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Abstract

This paper develops a method to estimate the outside employment opportunities

available to each worker, and to assess the impact of these outside options on wage in-

equality. We outline a matching model with two-sided heterogeneity, from which we

derive a sufficient statistic, the “outside options index” (OOI), that captures the effect

of outside options on wages, holding productivity constant. This OOI uses the cross-

sectional concentration of similar workers across job types to quantify the availability

of outside options as a function of workers’ commuting or moving costs, preferences,

and skills. Higher concentration in a narrower range of job types implies lower OOI

and higher dispersion across a wide variety of job types corresponds to higher OOI.

We use administrative data to estimate the OOI for every worker in a representa-

tive sample of the German workforce. We estimate the elasticity between the OOI

and wages using two sources of quasi-random variation in the OOI, holding workers’

productivity constant: the introduction of high-speed commuter rail stations, and a

shift-share (“Bartik”) instrument. Using this elasticity and the observed distribution

of options, we find that differences in options explain 30% of the gender wage gap,

88% of the citizen-non-citizen wage gap, and 25% of the premium for higher educa-

tion. Differences in options between genders and education groups are driven mostly

by differences in the implicit costs of commuting and moving.
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1 Introduction

In almost every model of the labor market, wages depend on a workers’ outside options:
the amount of compensation they could receive from different employers. In a perfectly
competitive labor market, an equally attractive outside option always exists, and com-
petition between identical employers sets compensation at the marginal product. How-
ever, in reality, a worker’s next best option could require different skills, working hours
or be located in a different city. The availability of outside options could be systemati-
cally worse for some workers due to the health of their local labor market, because they
are unwilling or unable to commute, or because their skills are valuable only for a few
employers or industries. Such differences could have significant implications for their
incomes.

A key challenge for empirical research on this topic is that a worker’s outside op-
tion set is not typically observed. Even within the same firm and occupation, workers
may face different options due to their specific set of skills, their preferences or their con-
straints. As a result, little is known about which workers have better outside options and
what role options play in generating wage inequality.

The first contribution of this paper is to develop an empirical procedure to uncover
a key latent parameter in most wage-setting models: the value of an individual’s option
set. We show how this latent parameter can be derived from the cross-sectional concen-
tration of similar workers across jobs. If similar workers are concentrated in a certain
region, industry, occupation or other job characteristics, then the worker’s options are
more limited. We quantify this concentration in a single “outside options index” (OOI).
We show that in a matching model of heterogeneous workers and jobs this OOI is a suffi-
cient statistic for the effect of outside options on compensation, when holding productiv-
ity constant. We then estimate the OOI for every worker using administrative matched
employer-employee data from a 1% representative sample of workers in Germany. Ex-
amining the distribution of the OOI, we find what workers’ characteristics are associ-
ated with better outside options. Next, we quantify the impact on wages by estimating
the elasticity between the OOI and wages using two quasi-random sources of variation
in the OOI, that holds workers’ productivity constant: the introduction of high-speed
commuter-rails, and a shift-share (“Bartik”) instrument.

Our second contribution is to show that differences in outside options explain sub-
stantial portions of several widely-discussed wage gaps between different segments of
workers. Outside options explain 30% of the gender wage gap in Germany. This gen-
der difference is driven entirely by differences in willingness to commute or move. We
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also find that differences in outside options account for 88% of the wage gap between
German citizens and non-citizens, and about 25% of the high-education wage premium.
The availability of more options also increases the wage premium for urban residents.
In contrast, differences in outside options reduce inequality between occupations, since
high-paying occupations tend to be more specialized and workers in them therefore have
fewer options.

We start by outlining a static model of the labor market that illustrates how, with two-
sided heterogeneity, differences in outside options lead to differences in compensation,
even for equally productive workers. Our model is based on the classic Shapley and Shu-
bik (1971) assignment game - a two-sided matching model with transfers. Compensation
in this setting is set to prevent workers from moving to their outside options; because of
heterogeneity, this will be below their full productivity in the first-best option. A direct
implication is that workers’ compensation is not only determined by what they produce,
but also by their ability to produce in more places.

We derive a sufficient statistic from this model, the “outside options index” (OOI), that
summarizes the impact of options on compensation. It measures the quantity of relevant
jobs for a given worker. If a worker gets access to more similar jobs, their compensation
would increase by exactly the increase in OOI times a constant elasticity, even though
their productivity remains constant. The OOI depends on two factors: the supply of jobs,
and worker flexibility (i.e. a worker’s ability or willingness to take jobs in more places,
more occupations, more industries, etc.). Workers with more relevant jobs, as captured
by the OOI, will on average have both a better outside option, and will be able to sort into
better matches, conditional on their productivity.

We show that the OOI is equal to a standard concentration index: workers with more
options are those who, in equilibrium, are found in a greater variety of jobs. Under stan-
dard assumptions on the distribution of match quality (Choo and Siow, 2006; Dupuy and
Galichon, 2014), the OOI is equal to the entropy index. This index, with a negative sign,
is used in the industrial organization literature as a measure of market concentration (Ti-
role, 1988), similar to the Herfindhal-Hirschman Index (HHI), which has also been used
to measure concentration in labor markets (Azar et al., 2017; Benmelech et al., 2018). In
contrast to most concentration indices, our index is not measured on a specific dimension
such as occupation, or industry. Instead, workers with more options are those that are
less concentrated across jobs, on all dimensions included in our data set. Options here are
estimated in equilibrium, based on matches we actually observe in cross-sectional data.
Jobs that the worker will never take in practice because they are less attractive will not
enter the OOI nor affect compensation even if the employer is willing to hire. To isolate
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the effect of more options from the effect of productivity, the OOI is calculated without
using any information on wages or wage offers.

We develop a method that estimates the OOI for each worker in the labor market,
which is computationally feasible even in large datasets. The OOI is a function of the
joint probability of every worker to be in every job. Our method estimates this probability,
using the cross-sectional distribution of similar workers. We show that this problem can
be translated into a logistic regression framework. We then use the fast implementation of
logistic regressions to estimate the probabilities for every worker-job combination. From
those probabilities we can directly calculate the OOI for each worker.

We then use the OOI to analyze the impact of outside options on inequality, starting
with identification of which workers have better outside options. Specifically, we esti-
mate the OOI for every worker in a representative sample of German workers in 2014
using administrative linked employer-employee data. Looking across observed workers’
characteristics, we find that the OOI is higher for men, German citizens, city residents,
more educated and more experienced workers. We also find that higher skill workers
such as medical doctors or pilots tend to be more specialized in their current industry,
which narrows down their outside options. The OOI also predicts which workers will be
less affected by a mass-layoff: workers with better outside options recover more quickly
from a displacement. Because we do not use wages to calculate the OOI, there is not a
mechanical link between the OOI and wages.

We use two sources of quasi-random variation in options, that do not affect produc-
tivity, in order to estimate the elasticity between the OOI and wages: the introduction of
high-speed commuter rail stations (Heuermann and Schmieder, 2018), and a standard in-
dustry shift-share (“Bartik”) instrument (Beaudry et al., 2012). These sources of variation
allow us to verify that, even if our model is not perfectly specified, there is a link between
our outside options index and wages in the data. Our first source of variation focuses on
the introduction of new train stations that were constructed along existing routes. These
stations effectively increased the labor market size for workers in small German cities that
happened to live along the shortest route between two major cities. The second source
of variation in outside options uses differences in exposure to industry growth trends be-
tween local labor markets. We compare workers who work in the same industry, but have
outside options in different industries because they reside in different parts of the coun-
try. We instrument for the growth in outside options in other industries with the national
industry trends to exclude the impact of local productivity shocks. Both quasi-random
sources of variation yield a similar semi-elasticity of roughly .17-.32 between the OOI and
wages.
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Combining this elasticity with the estimated distribution of the OOI, we find that dif-
ferences in outside options tend to increase wage inequality. Differences in options lower
compensation for women by six percentage points, explaining roughly thirty percent of
the overall gap in Germany. They also account for an eight percentage points difference in
compensation between immigrants and natives, which is 88% of the overall gap. We also
find large effects on the return to higher-secondary education.1 Graduates from higher-
secondary education have access to more options, which increases their compensation by
seven percentage points. This is about a quarter of the total return to higher-secondary
education.

Finally, we examine the reasons why workers face different options. We start by ex-
amining the parameters that determine workers’ options, to understand which ones are
most significant. We then use the underlying model to create counterfactual changes to
the OOI under different scenarios. These exercises show that the heterogeneity in the abil-
ity to commute or move is a key factor in explaining variation in outside options. This
factor can account for the full gender gap in outside options. We also find that without
their higher willingness to work at more distant jobs, high-educated workers would actu-
ally have fewer options. Our analysis suggests that this is likely because their skills tend
to be more industry specific.

Related Literature Our paper contributes to at least three distinct literatures. First, we
contribute to a large literature on imperfect competition in the labor market by estimating
the impact of outside options for every worker in the labor market. While outside options
are a key parameter in many labor models, prior work has not focused on estimating the
distribution of this parameter across different workers. Most empirical work on imper-
fect competition has used natural experiments in specific segments of the labor market to
show that firms face upward sloping supply curves (see, e.g. Naidu, 2010; Naidu et al.,
2016; Ransom and Sims, 2010; Staiger et al., 2010). Beaudry et al. (2012) and Caldwell
and Harmon (2018) take a different approach, and provide direct evidence that outside
options directly impact workers’ earnings, but do not investigate which workers have bet-
ter options, nor the consequences for between-group wage inequality.2 Our paper adds
to this literature by providing estimates of the distribution of options and by providing

1The level that grants a certificate allowing college admission.
2Beaudry et al. (2012) show that shocks to one industry “spill over” onto the wages of other industries.

Caldwell and Harmon (2018) show that workers with better information about their outside options see
greater wage growth. Jäger et al. (2018) focus on a specific outside option– unemployment insurance– and
find that changes in UI generosity has little to no effect on workers’ wages. Their result fits our finding that
what matters for wage-setting is the value of a worker’s best alternative to a match. For most workers, this
is likely the value of working in another job, not the value of unemployment.
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descriptive evidence on why some workers have more options than others. By combining
this distribution with a causal estimate of the impact of options on wages, we are also able
to present the first estimates of the impact of outside options on each individual’s wages.

Our theoretical framework emphasizes market imperfections arising from worker and
employer heterogeneity. This is similar to the approach taken by Card et al. (2018), and
is a standard approach in the industrial organization literature for analyzing market im-
perfections (for instance, Berry et al., 1995). Recent work by Dube et al. (2018) shows
that even small amounts of heterogeneity can generate substantial market imperfections.
One difference between our approach and that in the search literature is that we focus
on a static equilibrium. While work by Postel-Vinay and Robin (2002) shows that differ-
ences in options (as the result of on-the-job search) can impact wage growth during an
employment spell, these dynamic considerations are beyond the scope of this paper.

Second, our paper contributes to a small literature on the impact of imperfect labor
market competition on between-group wage inequality. Theoretical papers in this liter-
ature have argued that some groups such as women or minorities have systematically
worse options, enabling their employers to pay them lower wages. These worse options
may generate either higher search costs (Black, 1995) or less elastic supply to a particular
firm (Robinson, 1933), and can lead to racial or gender wage gaps. Empirical papers in
this literature have shown evidence that group differences do exist in both labor supply to
a firm (Manning, 2003; Hirsch et al., 2010; Ransom and Oaxaca, 2010) and in rents (Card
et al., 2016). A key advantage of our setting is that we are able to combine our estimates of
group differences in outside options with a causally estimated elasticity between options
and wages. This allows us to translate the estimated group differences in options into
group differences in wages, and quantify the portion of between-group inequality that
can be attributed to imperfections in the labor market.3

Finally, our paper contributes to a recent empirical literature on labor market size and
concentration, by characterizing workers options using multiple worker and job charac-
teristics at once. Manning and Petrongolo (2017) and Nimczik (2017) develop methods to
uncover the size of a workers’ labor market based on willingness to commute and on ob-
served firm-firm transitions. Azar et al. (2017) and Benmelech et al. (2018) examine trends
in labor market concentrations by calculating Herfindahl-Hirschman indices (HHI’s) by
occupation/industry, within a geographic area. Hsieh et al. (2013) estimate concentration

3Our setting expands the setting of Bidner and Sand (2016) who quantify the portion of the gender gap
that can be attributed to differences in outside options driven solely by differences in access to industries.
Our method includes several additional factors, such as differences in commuting costs, that we find to
be generating the majority in differences in outside options between genders. We also analyze additional
wage gaps beyond gender such as the education, city and citizenship premium.
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trends by occupations and demographics such as gender and race using a model similar
to ours.

In this paper we develop a method to estimate labor market size and concentration
that incorporates five key features. First, when estimating workers options, we account
for all job characteristics in our data. This combines all the dimensions that previous pa-
pers have used, such as geography, occupations and industry, together with job charac-
teristics that were not used before such as working hours. Second, we account for outside
options in different industries and occupations. Third, we allow each worker to have
a different set of options depending on their demographics, locations, skills and prefer-
ences. Fourth, instead of assuming workers can be partitioned into distinct local labor
markets, we allow options sets to overlap between workers. We also allow the distance
workers are willing to travel to vary by their characteristics. Fifth, we introduce a more
continuous notion of options, accounting for the fact that some options are more rele-
vant than others. These five features allow us to estimate the value of an option set more
precisely for every individual worker.

The remainder of the paper proceeds as follows: Section 2 outlines the theoretical
matching model and derives the Outside Options Index (OOI). Section 3 describes the
relevant features of the German labor market and the key features of the administrative
linked employer-employee data that we use. Section 4 explains the empirical procedure
of estimating the OOI. Section 5 describes the empirical estimates of worker outside op-
tions and presents descriptive statistics on their distribution. Section 6 estimates the elas-
ticity between the outside options index and wages using two quasi-random sources of
variation in options. Section 7 analyzes the overall effect on wage inequality. Section 8
concludes.

2 A Model of Outside Options and Wages

This section derives a model of a heterogeneous competitive labor market. We use this
model to derive the outside options index (OOI), and show it is a sufficient statistic for the
impact of outside options on wages. To provide additional intuition for the OOI and its
effect in the model, we describe a simple parametric example. We summarize this section
by discussing what is and what is not captured in the OOI using the model’s assumptions.
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2.1 Setup

There is a continuum set of workers I with measure I and a continuum set of one-job
firms J with a measure J which we pin down to 1. If a worker i ∈ I works at job j ∈ J ,
they produce a value of yij to the employer and a job-specific amenity valued aij to the
worker. The value of yij is net of all costs, including capital and amenities. The value
for aij includes all non-pecuniary impacts on worker i’s utility including effort, interest,
number of vacation days and more. The sum of these two values is the total value of
a match, τij . This is defined for every potential worker-job pair, even those that are not
observed in equilibrium.4 The value of τij is taken as exogenous; all decisions by workers
and employers that could affect this value such as investment in capital or human capital
and location choices are pre-determined.5

Employers and workers decide how to split the total surplus τij into worker compen-
sation (ωij) and employer profits (πij).

