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Abstract

We study the extent to which contemporaneous correlations across actions affect an

agent’s preferences over the different strategies in exploration problems. We show that

such correlations carry no economic content and do not affect the agent’s preferences and,

in particular, her optimal strategy. We argue that for similar reasons there is an inherent

partial identification of the beliefs in exploration problems. Nevertheless, even under the

partial identification, we show there are meaningful behavioral restrictions allowing the

modeler to test whether the agent is acting according to some Bayesian model.
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1 Introduction

Exploration models capture a common trade off between an immediate payoff and new information, which

can potentially impact future decisions and payoffs.1 In such models an agent has to choose, every period,

one project out of several in which to invest. By observing the outcome of an investment, the agent learns

both about the chosen project and, in case the outcomes across different projects are correlated, about other

projects as well. Each decision is predicated on the tradeoff between the immediate value of the investment

and the future value of the information obtained by observing the outcome. Therefore, the agent’s optimal

investment strategy is a function of the history of observed outcomes, the projects that will be feasible in

the future, and her beliefs over the true joint distribution of the outcomes of each project. While it is the

correlation between projects that allows the agent to extrapolate her observations to future outcomes of the

different projects, we show in this paper that contemporaneous correlations (i.e., the likelihood of an outcome

of project a in a period given the outcome of project b in the same period) carry no economic content in such

exploration problems. In other words, when solving an exploration problem, contemporaneous correlations

can be ignored without changing the set of optimal strategies.

Consider, for example, a scenario in which our agent has to invest each period in one of two projects. The

outcome of each project depends on the state of the economy, which could be either high or low with equal

probabilities, independently across periods. In case the state is high, both projects yield high outcomes,

and if the state is low, low outcomes. In particular, the projects are (fully) correlated. Note, each project

yields high and low outcomes with equal probabilities. Alternatively, consider another scenario in which

the projects are independent (that is, the outcomes do not depend on the state of the economy) and both

yield each outcome with equal probabilities. Since the agent needs to commit to exactly one project in

each period, her investment strategy will depend on the marginal probabilities of each project. Thus, her

investment strategy will be the same in these two scenarios. Putting differently, only the process of marginal

distributions affect the optimal investment strategy; we need not worry about the effects of contemporaneous

correlations on the optimal strategy.

This example is stylized; the specified projects are fully correlated and there is no learning (that is, the

agent knows exactly what is the underlying distribution governing the state of the economy). We show,

however, that the example can be generalized to any exploration problem where the outcome generating

distribution (the object which the agent is attempting to learn) is stationary.2 In particular, any such

problem can be represented as another exploration problem in which the Bayesian model dictates that

projects are not correlated, without affecting the agent’s preferences over strategies, and hence the optimal

strategy.

While this result allows an agent to simplify her decision problem, it also has a downside from the

modeler’s vantage. We show there is an inherent limitation on the type of beliefs that can be identified

by observing an agent’s preferences in such decision making environments; the general stochastic process

governing beliefs can only be partially identified. Given an agent’s preference over investment strategies

in the two scenarios discussed above, there is no behavior that would identify which of the two scenarios

1Exploration models were introduced by Robbins (1952) and have been extensively studied in the statistics literature (as
bandit problems), and widely incorporated in economic models (as search problems, stopping problems, research and devel-
opment, experimentation, portfolio design, etc). See Berry and Fristedt (1985) for an overview of classic results within the
statistics literature. For a survey of economic applications see Bergemann and Välimäki (2008).

2We believe similar issues will arise for Markovian transitions. This seems to require different tools and we expect the
characterizations to be different than in the stationary case.
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the agent has in mind. Fortunately, even under the partial identification, we show there are meaningful

behavioral restrictions allowing the modeler to test whether the agent is acting according to some Bayesian

model.

Exploration Models and Elicited Beliefs. Because in exploration environments the agent can chose only

one project in each period, her preferences over the different strategies depend only on the margins of her

beliefs. And vice versa, the agent can only reveal—through choice or preference over investment strategies—

her history dependent beliefs over each project separately. To show this, we provide a decision theoretic

model, where we introduce a new dynamic and recursive framework capturing the exploration-exploitation

tradeoffs faced by a decision maker (henceforth, DM). Our primitive is a preference relation over the different

strategies that can be implemented by an agent facing a bandit problem. In this framework we first provide

the behavioral (axiomatic) restrictions of subjective discounted expected utility maximization. The principal

observation arising from our result is that the representation pins down only the processes of marginal beliefs

of the different projects separately.

To better understand the economic relevance of this identification, we proceed with an analysis of a

statistical framework. Here we consider stochastic processes that are determined by observing the outcome

of a single project in each period, where potentially different projects are chosen across periods. We refer

to these processes as observable, in light of the fact that they are precisely the output of our decision

theoretic result. If, to the contrary, we had been able to observe the process over the joint realizations

of all experiments, then the classic exchangeability property (or symmetry, as referred to in the decision

theoretic terminology) would characterize Bayesianism. Given the limits of what can been observed, we

cannot resort directly to such classical results. We provide instead a necessary and sufficient condition,

Across-Action Symmetry (AA-SYM), for the observable processes to be consistent with an exchangeable

process over the collection of all projects. It is not surprising, we obtain only a partial identification; a

consistent exchangeable process, when it exists, need not be unique. We show however, that whenever our

condition is met, there exists an exchangeable process, consistent with the observables, wherein there is no

(contemporaneous) correlation across the different actions. Moreover, such a consistent exchangeable process

is unique.

Finally, we show AA-SYM can be written in terms of the decision theoretic primitive. Combining these

results, we conclude that the DM’s subjective joint distribution is not fully identified. Put differently, con-

temporaneous correlations across actions do not affect preferences and optimal strategies in bandit problems.

Nonetheless, capitalizing on the sufficiency of AA-SYM for the marginals to be consistent with an underlying

exchangeable model, we obtain an axiomatization for classic Bayesianism in any bandit problems.

The Decision Theoretic Model. In this framework a DM is tasked with ranking sequential and contingent

choice objects: the action taken by the agent at any stage depends on the outcomes of previous actions.

Formally, our primitive is a preference over plans of action (PoAs). Each action, a, is associated with a

set of consumption prizes the action might yield, Sa. Then, a PoA is recursively defined as a lottery over

pairs pa, fq, where a is an action and f is a mapping that specifies the continuation PoA for each possible

outcome in Sa. Theorem 2 shows that the construction of PoAs is well defined. So, a PoA specifies an

action to be taken each period that can depend on the outcome of all previously taken actions. See Figures

1 and 2, where fpxq, fpyq, fpzq are themselves PoAs. Each node in a PoA can be identified by a history of
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action-outcome realizations preceding it.

The actions in our model is in direct analogy to the arms of bandit problem (or actions in a repeated

game). PoAs correspond to the set of all (possibly mixed) strategies in these environments. Note, however,

the DM’s perception of which outcome in Sa will result form taking action a is not specified. This is subjective

and should be identified from the DM’s preferences over PoAs. As discussed above, the main question is to

what extent these beliefs can be identified and what are the economic implications of belief identification in

this framework?

a

x

y

z
loomoon

Sa

Figure 1: An action, a, and its support, Sa.
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Figure 2: A degenerate PoA, pa, fq.

Theorem 3 axiomatizes preferences over PoAs of a DM who at each history entertains a belief regarding

the outcome of future actions. That is, at each history h and for every action a, the DM entertains a belief

µh,a over the possible outcomes Sa; µh,apxq is the DM’s subjective probability that action a will yield outcome

x, contingent on having observed the history h. Given this family of beliefs, the DM acts as a subjective

discounted expected utility maximizer, valuing a PoA p, after observing h, according to a Subjective Expected

Experimentation (SEE ) representation:

Uhppq “ Ep
“

Eµh,a rupxq ` δUh1pfpxqqs
‰

, (SEE)

where h1 is the updated history (following h) when action a is taken and x is realized. All the parameters

of the model –the consumption utility over outcomes, u, the discount factor, δ, and the history dependent

subjective beliefs, tµh,auhPH,aPA– are identified uniquely.

Our setup requires a formulation of a novel axiom termed proportionality (PRP): at any given history,

the manner in which the DM evaluates continuation problems must be proportional to the manner in which

she evaluates the consumption utility. Indeed, in order to ensure that the DM is acting consistently with

a family of beliefs it must be that she assesses the value of each action according to the expectation of the

consumption utility and discounted continuation utility it induces. Furthermore, it is necessary that the

probabilistic weight she places on a given consumption utilities is the same as the weight she places on the

corresponding continuation value.

Theorem 3 shows that PRP, along with (some of the) standard behavioral conditions for discounted

expected utility, is necessary and sufficient for an SEE representation. While the axiomatization does not

point to the optimal strategy in general strategic experimentation problems, which is known to be a hard

problem to solve when actions are correlated, it provides (like most axiomatization theorems) a unifying

guidance as to what might or might not be ruled out.

The identification result accompanying the representation concerns the marginal beliefs, tµh,auhPH,aPA,

and not a stochastic process over all actions, as is the starting point in the standard approach to bandit
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problems. To be clear, this is not a limitation of the current setup any more than of bandit problems in

general: observing a single pull of an arm each period simply does not provide sufficient data to identify the

joint distribution. As such, we would like to know when the family of identified beliefs is consistent with an

underlying exchangeable process. Further, given consistency, what are the limits of identification regarding

this exchangeable model. To answer these questions we turn to the statistical model.

The Statistical Model. As above, there is a set of actions, A, each element of which, a, is associated

with the outcome space Sa. We are considering a family of processes over the outcomes of the different

actions—where each period one and only one action is observed. Let T “ pT1, T2, ...q, where Ti P tSauaPA

for every i. Let T denote the set of all such sequences. For any T in T , let ζT be a distribution over

T “ pT1, T2, ...q. We refer to these distributions as our observables; and, denoting S “
ś

aPA Sa, we assume

a distribution, ζ, over SN is not observable.

