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Abstract

I study peer effects in adoption of Electronic Health Records (EHR) by medical

professionals in California during the period 2011–2014, following the Medicare and

Medicaid “Meaningful Use” EHR Incentive Programs. Peer effects are identified

by combining annual adoption reports from the program with public records on

physician shared patients networks. Results suggests large peer effects exists in

EHR adoption: adoption by all peers increases the odds of adopting EHR within

a year by 76%, even after accounting for the fact that practice group members are

likely to adopt EHR at the same time. Results imply that using available data

on provider networks may allow policymakers to expedite overall adoption rates.

These methods can be used to study a wide range of technology adoption processes.
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1 Introduction

The decision by physicians to adopt new technologies is hardly a lonely one. Professional

networks give them ample opportunities for learning from peers. Despite mounting ev-

idence of peer effects in other contexts, and although in medicine technology adoption

processes affect both patients’ health and expenditure growth, the role of peer effects in

these processes are largely unknown. Understanding such network interactions among

physicians can help policymakers expedite the diffusion of technologies, such as when,

due to positive externalities, adoption is too slow.

This study shows peer effects exist among U.S. medical providers in the adoption of

Electronic Health Records, which is an umbrella term for multiple functionalities such

as e-prescribing and the ability to obtain results of lab tests electronically. Despite their

clear benefits to patient management and prospects of improving care coordination and

reducing medical mistakes, EHR adoption in the U.S. has been staggered, particularly in

office settings.1 A major policy response, the HITECH Act of 2009, provided substantial

and time-sensitive financial incentives to EHR adopters with the goal of making adoption

universal.2 This study shows that even faced with strong individual incentives to adopt

EHR, individual decisions to adopt were significantly influenced by others: The odds of

providers adopting EHR increase almost twofold once colleagues with whom they share

patients adopt. Results imply that early adopters induce further adoption indirectly, and

thus that augmenting wholesale incentive programs with the targeting of well-connected

individuals could, therefore, expedite adoption at a lower cost.

Peer effects are identified using two sources of variation in the data: spatial (in the

network sense), and temporal. Detailed data on professional networks combined with

longitudinal data on adoption times help address two known difficulties with identifying

peer effects. First, peers might behave similarly not because they influence each other,

but because they face common external shocks. To separately identify peer effects, earlier
1Generally, electronic billing is typically adopted early, patient and case management functions later,

and interactions across settings last. (Hsiao et al., 2012)
2The Health Information Technology for Economic and Clinical Health (HITECH) Act was part of

the Recovery and Reinvestment Act of 2009.
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works relied on exogenous shocks to peers (Tucker, 2008), on random or semi-random as-

signments (Sacerdote, 2001; Bayer et al., 2009; Ammermueller and Pischke, 2009; Kuhn

et al., 2011), or on experimental designs (Duflo and Saez, 2003; Banerjee et al., 2013).

This work uses longitudinal data that reveal whether individuals adopt after their peers

have done so. Because actions occur at different points in time, they are not due to

common shocks, at least not to shocks that are simultaneous. Second, observing a net-

work structure solves the reflection problem that arises with the identification of peer

effects using data on groups (Manski, 1993). The problem is that when all members

of a group are each others’ reference, group outcomes, and its mean characteristics are

perfectly collinear. In contrast, social networks are intransitive, so reference groups vary

even among connected individuals, and peer effects are identified. This use of network

intransitivity for identification, proposed by (Bramoullé et al., 2009), is also similar to the

use of overlapping group affiliation suggested by De Giorgi et al. (2010). Similar data on

networks and action logs have been recently used to study peer effects in user behaviors

in online settings, where such data is abundantly available from social network platforms

(see Goyal et al., 2010; Aral et al., 2009, for examples using Flikr and Yahoo! data).

This study also contributes to the literature by demonstrating and correcting for the

potential survival bias that arises when adoption times are not observed precisely, but

rather at some coarse frequency. Such data limitations are typical for many administrative

data sets, as they are often collected through a costly reporting process. (The HITECH,

for example, requires annual reports.) This is much unlike the complete action logs

that are continuously available, for example, through online social networking platforms.

The problem is that infrequent sampling may generate survival bias: many sequential

decisions appear simultaneous in the data. This study demonstrates how this issue can

be alleviated using indirect inference, a simulation-based estimation method (Gourieroux

et al., 1993; Smith, 2008). Indirect inference uses simulations to overcome intractable

likelihood functions. Estimates are calculated by comparing actual data against data that

are simulated from a model of the adoption processes. Estimations from another, auxiliary

model are used as criteria for comparison. Indirect inference chooses the parameters
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of the underlying economic model so that estimates of the parameters of the auxiliary

model obtained from actual and simulated data are as close as possible. In the current

context, simulations allow for matching actual data with “snapshots” of the adoption

state obtained from a peer-influence process simulated at a different frequency than the

one observed.

Data used are a combination of EHR adoption reports following the HITECH Act

and data on physician professional networks. The focus is on physicians in ambulatory

settings, whose payments were time sensitive (reporting late resulted in lower payments)

making truthful reporting compatible with incentives. Since providers could claim bene-

fits through either Medicare or Medicaid (Medicaid payments were also higher: $63,000

per provider, compared with $44,000 in Medicare), the focus is on California, where data

from both programs are available.

In such context of strong external incentives to adopt EHR, one may wonder whether

peer effects would have any significance at all. To address this question, adoption data

are combined with data on professional networks of two types. A link in the first network

encodes providers who share group-practice affiliations. A link in the second network

encodes providers with 11 or more common patients within a year. Observing both types

of links helps separate peer effects from adoption by practice groups—who likely share

costs and thus have every reason to coordinate, although reporting and attestation for

meaningful use must still be made individually. On average, more than 80% of their

colleagues with whom providers share patients are outside their practice groups.

EHR adoption exhibits substantial peer effects. All else being equal, individuals

are significantly more likely to adopt EHR when a greater fraction of their colleagues

with whom they share patients adopt EHR, even after accounting for gender, experience,

medical specialty, and for the (unsurprisingly high) correlation with adoption by practice

group affiliates. Logit and Cox proportional hazard specifications estimated from annual

data show the odds ratio of adopting EHR the following year increase substantially when

colleagues adopt (the odds ratio increases by 76%, CI [61%, 92%]).3 Overall, peer effects
3Put differently, each ten percentage point increase in the cumulative EHR adoption rate of their

peers increase the odds of individuals adopting EHR in the subsequent year by 7.6%.
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account for more of the variation in adoption times than heterogeneity in individual

gender, experience, and medical specialty combined. Indirect inference estimates are in

accord with reduced form estimates, showing robust peer effects even when the underlying

process is specified at semi-annual or quarterly frequencies.