τij = πij + ωij = yij + aij

This division is accomplished via a set of transfers (wages) wij , which allow the worker
and employer to divide the total value produced in any way between them:

πij = yij − wij
ωij = aij + wij

2.2 Equilibrium

We next derive the allocation of workers into jobs and equilibrium wages. We use an
equilibrium notion based on cooperative game theory, which is identical to the assign-
ment game, first analyzed by Shapley and Shubik (1971). We assume a static framework
with perfect information. There are additional equilibrium concepts that lead to the same
result.6 We use a cooperative framework since it is somewhat more general as it does not
make any assumption about how agents reach this equilibrium (e.g. who makes offers).

An allocation is defined as a set M = {(i, j) |i ∈ I, j ∈ J } in which no i or j ap-
pears twice, so every worker can work only in one job, and every job can hire exactly one

4Formally the value is a function τ : I × J → R.
5This is similar to Kreps and Scheinkman (1983) who show how even with competition on prices, pre-

determined quantities would deviate from a Bertrand competition.
6Pérez-Castrillo and Sotomayor (2002) show one specific mechanism that leads to the same equilibrium

using sub-game perfect Nash equilibrium.
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worker. For a given allocation M we can define an invertible function on the domain of
matched workers m (i) such that (i,m (i)) ∈ M . Note that we do not require all workers
and jobs to be in M ; some workers can be unemployed and some jobs could be vacant. If
a worker is unmatched, she produces ui, which could be thought of as a combination of
unemployment insurance and home production. Similarly, a vacant job produces vj .

Shapley and Shubik (1971) show that a stable equilibrium (core allocation) includes an
allocation M , and a transfer wij for each (i, j) ∈M which satisfies

∀i′ ∈ I, j′ ∈ J : ωi′ + πj′ ≥ τi′j′ (1)

∀i′ ∈ I : ωi′ ≥ ui′

∀j′ ∈ J : πj′ ≥ vj′

where ωi′ = ωi′,m(i′) if worker is matched and ωi′ = ui′ otherwise, and similarly πj′ =

πm−1(j′),j′ or vj′ .
The first condition says that there is no single worker-employer combination that

could deviate from their current allocation, produce together, and split the surplus in such
a way that both the employer and the worker would be better off. Note that this condition
includes all possible combinations, including those that are not matched in equilibrium.
The second and third conditions are participation constraints which require that every
worker and employer obtain no less than their unemployment or vacancy value.7 Shap-
ley and Shubik (1971) shows that a stable allocation M∗ is also optimal in the sense that
the maximum total value is produced.

Workers’ compensation in this model depends not only on the value they produce
in their workplace, but also on the value they produce in other jobs. Compensation is
strictly bounded by the worker and the employer’s marginal contributions to the entire
market (Roth and Sotomayor, 1992). Because this marginal contribution to the market is
weakly smaller than the productivity at the workplace, workers are paid below their full
productivity. Workers who are able to produce a similar value in more places will get a
larger portion of their productivity to keep the equilibrium stable.

2.3 Deriving an Index for Outside Options

We next examine the role of outside options in this equilibrium. In particular, we derive
the outside options index (OOI), a sufficient statistic for the impact of outside options on

7Unemployment and vacancies can exist simultaneously, as long as ui+vj ≥ τij for every possible match
of non-participants.
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wages.
In any stable equilibrium, each worker must earn more in her current match than she

could earn at a different employer.

ωij ≥ max
j′ 6=j

ωij′ (2)

This outside option ωij′ is exactly what will make employer j′ indifferent between their
equilibrium match, and hiring i (formally, τij′ − ωij′ ≥ πj′). Hence

ωij′ = τij′︸︷︷︸
potential
value i, j′

− πj′︸︷︷︸
j′ equilibrium
compensation

(3)

Combined we get a lower-bound for worker compensation8

ωij ≥ max
j′ 6=j

τij′ − πj′ (4)

The employer decision can thus be written as the solution to a simple profit maximization
problem.9

From these equations, we can derive an expression for worker’s compensation that
we can take to the data. First, define X ⊆ Rdx ,Z ⊆Rdz to be the characteristic spaces of
workers and jobs accordingly. Let Xi and Zj denote the observed worker and job char-
acteristics which are distributed with a density f (Xi) , f (Zj) respectively.10 We next add
an assumption on the distribution of τij based on these observables. We follow Dupuy
and Galichon (2014) and assume that the value of τij conditional on the observables is
drawn from a sum of two continuous logit models, one for the workers and one for the
employers. This is a generalization of the classic multinomial logit for a continuous case.

Assumption 1. The match value τij between a worker with observable characteristics xi, and a
job with observable characteristics zj , can be written as

τij = τ (xi, zj) + εij

8Equilibrium compensation ωi must satisfy ωi + πj′ ≥ τij′ , yielding this equation. This bound will be
tight as long as maxj′ 6=j τij′ −πj′ ≥ ui. It holds with equality under an additional assumption (Assumption
1).

9Equation 2 defines the effective price that employer j needs to pay to hire worker i. In order to max-
imize profit, the employer needs to choose a worker that maximizes the value net of cost: maxi′ πi′j =
maxi′ τi′j − ωi′j .

10Formally, there are measurable functions Xi : I → X , Zj : J → Z .
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where εij has the following distribution

εij = εi,zj + εj,xi
s.t. εi,zj ⊥ εj,xi

εi,zj , εj,xi ∼ CL (α)

CL (α) is the continuous logit distribution, that closely resembles an extremum value
type-1 distribution with scale α (Dagsvik, 1994). For details on this distribution, see Ap-
pendix B.1.11

This assumption simplifies the math considerably. However, it is strong; it implies that
workers have an unobserved utility or productivity in jobs with specific observed charac-
teristics, and those unobserved shocks are uncorrelated, even between jobs with similar
characteristics. Employers also have similar unobserved independent shocks based on
the workers observables. Moreover, the assumption that εi,zj ⊥ εj,xi implies that there are
no interactions between the worker and job unobserved characteristics.

We can rewrite the latent value of outside options from Equation 3 as

ωij′ = τ (xi, zj′)− πj′ + εij′ (5)

Using ∗ to denote the best alternative offer (ω∗ij′ = τ ∗ (xi, zj′) − π∗j′ + ε∗ij′ = maxj′ ωij′),
we get a simple expression for the expected value of the best alternative offer:

E
[
ω∗ij′
]︸ ︷︷ ︸

Best Alternative Offer

= E [τ ∗ (xi, zj′)]︸ ︷︷ ︸
Mean Value

− E [πj′ ]︸ ︷︷ ︸
Employer Rents

+ E
[
ε∗ij′
]︸ ︷︷ ︸

2α·OOI

(6)

This decomposition is the key result of our theoretical analysis.
The first component reflects the mean value the worker can produce where they typ-

ically work (without strategic sorting on ε12). Therefore, as in almost all labor models,
workers that produce a higher value would earn a larger compensation. The second com-
ponent reflects the mean employer profit, beyond costs. This could be zero, or constant if
we think the employer market clears perfectly through entry, but we do not assume this
is necessarily the case. This component is affected by several factors including the firm
productivity, and the market price of their workers.

In this paper, we focus on the third component E
[
ε∗ij′
]
. This expression depends on

11Formally, every worker i draws εi,zj shocks from a Poisson process on Z × R . As a result, for every
subset S ⊆ Z , maxz∈S {εi,z} ∼ EV1 (α logP (S) + const, α) where EV1 is extremum-value type-1 distribu-
tion, and P (S) =

∫
S
f (z) dz. A similar process exists for εj,xi . More details in Appendix B.1.

12τ (xi, zj) reflects the expected value a worker can produce in a random job with characteristics zj .
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the measure of relevant options the worker has. Even though for a random match, E [εij]

is constant, the expectation of ε∗ij′ is higher because j′ is positively selected, since it is the
second best option. The more similar options in expectation worker i will have, the larger
this component will be.

We derive the Outside Option Index, OOI, directly from this expectation. Specifically,
we define the OOI to be the standardized expectation 1

2α
E
[
ε∗ij′
]
, where α ≥ 0 is the scale

parameter that depends on the distribution of εij . This descaling guarantees that the
value of OOI is independent of the standard deviation of ε, and therefore of the units in
which we define τ (x, z). α also sets the link between the OOI and wages, which we’ll
estimate using two distinct quasi-random sources of variation in options in Section 6. We
assume that α is constant across all workers, implying a constant elasticity between OOI
and wages. Our results on the heterogeneous impact of options on wages in Section 6 are
consistent with this assumption.

The standard result that workers earn what they produce is a particular case of this
setting. This occurs when α = 0 (εij is constant at 0) and entry decision of employers are
optimal, such that profit is zero. This emphasizes the key distinction of this more general
setting from the perfectly competitive model: heterogeneity. When α > 0, there is no
identical employer to bid wages up to the worker’s full product.

Under Assumption 1, workers and employers are indifferent between matches with
the same characteristics. Formally, defining f ij the probability density of worker i to work
at job j in equilibrium we get the following lemma:

Lemma 1. Under Assumption 1, the probability density of worker i to work at job j satisfies

f ij =
f (Xi, Zj)

f (Xi) f (Zj)

where f (Xi, Zj) is the joint density of matched worker and job observables in equilibrium.

Intuitively, this lemma implies that f ij is equal for all jobs with the same characteristics.
Appendix B.2 provides a full proof, as well as formal definitions for those densities.

This assumption also yields a closed-form expression for the outside options defined
in Equation 5.

Lemma 2. Under Assumptions 1, in equilibrium, worker i with characteristics xi is facing a
continuous logit choice between employers who are offering

max
zj

ω (xi, zj) + εi,zj

12



and
ω (xi, zj) = τ (xi, zj)− π (zj)− α log f ij′

where π (zj) = E [πj′|Zj = zj]. Similarly, employers choose between

max
xi

π (xi, zj) + εj,xi

This lemma simplifies the matching procedure into two one-sided continuous logit
choices. Because employers with the same characteristic zj are willing to make the same
offer, the best alternative offer ω∗ equals the maximal offer the equilibrium employer is
willing to make. Hence, the lower bound from Equation 4 can be replaced with an equal-
ity. The workers are facing a choice between the employers who are looking for workers
with their observed characteristics xi.

The market clears when the supply of workers with characteristics x0 to jobs with char-
acteristics z0 equals demand. Demand is decreasing with quantity, because the marginal
employer has a lower value of εj,x0 . This is why the compensation ωij′ in lemma 2 de-
pends negatively on α log f ij . However, supply increases with compensation, hence f ij
will be increasing in τ (xi, zz)− π (zj)− α log f ij . Those two equalize exactly when

f ij ∝ exp
1

2α
[τ (xi, zj)− π (zj)]

This result implies that we can learn about the quality of outside options based on
how similar workers sort into different jobs. Workers tend to sort into jobs where their
net productivity is highest, where net productivity is the difference between the mean
value they can produce τ (xi, zj), minus the employer’s expected profits π (zj). Therefore,
the only valuable outside options for a worker are those that are taken, in equilibrium, by
similar workers.

With this distributional assumption we can find an analytical expression for the OOI.
The expected value of ε∗ij simplifies with the following lemma

Lemma 3. Under Assumption 1:

E
[
ε∗ij
]

= E
[
ε∗i,zj + ε∗j,xi

]
= −2α

∫
f ij log f ij (7)

The last equality follows because both εi,z, εj,x are drawn from a continuous logit with
scale parameter α. To measure the OOI for worker i, we need to take the integral over all
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their potential matches. Using the definition in Equation 6 yields

OOI =
1

2α
E
[
ε∗ij
]

= −
∫
j

f ij log f ij (8)

This expression is the well-known entropy index. Entropy is frequently used to mea-
sure industry concentration. Analogously, the OOI can be thought as a concentration
index across jobs. A worker with more options (a worker who is less concentrated) will
have a higher OOI because their probability of being in a specific job is lower. This is con-
centration on all (observable) dimensions: location, occupation, industry etc. Empirically,
we will estimate it based on the concentration of workers with similar observables. If
similar workers tend to be concentrated in a specific region of the country, small number
of occupations or industries we will estimate a lower OOI for them. We will describe this
procedure in detail in Section 4.

The entropy index is also commonly used in measuring unpredictability. In our con-
text, this would be the difficulty to predict the worker’s job. Workers whose jobs are
harder to predict, are those with more options.13 The OOI takes values on (−∞, 0]. As the
measure of jobs a worker can take approaches zero, OOI → −∞; if a worker is equally
likely to take any job, OOI = 0.

This OOI is driven by two factors. First is worker flexibility, the ability of the worker
to take jobs at different locations, use their skills in different occupations, industries etc.
All of which we will measure empirically. Second is the supply of relevant jobs. More
relevant jobs that the worker can take will increase the OOI directly. The OOI is only
driven by relevant outside options – jobs that similar workers are actually observed taking
in equilibrium (f ij > 0). Empirically, this will be options that are actually sometimes
executed by workers with similar observables. Therefore, jobs that a worker could do
but never would do in practice will not enter the OOI, and won’t affect the equilibrium
outcome.

The key advantage of using the OOI is that it does not depend on any information on
a worker’s alternative wages. This is useful because information on potential wages at
other jobs is typically unavailable. Moreover, a worker’s alternative wages also depend
directly on their productivity. The OOI captures the impact of options on wages, holding
productivity constant. This also implies that any link that we find between the OOI and
wages is not mechanical.

13It is possible that it’s easier to predict the job of certain workers due to better data quality. This would
imply that those workers will have a lower scaling parameter α, and therefore a lower elasticity between
the OOI and wages. To test this, we estimate the OOI-wage elasticity in Section 6 separately by gender and
education. Our results are consistent with a constant value of α for all workers.
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2.4 Sufficient Statistic

The OOI is a sufficient statistic for the effect of access to more options on workers com-
pensation, under our model assumptions. Access to options has two distinct effects on
workers, both of which are captured in the OOI. First, it improves workers compensation
at the same job by improving their outside options. Second, the improvement in options
allows some workers to find better matches.

