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Abstract

I study an infinite-horizon trust game, in which at each period, a

distinct player chooses whether to put trust in the next player. Players

are limited to bounded-recall strategies. Each player forms his belief

regarding his opponent’s strategy on the basis of sample data, drawn

from the long-run play path. In equilibrium, players best-reply to

their belief. I demonstrate how the combination of sampling error

and the representative-sample aspect of players’sampling procedure

lead to the emergence of reciprocal behavior.
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1 Introduction

How to sustain long-run trust in dynamic interactions is one of the most thor-

oughly studied questions in Game Theory. This literature has emphasized

the question of whether cooperative behavior is consistent with Nash equilib-

rium and its refinements (see Mailath and Samuelson (2006) for a textbook

treatment). A smaller literature addressed the question of how players may

learn to cooperate through some dynamic, non-equilibrium learning process

(e.g. Kalai and Lehrer (1993)).

This paper tackles the problem of learning and sustaining cooperative

behavior from the perspective of a smaller literature, which seeks to fuse

the learning and equilibrium perspectives (Osborne and Rubinstein (1998),

Spiegler (2005), Salant and Cherry (2020), Goncalves (2020)). According

to this approach, learning - in the sense of drawing inferences from partial

data - is an integral part of the definition of equilibrium behavior. Players

extrapolate beliefs from sample data. Equilibrium behavior is the outcome of

players best-replying to the beliefs extrapolated from their sample. In turn,

the sample is drawn from the equilibrium data-generating process.

I apply this approach to a discrete-time, infinite-horizon trust game with

sequential moves. At every period t, a distinct player (also called t) acts.

His payoff depends only on his own action and the action of player t + 1,

according to a standard Prisoner’s Dilemma payoff function. Thus, each

player’s dilemma is whether to put trust in the subsequent player. I restrict

attention to finite-recall strategies: players can only condition their action

on the m most recent actions. Under this restriction, there is a unique Nash

equilibrium, in which players always defect.

To incorporate learning into a definition of equilibrium, think of a sce-

nario in which the game has been played for many periods. Players lack

access to the entire history. Instead, they obtain data about a random chunk

of the historical play path. They regard this chunk as a sample that enables

them to learn players’ strategy in this game - i.e., how players condition

their action on the m-truncated history that precedes them. For instance,

suppose that m = 1 and a player extracts the following action sequence
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110110000000010111110 from the long-run play path (the digits 0 and 1 in-

dicate defection and cooperation, respectively). A natural inference from this

21-period chunk is that players are cooperative with probability 60% follow-

ing cooperative play (because in this chunk, 1 is played 10 times, followed

by 1 in 6 out of these 10 cases), and that players are cooperative with prob-

ability 30% following defection (because in this chunk, 0 is played 10 times -

not including the last observation - followed by 1 in 3 out of these 10 cases).

Literally formalizing this scenario is complex. Instead, I develop a more

tractable modeling approximation. To motivate it, suppose all players follow

the same mixed strategy (namely, a function that assigns a probability of

cooperation to every m-truncated history). Assuming the strategy has full

support, it induced a unique invariant distribution over m-truncated histo-

ries. Imagine that each player obtains access to a sample of n independent

observations of how players respond to m-truncated histories. The sample is

representative - that is, each truncated history is sampled in proportion to

its long-run frequency under the invariant distribution. The representative-

sample assumption approximates the idea that if players have access to an

arbitrary chunk of the long-run play path, the are more likely to encounter

a particular truncated history if it has a high invariant probability. For each

truncated history, the player observes a normally distributed variable. Its

moments are defined by the sample average of independent draws from the

action mixture that the equilibrium strategy assigns to the truncated history

in question. This is a normal approximation of the idea that for every sample

point, the player observes an independent draw from the Bernoulli distribu-

tion induced by the equilibrium strategy at a given truncated history. The

role of this smooth approximation is to avoid the problem that an exact rep-

resentative sample will typically involve a fractional number of observations.

The realization of this normal variable is the player’s point forecast of the

subsequent player’s propensity to cooperate at the given history.