This study is the first to use data on networks to study physician technology adoption

and to show its peer influence. Peer effects have been documented in various other

contexts, including: schooling performance (Sacerdote, 2001; Ammermueller and Pischke,

2009), criminal behavior (Bayer et al., 2009), participation in retirement funds (Duflo and

Saez, 2003), adoption of online services (Aral et al., 2009), and microfinance (Banerjee

et al., 2013). A continuing line of research tracks the progression of EHR adoption in the

U.S., prior to and during the incentive program (Hsiao et al., 2012; Decker et al., 2012;

Patel et al., 2013; Hsiao et al., 2013; Wright et al., 2013; Xierali et al., 2013; Furukawa

et al., 2014; DesRoches, 2015; Mennemeyer et al., 2015). However, that research did not

consider peer effects.

Considering the interactions between providers could allow policymakers both better

predict and expedite further adoption. Specifically, it could provide new insight into why

EHR adoption in the United States has been slow, and show current policies aimed at

expediting adoption could expedite further adoption by making sure information reaches

influential individuals (as Banerjee et al., 2013, have demonstrated for microfinance).

Encouraging EHR adoption is still a pressing concern, as most providers have still only

adopted basic EHR functionality (such as drug interaction alerts), and lack advanced

functions (such as inter-operability across providers).4

More generally, peer effects like the ones studied here can have the potential to inform

our understanding of technology adoption processes in medicine in general. Technology

in medicine has so far been studied more at the aggregate or individual levels (but not

using explicit networks data). Existing work focuses on technology’s impact on expendi-

ture growth (Cutler and McClellan, 2001; Chandra and Skinner, 2012), costs and benefits

of specific treatments Skinner et al. (2006), the impact of insurance type on aggregate
4Furukawa et al. (2014) for example show that by the end of 2013, only 48% of office-based physicians

reported having a system that met the criteria for a basic system.
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diffusion rates (Baker, 2001), and the impact of economic incentives on innovation (Kre-

mer and Snyder, 2006; Berndt et al., 2007; Sampat and Williams, 2015). Such work has

not considered the network structure between providers, which this study shows can be

consequential. More broadly, this study is also related to earlier work on variation in

practice styles between providers. Such variation has been previously explained, among

other explanations, in terms of differences in productivity spillovers (Chandra and Staiger,

2007), information spillovers, (Agha and Molitor, 2015), or diagnostic skills (Currie and

MacLeod, 2013; Currie et al., 2015). Networks analysis has the potential to reveal more

directly the relationships between physician interactions, their financial incentives, and

the ways they learn from each other and affect each others’ clinical choice of treatment

technology.

2 Background

This section discusses the institutional details of the Health Information Technology

for Economic and Clinical Health (HITECH) Act. Part of the American Recovery and

Reinvestment Act of 2009, the act came after a decade when EHR adoption in the United

States by physicians lagged that of many other developed countries and was designed to

improve the United States health care delivery system through the adoption and use of

health information technology.

The HITECH Act The Act offered incentives to eligible professionals and hospitals

that adopted and demonstrated the meaningful use of EHR. In 2011, the Medicare Elec-

tronic Health Records (EHR) Incentive Program of the Centers for Medicare and Medi-

caid Services began providing incentive payments to eligible professionals who adopt and

“meaningfully” use specific EHR capabilities. Under the programs, by taking specific

predetermined EHR capabilities, eligible professionals could receive as much as $44,000

over a five-year period through Medicare or $63,750 through Medicaid. Both programs

were federally designed and financed, but the states administered the Medicaid program.

Between 2011 and 2015, more than $21.1 billion in Medicare EHR Incentive Program
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payments and $10.3 billion in Medicaid EHR Incentive Program payments have been

made. Incentives were time sensitive: providers that started participating in the program

in 2014 or later received lower payments; to receive full benefits for the Medicaid incentive

program, providers have to start participating by 2016. However, despite the increase

in EHR adoption rates following the incentive program, EHR adoption still exhibits

persistent gaps. According to a recent survey, by the end of 2013, only 48% of office-

based physicians reported having a system that met the criteria for a basic system.5

Studying the EHR incentive program, Furukawa et al. (2014) show physicians in solo

practices and non–primary care specialties are lagging behind others.

Eligible Professionals Incentive payments were made to individual professionals and

eligibility was based on individual reporting of adoption and attestation for meeting a

set of criteria discussed below. Eligible professionals under the Medicare EHR incentive

program included physicians, dentists, podiatrists, optometrists and chiropractors. Un-

der the Medicaid program, eligible professionals included physicians, nurse practitioners,

certified nurse-midwives, dentists, and physician assistants who lead rural clinics are eli-

gible. Providers were eligible to participate in the Medicaid program only if 30% or more

of their services are furnished to Medicaid patients (20% for pediatricians). Professionals

eligible for both the Medicare and the parallel Medicaid EHR incentive programs had to

choose which program they wish to participate in when they registered.6 Hospital-based

eligible professionals were not eligible for incentive payments. An eligible professional is

considered hospital-based if 90% or more of his or her services are performed in a hospital

inpatient or emergency room setting.

Group Practices In a group practice, each eligible professional had to qualify sepa-

rately for an incentive payment by successfully demonstrating meaningful use of certified
5A "basic system", according to the survey, has all of the following functionalities: patient history and

demographics, patient problem lists, physician clinical notes, comprehensive list of patients’ medications
and allergies, computerized orders for prescriptions, and ability to view laboratory and imaging results
electronically. Source NCHS Data Brief, Use and Characteristics of Electronic Health Record Systems
Among Office-based Physician Practices: United States, 2001–2013, January 2014.

6Data source: EHR Incentive Program - CMS, https://www.cms.gov/regulations-and-guidance/
legislation/ehrincentiveprograms/eligibility.html, Accessed March 2017

6

https://www.cms.gov/regulations-and-guidance/legislation/ehrincentiveprograms/eligibility.html
https://www.cms.gov/regulations-and-guidance/legislation/ehrincentiveprograms/eligibility.html


EHR technology. Eligible professionals were only eligible for one incentive payment per

year, regardless of the number of practices or locations at which they provided services.

An eligible professional who worked at multiple locations, but did not have certified EHR

technology available at all of them had to have 50% of their total patient encounters at

locations where certified EHR technology is available and would base all meaningful use

measures only on encounters that occurred at locations where certified EHR technology

is available.

