4µ (n1 + 1)2
(
n1 + σ2µ + 2σ2µn1 + 1

)(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)3
∂

∂n0∂n1
VL(n0, n1) =

−2σ6µ (n0 + 1) (n1 + 1)(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)3
∂

∂n1
VL(n0, n1) =

σ4µ (n0 + 1)2(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)2
∂2

∂ (n1)
2VL(n0, n1) =

−2σ4µ (n0 + 1)2
(
n0 + σ2µ + 2σ2µn0 + 1

)(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)3
The function VL(n0, n1) is strictly concave if its Hessian matrix is negative

definite. To see that this is true, note first that the first principal minor

is negative: ∂2

∂(n0)
2VL(n0, n1) < 0. Second, note that the determinant of the

Hessian matrix is positive:
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∂2

∂ (n0)
2VL(n0, n1) ·

∂2

∂ (n1)
2VL(n0, n1)−

(
∂2

∂n1∂n0
VL(n0, n1)

)2
=

−2σ4µ (n1 + 1)2
(
n1 + σ2µ + 2σ2µn1 + 1

)(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)3
·

−2σ4µ (n0 + 1)2
(
n0 + σ2µ + 2σ2µn0 + 1

)(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)3
−
(

−2σ6µ (n0 + 1) (n1 + 1)(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)3
)2

=
4σ8µ (n0 + 1)2 (n1 + 1)2

(
n1 + σ2µ + 2σ2µn1 + 1

) (
n0 + σ2µ + 2σ2µn0 + 1

)
− 4σ12µ (n0 + 1)2 (n1 + 1)2(

n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1
)6

=
4σ8µ (n0 + 1)2 (n1 + 1)2

((
n1 + σ2µ + 2σ2µn1 + 1

) (
n0 + σ2µ + 2σ2µn0 + 1

)
− σ4µ

)(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)6
> 0

We next turn to verifying that VS(n0, n1) is strictly concave. Its Hessian

matrix is
∂2

∂(n0)
2VS(n0, n1) VS(n0, n1)

∂2

∂n1∂n0
VS(n0, n1)

∂2

∂(n1)
2VS(n0, n1)

The expressions for the terms in each cell are as follows:
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∂2

∂ (n0)
2VS(n0, n1) =

−2σ4µ
(
n1 + σ2µ + 2σ2µn1 + 1

)(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)3
∂

∂n0∂n1
VS(n0, n1) =

−2σ4µ
(
n0 + σ2µ + 2σ2µn0 + 1

)(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)3
∂

∂n1
VS(n0, n1) =

(
n0 + σ2µ + 2σ2µn0 + 1

)2(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)2
∂2

∂ (n1)
2VS(n0, n1) =

−2
(
n0 + σ2µ + 2σ2µn0 + 1

)3(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)3
VS(n0, n1) is strictly concave since the first principal minor is negative: ∂2

∂(n0)
2VS(n0, n1) <

0, and the determinant of the Hessian matrix is positive:

∂2

∂ (n0)
2VS(n0, n1) ·

∂2

∂ (n1)
2VS(n0, n1)−

(
∂2

∂n1∂n0
VS(n0, n1)

)2
=

(
−2σ4µ

(
n1 + σ2µ + 2σ2µn1 + 1

)(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)3
)

·
(

−2
(
n0 + σ2µ + 2σ2µn0 + 1

)3(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)3
)

−
(

−2σ4µ
(
n0 + σ2µ + 2σ2µn0 + 1

)(
n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1

)3
)2

=
4σ8µ

(
n0 + σ2µ + 2σ2µn0 + 1

)2 [(
n1 + σ2µ + 2σ2µn1 + 1

) (
n0 + σ2µ + 2σ2µn0 + 1

)
− 1
](

n0 + n1 + n0n1 + σ2µn0 + σ2µn1 + 2σ2µn0n1 + 1
)6

> 0
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Proof of (iii). From inspection of (3) it is easy to see that VL(x, y) =

VL(y, x). To see that VS(x, y) > VS(y, x) for y > x, note that

VS(x, y)− VS(y, x) =
(y − x)

(
2σ2µ + 1

)
σ2µ(y + x+ 2xy) + (1 + x)(1 + y)

> 0

The observation that ∂VS(n0,n1)
∂n1

> ∂VS(n0,n1)
∂n0

follows from comparing equation

(20) to equation (21).

Proof of (iv). Follows immediately from equations (3) and (4).

Proof of (v). Follows immediately from equations (18)-(21).
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