Thus, my modeling approximation involves two tricks. First, I assume

that players obtain a representative sample of players’response to truncated

histories, rather than a random chunk of the play path. Second, I use a

Gaussian approximation of the otherwise discrete distribution of the average
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of independent draws from a Bernoulli distribution. The equilibrium condi-

tion is that players best-reply to their point forecasts, and that the random

behavior that this sampling-based procedure generates coincides with the

equilibrium strategy.

At present, I have partial characterization results for m ≤ 2. The main

result is that this equilibrium concept produces positive rates of coopera-

tive behavior, such that players’propensity to cooperate is higher following

cooperative play. This reciprocity effect arises because of the representative-

sample assumption. The intuition is that when a pattern of behavior is

more common, it accordingly receives large representation in players’sam-

ple. This makes players’assessment of how their opponent will react to this

pattern more precise, having a narrower tail. This has implications for the

probability of a high evaluation of the probability of cooperation following

different patterns. Numerical simulations for m = 3, 4, 5 confirm this result,

but establishing it analytically for general m remains an open problem.

Sampling-based reasoning thus makes reciprocity self-sustaining. Reci-

procity changes the relative frequency of patterns that exhibit cooperative

and non-cooperative behavior, which in turn affects the probability of tail

events in the sampling of players’behavior following these different patterns.

Although I have identified this effect in a simple dynamic trust game, I be-

lieve this insight is relevant for more complex interactions, such as models of

repeated oligopolistic interaction.

2 The Model

Consider the following discrete-time, infinite-horizon, sequential-move game.

It will be helpful to imagine time as stretching to infinity in both directions

- i.e., t = . . .− 2, 1, 0, 1, 2, .... At every period t, a distinct agent, referred to

as player t, chooses an action at ∈ {0, 1}.
Player t’s payoff is purely a function of at and at+1, given by u(at, at+1) =

1
c
at+1− at, where c < 1 is a constant. This is a standard Prisoner’s Dilemma

payoffmatrix: at = 1 means that player t decides to “put his trust”in player

t+1. This payoff function implies the following basic observation. If player t
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believes that at+1 = 1 with probability p(at), then player t will weakly prefer

to play a = 1 if and only if

1

c
· p(1)− 1 ≥ 1

c
· p(0)− 0

which is equivalent to

p(1)− p(0) ≥ c

Players in this game have limited recall. They can only condition their

action on m-truncated histories - i.e. the m ≥ 1 most recent actions. The

set of m-truncated histories is H = {0, 1}m. For every m-truncated history
h = (at−m, ..., at−1), (h, a) is a shorthand notation for the concatenated m-

truncated history (at−m+1, ..., at−1, a). A mixed strategy for any player t in

this game is a function f : H → [0, 1], where f(h) is the probability that

at = 1 given the m-truncated history h = (at−m, ..., at−1).

Benchmark: Nash equilibrium

In the unique Nash equilibrium of this game, every player chooses a = 0 after

every history. The reason is as follows. Fix a candidate Nash equilibrium.

Define m∗ ≤ m as the effective recall associated with this equilibrium - i.e.

there is a player t who conditions his behavior on at−m∗, and there is no

m′ > m∗ for which this is the case. Suppose m∗ > 0, and consider player

t’s reasoning. By the definition of m∗, this player knows that player t + 1

will not condition his behavior on at−m∗. Therefore, there is no reason for

player t to condition his own behavior on at−m∗, because his own payoff only

depends on at and at+1. This contradicts the definition of m∗. It follows

that m∗ = 0, which means that players never condition their behavior on the

history. This makes a = 0 a best-reply for each player.

This finding relies on the limited-recall assumption. If players had perfect

recall, cooperation could be sustained by a “grim” trigger strategy: play

a = 1 if and only if all predecessors played a = 1.

Let us now present the sampling-based equilibrium concept for this game.

Let n > 0 be an integer. Fix a strategy f . This strategy defines a discrete-

time Markov process, in which the set of states is H, and the probabilities of
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transition from h into (h, 1) and (h, 0) are f(h) and 1 − f(h), respectively.

If f(h) ∈ (0, 1) for every h, then the Markov process is irreducible and

therefore has a unique invariant distribution over H, denoted αf . Moreover,

this distribution has full support.