We first define an improvement in access to options. We define λx to be the measure
of a random set of jobs that are accessible to workers with observables x. All jobs that are
not accessible have τij = −∞ and are therefore never chosen in equilibrium. We model an
increase in access to more jobs would be an increase to this λx. In Appendix B.2 we show
that other definition of λ such as a linear commuting cost would yield the same results.

Theorem 1 shows that workers who get access to more outside options get an in-
creased wage offer from their employer that equals to α times the change in their OOI.

Theorem 1. Let j be i′s equilibrium match. Access to outside options λxi has the following effect
on the maximum offer j is willing to make in the new equilibrium:

dωi,j
dλxi

= α
dOOI

dλxi

The second effect of access to more options is an improvement in match quality. An
improvement in outside options is only an improvement, if some workers would in prac-
tice match into those additional jobs in equilibrium. Therefore, the overall effect of access
to more options is a combination of the better outside options, and the option to improve
match quality. The following theorem shows that in this model, the overall effect is ex-
actly twice the size of the effect only through outside options.

Theorem 2. Access to options λxi has the following overall effect on expected worker compensa-
tion in equilibrium

dE [ωi,j]

dλxi
= 2α

dOOI

dλxi

Different choices of counterfactuals could potentially lead to different results. The
counterfactual we consider is giving a small group of workers access to more similar
jobs. If the increase in λ affects a non-zero measure of workers, then there will be general
equilibrium impacts on employer profits . For instance, mandating stable working hours
in all jobs will give all women access to more jobs. This counterfactual may decrease
the profits of employers that were already hiring mostly women. In such cases, the OOI
would only be a sufficient statistic if the employers’ market is perfectly competitive such
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that profit are kept constant through entry and exit. Access to better jobs (as opposed
to similar jobs), in which the worker can produce greater value will also affect workers
productivity, and therefore will affect compensation beyond the effect on the OOI.

2.5 Parametric Example

To give further intuition for the OOI, and the additional components in our key decom-
position (Equation 6) we go over a simple parametric example.

In this simple setting, workers are characterized only by their productivity and their
amount of options. Assume workers and jobs are equally dispersed across the real line
R.14 Each worker can be described as a 3-dimensional tuple (li, yi, di) which is her location
on the real line, her productivity and the maximal distance she is able to commute. Jobs
are identical other than their location lj . The value of a match is then

τij =

yi + εij |li − lj| < di

−∞ else

where εij are the sum of two continuous logit distribution as before.
In this simple setting, the OOI corresponds to the log measure of options. The PDF

of a worker distribution across jobs is constant at 1
2di

for all jobs within feasible range.
Therefore, the OOI is − log 1

2di
= log 2di which is the log of the measure of jobs a worker

can take. Differences in OOI are therefore the log ratio in the measure of relevant options.
This result will generally hold for every pair of workers with similar distribution of jobs
and different sizes of support, not only in this example. In this setting, λ is exactly 2d,

hence from Theorems 1 and 2, an infinitesimal increase in di leads to an increase of α
2di

if
they stay at the same job, and α

di
overall.

The first component of Equation 6 (mean value) captures a worker’s baseline produc-
tivity; in this case this is equal to yi. This component represents the expected productivity
in a random job that a worker could take. Equivalently, it captures productivity differ-
ences, conditional on having the same amount of options (OOI). The final component,
employer rents, will be equal for all workers, as all jobs are equivalent.15

This example shows clearly how two workers who are on average equally productive,
could still earn different wages due to differences in outside options. Assume l1 = l2,
y1 = y2, and d1 < d2. Worker 2 earns a higher wage because her OOI is greater. In

14Formally, assume each interval [a, b] has a measure of b − a workers and jobs. This implies an infinite
measure of both workers and jobs.

15Its exact value would be pinned down depending on the value of unemployment, and vacant jobs.
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expectation, workers 1 and 2 are equally productive at every job in [l − d1, l + d1]. Since
worker 2 has a higher price, most jobs in this range would prefer to hire worker 1. Still,
as a result of heterogeneity, some employers would be willing to pay the higher price.
Because worker 2 has more options than worker 1, there are enough employers who are
willing to pay the higher price, so that the market clears.

2.6 Discussion

We summarize this section by re-examining the model assumptions and their implication
on what is and what is not captured with the OOI. The primary advantage of the OOI is
that it more precisely captures the size of a worker’s relevant option set. It allows workers
to use their skills in different occupations and industries. By contrast, measures such as
the HHI assume that workers belong to only one industry or occupation. Similarly, the
OOI accounts for heterogeneity in commuting and moving costs. Instead of assuming
each worker is assigned to a specific local labor market, the OOI empirically assess the
distance over which each type of worker searches for a job. Finally, the OOI accounts for
variation in employer characteristics even within the same industry. For instance, if some
workers are unable to work on weekends, their OOI will only be affected by employers
who do not require that.

The main limitation of the OOI is that it does not account for any dynamic considera-
tions. This is because it was derived from a static model. Dynamic considerations such as
switching costs, firm-specific human capital that is acquired over time, and learning tend
to limit a worker’s ability to move to their outside options, but are beyond the scope of
this analysis.

A second limitation is that the OOI calculates the measure of relevant jobs, not relevant
employers. We assumed that employers are 1-job firms and do not account for the fact that
many jobs are under the same employer. While the model will, with minor adjustments,
accommodate firms, we focused on jobs due to limitations of our data (see Section 3.1).
Therefore, the OOI will over-estimate options for workers who are more likely to work in
large firms.

In contrast, some aspects of the labor market that are not explicitly modeled above
could still be captured in the OOI. The most prominent one is information frictions that
would generate search costs. Black (1995) has analyzed a search model where some work-
ers have more options, and showed that in this setting as well, more options would lead
to higher wages in equilibrium. Hence, it is possible that some of the effect of the OOI on
wages is operating through this channel as well.
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3 Empirical Setting and Data

We use administrative data from Germany to generate measures of individual workers’
outside options. The data includes detailed information on establishment and worker
characteristics, including information on a variety of amenities provided by different es-
tablishments, which allow us to estimate workers’ options more accurately. Excluding
some idiosyncratic features which we will now discuss, the German labor market is com-
parable to other low-regulated labor markets, making wages more directly affected by
the market forces we want to study.

3.1 Data

Administrative German Employer-Employee Data

Our primary source of data is a panel of German worker employment histories known
as the “LIAB Longitudinal” dataset. It is a matched employer-employee administrative
data, based on a sample from the universe of German Social Security records from 1993-
2014. There are four key features of the data which make it ideal for our setting. First, it
is a large dataset, including about 1% representative sample of the entire German labor
force. Second, there is detailed establishment-level survey information with information
such as hours requirements, profitability, leave/maternity policies etc. This allows us to
account for differences in outside options that may be due to differences between estab-
lishments, even within industries. Third, the panel structure of the data, allows us to track
workers over long periods of time. This gives us valuable information about the workers
such as their specific experience in the market, and their location before taking their job.
Fourth, this data provides 4-digit occupational classification which highly improves our
precision in measuring relevant options. To our knowledge, this combination of data is
not available in the United States.

The data come from the Integrated Employment Biographies (IEB) dataset, which is
collected by the German Institute for Employment Research (IAB). Employers are re-
quired to report daily earnings (subject to a censoring limit at the maximum taxable earn-
ing level)16, education, occupation, and demographics for each of their employees at least
once per year, and at the beginning of any new employment spell. New spells can arise
due to changes in job status (e.g. part-time to full-time), establishment, or occupation.

Each year the IAB selects a stratified random sample of establishments from the pool
of all German establishments with at least one employee liable to Social Security. These

1611% of the sample is censored. As we do not use wages to calculate OOI, it is not affected by censoring.
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establishments are required to complete a series of surveys on organizational structure,
personnel policies, financing, and research activities. In particular, the establishments are
asked for information on their annual sales, profits, establishment size and leave policies.
The survey data are then merged with the complete employment histories of all individ-
uals who worked at least one day in any of these firms between 1993 and 2014.

There are several limitations for the data, that may affect our calculations of outside
options. The data do not cover civil servants or the self-employed, which comprise 18%
of the German workforce. They also do not cover labor force non-participants. Therefore,
we do not account for any of those options when calculating the OOI. Since the sample
is done at the establishment level, we usually observe only few establishments in each
industry-region combination. This is why we construct the OOI at the job level, and not
the employer level.

Because our model is static, we rely on repeated cross-sections of data. For each year,
we use data on employment relations on June 30th of each year. Our descriptive analysis
is done for our last year in the sample, that is June 30th 2014. We use data from 1999, 2004
and 2012 in Section 6 to examine how quasi-random variations in the OOI effect wages.

BIBB Task Data

We supplement these data with survey information on the characteristics of occupations
and industries. It includes information on the tasks completed, hours requirements and
typical working conditions in these occupations/industries. These data are similar to the
O*NET series, but allow us to account for possible differences in the task content of occu-
pations between the United States and Germany, as well as differences in coding.17 The
survey is conducted by the IAB and includes information on respondents’ occupation,
industry, in addition to responses on questions related to organizational information, job
tasks, job skill requirements, health and working conditions.

3.2 Empirical Setting: German Labor Market

There are several distinctive features of the German labor market which are relevant
for our analysis. First, there are different levels of secondary-school leaving certificates,
which depend on the number of years and type of education. Our data allows us to dis-
tinguish between three categories: lower-secondary, which typically requires nine years
of schooling, intermediate-secondary, which typically requires ten years of schooling, and

17These data have been used in prior publications on the German task structure including Gathmann and
Schönberg (2010).
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high-secondary, which requires twelve to thirteen years of schooling, and allows the stu-
dent to pursue a university degree. In our analysis we use indicators for the type of
secondary education to account for years of schooling, and school quality.

Second, in addition to (or sometimes instead of) formal education, many German
workers receive on-the-job training through formal apprenticeships. Individuals in ap-
prenticeship programs complete a prescribed curriculum and obtain occupation-specific
certifications (e.g. piano maker). We use this information to precisely identify the types
of jobs a worker could perform.

Third, eleven percent of workers in Germany work under “fixed-term contracts” (as
of 2014). These contracts expire automatically without dismissal at the end of the agreed
term, at no cost to the employer. The maximal period for employment under such contract
varies between 6 to 18 months over the period for which we have data. At the end of a
contract, the worker and employer may choose to continue the employment relationship,
but cannot use another fixed term contract to do so (Hagen, 2003).

Fourth, two percent of workers are hired through temporary work agencies. This is a
triangular employment relationship, which involves the temporary work agency, a client
company and a temporary worker. Historically these working relations were limited to
24 months; their duration is no longer regulated. There are additional regulations on the
pay received by workers hired through temporary agencies (in particular relating to how
these workers are paid relative to other workers at the same firms) but the rules vary
significantly over time. In our analysis, we distinguish between employment found via
temporary work agency and work found via more traditional means (Mitlacher, 2008).

While wage setting in Germany was historically governed by strong collective bar-
gaining agreements, employers today have considerable latitude in setting pay (Dust-
mann et al., 2009). While employers could always raise wages above the agreed-upon
levels, it only became common for contracts to include “opening clauses” allowing em-
ployers to negotiate directly with workers to pay below-CBA wages in the 1990s. Today
these clauses are very common.

3.3 Summary Statistics

Table 1 describe the characteristics of workers and jobs in our sample, for the full sample,
as well as by gender.

Our sample is roughly evenly split between male and female workers. The mean
age for a worker in our sample is forty-five years old and the vast majority (97%) are
citizens. The workers are divided about equally between the three types of secondary
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education. In nineteen percent of the sample the lower- and intermediate- secondary
education categories are aggregated.18 Men and women have similar age, education and
citizenship status.

On the job side, thirty one percent of the jobs in our sample are part-time. Eleven
percent of jobs are on fixed contracts and only two percent are from temporary agencies.
The distribution of establishment size is very skewed, with mean of 1,552 workers and a
standard deviation of five times that size. The mean annual sales per worker are 163,000
Euros. Twenty-six percent of the establishments report to have females in managerial
positions.

It can already be observed that men and women sort into different types of jobs. Fe-
males are much more likely to work in part-time jobs (53% compared to 13%), which is
relatively high compared to other countries.19 They also work at smaller establishments
with 827 employees on average and mean annual sales of 130,000 Euros, compared to
2,166 and 191,000 accordingly for males. Females are also more concentrated at establish-
ments with higher share of female-management (36% compared to 17%).

4 Estimating Outside Options

In this section we describe how we estimate the outside options index. Our method uses
the cross-sectional allocation of observably similar workers to estimate the relevant op-
tions of each worker . This allocation teaches us about the worker’s ability or willingness
to commute, about the set of industries or occupations that are suitable to the worker’s
skills, and about the worker’s demand for certain workplace amenities. Section 4.1 states
the key assumption, Section 4.2 describes the estimation procedure, and Section 4.3 de-
scribes the worker and job characteristic we use as inputs.

The OOI of a given worker requires an estimate of their probability to work in each
one of the jobs observed in the data. We calculate the OOI using Equation 8 which shows
that the OOI is only a function of the different f ij .This requires us to estimate N2 distinct
probabilities.

Earlier methods that were developed to estimate such densities do not work on data
sets of our size. Non-parametric approaches cannot be used due to the large number of
worker and firm characteristics. Parametric methods that were designed specifically for
this model, work well when the number of possible combinations is around a few mil-

18More details in data Appendix C.1
19Germany is ranked 6th out of 35 OECD countries in female part-time employment (OECD, 2018).
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lions.20 However, given the size of our data, we need to calculate the probability density
of approximately 250 billion possible combinations, making these methods computation-
ally not feasible.

To overcome this challenge, we develop a new method that is computationally feasi-
ble for large data sets, and uses a similar set of assumptions to those used in the prior
literature (Dupuy and Galichon, 2014). Our method relies on an equivalent representa-
tion of the probability densities as the ratio between the likelihood of a matched pair to
appear in the equilibrium allocation compared to a random one. These ratios can be es-
timated quickly using logistic regressions. We discuss the links and differences between
our method and prior methods in more detail in Appendix B.3.

4.1 Assumptions

In this section we state the parametric assumptions we make to link the f ij densities to
the data. Our data are comprised of pairs of matches between workers, and jobs (xk, zk),
where the xk/zk are observed worker/job characteristics we discuss in the Section 4.3.