Reported Measures To receive payments, eligible professionals must have completed

15 core objectives, five objectives out of 10 from menu set, six total Clinical Quality

Measures, three core or alternate core, and three out of 38 from the additional set.7

Measures are calculated based on all patients seen or admitted during the EHR report-

ing period. The 15 core measures include: computerized provider order entry (CPOE);

e-prescribing (eRx); reporting ambulatory clinical quality measures to CMS; implement-

ing one clinical decision support rule; providing patients with an electronic copy of their

health information, upon request; providing clinical summaries for patients for each of-

fice visit; drug-drug and drug-allergy interaction checks; recording patient demographics;

maintaining an up-to-date problem list of current and active diagnoses; maintaining ac-

tive medication list; maintaining active medication allergy list; recording and charting

changes in vital signs; recording smoking status for patients 13 years or older; capability

to exchange key clinical information among providers of care and patient-authorized en-

tities electronically; protecting electronic health information. The menu objectives are:

drug-formulary checks; incorporating clinical lab test results as structured data; gener-

ating lists of patients by specific conditions; sending reminders to patients per patient

preference for preventive/follow up care; providing patients with timely electronic access

to their health information; using certified EHR technology to identify patient-specific

education resources and providing them to patient, if appropriate; medication reconcili-

ation; generating summary of care record for each transition of care/referrals; capability
7Data source: Medicare & Medicaid EHR Incentive Program Meaningful Use Stage 1

Requirements Overview, https://www.cms.gov/Regulations-and-Guidance/Legislation/
EHRIncentivePrograms/downloads/MU_Stage1_ReqOverview.pdf, Accessed March 2017
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to submit electronic data to immunization registries/systems; capability to provide elec-

tronic syndromic surveillance data to public health agencies. The core clinical quality

measures are hypertension and blood pressure measurement, tobacco use assessment, and

adult weight screening and follow-up.

Incentive Timing Payments were higher for early adopters, which made reporting of

adoption times incentive compatible. In order to receive the maximum incentive payments

of $44,000 (paid over five years), Medicare providers had to start participation early, in

2011 or 2012. Those joining in 2013 received only $39,000, and those joining in 2014

received only $24,000. From 2015, those not joining are subject to a one percent penalty

on their Medicare reimbursement. The penalty increases to two percent in 2016 and three

percent in 2017. Providers have to start participating by 2016 to receive the maximum

payments of $63,750 through the Medicaid program (paid over six years).

3 Data

This study combines data on reported EHR adoption times, physician characteristics, and

physician affiliations and common patients, for California medical professionals. Data on

both Medicare EHR incentive payments and providers’ affiliations are maintained by the

Centers for Medicare and Medicaid Services (CMS). Data on Medicaid EHR incentive

payments in California are maintained by California’s Medicaid program, Medi-Cal. All

datasets are publicly available online.

Data on EHR adoption are obtained from CMS and Medic-Cal public records of

adoption times reported by eligible professionals, as part of the EHR Meaningful Use

incentive program progress monitoring and public reporting (the programs are described

in Section 2).8 To qualify for incentive payments, professional have to attest to imple-

menting and meaningfully using EHR in their practice. Since payments depended on the

starting year of EHR use, there are strong incentives to report EHR adoption not later
8Data and Program Reports CMS, https://www.cms.gov/Regulations-and-

Guidance/Legislation/EHRIncentivePrograms/DataAndReports.html, Accessed March 2016
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Table 1: Descriptive Statistics: EHR Adoption by California Providers

Year 2011 2012 2013 2014
Adopted EHR During Year† 0.097 0.217 0.126 0.104
Male 0.670 0.668 0.663 0.663
Experience (years) 23.5 23.2 22.6 22.4

Previous Cumulative Adoption Among:
% Practice Peers 0.055 0.158 0.202
% Common-Patients Peers 0.043 0.121 0.150
At Risk Individual Providers 57, 575 52, 018 40, 714 35, 599

Notes: † As reported through either Medicare or Medicaid incentive programs. Data sources:
Provider Characteristics and Medicare EHR adoption, CMS; California Medicaid EHR adoption
Medi-Cal. The sample excludes providers in specialties with fewer than 30 professionals or where
less than 20% of all practicing professionals adopted EHR by 2014. The sample may still contain
professionals who work mostly in hospital settings and are therefore ineligible to participate. See
Section 2 for eligibility details and appendix for detailed data on adoption by specialty.

than the year it occurred. However, there are no incentives to record precisely the start-

ing date within the year, and data are effectively reported at annual frequency (reporting

dates exhibit considerable bunching around year ends).

The sample used consists of all Medicare and Medicaid providers in California prac-

ticing in one of 51 medical specialties. The sample is restricted to California as it is

the only state in which Medicaid EHR adoption reports are publicly available. Since

providers could adopt through either Medicare or Medicaid (in case 30% or more of their

patient covered by Medicaid), data from Medicare only does not distinguish between

Medicaid adopters and non-adopters. Table A3 shows that indeed a non-negligible frac-

tion reported adoption through Medicaid. (Since the Medicaid program payments were

higher, it is likely that those eligible for both programs would choose to report through

Medicaid.) Since medical professionals working mostly in hospital settings are not eli-

gible to participate, and since some specialties were not included in the program, only

medical specialties with an overall adoption rate of 20% or more (at the end 2015) were

included in the sample, under the assumption that most providers in those specialties

were unlikely to be eligible. Table A2 shows 2015 adoption rates by specialty. Excluded

specialties include several specialties that were not eligible to participate in the program,

such as clinical psychology and physical therapy, as well as specialties like pathology and
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emergency medicine that are typically practiced in a hospital setting. Specialties with

fewer than 30 practicing individuals were also excluded.

Figure 1: Cumulative Aggregate Adoption Rates, by Year
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Notes: Cumulative fractions for 2011–2014 denote adoption
by California providers of EHR through either Medicaid or
Medicare during that year. The remaining 2015 fraction de-
notes censored observations not adopting by 2014. Data source:
CMS, Medi-Cal.

Physician characteristics are obtained from Physician Compare, a public CMS database.9

The included characteristics are: sex, specialty, group affiliation, year of graduation (used

to calculate experience), and state (used to restrict the sample to California providers).