Suppose that f induces a well-defined invariant distribution αf . For every

h ∈ H and a ∈ {0, 1}, define the following independently distributed, normal
random variable:

f̂(h, a) ∼ N

(
f(h, a),

f(h, a)(1− f(h, a))

nαf (h, a)

)
(1)

This variable represents an individual player’s estimate of the probability that

the subsequent player will choose a = 1 following the m-truncated history

(h, a).

The model has two free parameters: the payoffconstant c, and the sample

size n. We are now ready to define our equilibrium concept.

Definition 1 (Equilibrium) Fix ε ∈ (0, 1). A strategy f is an ε-equilibrium

if, for every h ∈ H,

f(h) = ε · 1

2
+ (1− ε) · Pr(f̂(h, 1)− f̂(h, 0) ≥ c)

where f̂ is defined by (1). A strategy is an equilibrium if it is the limit of a

sequence of ε-equilibria, where ε→ 0.

The procedure behind the equilibrium concept

Let us now describe the decision process that this definition approximates.

When players’statistical behavior is consistent with the strategy f , this in-

duces a play path in which the long-run frequency of m-truncated histories

is given by αf . This is due to the ergodicity property of the invariant dis-

tribution. Before taking an action, a player uses a sample from past play to

form a belief regarding the subsequent player’s behavior. Specifically, he may

examine a chunk of the historical play path. This chunk is a random sample;

yet on average, the frequencies of m-truncated histories in it will conform to
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αf . The player uses this chunk to generate a point estimate of the probability

that players choose a = 1 as a function of the preceding m-truncated history.

The equilibrium condition is that players’statistical behavior, given by f , is

consistent with best-replying to their samples.

Literally modeling this process of random sampling of chunks of past

play is complex. Therefore, for the sake of tractability, I make a number of

modeling approximations. First, I envisage the player as if he has access to

a representative sample of n truncated histories. The fractions of truncated

histories in the sample are given by αf . Second, I imagine that for each

a = 0, 1, the player observes nαf (h, a) independent draws from f(h, a), and

uses the average of these sample points as a point forecast of the probability

that players choose a = 1 following (h, a).

Thus, one modeling simplification is to replace the image of observing a

chunk of past play with the notion of a representative sample of truncated

histories. The final modeling approximation replaces the discrete distribu-

tion of the sample average of nαf (h, a) independent draws from a Bernoulli

variable (having a success rate of f(h, a)) with a normal variable having

the same mean and variance. This normal approximation is helpful because

nαf (h, a) is typically not a strictly positive integer, hence constructing an

exactly representative sample is impossible.

Following this approximated process, player t acting after them-truncated

history h believes that at+1 = 1 with probability f̂(h, at), and therefore he

will choose a = 1 whenever f̂(h, 1)− f̂(h, 0) ≥ c. The equilibrium condition

is that the probability of this event coincides with f(h). The definition of ε-

equilibrium mixes the probability that the player best-replies to his forecast

with the uniform distribution. Thus, the constant ε introduces an element

of blind experimentation into the model, which ensures that the invariant

distribution over H is unique and has full support.

Comment: The space of beliefs

The belief-formation procedure that players follow in this model carries an

implicit assumption: each player t believes that the behavior of player t+ 1

is measurable w.r.t the m-truncated history (at−m+1, ..., at). This belief is
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correct because indeed, players’recall is bounded by m. However, if players

did not incorporate this knowledge and relied purely on sample data, the

existence of sampling error could lead players to infer a history dependence

that exceeds the objective bound on players’recall. Therefore, the assump-

tion is that players make use of their knowledge of the bound on recall when

constructing the space of possible strategies in their estimation procedure.

3 Analysis for m ≤ 2
This section is devoted to characterizing equilibrium in this model form ≤ 2.

Let us begin with the simplest specification of this model.