We first use the result of Lemma 1

f ij =
f (Xi, Zj)

f (Xi) f (Zj)

f (Xi, Zj) is the probability of observing a match between a worker with characteristicsXi

and a job with characteristics Zj . f(Xi)f(Zj) is the product of two the marginal distribu-
tions for workers and job characteristics. This is the probability of observing a match with
such observables, under a random assignment. The basic intuition for this result is that
the probability of observing i matched with j depends on the frequency that workers and
jobs with such observables are matched, accounting for the total measure of workers and
jobs with these observables (if there are more jobs with a particular set of observables, the
probability to match to a specific one is smaller). This result can be derived from weaker
assumptions as well.21

Our second assumption parametrizes f ij as a function of the observables. We follow
Dupuy and Galichon (2014) in assuming that the log density is linear in the interaction of
worker and job characteristics.

20Choo and Siow (2006) develop a non-parametric method where the number of possible combinations
is finite and small. Dupuy and Galichon (2014) use Iterative-Proportional-Fitting algorithm to estimate a
continuous density. Their data set had about N2 = 106 possible combinations.

21It is sufficient to assume If Xi = Xi′ and Zj = Zj′ then f ij = f i
′

j′ , instead of Assumtion 1.

22



Assumption 2. The log of the probability density is linear in the interaction of every worker and
job characteristic:

log f ij = XiAZj + a (Xi) + b (Zj)

The matrix A includes all the coefficients on each of the interactions between worker
and job characteristics. The marginal distributions f (x) , f (z) are fully determined by
a (x) and b (z).22

This assumption reduces the dimension of the problem significantly, while allowing
the relationship between each pair of covariates to remain unrestricted. Dupuy and Gali-
chon (2014) show that A is proportional to the cross-derivative of τ

2αA =
∂2τ

∂x∂z
(9)

where α is the scale parameter of ε we defined in Assumption 1. Intuitively, this means
that if a worker characteristic and a job characteristic are complements, they will be ob-
served more frequently in the data.

4.2 Empirical Procedure

Under these two assumptions, we can estimate the OOI using a simple procedure that we
will now describe. The key idea of our method is to use the result of Lemma 1, that the
probability density f ij can be written as the ratio between the probability of observing a
match in the real distribution to its probability under a random assignment.

We start by expanding our data set of worker and job matches. We simulate data
from a distribution f̃ (x, z) = f (x) · f (z), where x and z are independent. This is done by
randomly sampling an observed worker and an observed job independently. We simulate
a total number of random matches equal to our original data size, such that the share of
real and simulated data is exactly one half. We define a binary variable Y that equals to
one whenever the match is ’real’ (taken from the data) and zero whenever it is simulated.

We then estimate all our parameters using a logistic regression. We regress the binary
variable we constructed Yk on the matched worker and job characteristics (Xk, Zk). Note
that, as a result of Lemma 1, and a simple Bayes rule, the match probability density f ij is
proportional to the ratio of observing this match in the real or simulated data, conditional

22While Dupuy Galichon are able to fit the marginal distribution precisely to their observed value in the
data, we won’t be able to this with our data size. Therefore, we take linear functions of all X variables and
Z variables. We also include indicators for district. As we discuss in Appendix B.3 this specification fits the
first moments of the marginal distributions.
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on the observed worker and job characteristics.

P (Yk = 1|xk, zk)
P (Yk = 0|xk, zk)

=
f (xk, zk)

f (xk) f (zk)

P (Yk = 1)

P (Yk = 0)
= f ij · const

Combining this result with Assumption 2 yields

log
P (Yk = 1|xk, zk)
P (Yk = 0|xk, zk)

= xkAzk + a (xk) + b (zk) (10)

We can estimate this equation using a logistic regression where we approximate a (x) , b (z)

with linear functions. Under the assumptions this produces consistent estimates for
Â, â (xk) , b̂ (zk). We discuss the intermediate results from this estimation procedure, in
Section 7.2 where we analyze the underlying reasons for differences in the OOI.

We use the estimates from the logistic regression to estimate the probability density
of every potential match. Specifically, we estimate the probability density of worker i to
work in job j to be

f̂ ij = exp
[
xiÂzj + â (xi) + b̂ (zj)

]
We calculate this value for all possible worker-job combination in our data set.23 This
simple functional form allows us to make this calculation directly and with minimum
computational burden.

With these result in hand we can calculate the outside options index for every worker
in our sample using Equation 8:

ÔOIi = −
∑
j

f̂ ij log f̂ ij (11)

This yields a consistent estimate of the OOI, if both assumptions are correctly specified.
We verify that the OOI is robust to different choices of functional form. Instead of

estimating it using the entropy index, we use the same probabilities we estimated in an

HHI formula: −
∑

j f̂
i
j

2
. We find that the results are very similar. The correlation between

the two indices is .62.
In Appendix B.3 we discuss the properties of this method, in the case where these

assumptions do not hold. We show this method can be written as a GMM estimator,
and discuss the moments that are being matched. We also show that if we increase the
size of the simulated data, and fully saturate the functions a and b, our method becomes
equivalent to Dupuy and Galichon (2014).

23We normalize those estimated densities, such that
∑

j f̂
i
j = 1. So effectively, we don’t use â (xi).
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4.3 OOI Input: Job and Worker Characteristics

To estimate f ij using Equation 10 we include three groups of variables: worker charac-
teristics (x), job characteristics (z), and the geographical distance between workers and
jobs. Information on wages is intentionally not used in any of these groups, to avoid a
mechanical link between the OOI and wages.

Worker Characteristics x We use x to denote the variables that describe worker de-
mographics and worker training. The demographic variables include workers’ gender,
worker’s level of secondary education, an indicator for whether the worker is a citizen,
and a quadratic in age. For training we use the occupation in which they undertook their
apprenticeship. If we do not have information on a worker’s apprenticeship (e.g. if it oc-
curred before our data begin in 1993), or if a worker did not complete an apprenticeship,
we use their first occupation observed in the data, as long as this is at least ten years old.

Job Characteristics z The job characteristics z variables fall into three categories: (1)
characteristics of establishments, (2) characteristics of employment contracts, and (3) char-
acteristics of jobs. First, we take several establishment-specific variables directly from the
establishment survey: size, sales and the share of females in management . We also use
the first two principal components of each of the six categories of the establishment sur-
vey: business performance, investments, working hours, firm training, vocational train-
ing, and a general category. Appendix Table A1 shows the most weighted questions in
each category.

Second, we use several variables which relate to the structure of the employment con-
tract: whether the job is part-time, whether the contract is fixed term, and whether the
position was filled by a temporary agency.

Finally, to describe the characteristic of the job we use information on the occupation
and industry. Because it would not be feasible to include interactions between all of our
industry and occupation codes, we use data from the BIBB to identify the characteristics
associated with different industries and occupations. The BIBB survey contains modules
on working hours, task type, requirements, physical conditions and mental conditions.
For each 3-digit occupation and 2-digit industry, we include the first two principal com-
ponents for each module. We use these to code both the occupation and industry that
describe the job, and the training occupation that describes the worker. Appendix Table
A2 shows the most weighted questions in each module. We also include occupation com-
plexity, which codes occupations into four categories based on the type of activity they
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require: (1) simple , (2) technical (3) specialist and (4) complex.24 We use a total of 18
worker characteristics and 39 job characteristics.

Geographical Distance We include the geographical distance between workers and em-
ployers. For workers we use their last place of residence before taking the job.25 This
distance could capture both the commuting, as well as the moving costs between places;
empirically we cannot directly distinguish the two. Both locations are given at the district
(kreis) level.

Figure 1 presents a map of the 402 districts in Germany. The size of the districts varies
across the country and, importantly, it tends to be smaller in highly populated areas. In
many cases, the major city is its own district, allowing us to separately identify the city
center and the suburbs. Though not perfect, this coding allows us to get a reasonable ap-
proximation of commuting and moving patterns by workers. Appendix Table A3 shows
the mean of the distance variable by gender and education groups. We find that the mean
is 15.5 miles, but there is significant variation across groups.

We allow distance to have a non-linear effect on match probability that is different for
each worker type. When we estimate Equation 10 we use a 4th degree polynomial of the
distance between a worker’s lagged home district and their location of work to account
for the non-linear impact of distance.26 To account for heterogeneity in willingness to
commute or move, we interact the polynomials in distance with all worker characteristics
x. This allows workers to be affected differently by distance, depending on their gender,
education, age, citizenship and training. As we discuss in Section 7.2 this turns out to be
the main driver of differences in outside options.

5 The Empirical Distribution of Outside Options

We next turn to describing the distribution of the OOI, and the characteristics of workers
with better and worse options, as measured by it. We find that the OOI is higher for men,
German citizens, city residents, more educated and more experienced workers. We also

24These four categories usually reflect the type of qualification needed to perform the job, which ranges
between none, vocational training, some tertiary degree and higher education. For instance, different occu-
pations in nursing that fall under the same occupational coding (813) will be coded with different complex-
ity, ranging between a nursing assistant, nurse, specialist nurse and general practitioner.

25Workers current place of residence is affected by their match. Their place of residence before taking the
job better reflects the actual radius over which people are searching for jobs.

26We find that for more than 100 miles, the effect of distance is constant. This is consistent with the idea
that individuals do not commute more than 100 miles; to switch to a job that is much further away, they
have to move. This moving cost may not vary significantly with distance.
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find that higher skill workers tend to be more specialized in their current industry, which
narrows down their outside options.

Figure 2 plots the raw distribution of the OOI for every worker in our data. The mean
of the distribution is −4.85. We can interpret the mean by considering the share p of
options a worker with this OOI would have if the probability density they worked at
any given job was either 1

p
or 0. A worker with an OOI of −4.85 would be found in a

share p = 0.8% of jobs. The distribution is skewed, with a long left tail, indicating that
there are many workers who are extremely concentrated. The standard deviation of the
distribution is also quite sizable: .93. For comparison, duplicating the worker’s option set
by generating an additional identical job for every job option they have would increase
the OOI by only .69.

We estimate the following regression to decompose the average OOI by worker char-
acteristics

OOI = β0Female+ β1Education+ β2Citizen+ β3Age+ β4Age
2 + ε (12)

Figure 3 plots the results. With controls, the average OOI for women is .237 units below
that of men. The average OOI for German citizen is higher by .217 units. Assuming
similar distributions across jobs, this would imply that male (German citizens) have 27%
(24%) more options than women (non-citizens).

Options are also better for higher-educated workers. Lower-secondary (intermedi-
ate secondary) school workers’ options are on average .70 (.32) units lower than higher-
secondary workers. This implies 101% (38%) more options assuming similar distribution
across jobs.

Figure 4 shows that men have more options than women, not just on average, but
across the entire distribution. The figure shows that the cumulative distribution function
for men is shifted to the right. We cannot reject that the distribution for men stochastically
dominates that of women.

We find an inverse U-shape relationship between the OOI and age. Figure 5 plots
the mean OOI by age and shows that workers’ options tend to improve with age before
flattening off at age thirty. Older workers (over 50) see declining values of options. As
we discuss in Section 2.6, the OOI does not capture any dynamic considerations that
are particularly likely to have a differential effect across ages. Accounting for this could
potentially change these results.

A large portion of the variation in options is driven by geographical variation in la-
bor market size and density. The last category in Figure 3 shows a positive correlation
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between the district density and its OOI, controlling for other demographics. Figure 6
graphs the mean value of the OOI by German district. As the figure illustrates, workers
in cities tend to have better options, as measured by the OOI. Workers near these cities,
also appear to have better options. This result is robust for adding controls for worker
demographics.

While most of our results indicate that high earning workers, such as workers with
higher education or city residents, tend to have more options, this relationship is reversed
at the occupation level. This is because high-skilled workers tend to have more special-
ized skills, which are valued by a smaller number of employers. Controlling for all other
observables, workers who completed their training (apprenticeship) in higher earning
occupations tend to have lower options, as measured by the OOI (raw correlation equals
-.022). Figure 7 plots each training occupation by their (residualized) log wages and OOI.

We next look at which occupations drive the negative correlation. The upper-left cor-
ner of this figure, comprises high paying occupations with few relevant options: medical
doctors, pilots, dentists. These are textbook examples of high-wage occupations with
skills that cannot be easily transferred. While wages in these occupations are still high,
our model predicts that, at least in partial equilibrium, if these workers were able to use
their skills in more industries, their wages would have been even higher. The bottom
right corner shows occupations like meter reader or car sales that have lower wages and
more options. These are examples of low-wage occupations with highly general skills.

Table 2 presents coefficients from Equation 12, including additional controls for train-
ing occupation, district of residence and establishment. Controlling for training occu-
pations (column 2) does not change the results significantly. However, adding controls
for worker’s district of residence as well (column 3) reduces some of the education gap,
and increases the gap between German citizens to non-citizens. This suggests that higher
educated, and non-citizen workers are more concentrated in large cities where there are
more job options, and therefore their OOI is lower once controlling for that. Controlling
for establishments (column 4) yields results that are similar to the results with controls
for districts and occupation, as workers in the same establishment tend to live closely.
However, we find smaller gender differences in options within establishments.

5.1 Mass Layoffs

We next show that the OOI is able to predict the ease with which workers recover from
a job separation. These separations force workers to move to their outside option. To
identify exogenous separations we follow the prior literature in focusing on mass-layoffs.
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We start by constructing a sample of workers who were involved in mass-layoff be-
tween 1993 and 2014, following the approach in Jacobson et al. (1993). We define a plant in
our sample as undergoing a mass layoff if it has a decline in its workforce of at least thirty
percent over the year. We consider only mass layoffs that occur in establishments with
at least fifty workers. We restrict our analysis to workers who had been employed at the
establishment for at least three years prior to the mass layoff and who are below the age
of 55. This leaves us with a final sample of 13,681 workers from 583 distinct mass-layoffs.

The outcome variable we use is relative income: the ratio between current daily in-
come and the last daily income before the layoff. Formally we define relative income
as w̃t = wt

w0
, where t is months after the layoff, ranging from one to thirty-six. In case a

worker is unemployed during this period their relative wage is set to zero. This choice of
outcome variable takes out all productivity differences that can be captured with worker
fixed effects and might be correlated with the OOI.

Appendix Figure A1 replicates the main result in Jacobson et al. (1993). Specifically,
we look at

w̃i,t = βt + ψj(i) (13)

where ψj(i) is establishment fixed effect. We plot βt, the mean relative income of workers
each month, for three years after the layoff. We find that on average workers lose 80%
of their income in the month following the layoff. Their income gradually returns to its
previous value over the next three years.

We next look at the differences in recovery for workers with different value of OOI.
Within each establishment in our sample, we divide the laid-off workers into two groups,
based on whether they are above or below the establishment median of the outside op-
tions index. Appendix Table A4 shows summary statistics for the two groups.