Our interest in this setup is motivated by the decision theoretic identification of tµh,auhPH,aPA. While a

process ζ over SN specifies each µh,a (as the ζ-probability that following history h, action a will yield outcome

x), it conveys strictly more information. For example, the ζ-probability that action a yields outcome x at

the same time that action b yields outcome y has no counterpart in the identified family of marginals. The

family of processes tζTuTPT , on the other hand, contains exactly the same information as tµh,auhPH,aPA. In

both models, we do not have direct access to the probability of joint realizations of different actions. We

only have access to the marginal distributions. Therefore, the exercise at hand concerns a direct translation

of the decision theoretic observables into the statistical language.

In this framework, we introduce a condition referred to as Across-Action Symmetry (AA-SYM) and

Theorem 4 shows that it is necessary and sufficient for the observables to be consistent with an exchangeable

process over the joint realizations of all actions in every period (that is, SN). Informally, AA-SYM states

that the probability of obtaining outcome x when taking action a followed by outcome y when taking action

b, is the same as the probability of obtaining outcome y when taking action b followed by outcome x when

taking action a. This is reminiscent of the symmetry (exchangeability) property, but note, in each period

the outcome space may change as different actions can be taken.

The inherent observability constraint in this framework bears a cost; the exchangeable process with

which our observables are consistent is typically not unique. Bearing in mind this generic non-uniqueness,

we introduce what we term strongly exchangeable processes –a subclass of the widely studied exchangeable

processes. We elaborate. Assume there is an underlying distribution governing the joint realization of actions

that is inter-temporally i.i.d. This distribution is not known exactly, but there exists a prior probability over

what it might be. The prior is updated every period upon the observation of the realization of actions. Due

to de Finetti (1931); Hewitt and Savage (1955), these classical Bayesian updating processes are referred to as

exchangeable. In a strongly exchangeable process, where the periodic state-space takes a product structure,

the set of possible underlying distributions are such that outcomes across actions are independent. Thus,

a strongly exchangeable process is one in which, conditional on the distributional parameter, outcomes are

both inter-temporally and contemporaneously independent.

Despite strong exchangeability having more structure than classic exchangeability, it imparts no addi-

tional restrictions in our statistical model. Theorem 6 shows that a family of observables satisfying AA-SYM

is consistent with a strongly exchangeable process, and this process is unique. We conclude, strong exchange-

ability is the full characterization of Bayesianism in our statistical framework and the lack of contemporaneous
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correlations carry no constraints beyond AA-SYM.

Finally, returning to our decision theoretic model, we show that AA-SYM can be represented as an

axiom over the primitives. Proposition 7 states that the additional axiom is both necessary and sufficient for

the beliefs of an SEE representation to follow an exchangeable processes. This, of course, implies that two

decision makers whose beliefs (as exchangeable processes) induce the same family of observable processes,

will have the same preferences over strategies in any Bandit problem. In other words, Proposition 7 implies

that contemporaneous correlations across actions do not impose any additional restrictions beyond classic

Bayesianism when analyzing bandit problems, and no behavior can identify them in such an environment.

Organization. The paper is broadly broken into the two halves outlined above; Section 2 contains the

decision theoretic framework, and Sections 3 and 4 the statistical one. Within Section 2, we first formally

introduce the environment and the construction of plans of action (Sections 2.1). Next, we provide the

axioms and representation result for an SEE structure (Sections 2.2 and 2.3). Section 3 introduces the ob-

servable processes that represent SEE belief structures. Here, we provide a statistical condition on observable

processes, AA-SYM, so that the SEE belief structure is consistent with an exchangeable process. Section 4

introduces the notion of strong exchangeability and presents our (non) uniqueness result. The translation

of AA-SYM back into decision theoretic terms is presented in Section 4.1. Section 5.1 discusses the related

literature. An informal discussion regarding how a decision theoretic model would incorporate exogenous

information appears in Section 5.2. Lastly, Section 5.3 discusses the point of disagreement among Bayesians

in environments of experimentation. All the proofs are in the Appendices.

2 The Decision Theoretic Framework

2.1 Choice Objects

Constructing Plans of Action. The purpose of the current section is to construct the different choice

objects, termed plans of action (PoAs). The primitive of our model, as presented in the subsequent section,

is a preference relation over all PoAs.

Let X be a finite set of outcomes, endowed with a metric dX . Outcomes are consumption prizes. For any

metric space, M , let KpMq denote the set non-empty compact subsets of M , endowed with the Hausdorff

metric. Likewise, for any metric space M , denote ∆BpMq as the set of Borel probability distributions over

M , endowed with the weak*-topology, and ∆pMq the subset of distributions with denumerable support.

Let A be a compact and metrizable set of actions. Each action, a, is associated with a set of outcomes,

Sa P KpXq, which is called the support of the action. We assume the map a ÞÑ Sa is continuous and

surjective. For any metric space M , let A b M “ tpa, fq|a P A, f : Sa Ñ Mu “ tpa, tpxi,miquiPIq P

A ˆ KpX ˆMq|
Ť

iPItxiu “ Sa and xi ‰ xj ,@i ‰ j P Iqu, endowed with the subspace topology inherited

from the product topology. By the continuity of a ÞÑ Sa we know that the relevant subspace is closed and

hence the topology on AbM is compact whenever M is. We can think of f as the assignment into M for

each outcome in the support of action a. For any f : X ÑM we will abuse notation and write pa, fq rather

than pa, f |Saq.

With these definitions we can define PoAs. A PoA is a tree of actions, such that each period the DM

receives a lottery (with denumerable support) over actions conditional on the outcomes for each of the

previous actions.
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We begin by constructing slightly more general objects. Set R0 “ ∆BpAq; a 0-period plan is a lottery

over actions. Given an action, an element of its support is realized and the plan is over. Then a 1-period

plan, r1, is a lottery over actions, and continuation mappings into 0-period plans: r1 P ∆BpAb P0q. Given

the realization of an action-continuation pair, pa, fq, in the support of r1, and the realized element of the

support, x P Sa, the DM receives a 0-period plan, as given by fpxq. Continuing in this fashion, we can define

recursively,

Rn “ ∆BpAbRn´1q.

Define R˚ “
ś

ně0Rn. R˚ is the set of all PoAs (including inconsistent plans and plans whose support

is arbitrary). We first restrict ourselves to the set of consistent elements of R˚: those elements such that,

the pn ´ 1q-period plan implied by the n-period plan is the same as the pn ´ 1q-period plan. To see why

this is important, consider an element, rn, of Rn. The plan rn specifies an action to be taken in period

0 and, conditional on the outcome, the plan rn´1 which itself specifies the action to be taken in the next

period and the continuation plan rn´2 for the next, etc. If we stop this process at any period m ă n,

ignoring whatever continuation plans are assigned, the output is an m period plan. Hence, each n period

plan specifies a (unique) m period plan for each m ă n. Moreover, an element r P R˚ specifies an n period

plan for each n P N. Intuitively, we would like to view each r as an infinite plan, by considering the sequence

of arbitrarily large, and expanding, finite plans. Consistency is the requirement that makes this work, that

for rn “ projnr, the first m ă n periods specify exactly rm “ projmr. Let R denote the set of all consistent

plans.3

Proposition 1. There exists a homeomorphism, λ : RÑ ∆BpAbRqq such that

margAˆKpXˆRn´1q
pλprqq “ projnr. (1)

Proof. In appendix A. �

Next we want to consider plans whose support is denumerable. It is easy enough to set P0 “ ∆pAq Ă R0,

and define recursively Pn “ ∆pAbPn´1q Ă Rn. Of course, there is a potential pitfall still lurking: for a given
ś

ně0 Pn, although each pn is a denumerable lottery, the associated element, λppq might live in ∆BpAb P q
rather than ∆pAbP q. Indeed, we need also to restrict our attention to the set of plans that have countable

support not just for each finite level, but also “in the limit,” and whose implied continuation plans are also

well behaved in such a manner. Fortunately, this can be done:4

Theorem 2. There exists maximal set P Ă R such that for each p P P , projnp P Pn, and λ is a homeomor-

phism between P and ∆pAb P q.

Proof. In appendix A. �

3Precisely specifying the m ă n period plan implied by rn requires a more cumbersome notation than we wish to introduce
in the text; for the formal definitions see Appendix A.

4One can also consider measurable lotteries (instead of lotteries with countable support). In fact, the construction of the
homeomorphism in Appendix A considers measurable lotteries. In the paper we focus on discrete support for notational
cleanliness (see footnote 6) and tractability (to avoid measurability issues in proofs). We justify our focus by noting that
∆pA b P q is dense in ∆BpA b Rq and so, given continuity (Axiom vNM), preferences over the more general objects are
recoverable.
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Notation Meaning Notes

x, y, z P X Single period consumption prizes

a P A actions associated with the support Sa
pa, fq P Ab P action-continuation pair a P A and f : Sa Ñ P

p, q P P PoA
Lottery over action-continuation
pairs

h P Hppq a history
corresponds to a unique node of
p.

Figure 3: List of notational conventions.

The set P is our primitive.5 As a final notational comment, we would like to consider a further specifica-

tion of objective plans, denoted by Σ Ă P . Σ denotes the set of plans which contain no subjective uncertainty;

in every period, every possible action yields some outcome with certainty. Recall, for each x P X there is

an associated action, ax such that Sax “ txu. Associate this set of actions with X. Then Σ0 “ ∆pXq and,

recursively, Σn “ ∆pX ˆ Σn´1q. Finally Σ “ P
Şś

ně0 Σn. That is, these plans specify only actions with

deterministic outcomes at every stage. It is straightforward to show λ takes Σ to ∆pX ˆ Σq.