The case of m = 1

When m = 1, h ∈ {0, 1}. Each player t believes that player t + 1 will not

condition his action on at−1. Since player t’s payoff only depends on at and

at+1, it follows that player t’s action will be history-independent. Therefore,

in symmetric equilibrium, f is identified with a stationary probability of

playing a = 1, denoted p. Therefore, the invariant distribution αf assigns

probability p to h = 1 and probability 1− p to h = 0. It follows that

f̂(1) ∼ N

(
p,
p(1− p)
np

)
f̂(0) ∼ N

(
p,
p(1− p)
n(1− p)

)
Note that

p(1− p)
np

+
p(1− p)
n(1− p) =

1

n

Since f̂(1) and f̂(0) are independent normal variables with the same mean,

f̂(1)− f̂(0) ∼ N(0,
1

n
)

Therefore,

p = Pr(f̂(1)− f̂(0) ≥ c) = 1− Φ(c
√
n)

8



We have thus pinned down the unique, stationary equilibrium. This result

is intuitive. Sampling error can lead players to believe that playing a = 1

will increase the subsequent player’s probability of playing a = 1. A decrease

in c corresponds to a larger benefit from mutual trust, and therefore the

propensity to play a = 1 increases. A rise in n results in a smaller sampling

error, and therefore the potential for cooperative behavior diminishes.

Remark: Effective recall

As the case of m = 1 illustrates, the sequential-move structure of the game

means that although players’recall is given by m, their effective recall is at

most m − 1. That is, in equilibrium each player will only condition on the

m−1 most recent actions. The reason is that player t’s estimation procedure

only considers strategies with recall m. Therefore, his procedure does not

allow at−m to influence his forecast of the behavior of player t + 1. Since

player t’s payoff does not depend directly on at−m, this means that there is

no scope for f(h) to depend on the earliest action in h.

We can conclude that although f is nominally a function of the set of

m-truncated histories H, the equilibrium concept means that we can restrict

attention to functions f that are measurable w.r.t to the m− 1 most recent

actions in each m-truncated history. For instance, as we saw, when m = 1,

the equilibrium strategy is stationary (corresponding to no recall).

Remark: Reducing equilibrium to a system of equations

As we observed in our analysis of the m = 1 case, f̂(h, 1) and f̂(h, 0) are

independent normal variables. Therefore, their difference f̂(h, 1)− f̂(h, 0) is

a normal variable x(h), given by

x(h) ∼ N

(
f(h, 1)− f(h, 0),

f(h, 1)(1− f(h, 1))

nαf (h, 1)
+
f(h, 0)(1− f(h, 0))

nαf (h, 0)

)
(2)

This means that an equilibrium f is a solution to the following system of

equations:

f(h) = Pr (x(h) ≥ c) (3)

where the cumulative distribution function of f̂(h, 1)− f̂(h, 0) is determined
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by (2). The number of unknowns in this system is 2m−1 because, as we

observed, f(h) only depends on the m − 1 most recent actions. (Note also

that the object (h, a) does not record the earliest action in h.) The number

of equations is also 2m−1, because when h and h′ have the same m− 1 most

recent realizations, x(h) and x(h′) have the same distribution.

The following result tackles the case of m = 2, and demonstrates that

the equilibrium strategy in this case is not stationary. Indeed, it exhibits

reciprocal behavior.

Proposition 1 Let m = 2. Then, in any equilibrium, f(at−2, at−1) is strictly

increasing in at−1.

Proof. Recall that whenm = 2, f is effectively a function of the most recent

action only. Accordingly, denote by fa be the probability that at+1 = 1

conditional on at = a. In a similar vein, use the notation αh for αf (h). The

system of equations (2)-(3) is reduced to

f1 = Pr
(
f̂(1, 1)− f̂(1, 0) ≥ c

)
f0 = Pr

(
f̂(0, 1)− f̂(0, 0) ≥ c

)
where

f̂(1, 1)− f̂(1, 0) ∼ N

(
f1 − f0,

f1(1− f1)
nα11

+
f0(1− f0)
nα10

)
f̂(0, 1)− f̂(0, 0) ∼ N

(
f1 − f0,

f1(1− f1)
nα01

+
f0(1− f0)
nα00

)
By the definition of αf ,

α11 = f1 · (α11 + α01)

α10 = (1− f1) · (α11 + α01)

α01 = f0 · (α10 + α00)

α00 = (1− f0) · (α10 + α00)

1 = α00 + α01 + α10 + α11
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The solution for αf is
α11 = f1f0

1+f0−f1
α10 = f0(1−f1)

1+f0−f1
α01 = f0(1−f1)

1+f0−f1
α00 = (1−f0)(1−f1)

1+f0−f1

Let us consider three cases. First, suppose f1 − f0 = c. Then, by the

symmetry of the normal distribution, f1 = f0 = 1
2
, hence f1 − f0 = 0 < c, a

contradiction.