We then calculate
w̃i,t = ρtHighi + δj(i),t (14)

where Highi indicates above the establishment median OOI, and δj(i),t is establishment
by month fixed effects. Figure 8 plots ρt, the difference in relative income between those
two groups for each month in the three years after the layoff. Our point estimates show
that workers with better options, as captured by the OOI, gain an additional 8 percent of
their previous income during the first year after the layoff. The groups seem to converge
throughout time and after three years there are no differences.

The lower relative income is driven by both longer search time, and lower wage after
search. To show this we recalculate Equation 14, replacing the outcome variable with ei,t
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an indicator for being employed, which we define as having a positive wage

ei,t = ρetHighi + δej(i),t (15)

Figure 9 plots ρet , the differences in the share of employed workers on both groups. Our
point estimate show that about 2% more people with higher OOI are working compared
to the lower OOI. Therefore, the relative income in the new job must also be lower to
explain an 8% difference between the groups.

We then repeat this analysis with a continuous measure of OOI, and a varying set of
controls. We regress relative income at month t on the OOI, with fixed-effects for estab-
lishment by month δj(i),t.

w̃i,t = λtOOIi +Xit + δj(i),t (16)

We also repeat this analysis with additional worker controls Xit including tenure, gender,
age and education. The results are reported in Table 3. We find virtually the same patterns
we found when divided by the median, for all choices of controls.

Our findings suggest that the OOI may have an impact on additional dynamic aspects
of the labor market that are not captured in our static-model. The OOI quantifies the
number of options workers have. It is therefore not surprising that workers with more
options (higher OOI) are able to find a new job more quickly. However, the effect on
relative wage is less obvious, as the OOI is likely to already affect income before the
layoff. One interpretation of our findings is that workers with higher OOI face a labor
market that is closer to perfectly competitive, such that the impact of a single employer
on equilibrium wages is negligible, and not affected by their exit.27

6 Effect on Wages

In this section we use two different sources of quasi-random variation in options to es-
timate the elasticity between the OOI and wages. The first (Section 6.1) focuses on the
introduction of high-speed commuter rail stations in small German towns, and the sec-
ond (Section 6.2) uses a shift-share (“Bartik”) instrument. These methods yield semi-
elasticities between .17-.32 .

Estimating this elasticity using instruments allows us to translate differences in OOI

27This intuition can be captured with the predicted effect of a plant closure on the OOI. Removing a job
with low probability have only a small effect on the OOI. Since workers with higher OOI, have on average
a lower probability to be in every job, their OOI is less affected from the destruction of only a few jobs.
Therefore their wage will be less affected as well.
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to differences in wages, even if the model is misspecified. In our model, the effect of the
OOI on wages is determined by the parameter α (Theorems 1, 2). Our model only implies
that this parameter is non-negative and that in a perfectly competitive labor market, this
parameter is zero. Since we do not use any of the model assumptions to estimate this
parameter, the results capture the elasticity between the OOI and wages, even if the model
is misspecified. This exercise can also be seen as a test for whether the OOI has an impact
on wages.

Identifying α, the relationship between options and wages is challenging for two rea-
sons. First, the OOI estimator is a function of the observed characteristics Xi. These
observables are likely to also capture differences in productivity, thus creating a problem
of omitted variable bias. Second, the OOI is estimated with a potentially large amount
of noise, which would create an attenuation bias, especially when adding several con-
trols. Because of those reasons, the OLS estimates of this parameter (Appendix Table A5),
strongly depend on the set of controls we use. Adding more controls shrinks the results
towards zero, and can even affect the sign of the coefficient.28 In order to cope with both
issues we use two sources of quasi-random variation in workers’ options that do not affect
their productivity.

6.1 High-Speed Commuter Rail

We leverage the expansion of the high-speed rail network in Germany as an exogenous
shock to workers’ outside options, following prior work by Heuermann and Schmieder
(2018).29 High-speed trains were first introduced in Germany in 1991-1998. During that
period, stations were placed in major cities. We focus on the second wave of expan-
sion, which began in 1999. During this wave, new stations were added in cities along
existing routes. Cities were chosen for new stations after the routes already existed, and
mostly on the basis of political considerations, and not labor market factors. As a result,
towns as small as 12,000 residents were connected to the train network. Heuermann and
Schmieder (2018) show that this increase in infrastructure led to an increase in commut-
ing probability. Figure 10 shows the map of districts that got stations in the two waves of
installation.

There are several threats to identification that should be considered. One potential

28Our findings in Section 5 suggest that the bias could go both ways, therefore the sign of the OLS coef-
ficient could be both positive and negative. The OOI is correlated with high experience, or high education,
but also with lower wage occupations, potentially because high-skill occupations tend to be more specific.

29Daniel Heuermann and Johannes Schmieder generously provided the train data for our use in this
project.
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concern is that the cities which received new train stations were selected on the basis of
expected increase in productivity. Institutional details and prior research suggest that
this is unlikely.30 Another concern is that the new infrastructure can also be used for the
transportation of goods. This would impact the workers’ wages through their productiv-
ity. However, Heuermann and Schmieder showed that the introduction of these stations
had no effect on the product market, as the trains were only used to transport passengers.
One remaining concern is that the trains also had a similar effect on employers in those
small towns, by allowing them to recruit workers from major German cities. We do not
have detailed enough data on the employers to reject this possibility.

We supplement our data with train schedules in the years 1999 and 2012, before and
after the installment of the second-wave stations. From this data we construct an indi-
cator variable for every match for whether the worker can use a direct high-speed line
to get to this job. We add this variable for our estimation of the match probabilities f ij .
Therefore, we allow the match probability to depend on whether there’s a high-speed
line connecting the worker and the employer. To allow for heterogeneity between work-
ers in their demand for trains, we interact this variable with all worker characteristic Xi.
We then use these probabilities to estimate the OOI, as explained in Section 4.2.

The treatment group consists of all workers who, in 1999, lived in districts that got
high-speed connections during the second-wave expansion (1999-2012). The control group
consists of all workers who, in 1999, lived in districts that never received stations. Since
the major cities were connected in the first wave, they are effectively excluded in this
analysis. We then follow the same workers to the year 2012, regardless of where they
live. We match workers from the treatment and the control group based on their gender,
age, citizenship, education level, training occupation, state (Bundesländer) and lagged in-
come using nearest-neighbor matching with replacement.31 Appendix Table A6 presents
a balance table for this match.

We estimate the following system of equations:

∆2012
1999 logwim = α∆2012

1999OOIi + µm + υim

∆2012
1999OOIim = δTreati + λm + εim

where Treati is an indicator for living in a treated district in 1999 and µm, λm are match

30See Heuermann and Schmieder (2018) for the full list of criteria that were used for location choices.
31We require the match to be exact on gender, education, state and 2-digit occupation.
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fixed-effect. Because this is a binary instrument, α̂ collapses to a Wald estimator

α̂ =
∆2012

1999 logwtreat −∆2012
1999 logwcontrol

∆2012
1999OOItreat −∆2012

1999OOIcontrol
(17)

where the average is taken over matched pairs. We develop a procedure that calculates
standard errors, building on the approach of Abadie and Imbens (2006). More details in
Appendix B.4.

Table 4 shows the main result: an elasticity of .32 between options and wages. Column
1 shows that the OOI increased by .07 in treated districts following the introduction of
the new stations. The reduced form results in column 2 suggest an increase of about
2.5% increase in income in the treated districts. Combining both estimates into a 2SLS
estimator in column 3 yields a semi-elasticity of approximately .32 between our measure
of outside options and wages. Column 4 shows that our matching process worked: there
are no pre-trends. Our OLS results in column 5 show a precise zero. This is likely to be
driven by an attenuation bias that is amplified substantially when using first differences
of noisy variables in estimation.32

We next verify that our effect is driven by workers who are more likely to use the train.
The high-speed commuter rail is a fairly expensive commuting option.33 As a result, the
introduction of train stations should primarily affect high-income workers. We break
our sample into three education groups, which we use as a proxy for potential income.
Figure 11 plots the first stage and the reduced form results, together with our point 2SLS
estimates for each group. We find a higher first stage for workers with higher education.
These are the workers we would expect to use the train the most. The reduced form is
also higher for the more educated workers, though the estimate is imprecise. We cannot
rule out a zero effect on the low education group. The two-stage least squares estimates
are similar for all three groups, and we cannot rule out homogeneous effects by education
group.

32Duncan and Holmlund (1983) show that this depends on the level of autocorrelation between the mea-
surement errors, and true signal. Since worker observables tend to be constant while the measurement
error might change between years, we expect attenuation bias to be much stronger in first difference.

33For example, a round-trip between Montabaur and Frankfurt takes 45 minutes each way and costs 60
Euros.
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6.2 Shift-Share (“Bartik”)

We next use a standard shift-share (“Bartik”) instrument to estimate the elasticity between
wages and options.34 Though this exercise gives a lower point estimate of .17, we cannot
reject that the elasticity we estimate is identical to the one estimated in the prior section.

The idea behind this strategy is to compare workers who work in the same industry,
but who have different outside options, because they reside in different parts of the coun-
try with different industry mixes. Some workers happen to live near industries that are
growing, while others happen to live near industries that are contracting. Because local
growth of certain industries may be due to the impact of local productivity shocks, we
use national industry trends as an instrument.

The instrument is a weighted average of national industry growth, weighted by the
initial share of each industry in the region. Formally, we define

Br =
∑
j

s04jr × ĝj

where s04jr is the share of employed workers in region r, working at industry j in the
base year (2004) and ĝj is the national employment growth of industry j. Regions are
defined by the administrative regions (“Regierungsbezirke”) in Germany, the statistical
unit which is closest to a commuting zone.35 Industries are defined at the 3-digit level.

To estimate the national growth of different industries, controlling for region-wide
shocks, we regress the change in employment in industry j in region r between 2004 and
2014 on industry and region fixed effects:36

∆14
04 logEjr = gj + gr + εjr

By construction, the estimator of ĝj is not driven by regional trends captured in ĝr. We
use the weighted average of the industry fixed effects ĝj by initial industry shares s04jr to
calculate Br. This construction verifies that Br is not driven by local employment shocks
in this region, or even in nearby regions.37

34These shocks were used in several papers including Bartik (1991); Blanchard and Katz (1992); Card
(2001); Autor et al. (2013). It was used specifically for the context of a shock to outside options by Beaudry
et al. (2012).

35We take all 39 regions based on NUTS2 level coding of the European Union. This includes historical
administrative regions that have been disbanded. Results are robust to the definition of a region and hold
for the NUTS3 level (district) as well.

36We make a Bayesian correction of uniform prior by adding one observation in each industry, region
and year combination.

37This is different from a leave-one-out estimate, that might still be driven by local shocks in nearby
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We estimate the following system of equations

∆14
04 logwijr = α∆14

04OOIijr +β∆14
04Xijr + Ind04j + υijr

∆14
04OOIijr = γBr +δ∆14

04Xijr + Ind04j + εijr
(18)

where we control for the industry of the worker in the beginning of the period (2004). We
cluster standard errors at the level of the treatment, which is the region. The parameter
of interest is α, the elasticity of wages with respect to options.

Table 5 presents the main results. Columns 1 and 2 show the first-stage and reduced
form results. A 10% higher employment in other industries, which is about .1 increase in
the instrument, translates to approximately 6% more relevant options, and 1% increase
in wages. Combining both estimates yields a semi-elasticity of .17: a 10% increase in
relevant options leads to a 1.7% increase in wages.

The identifying assumption is that growing industries are not systematically located
in regions where wages are growing for other reasons (Borusyak et al., 2018). One way the
assumption could be violated is if there are productivity spillovers. Workers that live near
industries that are growing, may enjoy a local demand shock for their production due to
the positive income effect on workers in that region. This could generate a wage increase,
that is not driven by the improvement in their outside options. This is particularly a
concern for workers who are producing non-tradable goods, whose productivity is set by
local demand.

We address this concern by showing the results hold for workers in exporting indus-
tries, which are less likely to be affected by local demand shocks. We use information
from the establishment survey to calculate the export share of each industry.38 We divide
our data into three groups based on the export share of the industry where the worker
worked in 2004. Table 6 shows the results for each of the groups. We find a large and
statistically significant elasticity between options and wages even among workers in in-
dustries with the highest exporting share. Column 1 indicates that in response to a 10%
increase in OOI, workers in these industries see their wages rise by 1%. This elasticity is
somewhat lower than that in our baseline results (.10 versus .17). However, we cannot
reject that they are equal.39

regions.
38This is a lower bound for demand from outside the region, as it does not include sales to other regions

in Germany, which we cannot see in our data. We calculate the mean industry level since we don’t have the
share of sales from export for all employers, but only a representative sample.

39Beaudry et al. (2012) find similar results when dividing the data into tradable and non-tradable in-
dustries, based on their geographical spread. They argue that non-tradable industries are geographically
spread across different regions, while tradable goods could be concentrated in specific regions. They also
address additional potential threats to the identification assumption and show they don’t seem to have a

35



We next examine heterogeneity across gender and the three education groups. We es-
timate Equations 18 separately for each group. Figure 12 plots the results for all groups,
as well as the full population. While splitting the sample increases the size of the con-
fidence intervals, the point estimates are quite close. This suggests that using the same
value for α for all groups is a reasonable approximation.

We next use this setting to decompose the different effect of access to more options
into impacts for job stayers and movers. Because the choice of whether to move is en-
dogenous, we view this as a decomposition exercise. We interact the changes in OOI with
an indicator variable for whether a worker stayed at their establishments during this pe-
riod. The results are shown in Table 7. As our model predicts, we find that the effect on
stayers is smaller. This is possibly because they only benefit through an improvement
in their outside options. The larger effect on movers is consistent with an additional im-
provement in match quality.

While the elasticity we estimate in this exercise is lower from the one we estimated us-
ing the fast commuter rails, their difference is not statistically different from zero. Figure
13 compares our results in this section to the elasticity we estimated using the introduc-
tion of high-speed commuter rails. The fact that we found elasticities of a similar magni-
tude by using two distinct sources of variation suggests that this range of estimates is a
reasonable benchmark for the value of α.

7 Effect on Wage Inequality

In this section, we combine our estimates on the distribution of the OOI, with our es-
timates of the OOI-wage elasticity, to assess the overall effect of options on the wage
distribution. We then examine which covariates drive differences in options. We find that
equalizing workers’ ability to commute or move would eliminate the gender gap in OOI,
and would reverse the sign of the OOI gap by education.