Histories. PoAs are infinite trees; each node, therefore, is itself the root of a new PoA—a distribution

over action-continuation pairs. Each action-continuation, pa, fq, in the support of a node contains branches

to new nodes (PoAs). The branches emanating from an action coincide with the outcomes in the support

of that action, x P Sa. The node that follows x is the PoA specified by fpxq. Each node, therefore, is

reached after a unique history: the history specifies the realization of the distribution of each pervious node,

and outcome of the action realized. Thus, for a given PoA, p, each history of length n is an element of
śn
t“1 P ˆ rAb P s ˆX such that p1 “ p and

pat, f tq P supppptq

xt P Sat

pt`1 “ f tpxtq

Define the set of all histories of length n for p as Hpp, nq and the set of all finite histories as Hppq. Let

Hpnq “
Ť

pPP Hpp, nq and, H “
Ť

nPNHpnq. For each h P Hpp, nq, h corresponds to the node (PoA) defined

by fnpxnq. Lastly, for any p, q P P and h P Hppq define p´hq as the (unique!) element of P that coincides

with p everywhere except after h in which case fnpxnq is replaced by q. Note that the n period plan implied

p and p´hq are the same. For any p, q P P and n P N, let p´nq ”
Ť

hPHpp,nq p´hq.

Finally, for any h “ pp1, a1, f1, x1 . . . pn, an, fn, xnq and ĥ “ pp̂1, â1, f̂1, x̂1 . . . p̂n, ân, f̂n, x̂nq both in

Hpnq, we say that h and h1 are A-equivalent, denoted by h
A
„ h1 if ai “ âi and xi “ x̂i for i ď n. That

is, two histories of length n are A-equivalent, whenever they correspond to the same sequence of action-

realization pairs, ignoring the objective randomization stage of each period and the continuation assignment

5One might consider an alternative framework of “adapted processes” of Anscombe-Aumann acts (see, for example, Epstein
and Schneider (2003)), modified to our multi-action environment. In such a setup there is a distinction between exogenous states
and outcomes (of the different actions). However, in a classical exploration problem, an outcome of an action is simultaneously
an object from which the agent derives utility and from which the agent learns regarding the uncertainty underlying the
(different) action(s). Similar results to those presented here would be obtained had we adopted the framework of adapted
processes, but it seems conceptually appropriate to resort to plans of actions.
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to outcomes that did not occur. It will turn out, we are only interested in the A-equivalence classes of

histories. Technically, this is the consequence of the linearity of preference and indifference to the resolution

of uncertainty (as shown in Lemma 3); conceptually, this is because all uncertainty in the model regards the

realization of actions, and so, observing objective lotteries has no informational benefit.

2.2 The Axioms

The primitive in our model is a preference relation ěĎ P ˆP over all PoAs. When specific PoA and history

are fixed, the preferences induce history dependent preferences as follows: for any p P P , and h P Hppq define

ěhĎ P ˆ P by

q ěh r ðñ p´hq ě p´hr.

The following axioms will be employed over all history induced preferences.6 A history is null if ěh is a

trivial relation. This first four axioms are variants on the standard fare for discounted expected utility. They

guarantee the expected utility structure, non-triviality, stationarity and separability (regarding objects over

which learning cannot take place), respectively.

A1. (vNM). The binary relation, ěh satisfies the expected utility axioms. That is: weak order, continuity

(defined over the relevant topology, see Appendix A) and independence.

We require a stronger non-triviality condition that is standard, because of the subjective nature of the

dynamic problem. We need to ensure the DM believes some outcome will obtain. Therefore, not all histories

following a given action can be null.

A2. (NT). For any non-null h, and any pa, fq, not all h1 P hˆHppa, fq, nq are null.

Of course, the nature of the problem at hand precludes stationarity and separability in full generality.

Since the objective is to let the DM’s beliefs depend on prior outcomes explicitly, her preferences will as

well. However, the DM’s beliefs do not influence her assessment of objective plans (i.e., elements of Σ), and

so it is over this domain that stationarity and separability are retained. This means, the DM’s preferences

in utility terms are stationary and separable, but we still allow the conversion between actions and utils to

depend on her beliefs which change responsively.

A3. (SST). For all non-null h P H, and σ, σ1 P Σ,

σ ě σ1 ðñ σ ěh σ
1.

A4. (SEP). For all x, x1 P X, ρ, ρ1 P Σ and h P H,

`1

2
px, ρq `

1

2
px1, ρ1q

˘

„h
`1

2
px, ρ1q `

1

2
px1, ρq

˘

.

6It is via the use of this construction that our appeal to denumerably supported lotteries provides tractability. If we were
to employ lotteries with uncountable support, then histories would, in general, be zero probability events; under the expected
utility hypothesis, ěh would be null for all h P H. This could be remedied by appealing to histories as events in H, measurable
with respect to the filtration induced by previous resolutions of lottery-action-outcome tuples. We believe that this imposes a
unnecessary notational burden.

9



p

pa, gq

pa, g1q

pb, g2q

α

β

γ

x

y

gpxq

gpyq

x

y

g1pxq

g1pyq

z g2pzq

Figure 4: A PoA, p, defined by ppa, gq “ α,
ppa, g1q “ β and ppb, g2q “ γ “ 1´ α´ β.

p

pa, fq

pb, fq

α` β

γ

x

y

fpxq

fpyq

z fpzq

Figure 5: The PoA, p.f where f : X Ñ P , and p
is defined in figure 4. Notice, p.fpa, fq “ ppa, gq `
ppa, g1q “ α` β.

Because of the two-stage nature of the resolution of uncertainty each period (first, the resolution of lottery

over A b P , and then the resolution of the action over X), we need an additional separability constraint.

From the point of view of period n, and when considering the continuation problem beginning in period

n ` 1, the DM should not care if uncertainty is resolved in period n (when the action-continuation pair is

realized), or in period n`1. That is, we also assume the DM is indifferent to the timing of objective lotteries

given a fixed action.

A5. (IT). For all a P A, h P H, α P p0, 1q, and pa, fq, pa, gq P P̂ ,

αpa, fq ` p1´ αqpa, gq „h pa, αf ` p1´ αqgq,

where mixtures of f and g are taken point-wise.

Thus far the axioms introduced are somewhat standard. However, in our particular framework these

assumptions do not guarantee that the value of the action is in any way related with its realization of

consumption alternatives. This is because, unlike other environments, the set of outcomes, X, plays a dual

role in exploration models: representing both the space of outcomes and the state space regarding future

actions.

The realization of an outcome x delivers utility according to both of these roles, and, to ensure consistency

between them requires two steps. First, construct a subjective distribution over each action by treating X as

a state space. This will be done by looking at the ranking of continuation mappings for each action (i.e., pa, fq

compared to pa, gq). Interpreting X as the periodic state space, these continuation mappings are analogous

to “acts” in the standard subjective expected utility paradigm–and so, standard techniques allow for the

identification of such a subjective belief. Second, we need to ensure that the value assigned to arbitrary

PoAs is the expectation according to these beliefs. Towards this, the following notation is introduced.

Definition. For any function f : X Ñ P, define p.f P P as p.f rpa, gqs “ prtpb, hq|b “ aus if g “ f , and

p.f rpa, gqs “ 0 if g ‰ f .

Take note, because we are dealing with distributions of denumerable support, we have no measurability

concerns. The plan of action p.f has the same distribution over actions in the first period, but the contin-

uation plan is unambiguously assigned by f , as shown in Figures 4 and 5. If the original plan is in A b P ,
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then the dot operation is simply a switch of the continuation mapping: pa, gq.f “ pa, fq. This operation is

introduced because it allows us to isolate the subjective distribution of the first period’s action.

Definition. p, q P P are h-proportional if for all f, g : X Ñ Σ.

p.f ěh p.g ðñ q.f ěh q.g

Since the images of f and g are in Σ, there is no informational effect from observing the outcome of p.

Hence, f and g can be thought of as objective assignments into continuation utilities. The ranking ‘p.f ě p.g’

is really a ranking over f and g as functions from X Ñ R. Thus, h-proportionality states that the DM’s

subjective uncertainty regarding X is the same when faced with p or with q.7

A6. (PRP). For all p, q P P , and f : X Ñ Σ if p and q are h-proportional then p.f „h q.f .

The outcomes of an action represent not only the uncertainty regarding continuation, but also the utility

outcome for the current period. So, when p and q are h-proportional, and thus induce the same uncertainty

regarding X, the DM’s uncertainty about her current period utility is the same across the plans. Therefore,

if we replace the continuation problems with objectively equivalent plans, the DM should be indifferent

between p and q.

2.3 A Representation Result and Belief Elicitation

The following is our general axiomatization result. It states that the properties above characterize a DM who,

when facing a PoA, calculates the subjective expected utility according to a collection of history dependent

beliefs over action-outcome pairs, and among different PoAs contemplates the benefits of consumption versus

learning.

Theorem 3 (Subjective Expected Experimentation Representation). ěh satisfies vNM, NT, SST, SEP,

IT and PRP if and only if there exists a utility index u : X Ñ R, a discount factor δ P p0, 1q, and a family

of beliefs tµh,a P ∆pSAquhPH,aPA such that

Uhppq “ Ep
“

Eµh,a
“

upxq ` δUh1pa,xqpfpxqq
‰‰

, (SEE)

jointly represents těhuhPH, where h1pa, xq “ ph, p, pa, fq, xq. Moreover, u is cardinally unique, δ is unique,

the family of beliefs is unique, and µh,a “ µh1,a whenever h
A
„ h1.