Second, suppose f1 − f0 > c. Then, f1, f0 > 1
2
. Therefore, α11 > α01 and

α10 > α00. It follows that f̂(1, 1)− f̂(1, 0) and f̂(0, 1)− f̂(0, 0) have the same

mean and

V ar(f̂(0, 1)− f̂(0, 0)) > V ar(f̂(1, 1)− f̂(1, 0))

Since the mean lies above c,

f1 = Pr(f̂(1, 1)− f̂(1, 0) ≥ c) > Pr(f̂(0, 1)− f̂(0, 0) ≥ c) = f0

Finally, suppose f1 − f0 < c. Then, f1, f0 < 1
2
. Therefore, α11 < α01 and

α10 < α00. It follows that f̂(1, 1)− f̂(1, 0) and f̂(0, 1)− f̂(0, 0) have the same

mean, and

V ar(f̂(0, 1)− f̂(0, 0)) < V ar(f̂(1, 1)− f̂(1, 0))

Since the mean lies below c,

f1 = Pr(f̂(1, 1)− f̂(1, 0) ≥ c) > Pr(f̂(0, 1)− f̂(0, 0) ≥ c) = f0

This completes the proof.

The message of this result is that reciprocity emerges naturally when

players form beliefs on the basis of sample data drawn from the equilib-

rium play path. For instance, suppose that cooperative play is less frequent

than defecting. Then, the truncated history h = 1 is less frequent than the

truncated history h = 0. A representative sample will therefore have fewer
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observations about how players act at the history h = 1 than at the history

h = 0. As a result, the estimate of the benefit of playing a = 1 will have a

fatter tail for the history h = 1 than for the history h = 0. The assumption

that a = 0 is played more frequently than a = 1 means that c is above the

mean of the estimates’distributions. As a result, a fatter tail means a higher

probability of finding a = 1 to be optimal.

4 Two Variations

The discussion in the previous section traced the emergence of reciprocity

in equilibrium to the representative-sample assumption - which in turn is a

modeling approximation of the idea that players learn from a random slice

of the equilibrium play path. In this section I present two variations on the

model that cement this point.

4.1 A Final-Action Representative Sample

Suppose that when a player acts at the history h, he obtains a total of

n observations, and allocates them into observations about what happens

after the histories (h, 1) and (h, 0), with representative proportions. That is,

he obtains n · f(h) independent draws from the Bernoulli distribution whose

success rate is f(h, 1), and n·(1−f(h)) independent draws from the Bernoulli

distribution whose success rate is f(h, 0). Our normal approximation of this

description means that the only change in the basic model is that (2) is

modified into

x(h) ∼ N

(
f(h, 1)− f(h, 0),

f(h, 1)(1− f(h, 1))

nf(h)
+
f(h, 0)(1− f(h, 0))

n(1− f(h))

)

Let us guess a stationary equilibrium, such that f(h) = b for every h.
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Then, equilibrium is unique and given by:

x ∼ N

(
0,

1

n

)
b = Pr (x ≥ c)

This is the same stationary equilibrium we obtained in the case of m = 1

under the main model. The following result shows it is the only equilibrium

when m = 2.

Proposition 2 Let m = 2. Then, the stationary equilibrium is the unique

equilibrium in the final-action-representative-sample case.