7.1 Overall Impact on the Wage Distribution

We examine what portion of between-group wage inequality can be attributed to differ-
ence in OOI. We first estimate a Mincer equation

logwi = β0Xi + εi (19)

significant effect on the result.
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where Xi includes indicators for each education group, a quadratic in age, gender, cit-
izenship status, log district density and an indicator for part-time job. Since wages are
top-coded we use a Tobit model to estimate β̂0. We then add the OOI to the set of depen-
dent variables, with a fixed coefficient.

logwi = α̂OOIi + β1Xi + εi

We use α̂ = .26 which is the average of the two point estimates we derived in Section 6
from the two quasi-random sources of variation. β̂0 captures the overall gaps in wages
between these demographic groups, β̂1 is the remaining gaps that are driven by factors
other than the OOI, and β̂0− β̂1 is the part that can be attributed to the differences in OOI.

Figure 14 shows the main results. The full bars display the gaps that we estimated
(β̂0), where every bar is the wage premium for this group members. For instance, the
premium for being a male (the gender gap) is .19 log units in Germany. The portion that
can be attributed to the OOI

(
β̂0 − β̂1

)
is colored in red, while the remaining gap (β̂1) is

left in blue.
The OOI explains significant portions of several German wage gaps. When we add

OOI to the regression, the gender gap is cut by .06 log units (30% of the overall gap). This
is driven by the .23 gender gap in OOI we found in Table 2, multiplied by α̂. Our results
also indicate that 88% of the gap between German citizens to non-citizens (.08 log units)
can be attributed to differences in options. The wage difference between high-level and
intermediate-level secondary schooling is cut by .07 log units, which is about 25% of the
initial gap. Our results also attribute 39% of the return to experience at age 18 in access to
options. Table 8 shows these results numerically in columns (3) and (4), as well as results
from a winsorized OLS in columns (1) and (2).

7.2 Explaining Differences in Outside Options - The Role of Commut-

ing Costs

We next examine which factors impact workers’ options. We find that differences in com-
muting costs seems to be particularly important, especially in its effect on the gender gap
and return to higher education.

We start by examining the impact of different variables on the probabilities of ob-
serving a match. We analyze our results from the estimation of matrix A defined in
Assumption 2, which we estimated using a logistic regression. This matrix is also the
cross-derivative of match quality τ (Equation 9). Appendix Table A7 shows the top abso-
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lute values of Â, when variables are standardized so the results are not affected by specific
units.40

These results indicate that the most important factor in determining match quality is
commuting and moving costs. Distance has the largest standardized coefficient in abso-
lute terms (-4.15). While distance to a job is an important factor for all workers, it is par-
ticularly important for female workers, for less-educated workers, and for non-German
citizens. Appendix Table A8 presents the raw coefficient on distance for different worker
characteristics. This coefficient is the effect of an additional mile on the log probability of
a match, at mile zero. For our baseline group, forty year old males citizens from higher
secondary schools, the coefficient is -.141. The interaction with female is -.024, so women
are 17% more sensitive to distance than the baseline group. Lower educated workers are
significantly more sensitive to distance (coefficient -.037). Non-German citizens seem to
be more sensitive than citizens (coefficient -.019). Finally, workers at first become less
sensitive to distance with age, but this is a concave function that reaches its maximum at
age 42.

By simulating counterfactuals from the underlying model, we can quantify the over-
all effect of differences in commuting and moving costs on wages through their effect on
the OOI. We estimate the wage gain for every worker, if they had the minimal commut-
ing/moving costs. Based on our estimation, these are the costs of a 40 year old, high-
educated, male citizen. We generate a matrix Ã where the coefficients on distance is set
to this minimum level for all workers. We then simulate the probabilities f̃ ij using this

matrix, calculate the ÕOIi and translate it to l̃ogwi using α̂. This counterfactual should
be thought of as changing only a zero measure number of workers each time, and keep-
ing all other workers and employers unchanged, so that there are no general equilibrium
effects. We compare the differential gains from this exercise to assess the importance of
commute in generating wage gaps.

We run a regression of the counterfactual gains in wage over basic demographics

∆ logwi = β2Xi + εi

where ∆ logwi = l̃ogwi − logwi and Xi same as in Equation 19. The coefficients β2 from
this regression are the part of the wage gap that would be closed, if commuting and
moving costs were equalized at the lowest level, for these workers. The results of this
exercise are presented at Figure 15. The figure plots the full gap (β̂0, blue), the portion that

40Online appendix table A1 shows the full standardized results for A ; online table A2 shows the raw
results.
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can be attributed to the OOI (β̂0 − β̂1, red), and the part that will be closed by equalizing
commuting costs at the minimal level (β̂2, yellow).

Differences in commuting costs seem to explain all of the gender gap that is driven
by differences in options. Equalizing commuting costs would increase wages for women
by about .07 log units, relative to men. This is one third of the overall gender gap. Even
though we find that men and women sort into different jobs, there seems to be a similar
number of jobs for males and females, therefore the only difference is the distance in
which workers are searching for jobs. This does not mean that there aren’t other ways to
increase the OOI for women, such as increasing the supply of jobs that women typically
sort into.

In contrast, equalizing commuting costs increases the wage gap between German cit-
izens and non-citizens. These results are surprising at first glance because we found that
non-citizens are more sensitive to distance. However, they can be explained by the fact
that non-citizens are more concentrated in large German cities. As a result, their commut-
ing costs are already low. German citizens are more dispersed across rural areas, and are
more dependent on their ability to commute to jobs in major cities.

The education gap in OOI actually reverses once we equalize commuting costs: work-
ers with intermediate-secondary education have more options than those with higher-
secondary. Therefore, the higher-education premium drops by .15 log units (51% of the
overall premium), which is more than the full effect of the OOI difference between these
groups (.07 log units). This implies that, in a given area, workers with intermediate-
secondary education have more relevant job options than workers with high-secondary
education. It is only because higher-secondary education workers are willing to take jobs
in more distant areas, that they end up with more options. This result can be explained
by the fact that more educated workers tend to be more concentrated in occupations
that have more industry specific skills, as shown in Figure 7. Additionally, intermediate-
secondary workers can take both higher-skill, and lower-skill jobs in addition to staying
at the same level. While high-secondary workers usually have fewer options to climb to
jobs requiring even more skills.

Other than geographical distance, the most significant factor in determining a worker’s
match (Appendix Table A7) is their training occupation. Workers tend to stay in occupa-
tions similar to the ones in which they were trained. Our results in Section 5 show that
those who undertook training in occupations with more transferable skills have more op-
tions than those who received more narrow training. Since transferable skills are more
common in low-paying occupations, the OOI is reducing inequality between occupa-
tions.
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8 Conclusion

In this paper we provide a distinctive and micro-founded approach to empirically esti-
mate workers’ outside options, and to measure the impact of outside options on the wage
distribution. The starting point for our analysis was a two-sided matching model, which
produced a sufficient statistic for the impact of outside options on wages, the OOI. We
took the OOI to the data to identify the workers with better outside options. We then
combined this result with a causal estimate of the elasticity between the OOI and wages,
to assess the overall impact of options on wages. Our results suggest that differences in
outside options generate lower income for females by six percent, non-citizens by eight
percent and intermediate educated workers by seven percent (compared to high edu-
cated).

Our results indicate that policies that improve workers’ options, including invest-
ments in transportation infrastructure or regulation of working hours, are likely to have
significant general equilibrium effects. While such policies are usually analyzed only
through their impact on workers that directly benefit from them, our results indicate that
these policies will likely have important spillovers onto other workers through their out-
side options. These general equilibrium channels can be studied through their effect on
the OOI.

One interesting direction for future work would be to use this framework to analyze
specific industries in which outside options play a key role, and good micro-data is avail-
able. A similar analysis could also be done on the employer’s side of the market, analyz-
ing heterogeneity in the availability of options for firms, and the impact of outside op-
tions on profits. Finally, the ability to identify workers with better outside options could
be useful in studying heterogeneous effects of various policies, or labor market shocks.
Our analysis of the heterogeneous response to mass-layoff is one example for how this
can be done.
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Figures and Tables

Figure 1: German Districts
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Note: This map illustrates the 402 districts (kreis) in Germany.
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Figure 2: Distribution of Outside Option Index
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Note: This figure plots the distribution of the outside options index as calculated for the
population of German workers as of June 30th, 2014. The OOI was calculated using the
procedure described in Section 4.2. LIAB sample weights are used to make the distribu-
tion representative of the German population.
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Figure 3: OOI by Characteristics
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Note: This figure plots the coefficients from a regression of OOI on education, gender,
citizenship and a quadratic in age. The results are also presented on column 1 of Table 2.
Confidence intervals are plotted at the 95% level. The lower axis shows raw OOI units,
while the upper axis uses standard deviation units.
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Figure 4: Cumulative Distribution of Outside Option Index by Gender
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Note: This figure plots the cumulative distribution function of the outside options index
by gender, as calculated for the population of German workers as of June 30th, 2014. The
OOI was calculated using the procedure described in Section 4.2. LIAB sample weights
are used to make the distribution representative of the German population.
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Figure 5: OOI by Age
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Note: This figure plots the mean OOI by age in the German population. LIAB sample
weights are used to make the sample representative of the German population. Confi-
dence intervals are plotted at the 95% level.
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Figure 6: OOI Distribution by Region
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Note: This figure plots the distribution of the outside options index by district (kreis) as
calculated for the population of German workers as of June 30th, 2014. The OOI was
calculated using the procedure described in Section 4.2. The value for each district is a
weighted mean of the workers in this district, using the LIAB sample weights to make the
distribution representative of the population in the district.
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Figure 7: OOI by Training Occupation
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Note: This figure plots the mean residualized outside options index and log wages by
training occupation as calculated for the population of German workers as of June 30th,
2014. The OOI was calculated using the procedure described in Section 4.2. Residuals for
the OOI and log wages were taken from a regression on gender, a quadratic in age, ed-
ucation category, citizenship status and district of residence. Means are calculated using
the LIAB sample weights to make the distribution representative of the population in the
occupation. See Section 3.1 for exact definition of a training occupation.
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Figure 8: Mass-Layoffs - Differences in Relative Income Between High/Low OOI Workers
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Note: This figure shows the difference in relative income for workers with OOI above
and below the establishment OOI. Relative income is defined as the current daily income
in that month divided by the last daily income before the layoff. Mass layoffs are de-
fined as an establishment with at least 50 workers that reduced its workforce by at least
30% in a given year. The sample includes only workers who have worked for at least
three years before the layoff and are below the age of 55. The median OOI is calculated
based on the pool of laid-off workers in a given establishment and year. The coefficients
are taken from a regression of relative income on an indicator for above median OOI,
interacted with indicator for each month after separation (plotted), with fixed effects for
establishment×month (Equation 14).
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Figure 9: Mass-Layoffs - Differences in Search Time Between High/Low OOI Workers
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Note: This figure shows the difference in employment for workers with OOI above and
below the establishment OOI. Employment is defined as any income greater than zero.
Mass layoffs are defined as an establishment with at least 50 workers that reduced its
workforce by at least 30% in a given year. The sample includes only workers who have
worked for at least three years before the layoff and are below the age of 55. The median
OOI is calculated based on the pool of laid-off workers in a given establishment and year.
The difference is calculated using a regression of employment on an indicator for above
median OOI, interacted with indicator for each month after separation, with fixed effects
for establishment×month (Equation 15).
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Figure 10: ICE Stations
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Note: This figure shows the locations of ICE train stations by districts. The first wave
includes all stations that were opened pre-1999. The second wave includes all stations
that were opened post-1999.
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Figure 11: Impact of Express Trains by Schooling Level
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Note: This figure plots the first-stage and reduced-form results for three education
groups, and their combination. First stage is the treatment effect on OOI. Reduced form is
the treatment effect on log wages. Both were calculated using nearest-neighbor matching
with replacement. Treatment is defined as workers that in 1999 lived in districts that got
ICE stations post-1999. The control group includes workers that in 1999 lived in districts
that never got ICE stations. Matching is done exactly on gender, education group, citi-
zenship status, state and 2-digit training occupation and continuously on age, and PCA
components for training occupation. Confidence intervals are at the 95% level, and are
calculated based on standard errors derived from a method by Abadie and Imbens (2006).
The black line represents the 2SLS point estimate for the entire sample.
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Figure 12: Shift-Share Results by Gender and Education
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Note: Every category displays the estimate for coefficient α̂ from Equation 18, ran sepa-
rately for each education group or gender (blue), and for the entire population (red). This
captures the effect of changes in OOI on changes in log wages between 2004-2014, when
we instrument for the changes in OOI with the shift-share instrument. The instrument is
constructed from an average of a 3-digit industry national employment growth weighted
by the initial share of every industry in a region (see Section 6.2). Standard errors are
clustered within the unit of treatment, which is regions. Confidence intervals are at the
95% level.
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Figure 13: Estimates of Elasticity Between OOI and Wages
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Note: This figure compares the elasticity between OOI and wages from the two different
sources of quasi-random variations that we used. Train includes the results for parameter
α̂ estimated using the introduction of high-speed commuter rails (see Section 6.1 and
notes for Figure 11 for more details) . Shift-Share uses an instrument based on national
industry employment trends (see Section 6.2 and notes for Figure 12 for more details).
Confidence intervals are at the 95% level. The difference between the point estimates is
.156 (.081).
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Figure 14: Overall Effect on Wage Inequality
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Note: Every bar in this plot is the coefficient on the corresponding category in a regression
of log wages on Male, Citizen, indicator for secondary-education category, a quadratic
in age, district density and an indicator for part-time job. The blue portion of the bars
(remaining gap) is the coefficient from the same regression, controlling for the OOI with
a coefficient fixed to .26, which was estimated with the two quasi-random variations. The
part in red (explained gap) is the difference between the two coefficients. The reference
workers is a female, non-citizen, with intermediate secondary education and 18 years old.
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Figure 15: Effect of Commuting/Moving Costs
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Note: Blue bars (Total gap) are derived from the coefficient on the corresponding cat-
egory in a regression of log wages on Male, Citizen, indicator for secondary-education
category, a quadratic in age, district density and an indicator for part-time job. The red
bars (Total gap from OOI) is the difference in coefficient between the same regression and
one that control for the OOI with a coefficient fixed to .26, which was estimated with the
two quasi-random variations. The yellow bars (Gap from Commute) is calculate from a
similar regression, replacing the dependent variable with minus the gains from reducing
commuting costs to their minimal level (see Section 7.2 for more details). The reference
workers is a female, non-citizen, with intermediate secondary education and 18 years old.
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Table 1: Descriptive Statistics

(a) Workers

All Females Males

Mean SD Mean SD Mean SD

Female .46 (.50) 1 (.00) 0 (.00)

Age 45.05 (12.49) 45.53 (12.27) 44.66 (12.67)

German Citizen .97 (.17) .98 (.15) .96 (.19)