Proof. In Appendix C. �

The theorem states that we can (uniquely) elicit the beliefs, following every history, over the outcomes

of each action separately. We will henceforth refer to such beliefs as an SEE belief structure. The axioms

do not impose any restrictions on the dynamics of such beliefs. More importantly, the theorem shows that,

when ranking the different strategies in a bandit problem, the decision maker does not reveal her beliefs over

the joint realizations of the different actions.

7To see this, note that the relation R on RX ˆ RX defined by fRg if and only if p.f ě p.g is a preference relation over acts
that satisfies the Anscombe and Aumann (1963) axioms, and therefore encodes the DM’s subjective likelihood of each E Ă X.
From a functional standpoint, h-proportionality states the subjective distribution over X induced by p is the same as that
induced by q.
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3 The Statistical Framework

In order for a modeler to understand the DM’s updating process, and whether it follows Bayes rule, we

need to construct her beliefs regarding not only each action individually but also her beliefs regarding the

correlation between actions. As we will see, in the generic case we have insufficient data to uniquely identify

a (subjective) joint distribution. We will still, however, be able to identify a representative with unique

properties.

Observable Processes. Consider the family T of all sequences of individual experiments (alternatively,

individual actions), where different experiments can be taken in the different periods. Let T “ pT1, T2, ...q

where Ti P tSa : a P Au for every i ě 1; so, each Ti corresponds to taking an action, say a, and expecting one

of its outcomes, Sa. (Like before Sa corresponds to the set of possible outcomes.) T is then the collection of

all such T’s. For each T “ pT1, T2, ...q let ζT P ∆BpTq be a process over T; a distribution over all possible

outcomes when taking action T1, followed by T2, followed by T3, etc. For a given history of outcomes

h P pT1, T2, ..., Tnq, we denote h P T if T “ pT1, T2, ..., Tn, Tn`1, ...q. Lastly, for a sequence of experiments

T “ pT1, ..., Tn, Tn`1, ...q and a permutation π : nÑ n, denote πT “ pTπp1q, ..., Tπpnq, Tn`1, ...q.

We consider a family of processes, tζTuTPT , indexed by the possible sequences of experiments, T . For a

given family, we require that for sequences of experiments T,T1 P T , if there is some history, h P T X T1,

then ζTphq “ ζT1phq. This condition imposes that the probability of outcomes today do not depend on which

experiments are to be conducted in the future. The set of all families of processes that meet this condition

is in bijection to the set of all SEE belief structures,8 which is exactly the output of Theorem 3. Thus, in

case there is no confusion, we will refer to a family of processes tζTuTPT as an SEE belief structure as well.

Exchangeable Processes and Consistency. Let SA ”
ś

aPA Sa, and S ”
ś

ně0 SA. S represents the

grand state-space; a state, s, determines the realization of each action in each period –an entity which is

unobservable to the modeler.

Definition. An SEE belief structure tζTuTPT is consistent with ζ P ∆BpSq if ζ|T “ ζT for every T P T .

That is, tζTuTPT is consistent with some process ζ over S if for every sequence of experiments T, the

marginal of ζ to T coincides with ζT. In such a case the processes ζ, which we cannot observe, explains all

our data.

Because it forms the basis subjective Bayesianism and for the statistical literature on bandit problems,

we will pay particular attention to the class of exchangeable processes.

8Indeed, fix a family of history dependent beliefs tµh,auhPH,aPA and consider a sequence T “ pSa1 , Sa2 , ...q. Let h “
px1, x2, ..., xnq P T and define

ζTphq “ µH,a1
px1q ¨ µpa1,x1q,a2

px2q ¨ ¨ ¨µpa1,x1,...,an´1,xn´1q,an pxnq.

Then ζT is defined as the unique (continuous) processes over T that is consistent with ζTphq for every history h P T. This
procedure can be inverted: Fix, tζTuTPT and some history h “ pa1, x1q . . . pan, xnq. Let T be any sequence such that Ti “ Sai
for i ď n and Tn`1 “ Sa. Then define

µh,apxq “ ζTpTn`1 “ x|T1 “ x1 . . . Tn “ xnq.

From here it is clear why we need to impose the condition that the probability of an event is not affected by future experiments:
this condition arises naturally in the conditions of the SEE representation (see, Theorem 3). Recall that µh,a “ µh1,a whenever

h
A
„ h1. Further, it is easy to check the above maps are continuous so that the bijection is in fact a homeomorphism.
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Definition. Let Ω be a probability space and Ω̂ “
ś

ně1 Ω. The process ζ P ∆BpΩ̂q is exchangeable, if

there exists probability measure θ over ∆BpSAq, such that

ζpEq “

ż

∆BpΩq

D̂pEqdθpDq, (2)

where for any D P ∆BpΩq, D̂ is the corresponding product measure over Ω̂.

Remark 1. If ζ is exchangeable, then θ is unique.

Exchangeable processes were first characterized by de Finetti (1931, 1937) and later extended by Hewitt

and Savage (1955). Their fundamental result states that a process ζ P ∆BpΩ̂q is exchangeable if and only if

for any finite permutation π : NÑ N and event E “
ś

nPNEn, we have

ζpEq “ ζp
ź

nPN
Eπpnqq. (3)

Exchangeable processes are of clear statistical importance, in particular within the subjectivist paradigm

(see, for example Schervish (2012)). From the economic vantage, a DM who understands there to be an

exchangeable process governing the outcome of actions would be considered Bayesian.9 This is because,

given the representation in Eq. 2, the DM (acts as if she) entertains a second order distribution, which she

updates following every observation.

We would like to understand under what circumstances an SEE belief structure is a result of Bayesian

updating. If we could infer from preferences the beliefs over the joint realizations of all actions, that is
ś

aPA Sa, then our questions would boil down to verifying whether this process satisfies exchangeability.

However, we can only infer the beliefs over each action separately, and thus, our task remains. We need to

find a condition on the family of ζT’s that determines whether it follows Bayes rule.

Definition. An SEE belief structure tζTuTPT is Across-Arm Symmetric (AA-SYM) if

ζTphq “ ζπTpπhq

for every T P T , h P T and a permutation π : nÑ n.

Intuitively, AA-SYM requires that if we consider a different order of experiments, then the probability of

outcomes (in the appropriate order) does not change. should we add the two coins examples here? The next

theorem states that across-arm symmetry is a necessary and sufficient condition for an SEE belief structure

to be consistent with Bayesian updating of some belief over the joint realizations of all actions.

Theorem 4. An SEE belief structure tζTuTPT satisfies AA-SYM if and only if it is consistent with an

exchangeable process ζ P ∆BpSq.

Theorem 4 is stated without proof. Necessity is trivial and sufficiency will be a straightforward application

of Theorem 6.

9It is possible to consider more general Bayesian models than exchangeable processes. At least for the case of independent
actions, for example, it is not hard to adapt a local consistency axiom as in Lehrer and Teper (2015) that will imply that beliefs
follow a general martingale process.
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4 Strong Exchangeability and Contemporaneous Correlations

Unfortunately, AA-SYM is not sufficient to obtain a unique exchangeable process consistent with an SEE

belief structure. This lack of identification stems directly from the inability to observe the DM’s beliefs

regarding contemporaneous correlations. Consider two coins, a and b, which can both take values in tH,T u.

Both coins are flipped each period. Consider the following two governing processes, which are i.i.d. across

time periods. (1) the coins are perfectly correlated (with equal probability on HH and TT ), or (2) the coins

are identical and independent (and both have equal probability on H and T ). Notice, the two cases induce

the same marginal distributions over each coin individually. Thus, if the modeler has access only to the

DM’s marginal beliefs, the two processes are indistinguishable.

In this section we introduce a strengthening of exchangeability, which we aptly call strongly exchangeable,

under which stochastic independence is preserved both inter-temporally (as in vanilla exchangeability) and

contemporaneously.10

Definition. A process ζ P ∆BpSq is strongly exchangeable if there exists a probability measure θ over

∆IN ”
ś

aPA ∆pSaq, such that

ζpEq “

ż

∆IN

D̂pEqdθpDq,

where for any D P ∆IN , D̂ is the corresponding product measure over S.

Under a strongly exchangeable process the outcomes of actions that occur at the same time are indepen-

dently resolved. Of course, this does not impose that there is no informational cross contamination between

actions. Information regarding the distribution of action a is informative about the underlying parameter

governing the exchangeable process, and therefore, also about the distribution of action b. Since exchange-

able processes were first characterized as being invariant to permutations, for the sake of completeness we

provide a similar characterization of strongly exchangeable processes.

Theorem 5. The process ζ P ∆BpSq is strongly exchangeable if and only if for any set of finite permutations

tπa : NÑ NuaPA and event E “
ś

nPN
ś

aPAEn,a, we have

ζpEq “ ζp
ź

nPN

ź

aPA
Eπapnq,aq. (4)

Proof. In Appendix C. �

Following the intuition above, it should come as no surprise that under AA-SYM strong exchangeability

can never be ruled out. In other words, there is no SEE belief structure, therefore no preferences over PoAs,

that distinguishes exchangeability from strong exchangeability. Strongly exchangeable processes are ones

where each dimension can be permuted independently. If πa “ πb for all a, b P A, the condition is exactly

exchangeability. Strongly exchangeable process are especially relevant with respect to the current focus

because they act as representative members to the equivalence classes of exchangeable processes consistent

with the same SEE belief structure.

10We feel reasonably certain that strong exchangeability must have been studied previously in the statistics literature.
However, we have found no references.
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Theorem 6. An SEE belief structure tζTuTPT satisfies AA-SYM if and only if it is consistent with a strongly

exchangeable process. Furthermore, such a strongly exchangeable process is unique.

Proof. In Appendix C. �

4.1 AA-SYM as a Behavioral Restriction

In this section we introduce the axiomatic counterpart of AA-SYM, and so we can identify Bayesianism in

exploration environments directly from preferences over the strategies.