Two networks of interactions between physicians are elicited from the data: sharing

a group practice affiliation and having common patients. Data on common patients were

made available by CMS in response to a FOIA request.10 The data record each pair of

physicians who had 11 or more patients in common during 2010, as recorded on Fee-

For-Service Medicare claims. (A patient is considered common to a pair of physicians

if both physicians encountered the patient within a 30-day period.) Additional layer of

connections is elicited from Physician Compare group-affiliation data, by recording a link

between each pair of providers who are affiliated with at least one common practice group.
9Physician Compare Database, https://data.medicare.gov/data/physician-compare Accessed

February 2016.
10The request was made by a software developer and open-data proponent, Fred Trotter, in 2012.

Data are available through CMS FAQ7977, https://questions.cms.gov/faq.php?faqId=7977 Ac-
cessed February 2016.
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Figure 2: Degree Distributions
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Notes: (a) Common-Patients network degree distribution and (b) group size distribution. A link in the
shared-patient network exists providers with more than 11 common patients in 2010. Log-log scales:
liner relationships reflect power-law distributions. 14.4% of their colleagues with whom providers had
(11 or more) common patients also practice in their same practice groups.

Table A1 shows the distribution of the distinct number of groups physicians are affiliated

with. About 90% of physicians are affiliated with at least one practice group, and 80% are

affiliated exactly one. The degrees distribution in both networks is approximately power-

law. Simply put, there are many nodes with few neighbors and few nodes with many

neighbors. Figure 2 shows the distribution of degrees (i.e., the number of neighbors) in

the shared-patient network and of group size (which is identical to degree in the affiliation

networks for physicians with one group affiliation).

The years 2011–2014, when the incentive programs was in effect, where a period of

transition, with a significant fraction of the ambulatory providers adopting during that

time. Figure 1 shows the cumulative overall adoption rates for the 57,575 providers in

the sample. The peak of adoption occurred in 2012, consistent with the incentives (join-

ing the Medicare program after 2012 involved lower benefits). Table 1 shows individual

characteristics and adoption rates by peers per year, for the sub-sample of individuals

still "at risk" (i.e., who have not yet adopted by each year). Later sub-samples have

lower fractions of males and a lower average experience, suggesting some effect of these

characteristics on early adoption (later confirmed by the analysis). Reflecting the pro-

gression of adoption in the overall population, the mean fraction of neighbors of each type
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who have already adopted the technology increases over time. Since program payments

started in 2011, with strong incentives for previous adopters to report during that year,

2011 adoption reflects a mix of incentive-driven and baseline adoption. The overall low

base adoption rate of 9.7% reflects in part the fact that some ineligible professionals are

still included in the sample. Results should be interpreted with this fact in mind. The

inclusion of ineligible professional could bias estimates of the impact of various factors

on adoption downwards.

4 Empirical Strategy

A model of network diffusion is used to study the spread of technology over provider

networks. Identification of peer effects in the adoption of EHR is based on two sources

of variation: the variation over time in adoption by peers, and the variation between

individuals in the composition of their peer groups. Combined, data on networks and

adoption reveal whether adoption is related to the fraction of peers who have already

adopted the technology. Annual reporting frequency could make consecutive adopters

appear as if they adopted simultaneously. To overcome the ensuing survival bias, I use

indirect inference. I simulate data from an underlying model of adoption specified at

higher-than-observed frequencies, and match simulated and observed data. The rest of

this section described the empirical strategy.

4.1 Setup

Consider a graph (network) 〈V,X, (G1, G2)〉, where V is the set of nodes (providers), X

is their individual time invariant characteristics (the sets Xi for all nodes i ∈ V ); and

G1, and G2 are row-normalized adjacency matrices that summarize two types of links

between providers: group practice affiliation and having common patients. That is, for

each i, j ∈ V , the matrix cell Gij is zero if i and j are not linked and 1
ni

if i and j are

linked, where ni is the total number of nodes with whom i is linked. Hence rows of G sum

to one for providers who have any links and to zero for isolated providers. Specifically,
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a link is recorded in G1 for each pair of providers affiliated with at least one common

group practice; a link is recorded in G2 for each pair of providers who have seen at least

11 common patients in 2010. (a patient is considered common to i and j if i and j both

encountered the patients within a 30-day period). I assume the graph is fully observed

and fixed over time and treat links as undirected and unweighted. (data on link weights,

direction, and evolution over time allow relaxing any of these assumptions without much

change to the framework).

Over time, providers can decide to adopt irreversibly EHR technology. The (right-

censored) adoption time of provider i, denoted τi ∈ T = {t1, t2, . . . , T}, is the time i

adopted the technology. Let Yit = 1 if i adopted by period t, namely, if τi ≤ t, and

Yit = 0 otherwise. A snapshot Yt = (Yit)i∈V is the overall state of adoption by time

t. To study the diffusion of EHR adoption, I adapt to the current context a commonly

used theoretical model, the linear threshold model (Granovetter, 1978; Schelling, 1978).

The linear threshold model describes a contagion process, where every infected neighbor

for a node contributes certain weights, and if their sum is greater than a threshold, the

node is infected. In the model used here, individuals who have not done so already adopt

in t iff net benefits of adoption are positive. These benefits depend on both individual

characteristics and adoption by peers. Namely, conditional on τi ≥ t, Yt−1, Xi, and G:

Yit = 1{bit > εit} (1a)

Where

bit = α + β1G
1
iYt−1 + β2G

2
iYt−1 + γXi + ηt (1b)

Net benefits may depend on individual characteristics in Xi, on the period (ηt denotes

a set of period dummies), and on the fraction of neighbors having already adopted by

t − 1, which is given by the product GiYt−1. (Gi is the row corresponding to i in the

adjacency matrix G.) The term εit is the stochastic and unobserved individual threshold

for adoption that may capture individual costs of using or adopting EHR.
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This latent variable model that can be interpreted as reflecting a decision to adopt

that follows an individual weighing of costs and benefits, where net benefits of using

EHR are heterogeneous (e.g., they may be greater for certain medical specialties, for

more experienced providers, and in years where incentive payments are higher) and in-

crease in the number of neighbors adopting the technology. This model accommodates

peer effects working through either cost reduction or increase in benefits, though it does

not distinguish between the two. Both costs and benefits considered could be either real

or perceived, and could be either monetary (such as government incentive payments or

system setup costs) or non-monetary (such as the psychic cost of adapting to new tech-

nology). This model neglects strategic considerations. The model, by considering overall

cumulative adoption rates implicitly assumes that adoption by others has persistent in-

fluence.11 A variant of this model is studied where instead of cumulative adoption by

peers only recent adoption by peers is considered influential.