Education: Higher Secondary .29 (.45) .30 (.46) .28 (.45)

Education: Intermediate Secondary .31 (.46) .34 (.47) .28 (.45)

Education: Lower Secondary .22 (.41) .16 (.37) .26 (.44)

Education: Intermediate/Lower .19 (.39) .20 (.40) .18 (.38)

N 450,917 162,780 288,137

(b) Jobs

All Females Males

Name Mean SD Mean SD Mean SD

Part - Time .31 (.46) .53 (.50) .13 (.34)

Fixed Contract .11 (.31) .11 (.32) .10 (.30)

Temporary Agency .02 (.12) .01 (.08) .02 (.15)

Establishment Size 1,552.8 (7,679) 827.2 (5,014) 2,166.2 (9,313)

Annual Sales per worker (Euro) 163,286 (185,651) 130,414 (163,955) 191,026 (197,953)

%Female in Management .26 (.31) .36 (.35) .17 (.24)

N 450,917 162,780 288,137

N Establishments 8,792

Note: This table shows summary statistics of all workers and jobs in our sample on June
30th 2014. Sampling weights are used to make this a representative sample of the German
population.
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Table 2: OOI by Demographics

(1) (2) (3) (4)
Female -.237*** -.231*** -.227*** -.167***

(0.009) (0.011) (0.008) (0.008)
School -.660*** -.620*** -.596*** -.617***
Lower-Secondary (0.013) (0.013) (0.009) (0.010)
School -.279*** -.277*** -.211*** -.216***
Intermediate (0.011) (0.011) (0.007) (0.008)
Non-Citizen -.307*** -.295*** -.459*** -.501***

(0.031) (0.027) (0.021) (0.019)
Age .099*** .107*** .107*** .099***

(0.004) (0.003) (0.002) (0.002)
Age^2 -.001*** -.001*** -.001*** -.001***

(4e-05) (4e-05) (3e-05) (2e-05)
District .112*** .104***
Density (0.004) (0.005)
Training Occ FE X X
District FE X
Establishment FE X
R^2 0.13 0.29 0.66 0.56
N 380,109 380,109 380,109 380,109

Dep Var: Outside Option Index

Notes: This table shows the results of a regression of OOI on basic demographics (Equa-
tion 12). The sample includes all workers employed on June 30th 2014. Sampling weights
are used to make this a representative sample of the German population. Training occu-
pation fixed effects are at the 3-digit levels.
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Table 3: Relative Income by OOI After Mass Layoff

OOIi coefficient (1) (2) (3)

3 months (λ3) .061** .062** .068**
(.029) (.029) (.031)

6 months (λ6) .068** .069** .082**
(.030) (.030) (.033)

12 months (λ12) .061* .064* .079**
(.034) (.034) (.038)

24 months (λ24) .033 .039 .064
(.042) (.042) (.048)

Mass-Layoff×Month FE Y Y Y
Tenure Y Y

Age Y
Education Y

Gender Y

No. of Observations 558,686 558,686 558,686
No. of Workers 13,707 13,707 13,707

No. of Mass-Layoffs×Month 26,561 26,561 26,561
Note: This table shows the results of regressing relative income on OOI for workers that
lost their jobs in a mass-layoff, for different times after the separation. Relative income is
defined as the current daily income in that month divided by the last daily income before
the layoff. Mass layoffs are defined as an establishment with at least 50 workers that
reduced its workforce by at least 30% in a given year. The sample includes only workers
who have worked for at least three years before the layoff and are below the age of 55.
We include monthly income for the 36 months following the separation. The regression
is based on Equation 16. Tenure includes a quadratic polynomial for days at the previous
establishment. Age includes a quadratic polynomial. Education is a categorical variable
for the type of secondary education (see section 3.2 for details).
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Table 4: Impact of Express Trains on Options and Wages

First-Stage Reduced-Form 2SLS Reduced-Form OLS
1999-2012 1999-2012 1999-2012 1993-1999 1999-2012

(1) (2) (3) (4) (5)

.073*** .024*** .324*** .002 .004
(.003) (.004) (.048) (.002) (.007)

Number of observations: 143,313
Number of treated observations: 37,695

Notes: This table shows the results of the impact of express trains on outside options,
and wages. Columns 1-4 use nearest-neighbor matching with replacement. Matching
is done exactly on gender, education group, citizenship status, state and 2-digit training
occupation and continuously on age, and PCA components for training occupation (the
third digit). The outcome variables are change in OOI 1999-2012 (column 1), change in
log income 1999-2012 (columns 2,3,5) and change in log income 1993-1999 (column 4).
Standard errors in matching are calculated using Abadie and Imbens (2006). 2SLS esti-
mator is the division of the estimates in column 1 and 2 (Equation 17). Standard errors in
column 3 are calculated using a method building on Abadie and Imbens (2006) (see Ap-
pendix B.4 for details). OLS (column 5) estimates the regression of log wages on OOI with
match fixed effects. Observations from the control group that appear in multiple matches
also appear multiple times in the OLS. Standard errors are clustered for workers with the
same variables we match on exactly to account for the replacement (see Appendix B.4 for
details).
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Table 5: Effect of OOI on Wages Using Shift-Share (Bartik) Instrument

First-Stage Reduced-Form 2SLS
(1) (2) (3)

.622*** .106*** .170***
(.241) (.056) (.064)

Industry FE X X X

N 408,792 408,792 408,792

Number of Clusters 38 38 38
Notes: This table shows the results of the impact of a shift-share instrument (Bartik) on
outside options, and wages (column 1 and 2). This captures the effect of changes in OOI
on changes in log wages between 2004-2014, when we instrument for the changes in OOI
with the shift-share instrument (column 3). The instrument is constructed from an av-
erage of a 3-digit industry national employment growth weighted by the initial share of
every industry in a region (see Section 6.2). The outcome variables are the change in OOI
2004-2014 (column 1) and change in log daily wages (columns 2 and 3). All columns
control for industry (in 2004) and age. Standard errors are clustered within the unit of
treatment, which is regions.
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Table 6: Shift-Share (Bartik) Results by Exporting Share of Sales

Export>33% 33%≥Export≥1% 1%>Export
(1) (2) (3)

OOI .105** .593** .132
(.052) (.266) (.141)

Industry FE X X X

N 119,645 146,217 142,930
Notes: This table shows the results of the impact of OOI on wages, instrumented with a
shift share instrument, calculated separately by share of export in the industry. Share of
export is calculated for every 3-digit industry based on the establishment panel survey
in 2014. The sample is split based on the worker industry in 2004. Outcome variable
is change in log wages between 2004-2014. The dependent variable is change in OOI
between 2004-2014. The instrument is constructed from an average of a 3-digit industry
national employment growth weighted by the initial share of every industry in a region
(see Section 6.2). All columns control for industry (in 2004), and age. Standard errors are
clustered within the unit of treatment, which is regions.
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Table 7: Shift-Share (Bartik) Results by Stayers and Movers

(1) (2)

OOI .170*** .257***
(.064) (.092)

OOI× -.159***
Stay (.062)

Industry FE X X

N 408,792 408,792
Notes: This table shows the results of the impact of OOI on wages, instrumented with
a shift share instrument, interacted with whether a worker stayed at the same establish-
ment. Outcome variable is change in log wages between 2004-2014. The dependent vari-
able is change in OOI between 2004-2014. The instrument is constructed from an average
of a 3-digit industry national employment growth weighted by the initial share of every
industry in a region (see Section 6.2). The indicator for stay is 1 if the worker works at the
same establishment on June 30th of both 2004 and 2014. All columns control for industry
(in 2004), and age. Standard errors are clustered within the unit of treatment, which is
regions.
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Table 8: Mincer Equation with OOI

OLS OLS Tobit Tobit
(1) (2) (3) (4)

OOI (fixed) -.269 -.269
Female -.171*** -.111*** -.195*** -.137***

(0.011) (0.012) (0.011) (0.012)
School -.351*** -.174*** -.404*** -.230***
Lower-Secondary (0.011) (0.012) (0.011) (0.012)
School -.245*** -.170*** -.289*** -.217***
Intermediate (0.010) (0.010) (0.010) (0.011)
German .089** .007 .093*** .011

(0.031) (0.034) (0.032) (0.034)
Age .057*** .030*** .061*** .035***

(0.003) (0.004) (0.003) (0.004)
Age^2 (x 10^-3) -.573*** -.261*** -.608*** -.297***

(0.039) (0.042) (0.040) (0.042)
District 0.022*** -0.008** 0.023 -0.008**
Density (log) (0.003) (0.003) (0.003) (0.003)
Part-Time -.913*** -.905*** -.928*** -.921***

(0.014) (0.015) (0.015) (0.015)
N 378,776 378,776 378,776 378,776

Dep Var: Log Daily Income

Notes: This table shows the results from a regression of log wages on demographics and
OOI. The coefficient of the OOI is fixed to be its point estimate from the 2SLS estimate
based on the high-speed commuter rail introduction (Table 4). A Tobit model is used in
Columns 3-4 to account for top coding of daily income at 195 Euros per day. OLS results
use winsorized log income. Sampling weights are used to make this a representative
sample of the German population
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Figure A1: Relative Income Following Mass-Layoff
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Note: This figure shows the relative income for workers who lost their jobs in mass-
layoffs, for each month in the three years after the layoff. Relative income is defined as
the current daily income in that month divided by the last daily income before the layoff.
Mass layoffs are defined as an establishment with at least 50 workers that reduced its
workforce by at least 30% in a given year. The sample includes only workers who have
worked for at least three years before the layoff and are below the age of 55. The values
are calculated using a regression of relative income on months after separation, with a
fixed effect for every mass-layoff (Equation 13).

69



Table A1: Most Weighted Question in PCA - Establishment 2014 Survey

Name N Comp 1 Comp 2

Business Performance 8,792 Member of chamber of industry Profit category

Investment & Innovation 8,792 IT investment Total investment

Hours 8,792 Long leaves policy Flextime

In-Company Training 8,792 Internal courses Share workers in training

Vocational Training 8,792 Offer apprenticeship Ability to fill

General 8,792 Family managed Staff representation
This table shows the survey question that received the most weight in this principal component. We take
the first two principal component from each survey category.
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Table A2: Most Weighted Question in PCA - BIBB

Name N Comp 1 Comp 2

Hours 11,021 Sundays and public holidays hours per week like to work

Type of Task 15,035 responsibility for other people Cleaning, waste, recycling

Requirements 10,904 Acute pressure & deadlines Highly specific Regulations

Physical 20,036 Oil, dirt, grease, grime pathogens, bacteria

Mental 17,790 Support from colleagues Often missing information
This table shows the survey question that received the most weight in this principal component. We take
the first two principal component from each survey category.
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Table A3: Commuting Distance by Gender and Education

Distance from Job (Miles)
Mean SD

All 15.5 41.9
Female 12.1 37.1
Male 17.4 44.3

Lower-Secondary 9.4 27.9
Intermediate-Secondary 11.4 34.4

Higher-Secondary 26.2 56.1
Values are mean distance in miles between workers previous place of residence and their job.
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Table A4: Summary Stats for Mass-Layoff Workers by Treatment Status

Above Median OOI Below Median OOI
Mean SD Mean SD

Female .36 .48 .44 .50
Age 40.0 9.7 37.2 11.3

Higher-Secondary Education .21 .41 .14 .35
Tenure in Establishment (days) 2316.3 1272.3 2167.4 1197.8

Daily Income 63.8 43.1 57.5 42.2

N 6.839 6,887
Note: This table shows the summary stats for workers that lost their jobs in a mass-layoff above and below
the establishment median OOI. Mass layoffs are defined as an establishment with at least 50 workers that
reduced its workforce by at least 30% in a given year. The sample includes only workers who have worked
for at least three years before the layoff and are below the age of 55. We include monthly income for the 36
months following the separation.
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Table A5: Correlation Between OOI and logwage - OLS Results

Dep.Var: log wagei

OOI
.107*** .027*** -.010*
(.005) (.005) (.005)

Demographics X X

District FE X

N 378,776
Note: Demographics include gender, education group, a quadratic in age and citizenship status.
The sample includes all workers employed on June 30th 2014. Sampling weights are used to make
this a representative sample of the German population.
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Table A6: Balance Table - High Speed Train

Treatment Control

Mean SD Mean Sd

logwage (1993) 3.26 2.49 3.27 2.49

logwage (1999) 4.25 .62 4.27 .58

Female .356 .479 .356 .479

Age 36.4 6.8 36.4 6.7

Citizen .995 .073 .995 .073

Low-Secondary .257 .437 .257 .437

Intermediate-Secondary .508 .500 .508 .500

High-Secondary .235 .424 .235 .424

N 37,695 26,963
Note: This table shows the summary stats for workers used to estimate the impact of high-speed trains
on OOI and log wages. Treated group includes workers who lived in districts in which a new station was
introduced between 1999-2012. Control group was chosen from a pool of workers living in districts that
never got a station. Control workers were chosen through nearest-neighbor matching with replacement on
gender, age, citizenship, education level, training occupation, state (Bundesländer) and lagged income. We
require the match to be exact on gender, education, state and 2-digit occupation.
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Table A7: Top Standardized Values of A

Variable (X) Variable (Z) Axz

Distance -4.15

Train Occ - Physical Cond. 1 Occ - Physical Cond. 1 1.477

Train Occ - Task Type 2 Occ - Task Type 2 1.077

Train Occ - Task Type 2 Occ - Physical Cond. 1 -.93

Train Occ - Physical Cond. 1 Occ - Task Type 2 -.82

Lower Secondary Education Distance -.74

Intermediate Education Distance -.61

Train Occ - Contract 2 Occ - Contract 2 .56

Train Occ - Task Type 1 Occ - Task Type 1 .55

Lower/Intermediate Education Distance -.54
Results from logistic regression for dummy variable on real vs. simulated match, on interaction of worker
and job characteristics (Equation 10). Results are standardized, such that each variable has standard devia-
tion of 1.
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Table A8: Distance Coefficient by Demographics

Baseline -.141
Female -.024

Non-Citizen -.019
Lower-Secondary -.037

Intermediate-Secondary -.012
Age .002

Age^2 (×10−3) -.026
Results from logistic regression for dummy variable on real vs. simulated match, on interaction of worker
and job characteristics (Equation 10). Baseline category is a forty years old high-secondary male.
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B Theoretical Appendix

B.1 Continuous Logit Distribution

We follow Dagsvik (1994) in defining the continuous logit that produces εi,zj and εj,zi .
In this section we define the distribution of εi,zj and the distribution of εj,xi is defined
similarly.