Proof. Recall that whenm = 2, f is effectively a function of the most recent

action. Accordingly, let fa be the probability that at+1 = 1 conditional on

at = a. Then,

f1 = Pr
(
f̂(1, 1)− f̂(1, 0) ≥ c

)
f0 = Pr

(
f̂(0, 1)− f̂(0, 0) ≥ c

)
where

f̂(1, 1)− f̂(1, 0) ∼ N

(
f1 − f0,

f1(1− f1)
nf1

+
f0(1− f0)
n(1− f1)

)
f̂(0, 1)− f̂(0, 0) ∼ N

(
f1 − f0,

f1(1− f1)
nf0

+
f0(1− f0)
n(1− f0)

)
Simplifying, we obtain

x(1) = f̂(1, 1)− f̂(1, 0) ∼ N

(
f1 − f0,

1

n

(
1− f1 +

f0(1− f0)
(1− f1)

))
x(0) = f̂(0, 1)− f̂(0, 0) ∼ N

(
f1 − f0,

1

n

(
f1(1− f1)

f0
+ f0

))
Recall that

fa = Pr(x(a) ≥ c)
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Suppose f1−f0 > c. Then, f1, f0 > 1
2
. Since x(1) and x(0) have the same

mean which is above c, f1 > f0 only if the variance of x(1) is lower than the

variance of x(0). Therefore,

1− f1 +
f0(1− f0)
(1− f1)

<
f1(1− f1)

f0
+ f0

Rearranging, and using the assumption f1 > f0, we obtain

f0 + f1 < 1

contradicting our finding that f1, f0 > 1
2
.

Now suppose f1− f0 < 0. Then, f1, f0 < 1
2
. Since x(1) and x(0) have the

same mean which is below c, f1 > f0 only if the variance of x(1) is larger

than the variance of x(0). Therefore,

1− f1 +
f0(1− f0)
(1− f1)

>
f1(1− f1)

f0
+ f0

Rearranging, and using the assumption f1 < f0, we obtain

f0 + f1 > 1

contradicting our finding that f1, f0 < 1
2
.

Finally, suppose 0 < f1 − f0 < c. Then, f1, f0 < 1
2
. Since x(1) and x(0)

have the same mean which is above c, f1 > f0 only if the variance of x(1) is

larger than the variance of x(0). Therefore,

1− f1 +
f0(1− f0)
(1− f1)

>
f1(1− f1)

f0
+ f0

Since f0 < f1 <
1
2
, f1(1− f1) > f0(1− f0). Therefore,

1 = 1−f1+
f1(1− f1)
(1− f1)

> 1−f1+
f0(1− f0)
(1− f1)

>
f1(1− f1)

f0
+f0 >

f0(1− f0)
f0

+f0 = 1

a contradiction. We have thus ruled out all possibilities of f1 6= f0.
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Thus, under the final-action-representative-sample model, reciprocal be-

havior cannot emerge whenm = 2. Whether the same result holds for general

m is an open question.

4.2 A Uniform Sample

Suppose that each player obtains an equal number of observations l for every

history in H. That is, for every h ∈ H, the player observes l independent

draws from the Bernoulli distribution whose success rate is f(h). Our normal

approximation of this description means that the only change in the basic

model is that (1) changes into

f̂(h, a) ∼ N

(
f(h, a),

f(h, a)(1− f(h, a))

l

)
Therefore, (2) is modified into

x(h) ∼ N

(
f(h, 1)− f(h, 0),

f(h, 1)(1− f(h, 1))

l
+
f(h, 0)(1− f(h, 0))

l

)

Guess a stationary ε-equilibrium, such that f(h) = b for every h. Then,

equilibrium is given by the following:

x ∼ N

(
0,

2b(1− b)
l

)
b = ε · 1

2
+ (1− ε) · Pr (x ≥ c)

Let us see why there is some b ∈ (0, 1) that satisfies this pair of conditions.

When b = 1
2
, the R.H.S of the second equation is below b because c > 0 and

therefore Pr (x ≥ c) < 1
2
. When b = 0, the R.H.S is above b. Since both sides

of the equation are continuous in b, the intermediate value theorem implies

that there is a value of b that satisfies it. Note that in the ε→ 0, b = 0 is a

solution - namely, no trust is displayed in equilibrium.

It follows that a stationary ε-equilibrium exists for every ε > 0, which

15



means that reciprocity is not a necessary equilibrium phenomenon. Whether

there exist multiple stationary equilibria and whether there exist non-stationary

equilibria are open questions.
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