4.2 Identification

The goal is to identify separately whether individual providers’ decision to adopt EHR

is influenced by their peer adoption decisions or by their own characteristics.12 The

challenge is to identify separately peer influence from shocks that are correlated across

connected individuals. Such unobserved shocks could occur, for example, if certain areas

were exposed to more intense marketing of EHR systems in certain years. Using longitu-

dinal data and detailed network structure limits mitigate such concerns compared with

cross sectional or group data, in two ways. First, longitudinal data reveal the extent to

which individuals adopt the technology after their friends do so. Such intertemporal cor-

relation does not arise from correlated shocks that are simultaneous, even if such shocks
11The linear threshold model is one of two models of diffusion commonly used in many applications such

as viral marketing (Domingos, 2005), and contagion models (Dodds and Watts, 2004). The other model
is the independent cascade model (e.g., Goldenberg et al., 2001), where each infected node is allowed one
chance to infect a neighbor with some probability generally depending on the edge strength between the
nodes. Independent cascades are more appropriate for settings where information or contagion is short
lived.

12A related question is whether EHR adoption decisions are affected by neighbors’ characteristics. Such
effects were termed by Manski exogeneous peer effects. I currently abstract from such effects. Including
them in the analysis is left for future work.
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are correlated with the network structure. Second, detailed network structure means

that the reference group varies even among individuals that are connected. The main

identifying assumption is that Cov(εit, GiYt−1) = 0: individual unobserved shocks are un-

correlated with the previous adoption by peers. It is implied by the stronger assumption

that εit and εjt′ are independent when t 6= t′.

4.3 Estimation

If the individual threshold ε is i.i.d. and Gumbel distributed, the linear threshold model

is a latent-variable model that yields a logit specification:

Pr(Yit = 1|τi ≥ t, Yt−1, Xi, G) = exp(bit)
1 + exp(bit)

(2)

Alternatively, I also estimate a Cox model where hazard rates are assumed to be propor-

tional and given by:

λ(t) = λ0(t)exp(β1G
1
iYt−1 + β2G

2
iYt−1 + γXi) (3)

Estimation is complicated by the survival bias that may arise because only annual

snapshots are available, so events that appear simultaneous in the data may have in

fact occurred sequentially. With only end-of-year snapshots observed, (Yt)t∈T0(T , the

data does not distinguish providers i and j who adopted together, say during the same

month, from i and j who adopted in the consecutive month. This might be a problem

as the adoption process in (2) give rise to survival bias. For example, if men are more

likely to adopt early (as would be captured by γ), the population at risk would be

increasingly feminine over time. Observing infrequent snapshots means some changes of

the population occur within interim periods so that some of the interim changes might

not be estimated correctly, and mis-attributed to the population composition during the

last snapshot observed. Specifically, within-year changes in adoption rates within each

peer group are imprecisely observed.13

13For example let T be set of consecutive periods and, let pT |r = Pr(τ ∈ T |τ ≥ r, Yr, X) be the
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To overcome these challenges, I use indirect inference (Gourieroux et al., 1993; Smith,

2008). This method estimates the parameters by minimizing the distance between data

simulated from the model (2) and the actual data, where the metric used is the weighted

difference between estimates of a separate auxiliary model, fitted to both actual and

model-simulated data. The rest of this section described the procedure in more detail.

Indirect inference estimates the parameters of a fundamental model indirectly, by

simulation data and estimating an auxiliary model. Recall that the fundamental model

is a mapping from G,X to a distribution on the set of possible Yt, with parameters which

we collectively referred to here as β, and a stochastic residual ε. An auxiliary model is a

possibly misspecified such mapping with parameters denoted θ. Let Z denote the actual

data (G,X, Y ), let θ(Z) denote estimates of the auxiliary model parameters θ using data

Z, and let Z̃(β, ε) = (Ỹ (β,X,G, ε), X,G) denote data simulated using the fundamental

model with parameters β, the actual exogenous variables G and X, and a random draw

of residuals ε from their postulated distribution. The estimation is performed in three

steps:

1. Estimate the auxiliary parameter using actual data θ̂ = θ(Z).

2. Draw residuals of the fundamental model ε̃

3. Pick β that produces simulated data with the associated auxiliary parameters closes

to actual ones, that is

β̂ = argmin
β

(
θ̃(Z̃(β, ε̃))− θ̂

)′
W
(
θ̃(Z̃(β, ε̃)))− θ̂

)
(4)

The third step is implemented using numeric minimization using iterated sub-steps. In

probability of adoption during any of these periods. If the model in (2) is estimated using snapshots
from every odd period, the probability of adoption between observed snapshots is:

p̃︷ ︸︸ ︷
pt,t+1|t = pt|t + pt+1|t = pt|t + (1− pt|t)pt+1|t+1 >

p︷︸︸︷
pt|t

A logit estimate treating the process as fully observed is going to be biased since

p̃ > p ⇐⇒ ln(p̃/(1− p̃)) > ln(p/(1− p)) ⇐⇒ X ′β̃ > X ′β
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each such step, data Z̃(β, ε̃) is simulated using the fundamental model, and the auxil-

iary model estimates θ̃(Z̃) calculated using the simulated data are compared against the

estimates θ̂ calculated using the actual data. This process is repeated until it converges

to a stable solution.14 The weighting matrix W used is the inverse of the estimated

variance-covariance matrix of the coefficients of the auxiliary model, which approximates

the Fisher information.

Indirect inference estimates the parameters of a fundamental model indirectly, by

simulation data and estimating an auxiliary model. Recall that the fundamental model

is a mapping from G,X to a distribution on the set of possible Yt, with parameters which

we collectively referred to here as β, and a stochastic residual ε. An auxiliary model is a

possibly misspecified such mapping with parameters denoted θ. Let Z denote the actual

data (G,X, Y ), let θ(Z) denote estimates of the auxiliary model parameters θ using data

Z, and let Z̃(β, ε) = (Ỹ (β,X,G, ε), X,G) denote data simulated using the fundamental

model with parameters β, the actual exogenous variables G and X, and a random draw

of residuals ε from their postulated distribution. The estimation is performed in three

steps:

1. Estimate the auxiliary parameter using actual data θ̂ = θ(Z).

2. Draw residuals of the fundamental model ε̃

3. Pick β that produces simulated data with the associated auxiliary parameters closes

to actual ones, that is

β̂ = argmin
β

(
θ̃(Z̃(β, ε̃))− θ̂

)′
W
(
θ̃(Z̃(β, ε̃)))− θ̂

)
(5)

The third step is implemented using numeric minimization using iterated sub-steps. In

each such step, data Z̃(β, ε̃) is simulated using the fundamental model, and the auxil-

iary model estimates θ̃(Z̃) calculated using the simulated data are compared against the
14In the implementation, the Bound Optimization BY Quadratic Approximation, BOBYQA, numerical

optimization algorithm is used, starting from logit estimates of (2) with annual frequency as the initial
parameter.
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estimates θ̂ calculated using the actual data. This process is repeated until it converges

to a stable solution.15 The weighting matrix W used is the inverse of the estimated

variance-covariance matrix of the coefficients of the auxiliary model, which approximates

the Fisher information.