Definition. Let π be an n-permutation and p, q P P . We say that q is π-permutation of p if for all

h P Hpp, nq, h1 P Hpq, nq, projAnh “ π
`

projAnh
1
˘

.

If p admits any π-permutations it must be that the first n actions are assigned unambiguously (i.e., it

does not depend on the realization of prior actions nor the objective randomization).

A7. (AA-SYM). Let π be an n-permutation and p, p1 P P with p1 a π-permutation of p. Then, for all

a P A, τ, σ, σ1 P Σ, and h P Hpp, nq, h1 P Hpp1, nq, if h is a permutation of h1 then

p´nτ ě pp´nσq´hσ
1 ðñ p´nτ ě pp´nσq´h1σ

1.

After n periods the plan p´nτ provides τ with certainty, while the plan pp´nσq´hσ
1 provides σ unless

the history h occurs. Hence, the DM’s preference between the plans depends on their ex-ante subjective

assessment of how likely h is to occur. Similarly to the logic behind h-proportionality, AA-SYM states

that the DM’s assesses h to be exactly as probable as h1. In other words, the DM’s likelihood of outcome

realizations is invariant to the order in which the actions are taken. The intuition behind the next result is

correspondingly straightforward.

Proposition 7 (Correlated Arms, Exchangeable Process). Let ě admit an SEE representation with the

associated observable processes tζTuTPT . Then, the following are equivalent:

1. ěh satisfies AA-SYM;

2. tζTuTPT satisfies AA-SYM;

3. tζTuTPT is consistent with an exchangeable process; and

4. tζTuTPT is consistent with a (unique) strongly exchangeable process.

Proof. The proof that condition 1 is equivalent to condition 2 is provided Appendix C. Conditions 2, 3, and

4 are equivalent due to Theorem 6. �

The proposition implies that strong-exchangeability carries no additional restrictions, beyond those of

exchangeability, on agents’ preferences over the different strategies in bandit problems, and in particular on

their optimal strategies.
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5 Further Discussion

5.1 Related Literature

Within decision theory, the literature on learning broadly considers how a DM incorporates new information,

generally via notions of Bayesianism and Exchangeability, and often in the domain of uncertainty: see Epstein

and Le Breton (1993); Epstein and Seo (2010); Klibanoff et al. (2013); Lehrer and Teper (2015). Recently,

there has been an interest in subjective learning, or, the identification of the set of possible “signals” that

the DM believes she might observe. At it’s most simple, this is the elicitation of the set of potential tastes

(often referred to as subjective states) the decision maker anticipates, accomplished by examining the DM’s

preference over menus of choice objects: see Kreps (1979); Dekel et al. (2001). By also incorporating

consumption goods that contract on an objective state space, the modeler can interpret the DM’s preference

for flexibility as directly stemming from her anticipation of acquiring information regarding the likelihood of

states, as in Dillenberger et al. (2014); Krishna and Sadowski (2014).

There is also a small but highly relevant literature working on the identification of responsive learning.

Hyogo (2007) considers a two-period model, with an objective state space, in which the DM ranks action-

menu pairs. The action is taken in the first period and provides information regarding the likelihood of

states, after the revelation of which, the DM choose a state-contingent act from the menu. The identification

of interest is the DM’s subjective interpretation of actions as signals. Similarly, Cooke (2016) entertains

a similar model without the need for an objective state-space, and in which the consumption of a single

object in the first period plays the role of a fully informative action. Cooke, therefore, identifies both the

state-space and the corresponding signal structure. Piermont et al. (2016, forthcoming) consider a recursive

and infinite horizon version of Kreps’ model, where the DM deterministically learns about her preference

regarding objects she has previously consumed. Dillenberger et al. (2015) consider a different infinite horizon

model where the DM makes separate choices in each period regarding her information structure and current

period consumption. It is worth pointing out, all of these models, unlike the this paper, capitalize on the

“preference for flexibility” paradigm to characterize learning. We are able to identify subjective learning

without appealing to the menu structure because of the purely responsive aspect of our model. In other

words, flexibility is “built in” to our setup, as a different action can be taken after every possible realization

of the signal (action).

5.2 Subjective Learning with Endogenous and Exogenous Information

As witnessed the literature covered above, there seems to be a divide in the literature regarding subjective

learning. In one camp, are models that elicit the DM’s perception of exogenous flows of information (as a

canonical example, take Dillenberger et al. (2014)), and in the other are models that assume information is

acquired only via actions taken by the DM (where this paper lies). Realistically, neither of these information

structures capture the full gamut of information transmission in economic environments.

Consider the following example within the setup of the current paper. A firm is choosing between two

projects (actions), a and b. Assume that each project has a high-type and a low type. The firm believes

(after observing h) the probability that each project is the high-type is µh,a and µh,b, respectively. By

experimenting between a and b the firm’s beliefs and preferences will evolve.

But, what happens if the firm anticipates the release of a comprehensive report regarding project a just

before period 1? This report will declare project a high quality with probability αh ą 1
2 if the projects true
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type is high and with probability αl ă 1
2 if it is low. Hence, the report is an informative signal. Now, if

the firms belief after observing h in period 0 is given by rµh,a, µh,bs then, according to Bayes rule, the firms

belief regarding project a being the high-type, at the beginning of period 1 will be µ`h,a “
αh¨µh,a

αh¨µh,a`αlp1´µh,aq
,

if the report is positive, and µ´h,a “
p1´αhq¨µh,a

p1´αhq¨µh,a`p1´αlq¨p1´µh,aq
if the report is negative.

Unfortunately, however, the ex-ante elicitation of preferences in our domain cannot capture the anticipa-

tion of information. The firm is ranking PoAs according to its aggregated belief from the ex-ante perspective,

and thus, so as to maximize its expected belief:

`

αhµh,a ` α
lp1´ µh,aq

˘

µ`h,a `
`

p1´ αhqµh,a ` p1´ α
lqp1´ µh,aq

˘

µ´h,a “ µh,a.

Because of the Bayesian structure, the DM’s beliefs must form a martingale, so her expectation of her

anticipated beliefs are exactly her ex-ante beliefs. This fact, coupled with the linearity of expected utility,

imply that the DM’s ex-ante preference over PoAs is unaffected by her anticipation of exogenous information

arrival.

All hope is not lost, however, of fully characterizing the DM’s subjective information structure. The

approach of Dillenberger et al. is orthogonal to our’s, leading us to conjecture that the two models can

co-exist and impart a clean separation between exogenous and endogenous information flows. Going back

to the example, imagine there are two PoAs, p and q such that p is preferred to q under beliefs µ`h , and

q to p under µ´h . The DM would therefore strictly desire flexibility after period 0, even after she is able

to condition her decision on h. Of course, because the report is released after period 0, irrespective of the

action taken by the DM, for any 0-period history h1, there must exist some other PoAs, p1 and q1, for which

flexibility is strictly beneficial (after h1).

5.3 A Comment on Bayesianism in Environments of Experimentation

The results in Section 4 have two related implications to Bayesianism in general models of experimentation.

First, it is well known that the beliefs of two Bayesians observing the same sequence of signals will converge

in the limit. Our results imply that in a setup of experimentation, different Bayesians obtaining the same

information, might still hold different views of the world in the limit. Their beliefs over the uncertainty

underlying each action will be identical, but they can hold different beliefs over the joint distribution.

The second point has to do with the possible equivalence with non-Bayesian DMs. Theorem 6 states

that AA-SYM is necessary and sufficient for an SEE belief system to be consistent with some exchangeable

process. As discussed in the Introduction, AA-SYM projected to stochastic processes is weaker than the

standard symmetry axiom applied in the literature, because the standard assumption requires that histories

fully specify the evolution of the state, while in our setup, histories can only specify cylinders. Because

AA-SYM is a weaker assumption, de Finetti’s theorem implies that processes satisfying such an assumption

need not be exchangeable and have a Bayesian representation as in Eq. (2).

Consider the following example of a stochastic process. In every period two coins are flipped. In odd

periods the coins are perfectly correlated (with equal probability on HH and TT ), and in even periods

the coins are identical and independent (and both have equal probability on H and T ). The associated

observable processes satisfy AA-SYM, but the process itself is clearly not exchangeable. Nevertheless,

Theorem 6 guarantees that there is a (unique) strongly exchangeable process that is consistent with the SEE

belief structure. In this case it is easy to see that that process would be the one in which every period we
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toss two coins that are identical and independent (and both have equal probability on H and T ).

A On the construction of Plans.

Generalized Plans. We will begin by constructing a more general notion of Plans (reminiscent of IHCPs,

first constructed in Gul and Pesendorfer (2004), and then refine our notion to capture only the elements of

interest. This methodology serves two purposes. First, the more general approach allows us to use standard

techniques for the construction of infinite horizon choice objects. Second, generalized plans may be of direct

interest in future work, when, for example, denumerable support is not desirable. To begin, let Q0 “ ∆BpAq
and, for define recursively for each n ě 1

Qn “ ∆BpAˆKpX ˆQn´1qq.

Finally, define Q˚ “
ś

ně0Qn. Q˚ is the set of generalized plans.

Consistency. For the first step, we will follow closely GP of consistent IHCPs, but with enough difference

that it makes sense to define things outright. Formally, let G1 : A ˆ KpX ˆ Q0q Ñ A as the mapping

pa, tx, q0uq ÞÑ a. Let F1 : Q1 Ñ Q0 as the mapping F1 : q1 ÞÑ
`

E ÞÑ q1pG
´1
1 pEqq

˘

, for any E P BpAq.
Therefore, for any E P BpAq, F1pp1qpEq is the probability of event E in period 0 as implied by p1; F1pp1q is the

distribution over period 0 actions implied by p1. From here we can recursively define Gn : AˆKpXˆQnq Ñ
AˆKpX ˆQn´1q as:

Gn : pa, tx, qn´1uq ÞÑ pa, tx, Fn´1pq0quqq

and Fn : Qn Ñ Qn´1 as:

Fn : qn ÞÑ
`

E ÞÑ qnpG
´1
n pEqq

˘

for any E in ∆BpAˆKpX ˆQn´1qq. A consistent generalized plan is one such that

Fnpqnq “ qn´1,

for all n. Let Q denote all such generalized plans.