In the current context, indirect inference allows for simulation of the fundamental

model in frequency greater than the one observed, so that the population composition

could vary within interim, unobserved periods. Simulated snapshots that match the

observed frequency are then used in the estimation of the auxiliary model. The auxiliary

mode used is again the one described in (2), but specified at annual frequency—the

frequency observed in the actual data. Standard errors are bootstrapped parametrically,

by simulating multiple times, each time using a separate draw of residuals (Step 2. above),

and calculating the standard deviation of the sample of estimates derived from such

distinct simulations.

5 Results

Adoption of EHR is highly correlated with previous cumulative adoption by neighbors,

suggesting the presence of significant peer effect. Table 2 shows results of logistic and Cox

proportional hazards estimation of (2). Without any controls, there is a correlation be-

tween the rate of EHR adoption by providers and the adoption of EHR in previous years

by peers with whom they have common patients (Column 1). Correlation in adoption

with practice-group peers explains only part of this correlation (Column 2). Moreover,

the conditional effect of peers—the main parameter of interest—are stronger when gen-

der, experience, specialty, and period effects are accounted for (Column 3). The odds

ratio of adopting EHR within a year increase almost twofold (coefficient 0.568; odds ratio

1.764; 95% CI [1.625, 1.916]) when (all) peers with common patients adopt. Note that

since year dummies are included, this effect is not mechanically driven by the progression

of adoption over 2011–2014. High correlation in adoption times also exists within group
15In the implementation, the Bound Optimization BY Quadratic Approximation, BOBYQA, numerical

optimization algorithm is used, starting from logit estimates of (2) with annual frequency as the initial
parameter.

18



practices, which is to be expected given the likelihood that group practice member coor-

dinate EHR adoption. Mid-career providers are most likely to adopt, as suggested by the

quadratic experience term. Specialty is a major factor in adoption decisions, although

estimates partly reflect data limitations (providers’ eligibility is determined in part by

whether or not they mostly work in a hospital setting, which is highly correlated with

specialty). The estimated effects of gender are small and turn insignificant once flexible

interactions of gender and experience are included (Column 4), suggesting EHR adoption

is not determined by gender per se, but rather by differences in the trajectory of the im-

pact of experience on adoption rates, combined with the fact males are more experienced

on average. Cox proportional hazard estimates yield a similar picture (Columns 6 and 7,

corresponding to specifications analogous to Columns 3 and 4, respectively). Column 5

shows that including a single control for specialty—the average adoption rate in each

specialty in 2011—does not matter much. Such single control for specialty is used in the

numeric estimation of indirect inference estimates instead of multiple specialty dummies,

for computational simplicity.

The estimated effects of peer adoption are stronger when peer adoption only during

the previous year—not the cumulative adoption to date—is considered. Table 3 shows

logistic estimates of (2) with this alternative measure of peer adoption. The signs of all

effects are unchanged, but the estimated effects of adoption by peers of either type are

larger (coefficient 0.99; odds ratio 2.7; 95% CI [2.428, 3.001]). These findings suggest

that influence of peers adopting the technology is strongest shortly after they do so, and

decays over time.
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Table 3: Peer Effects in EHR Adoption (Peer Adoption in Previous Year Only)

Dependent variable: Adopt EHR
logistic

(1) (2) (3)
Pct Peers Adopted Recently (Common Patients) 1.240∗∗∗ 0.993∗∗∗ 1.010∗∗∗

(0.051) (0.054) (0.053)
Pct Peers Adopted Recently (Group) 1.470∗∗∗ 1.660∗∗∗ 1.680∗∗∗

(0.048) (0.050) (0.050)
Male −0.071∗∗∗ −0.022

(0.018) (0.018)
Experience 0.089∗∗∗ 0.088∗∗∗

(0.003) (0.003)
Experience2 −0.002∗∗∗ −0.001∗∗∗

(0.0001) (0.00005)
Specialty (Baseline) 6.480∗∗∗

(0.165)
Constant −1.430∗∗∗ −2.270∗∗∗ −3.080∗∗∗

(0.011) (0.104) (0.038)
Specialty N Y Y
Year N Y Y

Providers 57, 575
Events 25, 665
Observations 128, 331

Notes: Estimation results of logistic regressions using observed (annual) data. Pct Peers Adopted
Recently is the adoption rate by peers up until the previous year. Common Patients peers are peers
with at least 11 common patients. Group peers are peers with at least one common practice group
affiliation. Experience is years since graduation (Experience2 is squared Experience). Male is a
male provider dummy. Specialty (Baseline) is the mean adoption rate by specialists of the same
specialty as the providers in 2011. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 Standard errors are clustered by
provider.

Indirect estimates further suggest that peer effect estimates do not exhibit survival

bias (Table 4). Estimates of peer effects obtained from simulations of model (2) at

various frequencies are virtually identical to the ones obtained from the observed annual

frequency. The exception is the estimated constants (baseline probability of adopting),

which are lower for higher frequencies. This is to be expected because at higher frequencies

each period is shorter. For example, consider the constants estimated from simulations

with quarterly and semi-annual frequencies (αQ = −5.26, and αS = −4.5, respectively;

Columns 2 and 3 of Table 4. The approximate baseline probability of adoption during the

simulated period (assuming all other covariates are zero) is p(α) = exp(α)/(1 + exp(α)),

yielding pQ = 0.52%, and pS = 1.1%. But this doubling of the baseline probability is to

be expected when moving from quarterly to semi-annual frequency, where each period
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is twice as long: pS ≈ pQ + (1 − pQ)pQ ≈ 2pQ. A similar relationship exists between

estimated pS and pA, the baseline probability of adoption with annual frequency.

Table 4: Indirect Inference Estimates of Peer Effects

Dependent variable: Adopt EHR
indirect inference

simulation frequency
Annual Semi-Annual Quarterly

(1) s.e. (2) s.e. (3) s.e.

Pct Peer Adopted (Common Patients) 0.574 0.001 0.574 0.001 0.572 0.001

Pct Peer Adopted (Group) 1.510 0.0004 1.510 0.001 1.510 0.0005

Male -0.023 0.001 -0.022 0.001 -0.021 0.001

Experience 0.093 0.001 0.094 0.001 0.093 0.0005

Experience2 -0.002 0.00002 -0.002 0.00002 -0.002 0.00004

Specialty (Baseline) 6.380 0.003 6.380 0.001 6.380 0.001

Constant -3.550 0.002 -4.500 0.001 -5.260 0.054

Year Y Y Y
Observations 57, 575
Simulations 50

Notes: Indirect inference estimates are mean estimates of the model simulated at different baseline
frequencies and matched with data at annual frequency using an auxiliary logit model; coefficient
shown are means across simulation. Standard errors are parametrically bootstrapped. Since com-
putational intensity increases in the number of parameters, Specialty (Baseline): adoption rate by
specialty (in 2011) is used in lieu of specialty dummies.

6 Conclusion

This study addressed the question of whether peer effects exists in the adoption of EHR by

U.S. providers. I estimated a linear threshold model, where the technology is adopted if

the fraction of peers adopting surpasses an individual stochastic threshold that depends on

individual characteristics. Data on EHR adoption from Medicare and California Medicaid

during 2011–2014 were combined with information on the networks of interaction between

providers through common patients and common affiliations. Results suggest significant

peer effects exit in EHR adoption. All else being equal, providers are increasingly more

likely to adopt EHR as more peers they have patients in common with adopting EHR

themselves. This effect is significant even for peers that are not within the same practice

group (where adoption decisions are likely coordinated). Flexible period dummies and
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simulations of the model in different frequencies both show that estimated peer effects

do not reflect a spurious correlation resulting mechanically from the fact that over time

adoption rates increase in general, and thus they also increase within individual peer

groups. Neither estimated peer effects are due to the variation over time in incentive

payments for adoption.

Remaining concerns include network endogeneity. If, for example, the network ex-

hibits homophily (a tendency to connect more with similar others) on unobserved di-

mensions that are also correlated with adoption, outcomes could be correlated because

of inherent similarities in their characteristics rather than as a consequence of their inter-

actions (Aral et al., 2009). This may bias current estimates upwards. Studying network

endogeneity is a clear next step for this research. Other directions for future research

include extending these results using data on Medicaid adoption from other states (once

it becomes available), using alternative definitions of the peer networks, and exploiting

the same methods to study the adoption of other technologies in medicine.

Results reveal that new opportunities are available to policymakers interested in

inducing or, more generally, affecting technology diffusion in medicine. To the extent

providers are influenced by their peers, policies affecting behaviors of individual providers

then have an indirect effect on others as well. Such effects have already been shown to

exist in other settings (Banerjee et al., 2013), and harnessing knowledge of peer effects

to maximize influence is a widely studied theoretical problem with surprising feasibility

results (Kempe et al., 2003). Furthermore, the fact network degrees are distributed very

unevenly (Figure 2 shows they approximately follow a power law distribution) means

that some nodes have the potential to be more influential than others. Policies targeting

central individuals could, therefore, achieve better influence than policies that treat all

nodes uniformly. More research is needed to corroborate the external validity of current

estimates and to study more fundamental mechanisms that determine peer adoption.

But results suggest that there might be room for concrete policy improvements based

on utilizing networks data. Such potential uses may not be limited to EHR adoption,

and policies aimed, for example, at inducing adherence to guidelines or at enhancing

23



the use of cost efficient technologies could benefit from it as well. Using networks data

appears to be a promising—and feasible—direction for the study of technology adoption

in healthcare.
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Table A1: Distinct Practice Groups per Physicians

Groups per Provider Providers Percent Cumulative Percent
1 0 5, 568 0.097 0.097
2 1 45, 380 0.788 0.885
3 2 5, 424 0.094 0.979
4 3 939 0.016 0.995
5 4 167 0.003 0.998
6 5 56 0.001 0.999
7 6 27 0.0005 1.000
8 7− 11 14 0.0001 1

Notes: Groups per Provider is the number of group practices each provider is affiliated with.
Providers is the number of providers in the sample with such affiliation. The majority of providers,
45,380, are affiliated with exactly one practice group. Data source: CMS Physician Compare.
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Table A2: EHR Meaningful Use by Specialty