A.1 Construction Proofs

Lemma 1. There exists a homeomorphism, λ : QÑ ∆BpAˆKpX ˆQqq such that

margAˆKpXˆQn´1q
pλpqqq “ qn. (5)

Proof. [Step 1: Extension Theorem.] Let Cn “
 

pq0, . . . qnq P
śn
k“0Qk|qk “ Fk`1pqk`1q,@k “ 1 . . . n´

1
(

, and Tn “ KpXˆCnq for n ě 0. Let T˚ “
ś8

n“0 Tn and T “
 

t P T˚|pprojTntn`1 “ tn
(

. Let Y0 “ ∆BpAq
and for n ě 1 let Yn “ ∆BpAˆT0ˆ . . .ˆTnqq. We say the the sequence of probability measures tνn P Ynuně0

is consistent if margA...Tn´1
νn`1 “ νn for all n ě 0. Let Y c denote the set of all consistent sequences. Then

we know by Brandenburger and Dekel (1993), for every tνnu P Y
c there exists a unique ν P ∆BpA ˆ T˚q

such that margAν “ ν0 and margA...Tnν “ νn. Moreover, the map ψ : Y c Ñ ∆BpAˆ T˚q:

ψ : tνnu ÞÑ ν

18



is a homeomorphism. ˝

[Step 2: Extending Backwards.] Let Dn “
 

pt0, . . . tnq P ˆ
n
n“0Tn|tk “ projTnptk`1q,@k “ 1 . . . n ´ 1

(

.

Let Y d “
 

tνnu P Y c|νnpA ˆ Dnq “ 1,@n ě 0
(

. We will now show, for each q P Q, there exists a

unique tνnu P Y
d, such that ν0 “ q0 and margAˆKpXˆQn´1q

pmargAˆTn´1
pνnqq “ qn for all n ě 1. Indeed,

let m0, m1 be the identify function on A and A ˆ KpX ˆ Q0q, respectively. Then for each n ě 2 let

mn : AˆDn´1 Ñ AˆKpX ˆQn´1q as follows:

mn`1 : pa, tx0, q0
0u, tx

1, q1
0 , q

1
1u . . . tx

n, qn0 . . . q
n
nu
nq ÞÑ pa, txn, qnnuq.

Note: for n ě 0, each mn is a Borel isomorphism. Indeed, continuity of mn is obvious, and measurability

follows immediately from the fact that canonical projections are measurable in the product σ-algebra. It

is clear that mn is surjective, and —since (given Fk for k P 1 . . . n) qn uniquely determines q0 . . . qn´1,

which, (given the projection mappings) uniquely determines T0 . . . Tn´1— mi is also injective. As for, m´1
n ,

continuity follows from the continuity of Fk for k P 1 . . . n and the projection mappings. Lastly, measurability

of m´1
n comes from the fact that a continuous injective Borel function is a Borel isomorphism (see Kechris

(2012) corollary 15.2).

So, let ψ : QÑ Y d as the map

φ : q ÞÑ tEn ÞÑ qnpmnpEnqquně0,

for any En P BpAˆT0ˆ . . .ˆTnq. The continuity of φ and φ´1 follow from the fact that they are constructed

from the pushforward measures of m´1
n and mn, respectively, which are themselves continuous (or, explicitly,

see GP lemma 4).

Finally, let Γn “ AˆDnˆ
8
k“n`1Tk. Let ν “ ψptνnuq for some tνnu in Y d. Then νpΓnq “ νpAˆDnq “ 1.

So, νpAˆ T q “ νpXně0Γnq “ lim νpΓnq “ 1. Also, note, if νpAˆ T q “ 1, then νpΓnq “ 1 for all n ě 0. So,

ν P Y d if and only if νpAˆ T q “ 1, i.e., if, ψpY dq “
 

ν P ∆BpAˆ T˚q|νpAˆ T q “ 1
(

. ˝

[Step 3: Extending Forwards.] Let τ denote the map from AˆKpX ˆQq Ñ Aˆ T as

τ :
`

a, tx, qu
˘

ÞÑ
`

a, ptx, q0u, tx, q0, q1u, . . .q
˘

That τ it is a bijection follows from the consistency conditions on Q, T , and Cn for n ě 1. Now takes some

measurable set E Ď T . Then τ´1pEq “
Ş

ně0

 

tx, q0, . . . qn ˆk“n81 Qku P KpX ˆQ
˚q
(

, the countable inter-

section of measurable sets, and hence measurable. That τ and τ´1 are continuous is immediate. Therefore,

by the same argument as in [Step 2], τ is a Borel isomorphism and κ : ∆B`Aˆ T
˘

Ñ ∆B
`

AˆKpX ˆQq
˘

,

κ : ν ÞÑ
`

E ÞÑ νpτpEqq
˘

for all E in ∆B`A ˆ KpX ˆ Qq
˘

. Clearly, margApκpνqq “ margApνq and margAˆKpXˆQn´1q
pκpνqq “

margAˆKpXˆQn´1q
pmargAˆTn´1

pνqq for all n ě 1.

˝

Behold, λ “ κ ˝ ψ ˝ φ is the desired homeomorphism. �

Definition. Let R0 “ Q0 and R1 “ tr1 P Q1|r1pA b R0q “ 1u. Then, recursively let Rn “ trn P

Qn|rnpAbRn´1q “ 1u. Set R “
ś8

n“0Rn.

Proof of Proposition 1. We show that λ is a homeomorphism between R and ∆BpA b Rq. Identify

∆BpAbRq with
 

ν P ∆BpAˆKpX ˆQqq|νpAbRq “ 1
(

. Let r P R. For each n ě 0 let Γrn “ tpa, tx, quq P
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AbQ|qk P Rk, k “ 0 . . . nu. Then λprqpΓrnq “ margAˆKpXˆQnqpλprqqpAb Rnq “ rn`1pAb Rnq “ 1 for all

n ě 1. So λprqpA b Rq “ λprqpXně0Γrnq “ limλprqpΓrnq “ 1. Now, fix q P Q with λpqqpA b Rq “ 1, then

qnpA b Rn´1q “ margAˆKpXˆQn´1q
pλpqqqpA b Rn´1q “ λprqpΓrnq ě λprqpA b Rq “ 1 for all n ě 0 and so

q P R. �

Definition. For a metric space, M , let ∆pMq Ď ∆BpMq denote the set of all distributions with countable

support. I.e., for all ν P ∆pMq, there exists a countable set Sν such that m R Sν ùñ νpmq “ 0, and
ř

mPSν
νpmq “ 1.

Definition. Set W : PpRq Ñ PpRq as the function:

W : E ÞÑ tr1 P R|r1 P Impfq for some pa, fq P supppλprqq, r P Eu

Definition. Let P0 “ ∆pAq and P1 “ tp1 P R1|p1 P ∆pAb P0qu. Then, recursively let Pn “ tpn P Rn|pn P

∆pAb Pn´1qu. Set P “
 

p P
ś8

n“0 Pn|
ś8

n“0 λpW
nprqq Ă

ś8

n“0 ∆pAbRq
(

.

Proof of Theorem 2. We show that λ is a homeomorphism between P and ∆pA b P q. First note, by

construction, for all r P R, λprq P ∆BpA bW prqq. Let p P P ; by the conditions on P , λppq P ∆pA b Rq.

Therefore, it suffices to show that for any p P P , and r P W ppq, r P P . So fix some r P W ppq. It follows

from an analogous argument to Corollary 1 that r P
ś8

n“0 Pn. Finally, note that Wn´1prq ĎWnprq, for all

n ě 2. �

B Lemmas.

Lemma 2. If ěh satisfies vNM and IT, then ěh satisfies the sure thing principal:

A8. (STP). For all a P A and f, f 1, g, g1 : X Ñ P , such that, for all x P X, either (i) fpxq “ f 1pxq and

gpxq “ g1pxq or (ii) fpxq “ gpxq and f 1pxq “ g1pxq. Then,

pa, fq ěh pa, gq ðñ pa, f 1q ěh pa, g
1q.

Proof. Assume this was not true and, without loss of generality, that pa, fq ěh pa, gq but pa, g1q ąh pa, f
1q.

Now notice, when mixtures are taken point-wise, 1
2f `

1
2g
1 “ 1

2g `
1
2f
1. Therefore,

`1

2
pa, fq `

1

2
pa, g1q

˘

ąh
`1

2
pa, gq `

1

2
pa, f 1q

˘

„h pa,
1

2
g `

1

2
f 1q “ pa,

1

2
f `

1

2
g1q

„h
`1

2
pa, fq `

1

2
pa, g1q

˘

,

where the first line follows from vNM, and the indifference conditions from IT. This is a contradiction. �

Lemma 3. If ěh satisfies vNM and IT for all h P H, then, if h
A
„ h1 then ěh“ěh1 .

Proof. We will show the claim on induction by the length of the history. So let h, h1 P Hp1q such that h
A
„ h1.

Therefore, h “ pp, pa, fq, xq and h1 “ pp1, pa, gq, xq. Notice, by definition we have, p “ αpa, fq ` p1´ αqr and

p1 “ α1pa, gq ` p1´ α1qr1, for some α, α1 P p0, 1s and r, r1 P P .
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Let q, q1 P P ; we want to show that q ěh q
1 ðñ q ěh1 q

1. So let q ěh q
1, or by definition, p´hq ě p´hq

1,

which by the above observation is equivalent to

αpa, fq´ppa,fq,pa,fq,xqq ` p1´ αqr ě αpa, fq´ppa,fq,pa,fq,xqq ` p1´ αqr.

By independence (i.e., vNM) this is if and only if pa, fq´ppa,fq,pa,fq,xqq ě pa, fq´ppa,fq,pa,fq,xqq
1, which by

STP is if and only if pa, gq´ppa,gq,pa,gq,xqq ě pa, gq´ppa,gq,pa,gq,xqq
1. Using independence again, this is if and

only if p1´h1q ě p1´h1q
1. This completes the base case.

So assume the claim holds for all histories of length n. So let h, h1 P Hpn`1q such that h
A
„ h1. Therefore,

h “ phn, p, pa, fq, xq and h1 “ ph1n, p
1, pa, gq, xq, for some hn, h

1
n P Hpnq such that hn

A
„ h1n. By the inductive

hypothesis ěhn“ěh1n .

Let q, q1 P P , and q ěh q
1, or by definition, p´pp,pa,fq,xqq ěhn p´pp,pa,fq,xqq

1. By independence and the sure

thing principle this is if and only if pa, gq´ppa,gq,pa,gq,xqq ěhn pa, gq´ppa,gq,pa,gq,xqq
1, which by independence

again (and the equivalence of ěhn and ěh1n), is if and only if p1
´pp1,pa,gq,xqq ěh1n p

1
´pp1,pa,gq,xqq

1. �

C Proof Of Main Theorems

Proof of Theorem 3. [Step 0: Value Function.] Since ěh satisfies vNM, there exists a vh : AbP Ñ R

such that

Uhppq “ Ep
“

vhpa, fq
‰

(6)

represents ěh, with vh unique un to affine translations. ˝

[Step 1: Recursive structure.] To obtain the skeleton of the representation, lets consider ě̂, the

restriction of ě to Σ (i.e., using the natural association between streams of lotteries and degenerate trees).

The relation ě̂ satisfies vNM (it is continuous by the closure of Σ in P ). Hence there is a linear and

continuous representation: i.e., an index û : X ˆ Σ Ñ R such that:

Ûpσq “ Eσ
“

ûpx, ρq
‰

(7)

unique upto affine translations.

Following Gul and Pesendorfer (2004), (henceforth GP), fix some px1, ρ1q P Σ. From SEP we have

Ûp 1
2 px, ρq`

1
2 px

1, ρ1qq “ Ûp 1
2 px, ρ

1q` 1
2 px

1, ρqq, and hence, ûpx, ρq “ ûpx, ρ1q` ûpx1, ρq´ ûpx1, ρ1q. Then setting

upxq “ ûpx, ρ1q ´ ûpx1, ρ1q and W pρq “ ûpx1, ρq, we have,

Ûpσq “ Eσ
“

upxq `W pρq
‰

(8)

Now, consider p1 “ px1, ρq. Notice that p1 has unique 1-period history: h “ pp1, p1, x1q. By NT, h cannot be

null. So, by SST, ě̂h “ ě̂. This implies, of course that W “ δÛ ` β for some δ ą 0 and β P R. Following

Step 3 of Lemma 9 in GP exactly, we see that δ ă 1 and without loss of generality we can set β “ 0:

Ûpσq “ Eσ
“

upxq ` δÛpρq
‰

(9)

Both representing ě̂ and being unique up to affine translations, we can normalize each Uh to coincide with

Û over Σ. ˝

[Step 2: The existence of subjective probabilities.] For each a P A consider

Fpaq “ ab Σ
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i.e., the elements of P̂ that begin with action a and from period 2 onwards are in Σ. Associate Fpaq with

the set of “acts”: f : Sa Ñ Σ, in the natural way. For any acts f, g let f´xg denote the act that coincides

with f for all x1 P Sa, x1 ‰ x, and coincides with g after x. For each h P H, and acts f, g P Fpaq, say f 9ěh,a g

if and only if pa, fq ěh pa, gq.

It is immediate that 9ěh,a is a continuous weak order (where, as before, continuity follows from the closure

of F in P ). Further, 9ěh,a satisfies independence. Indeed: fix f, g, h P Fpaq with f 9ěh,a g. Then

f 9ěh,a g ùñ pa, fq ěh pa, gq

ùñ αpa, fq ` p1´ αqpa, hq ěh αpa, gq ` p1´ αqpa, hq

ùñ pa, αf ` p1´ αqhq ěh pa, αg ` p1´ αqhq

ùñ αf ` p1´ αqh 9ěh,a αg ` p1´ αqh,

where the third line uses IT. Lastly, 9ěh,a satisfies monotonicity, a direct consequence of SST and STP.

Hence, we have state-independence which gives us the full set of Anscombe and Aumann (1963) axioms for

an SEU representation of 9ěh,a with state space Sa. That is, a belief µh,a P ∆pSaq and a utility index from

Σ Ñ R (which is of course, Û , and so will be denoted as such), such that

V̂h,apfq “ Eµh,a
“

Ûpfpxqq
‰

(10)

represents 9ěh,a. ˝

[Step 3: Proportional Actions.] Now, fix some h P H and consider an arbitrary pa, fq P A b P . Let

ρ P Σ be such that margXρ “ µh,a. We claim, pa, fq and ρ are h-proportional. Fix some g, g1 : X Ñ Σ.

From (10), we know

pa, gq ěh pa, g
1q ðñ Eµh,a

“

Ûpgpxqq
‰

ě Eµh,a
“

Ûpg1pxqq
‰

(11)

From (9) we have

Ûpρ.gq “ Eρ
“

upxq ` δÛpgpxqq
‰

“ EmargXρ

“

upxq ` δÛpgpxqq
‰

“ Eµh,a
“

upxq
‰

` δ Eµh,a
“

Ûpgpxqq
‰

In corresponding fashion we obtain the analogous representation for Ûpρ.g1q, and hence

ρ.g ěh ρ.g
1 ðñ Eµh,a

“

Ûpgpxqq
‰

ě Eµh,a
“

Ûpg1pxqq
‰

(12)

Combining the implications of (11) and (12), we see that pa, fq and ρ are h-proportional. ˝

[Step 4: Proportional Plans.] We now claim that for any h P H and p P P there exists some σ P Σ

such that p „h σ. Fix some p P P , and for each n P N define pn to be any PoA that agrees with p on the first

n periods, then provides elements of Σ unambiguously. Note that pn Ñ p point-wise and hence converges in

the product topology. Therefore, the claim reduces to finding a convergent sequence tσnunPN Ă Σ such that

σn „h p
n, as continuity ensures the limits are indifferent.

We will prove the subsidiary claim by induction. Consider p1, for each pa, fq P supprp1s, note, by

assumption, f : X Ñ Σ. Let τ1,pa,fq P Σ be such that margXτ
1,pa,fq “ µh,a. By [Step 3], pa, fq and

τ1,pa,fq are h-proportional. And thus, τ1,pa,fq.f „h pa, fq.f “ pa, fq, by PRP. Let σ1 P Σ be such that
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σ1rEs “ p1rtpa, fq|τ1,pa,fq.f P Eus. Therefore,

Uhpp
1q “ Ep1

“

vhpa, fq
‰

“ Ep1
“

Ûpτ1,pa,fq.fq
‰

“ Eσ1

“

Ûpρq
‰

“ Ûpσ1q

where the third line comes from the change of variables formula for pushforward measures. This completes

the base case.

Now, assume the claim hold for all h and m ď n´ 1 for some n P N. Consider pn. Note that for all h1 of

the form hpxq “ ph, pn, pa, fq, xq, the implied continuation problem pnph1q satisfies the inductive hypothesis.

Therefore, there exists a σn´1,h1 „h1 pph
1q for all such h1.

Let ‹ denote the mapping: pa, fq ÞÑ pa, fq‹ “ pa, x ÞÑ σn´1,hpa,xqq, where hpa, xq “ ph, pn, pa, fq, xq.

By construction, for each pa, fq in suppppnq, and x P Sa we have pa, fq „h pa, f´xσ
n´1,hpa,xqq (using the

notation from [Step 2]). Employing STP we have pa, fq „h pa, fq
‹ (i.e., enumerating the outcomes in Sa

and changing f one entry at a time, where STP ensures that each iteration is indifferent to the last).

Let p̂n P P be such that p̂nrEs “ pnrtpa, fq|pa, fq‹ P Eus. So,

Uhpp
nq “ Epn

“

vhpa, fq
‰

“ Epn
“

vhppa, fq
‹q
‰

“ Ep̂n
“

vhpb, gq
‰

“ Uhpp̂
nq

Applying the base case to p̂n concludes the inductive step. Notice also, the convergence of tσnunPN is easily

verified, following the fact that the marginals on pn are fixed for any σm with m ě n. ˝

[Step 5: Representation.] Consider any pa, fq P A b P . We claim that there exists an pa, f 1q P Fpaq
such that pa, fq „h pa, f

1q. Indeed, by [Step 4], for any x P Sa, there exists some ρpa, xq such that

ρpa, xq „hpa,xq fpxq, where hpa, xq “ ph, pa, fq, pa, fq, xq. Define f 1 P Fpaq as x ÞÑ ρpa, xq. It follows from

STP that pa, fq „h pa, f
1q.

We know by [Step 3] that there exists a ρ P Σ, h-proportional to pa, fq, with margXρ “ µh,a. Hence

pa, gq “ pa, fq.g „h ρ.g for all g : X Ñ Σ. We have,

vhpa, gq “ Ûpρ.gq

“ Eµh,a
“

upxq ` δÛpgpxqq
‰

,

and so, for pa, f 1q:

vhpa, f
1q “ Eµh,a

“

upxq ` δÛpρpa, xqq
‰

.