Primary_Specialty Overall_Adoption_Rate N In Sample
1 INTERVENTIONAL CARDIOLOGY 0.869 122 Yes
2 HEMATOLOGY 0.815 81 Yes
3 CARDIAC ELECTROPHYSIOLOGY 0.734 128 Yes
4 ENDOCRINOLOGY 0.667 519 Yes
5 RHEUMATOLOGY 0.663 469 Yes
6 HEMATOLOGY/ONCOLOGY 0.653 822 Yes
7 CARDIOVASCULAR DISEASE (CARDIOLOGY) 0.648 1, 943 Yes
8 GASTROENTEROLOGY 0.646 1, 308 Yes
9 NEPHROLOGY 0.626 835 Yes
10 GYNECOLOGICAL ONCOLOGY 0.612 80 Yes
11 SPORTS MEDICINE 0.612 49 Yes
12 MEDICAL ONCOLOGY 0.603 229 Yes
13 PULMONARY DISEASE 0.574 859 Yes
14 UROLOGY 0.571 950 Yes
15 FAMILY PRACTICE 0.561 8, 371 Yes
16 PEDIATRIC MEDICINE 0.546 683 Yes
17 GERIATRIC MEDICINE 0.546 141 Yes
18 NEUROLOGY 0.533 1, 429 Yes
19 OBSTETRICS/GYNECOLOGY 0.524 2, 801 Yes
20 SURGICAL ONCOLOGY 0.518 85 Yes
21 OTOLARYNGOLOGY 0.511 994 Yes
22 INTERVENTIONAL PAIN MANAGEMENT 0.507 136 Yes
23 ALLERGY/IMMUNOLOGY 0.492 358 Yes
24 HAND SURGERY 0.490 102 Yes
25 VASCULAR SURGERY 0.477 327 Yes
26 COLORECTAL SURGERY (PROCTOLOGY) 0.472 108 Yes
27 ORTHOPEDIC SURGERY 0.465 2, 314 Yes
28 GENERAL PRACTICE 0.461 865 Yes
29 RADIATION ONCOLOGY 0.461 445 Yes
30 PODIATRY 0.459 1, 500 Yes
31 OPHTHALMOLOGY 0.450 2, 173 Yes
32 CERTIFIED NURSE MIDWIFE 0.444 63 Yes
33 DERMATOLOGY 0.442 1, 544 Yes
34 NEUROSURGERY 0.442 484 Yes
35 GENERAL SURGERY 0.428 1, 861 Yes
36 PAIN MANAGEMENT 0.426 176 Yes
37 OSTEOPATHIC MANIPULATIVE MEDICINE 0.419 62 Yes
38 INTERNAL MEDICINE 0.369 11, 968 Yes
39 INFECTIOUS DISEASE 0.366 541 Yes
40 UNDEFINED PHYSICIAN TYPE (SPECIFY) 0.357 70 Yes
41 THORACIC SURGERY 0.347 190 Yes
42 PLASTIC AND RECONSTRUCTIVE SURGERY 0.304 563 Yes
43 CARDIAC SURGERY 0.298 171 Yes
44 PREVENTATIVE MEDICINE 0.292 65 Yes
45 PHYSICAL MEDICINE AND REHABILITATION 0.289 700 Yes
46 OPTOMETRY 0.270 2, 778 Yes
47 HOSPICE/PALLIATIVE CARE 0.258 66 Yes
48 MAXILLOFACIAL SURGERY 0.244 41 Yes
49 CRITICAL CARE (INTENSIVISTS) 0.223 301 Yes
50 DIAGNOSTIC RADIOLOGY 0.216 3, 015 Yes
51 PSYCHIATRY 0.208 2, 537 Yes
52 SLEEP LABORATORY/MEDICINE 0.737 19 -
53 PERIPHERAL VASCULAR DISEASE 0.714 7 -
54 GERIATRIC PSYCHIATRY 0.500 28 -
55 ADDICTION MEDICINE 0.429 14 -
56 NEUROPSYCHIATRY 0.400 5 -
57 NUCLEAR MEDICINE 0.192 104 -
58 ORAL SURGERY (DENTIST ONLY) 0.160 181 -
59 CHIROPRACTIC 0.157 3, 705 -
60 INTERVENTIONAL RADIOLOGY 0.152 263 -
61 ANESTHESIOLOGY 0.141 4, 117 -
62 NURSE PRACTITIONER 0.138 2, 967 -
63 EMERGENCY MEDICINE 0.075 2, 577 -
64 PATHOLOGY 0.050 1, 050 -
65 CLINICAL NURSE SPECIALIST 0.048 21 -
66 PHYSICIAN ASSISTANT 0.017 117 -
67 CERTIFIED REGISTERED NURSE ANESTHETIST 0.005 645 -
68 CLINICAL SOCIAL WORKER 0.001 1, 377 -
69 CLINICAL PSYCHOLOGIST 0.0004 2, 839 -
70 PHYSICAL THERAPY 0 4, 472 -
71 AUDIOLOGIST 0 389 -
72 REGISTERED DIETITIAN OR NUTRITION PROFESSIONAL 0 188 -
73 OCCUPATIONAL THERAPY 0 378 -
74 SPEECH LANGUAGE PATHOLOGIST 0 96 -

Notes: Data sources: Medicare and Medi-Cal. Rates of EHR adoption via
the Meaningful Use incentive program by 2015. N is number of providers
overall, as reported via Physician Compare. Sampled are all specialties
with at least 30 providers and 2015 adoption rate of at least 20%, to
crudely account for the fact providers billing 90% or more in inpatient
settings, and providers of certain specialties are not eligible to participate
in the program.
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Table A3: Share of Payments Through Medicare, not Medicaid

Primary Specialty Medicare
1 PODIATRY 1
2 SURGICAL ONCOLOGY 0.977
3 DERMATOLOGY 0.972
4 INTERVENTIONAL CARDIOLOGY 0.972
5 SPORTS MEDICINE 0.967
6 VASCULAR SURGERY 0.962
7 COLORECTAL SURGERY (PROCTOLOGY) 0.961
8 PAIN MANAGEMENT 0.960
9 OPTOMETRY 0.944
10 RADIATION ONCOLOGY 0.941
11 HOSPICE/PALLIATIVE CARE 0.941
12 UROLOGY 0.928
13 CARDIAC ELECTROPHYSIOLOGY 0.926
14 HEMATOLOGY 0.924
15 CARDIAC SURGERY 0.922
16 MEDICAL ONCOLOGY 0.920
17 HAND SURGERY 0.920
18 RHEUMATOLOGY 0.920
19 GYNECOLOGICAL ONCOLOGY 0.918
20 INTERVENTIONAL PAIN MANAGEMENT 0.913
21 PULMONARY DISEASE 0.913
22 CRITICAL CARE (INTENSIVISTS) 0.910
23 GASTROENTEROLOGY 0.910
24 THORACIC SURGERY 0.909
25 ORTHOPEDIC SURGERY 0.905
26 OPHTHALMOLOGY 0.905
27 CARDIOVASCULAR DISEASE (CARDIOLOGY) 0.902
28 HEMATOLOGY/ONCOLOGY 0.894
29 OTOLARYNGOLOGY 0.890
30 ENDOCRINOLOGY 0.887
31 ALLERGY/IMMUNOLOGY 0.886
32 NEUROSURGERY 0.883
33 NEUROLOGY 0.879
34 PLASTIC AND RECONSTRUCTIVE SURGERY 0.877
35 PHYSICAL MEDICINE AND REHABILITATION 0.871
36 GERIATRIC MEDICINE 0.870
37 NEPHROLOGY 0.870
38 DIAGNOSTIC RADIOLOGY 0.860
39 GENERAL SURGERY 0.818
40 INTERNAL MEDICINE 0.807
41 PREVENTATIVE MEDICINE 0.737
42 FAMILY PRACTICE 0.726
43 INFECTIOUS DISEASE 0.692
44 UNDEFINED PHYSICIAN TYPE (SPECIFY) 0.680
45 OSTEOPATHIC MANIPULATIVE MEDICINE 0.654
46 OBSTETRICS/GYNECOLOGY 0.606
47 GENERAL PRACTICE 0.536
48 PSYCHIATRY 0.423
49 MAXILLOFACIAL SURGERY 0.300
50 PEDIATRIC MEDICINE 0.155
51 CERTIFIED NURSE MIDWIFE 0

Notes: Percent of EHR incentive payments claimed through
Medicare (as opposed to Medicaid), out of all claimants, by
specialty. Participation through Medicaid is only available for
providers whose patient share in Medicaid is 30% or more.
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