By the indifference condition ρpa, xq „hpa,xq fpxq,

vhpa, fq “ Eµh,a
“

upxq ` δUhpa,xqpfpxqq
‰

. (13)

Notice, hpa, xq
A
„ h1pa, xq “ ph, p, pa, fq, xq, so by Lemma 3, ěhpa,xq“ěh1pa,xq. Applying this fact, and

plugging (13) into (6) provides

Uhppq “ Ep
“

Eµh,a
“

upxq ` δUh1pa,xqpfpxqq
‰‰

(14)
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as desired. ˝

�

Proof of Theorem 5. First we show, if a strongly exchangeable process ζ over S is induced by an

i.i.d distribution D over SA, then it must be that the marginals of D (on tSauaPA) are independent, that

is D P ∆IN . Indeed, consider two non-empty, disjoint collection of actions, Â, Â1 Ă A. Let E,F P SÂ,

E1, F 1 P SÂ1 , be measurable events. Identify En with the cylinder it E generates in S when in the nth

coordinate: En “ ts P S|sn,B P Eu. Since ζ is strongly exchangeable we have that

ζ
`

En X E1n X Fn`1 X F 1n`1
˘

“ ζ
`

En X F 1n X Fn`1 X E1n`1
˘

. (2Sym)

We will refer to the latter weaker property as two symmetry. Now, since ζ is i.i.d generated by D, we have

that (abusing notation by identifying E with the cylinder it generates in SA)

DpE X E1q ¨DpF X F 1q “ DpE X F 1q ¨DpF X E1q.

Substituting via the rule of conditional probability:

DpE|E1q ¨DpE1q ¨DpF |F 1q ¨DpF 1q “ DpE|F 1q ¨DpF 1q ¨DpF |E1q ¨DpE1q.

This implies that

DpE|E1q

DpE|F 1q
“
DpF |E1q

DpF |F 1q
.

Since this is true for all events, we have that DpE|E1q “ DpE|F 1q for every E P SÂ and E1, F 1 P SÂ1 ,

implying Â and Â1 are independent.

We now move to show that strong exchangeability is sufficient for the representation specified in the

statement of the result. Since strong exchangeability implies exchangeability, we can apply de Finetti’s

theorem and represent the process ζ by

ζp¨q “

ż

∆pSAq

D̂p¨qdψpDq.

We need to show that ψ’s support lies in ∆IN .

For s P S and t P N let st be the projection of s into the first t periods. Now, let ζp¨|stq : SA Ñ r0, 1s be

the one period ahead predictive probability, given that the history of realizations in the first t periods is st.

Since ζ is exchangeable, ζp¨|stq converges (as t Ñ 8) with ζ probability 1. Moreover, the set of all limits

is the support of ψ. Denote the limit for a particular s by Ds. Of course, the exchangeability of ζ also

guarantees that ζp¨, ¨|stq : SA ˆ SA Ñ r0, 1s, that is the two period ahead predictive probability, converges to

DsˆDs. Furthermore, ζ is strongly exchangeable; the limit itself satisfies (2Sym), and the arguments above

imply that Ds P ∆IN with ζ probability 1. �

Proof of Theorem 6. Fix an SEE belief structure tζTuTPT . We first construct a pre-measure ζ̂ on the

semi-algebra of cylinder sets. Fix any ordering over A. Set ζ̂pøq “ 0 and ζ̂pSq “ 1. Let E ‰ S be an arbitrary

cylinder, i.e., E “
ś

nPN
ś

aPAEn,a, such that for only finitely many pn, aq, is En,a ‰ Sa. Clearly, there are a

finite number of a P A such that Ek,a ‰ Sa for any k. By the ordering on A denote these a1 . . . an. For each

ai let mi denote the number of components such that Ek,ai ‰ Ssi , and for j “ 1 . . .mi, let ki,j denote the

jth such component. Finally, for each ai, let πai denote any permutation such that πaipki,jq “ j`
ř

i1ăimi1 .
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Consider Ê “
ś

nPN
ś

aPAEπapnq,a, where πa “ πai if a P a1 . . . an and the identity otherwise. That is, for

n P 1 . . .m1, Ên,a “ Sa for all a except a1, for n P m1 . . .m1 `m2, Ên,a “ Sa for all a except a2, etc. Let

TpEq denote the sequence such that Tn “ Si for
ř

i1ăimi1 ă n ď
ř

i1ďimi1 . Again that is, for n P 1 . . .m1,

Tn “ Sa1 , for n P m1 . . .m1 `m2, T2 “ Sa2 , etc.

For the remainder of this proof, for any cylinder E, Ê denotes the corresponding cylinder generated

by the above process, in which at most a single action is restricted in each period. Let TpEq denote any

observable process which observes the sequence of restricted actions. Finally, for any cylinder, E, which

is restricted in most one action each period, and any T which observes each restricted set, identify E the

relevant event in T. So, Set ζ̂pEq “ ζTpEqpÊq.

To apply the Carathéodory extension theorem for semi-algebras, we need to show that for any sequence of

disjoint cylinders tEkukPN such that E “
Ť

kPNE
k is a cylinder, ζ̂pEq “

ř

kPN ζ̂pE
kq. Towards this, assume

that E,E1 are disjoint cylinders such that E Y E1 is a cylinder. Then it must be that there exists a unique

pn, aq such that En,a X E1n,a “ ø and for all other pm, bq, Em,b “ E1m,b. Indeed, if this was not the case,

then there exists some pm, bq and some x such that (WLOG) x P Em,bzE
1
m,b. But then, for all s P E Y E1,

sm,b “ x ùñ sn,a P En,a ‰ pE YE
1qn,a a contradiction to E YE1 being a cylinder. But this implies Ê and

Ê1 induce the same sequence of restricted coordinates, differing on the restriction of single coordinate, and

therefore, TpEq “ TpE1q. This implies that Ê Y Ê1 Ď TpEq. Since ζTpEq is finitely additive, so therefore

ζ̂pE Y E1q “ ζTpEqpÊ Y Ê
1q “ ζTpEqpÊq ` ζTpEqpÊ

1q “ ζ̂pEq ` ζ̂pE1q.

Since ζ̂ is finitely additive over cylinder sets, countable additivity follows if we show that for all decreasing

sequences of cylinders tEkukPN, such that infk ζ̂pE
kq “ ε ą 0, we have

Ş

kPNE
k ‰ ø. But this follows

immediately from the finiteness of Sa. Since Ek`1 Ď Ek, it must be that Ekn,a Ď Ekn,a. But each Ekn,a is

finite, hence compact, and nonempty, because ζpEkq ě ε. Therefore
Ş

kPNE
k
n,a ‰ ø. The result follows by

noting that the intersection of cylinder sets is the cylinder generated by the intersection of the respective

generating sets. Let ζ denote the unique extension of ζ̂ to the σ-algebra on S.

That ζ is consistent with tζTuTPT is immediate. We need to show that ζ is strongly exchangeable.

Let E be a cylinder. Let π̄a denote a finite permutation for each a P A. Let F “
ś

nPN
ś

aPAEπ̄apnq,a.

Let πai denote the permutation given by the construction of F̂ . Then F̂ “
ś

nPN
ś

aPAEπapπ̄apnqq,a. In

particular, this implies there exists some permutation π˚ such that F̂ “
ś

nPN
ś

aPAEπ˚pnq,a. By AA-

SYM, ζTpÊqpÊq “ ζπ˚TpÊqpπ
˚Êq “ ζTpF̂ qpF̂ q. Therefore, ζpEq “ ζpF q and so, by Theorem 5, ζ is strongly

exchangeable.

Finally, the similar logic show that ζ is unique. Towards a contradiction, assume there was some distinct,

strongly exchangeable ζ 1, also consistent with tζTuTPT . Then, since the cylinder sets form a π-system,

there must be some cylinder such that ζpEq ‰ ζ 1pEq. But, by strong exchangeability, ζpÊq “ ζpEq and

ζ 1pÊq “ ζ 1pEq, so ζpÊq ‰ ζ 1pÊq –a contradiction to their joint consistency with tζTuTPT . �

Proof of Theorem 7. Let tµh,auhPH,aPA be an SEE structure for ě that satisfies AA-SYM. Let

tζTuTPT be the associated family of observable processes. Fix T and some n period history h P T. Let,

pa1, x1q . . . pan, xnq, where for each i ď n let ai is such that Ti “ Sai and xi is the ith component of h. This

represents an A-equivalence class of decision theoretic histories. In out standard abuse of notation, let h also

denote this class of histories. Following this abuse, when it is not confusing to do so, let πh denote both the

permuted statistical history and the A-equivalence class represented by paπp1q, xπp1qq . . . paπpnq, xπpnqq.
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Fix some n-permutation π. Let p denote the PoA that assigns ai in the ith period with certainty. Let p1

be the π-permutation of p. We have

α “ ζTphq “ µH,a1px1q ¨ µpa1,x1q,a2px2q ¨ ¨ ¨µpa1,x1,...,an´1,xn´1q,anpxn.

Let σ, σ1 P Σ be such that Uhpσq “ 1 and Uhpσ
1q “ 0. Then, by (SEE) we have

p´npασ ` p1´ αqσ
1q „ pp´nσ

1q´hσ

so, by AA-SYM, we have,

p1´npασ ` p1´ αqσ
1q „ pp1´nσ

1q´h1σ

which implies, again by (SEE),

α “ µH,aπp1qpxπp1qq ¨ µpaπp1q,xπp1qq,aπp2qpxπp2qq ¨ ¨ ¨µpaπp1q,xπp1q,...,aπpn´1q,xπpn´1qq,aπpnqpxπpnqq “ ζπTpπhq.

Hence, ζTphq “ ζπTpπhq as desired. �
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Bruno de Finetti. La prévision: ses lois logiques, ses sources subjectives. In Annales de l’institut Henri
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