Every worker i ∈ I draws εi,zj shocks from a Poisson process on Z × R with intensity

f (z) dz × e−εdε

This is different from the Poisson process used in Dupuy and Galichon (2014) as the den-
sity f (z) also affects the intensity, which allows this distribution to be properly defined
over a larger class of functions for τ (x, z), including a constant, or simple polynomials.
Denoting by Pi the infinite but countable points chosen in the process, every worker has
a set {

εizj = αε| (z, ε) ∈ Pi
}

This process yields a distribution of εi,zj that has several similarities to finite extremum
value type-1 distribution. These similarities are all derived from one basic property of this
point process.

Proposition 1. Let g : Z → R be a function that satisfies∫
Z
eg(z)f (z) dz <∞

and let S ⊆ Z be some Borel measurable subset. Define

ψgS = max
z∈S∩PZ

{
g (z) + εi,zj

}
Then

ψgS ∼ EV1

(
α log

∫
S

exp
g (z)

α
f (z) dz, α

)
and

S1 ∩ S2 = φ ⇐⇒ ψg1S1
⊥ ψg2S2

Proof. This proposition stems from the fact that in a Poisson process, the amount of points
chosen in two disjoint Borel measurable setsB1, B2 has an independent distributionN (Bi) ∼
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Poisson (Λ (BI)) with

Λ (Bi) =

∫
Bi

λ (x) dx

Therefore, in our context the cumulative distribution function of ψgS is

P (ψgS ≤ x) = P (N ((S × R) ∩ {g (z) + αε > x}) = 0)

From the Poisson distribution this is

logP (ψgS < x) = −Λ
(
S ×

{
ε > x−g(z)

α

})
= −

∫
S

∫
x−g(z)
α

f (z) e−εdzdε

= −
∫
S
e−

x−g(z)
α f (z) dz

= − exp

[
−x−α log

∫
S exp

g(z)
α
f(z)dz

α

]

which is exactly a cumulative distribution function of EV1
(
α log

∫
S

exp g(z)
α
f (z) dz, α

)
.

Since every draw of points in a Poisson process is independent, S1 ∩ S2 ⇐⇒ ψg1S1
⊥

ψg2S2
.

This Proposition has several important implications for our context. It implies that
even though εi,zj is not defined for every z ∈ Z , it is defined infinitely often for every Borel
measurable subset that includes z, and the maximum for that set ψ1

S has an extreme-value
type-1 distribution.

Since workers in equilibrium are getting a sum of a continuous function (which we
mark by ω (x, z)) and εi,zj (Lemma 2), then we get that the maximum value they receive
also has an EV1 distribution, for every Borel measurable set of jobs. Moreover, the proba-
bility density to choose a particular observables zj is similar to the finite case and its exact
value is

f (zj|i) = f

(
zj = arg max

z∈S∩PZ

{
g (z) + εi,zj

})
=

exp
[
1
α
ω (x, zj)

]
f (zj)∫

Z exp
[
1
α
ω (x, z)

]
f (z) dz

Another link to the finite multinomial logit can be drawn if we divide Z into a finite
number of disjoint sets Z =

⋃n
i=1 Si, Si∩Sj = φ . Then the value of the best job for worker

i in each subset (ψωSi) is EV1 distributed. The choice of the best job characteristics zm(i)

would be made with a finite multinomial logit, over these n options. When we increase
n, the sets become smaller, and the choice becomes closer to an infinite options choice.

Note that in a standard multinomial logit, increasing the number of options to infinity
will yield an infinite compensation, but this is not the case here. This is because when
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the number of options n grow, the mean measure of Si decreases in a rate of 1
n

. Therefore
the location parameter of each one of the choices, decreases in a rate of 1

n
as well from the

proposition.

B.2 Proofs

Proof of Lemma 1

Part 1: We will start by formally defining the densities we are using. We will use Iφ,J φ

to mark the set of unmatched workers and jobs.

Definition 1. Let f (i, j) : I × J → R≥0 be the density that satisfies for every Borel mea-
surable subset of potential matches B ⊆ I × J∫

B

f (i, j) didj =
µ (B ∩M)

µ (M) + µ (Iφ) + µ (J φ)

where µ is the measure function.

Intuitively, this is the joint density of observing i and j matched in equilibrium. Sim-
ilarly we define a density over the probability of observing worker and job with specific
characteristics matched in equilibrium.

Definition 2. Let f (x, z) : X × Z → R≥0 be the density that satisfies

f (x, z) =

∫
Xi=x

∫
Zj=z

f (i, j) didj

From these definitions we can derive the conditional distribution of a match for a
given worker.

Definition 3. Let f ij be

f ij = f (j|i) =
f (i, j)

f (i)
=
f (i, j)

I−1

Part 2: Let i, i′ ∈ I, j, j′ ∈ J with Xi = Xi′ and Zj = Zj′ From Assumption 1 τij has the
same distribution as τi′j′ , and therefore f (i, j) = f (i′, j′).

Hence, from Definition 2,

f (Xi, Zj) = If (Xi) Jf (Zj) f (i, j)

and from Definition 3
f ij =

f (Xi, Zj)

f (Xi) f (Zj)
J−1
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and we normalized J = 1.

Proof of Lemma 2

Let i, i′ ∈ I with Xi = Xi′ = x0 and j, j′ ∈ J with Zj = Zj′ = z0, where m (i) = j and
m (i′) = j′. The sum of compensation equals the total surplus, hence

ωij + πij = τ (x0, z0) + εi,z0 + εj,x0

ωi′j′ + πi′j′ = τ (x0, z0) + εi′,z0 + εj′,x0

For stability, it must be that

ωij + πi′j′ ≥ τ (x0, z0) + εi,z0 + εj′,x0

ωi′j′ + πij ≥ τ (x0, z0) + εi′,z0 + εj′,x0

Note that the sum of the two weak-inequalities is equal to the sum of the two equal-
ities, therefore they must hold with equality (otherwise, the sum should hold both as an
equality and strong inequality). Hence, we can rewrite

ωij − ωi′j′ = εi,z0 − εi′,z0

πij − πi′j′ = εj,x0 − εj′,x0

In other words, compensation for workers and employers in matches with the same
characteristics is constant up to their value of ε, so we can write

ωij = ω (x0, z0) + εi,z0

πij = π (x0, z0) + εj,x0

ω (x0, z0) + π (x0, z0) = τ (x0, z0)

We can also pin down the alternative offers

ωij′ = τij′ − πj′ = τ (x0, z0) + εi,z0 + εj′,x0 − π (x0, z0)− εj′,x0 = ω (x0, z0) + εi,z0 = ωij

This implies that all employers with Zj = z0 who are matched with Xm−1(j) = x0 are
willing to make the same offer. Therefore, both workers and employers are facing a con-
tinuous logit choice. Hence, we can link the values of ω (x0, z0) and π (x0, z0) to their
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choice probabilities (see Appendix B.1):

f (x0|z0) =
exp

[
1
α
π (x0, z0)

]
f (x0)∫

X exp
[
1
α
π (x, z0)

]
f (x) dx

The denominator is the expected value πj , which is a function of Zj = z0 so we can rewrite
it as π (z0). Taking logs we get

α log f (x0|z0) = π (x0, z0) + log f (x0)− π (z0)

and with Lemma 1
π (x0, z0) = α log f ij + α log J + π (z0)

therefore
ωij′ = τ (x0, z0)− π (z0) + α log f ij + εi,z0

where J was pinned to 1.

Proof of Lemma 3

First equality is by definition, and because the first best and second best options are equiv-
alent. We showed that ωij = ω (xi, zj) + εi,zj . The expected compensation of worker i is

ω (xi) = E [ω∗ (xi, zj)] + E
[
ε∗i,zj

]
From the continuous logit structure we know that (similar to the previous proof)

ω (xi, zj) = α log f ij + ω (xi)

hence
ω (xi) = E

[
α log f ij + ω (xi)

]
+ E

[
ε∗i,zj

]
Therefore

E
[
ε∗i,zj

]
= −α

∫
f ij log f ijdj

Similarly for εj,x0 and combinedly:

E
[
ε∗i,zj + ε∗j,x0

]
= −α

∫
f ij log f ijdj
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Proof of Theorem 2

Following the notations from the previous proofs. The ωij offer can be written as

ωij = ω (xi, zj) + εi,zj

and εi,zj is unaffected by λ hence

dωi,j
dλi

=
dω (xi, zj)

dλi

In the previous proofs we showed that

ω (xi, zj) = α log f ij + ω (xi)

π (xi, zj) = α log f ij + π (zj)

hence
ω (xi, zj)− π (xi, zj) = ω (xi)− π (zj)

Adding τ (xi, zj) and dividing by 2:

ω (xi, zj) =
1

2
(τ (xi, zj)− π (zj) + ω (xi))

τ (xi, zj) , π (zj) don’t change by the definition of λ. Hence the only effect is on ω (xi).

dωi,j
dλi

=
1

2

dω (xi)

dλi

We get the value for ω (xi) from the decomposition in Equation 6. Since τ (xi, zj′) , π (zj′)

remain constant the remaining effect is on the OOI.

dωi,j
dλi

= α
dOOIi
dλi

Proof of Theorem 2

This is similar to before, only that εi,zj is allowed to change as well. SinceE
[
εi,zj

]
= αOOI

we get the effect from the previous lemma, in addition to the effect on the OOI.

dωi,j
dλi

= 2α
dOOIi
dλi
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Alternative Definitions for λ

Assume workers and equally distributed across the real line (as in Section 2.5). Each
worker is a 3-dimensional tuple (li, yi, ci) and τij is defined as

τij = yi − ci |li − lj|+ εij

Now workers log density is a triangular function, with its peak at li (Laplace). Hence,

f ij =
ci
2

exp−ci |li − lj|

The OOI is (shifting li to 0)∫ ∞
0

c exp−cl
(

log
c

2
− cl

)
dl = log

c

2
− 1

The mean value E [τ (x, z)] is ∫ ∞
0

c exp−cl (yi − cl) = yi − 1

Hence, setting the commuting cost c only affects the OOI but not net productivity and
can be served as λ. This will also work for more general settings, as long as worker and
job locations are not correlated with locations.

Another example is to define λ as the intensity of the Poisson process for the continu-
ous logit process. Higher λ will mean more options on average in every subset of jobs.

B.3 f(x, z) Estimation

To estimate a logistic regression following Equation 10, we maximize the following like-
lihood

max
θ

∑
k

logP (yk|xk, zk; θ)

where θ are the parameters defined in this equation, including matrix A. We rewrite
Equation 10 in a more general form. Note pk (θ) = P (Yk = 1|X = xk, Z = zk):

log
pk (θ)

1− pk (θ)
=

K∑
j=1

βjhj (xk, zk)

where K is the number of moments hj we control for in this regression.
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Then the K FOC of this maximization converge asymptotically to

E [pk (θ)hj (xk, zk)] = E [h (xk, zk) |yk = 1] s

where s = P (Y = 1) is the share of real data (in our case 1
2
). Using pk(θ)

1−pk(θ)
= f(x,z)

f(x)f(z)
s

1−s we
can write

E

[
f (x, z)

sf (x, z) + (1− s) f (x) f (z)
hj (x, z)

]
= E [hj (x, z) |real]

The RHS is simply the moment of hj (x, z) in the real data. The LHS is the moment of
hj (x, z) in the full data (real and simulated), weighted by the probability it is real.

If the model is correctly specified and the functional form assumption on f(x,z)
f(x)f(z)

is
true, θ will be estimated consistently. This is because

E

[
f (x, z)

sf (x, z) + (1− s) f (x) f (z)
hj (x, z)

]
=

∫
f (x, z)

sf (x, z) + (1− s) f (x) f (z)
hj (x, z) (sf (x, z) + (1− s) f (x) f (z)) dxdz =

=

∫
h (x, z) f (x, z) dxdz = E [h (x, z) |real]

If the model is misspecified, our estimate of f(x,z)
sf(x,z)+(1−s)f(x)f(z) will not be converging

to the real density rations. Instead we will equalize moments of some other weighted
average of hj

E [w (x, z, θ)hj (x, z)] = E [hj (x, z) |real]

where

w (xk, zk, θ) = s−1
exp

∑K
j=1 βjhj (xk, zk)

1 + exp
∑K

j=1 βjhj (xk, zk)

We next analyze these weights as s → 0. We will mark h1 (x, z) = 1, the offset of the
regression. When s → 0, p(θ)

1−p(θ) → 0 as well, therefore exp
∑K

j=1 βjhj (xk, zk) → 0. With
some abuse of notation, we will redefine β1 as β1 − log s. Therefore

lim
s→0

w (x, z, θ) = exp
K∑
j=1

βjhj (xk, zk) =
f̂ (x, z)

f (x) f (z)

The density of the full data approaches the density of the simulated data. Hence over-
all, we get

E [w (x, z, θ)hj (x, z) |sim] = E [hj (x, z) |real]
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In order to calculate the OOI, we simulate values from f (x) f (z), and reweight them

based on f̂(x,z)
f(x)f(z)

. This is because we hold workers fixed, and simulate z values from f (z).
As s→ 0 we use weights that converge to w (x, z, θ). The above equation guarantees that
we sample from a distribution with same moment value for every hj (x, z), even if the
model is misspecified.

Dupuy and Galichon (2014) produce a distribution with the same second moments as
the data, and same marginal distributions. Therefore, when s→ 0, and h include all X,Z
interactions, and an indicator for every xk, and every zk value (that is, h (x, z) = 1x=xk or
h (x, z) = 1z=zk for every k), we get the same distribution.

B.4 Standard Errors for a Wald Estimator with Matching

We want to estimate the standard errors of α̂, defined in Equation 17. Both the nominator
(reduced form), and the denominator (first stage) are standard matching estimators for
average treatment effect on treated (ATET). Abadie and Imbens (2006) show how to esti-
mate standard errors for ATET. But to estimate correctly the standard error for the Wald
estimator, we also need to estimate the covariance of the first stage and reduced form. So
we extend their approach for this case.

Mark the ATET on log wages (reduced form), and OOI (first stage) as:

ρ = E [logw (1)− logw (0) |T = 1]

γ = E [OOI (1)−OOI (0) |T = 1]

where (1) means value when treated and (0) when not treated. T is treatment status (so
this is the mean effect for treated).

The Wald estimator is then
α =

ρ

γ

For each match m (treated unit and one or more control unit), define

Xm =

(
X1m

X2m

)
=

(
logw (1)− logw (0)

OOI (1)−OOI (0)

)

Our estimators are then simply (
ρ̂

γ̂

)
= Xm
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Asymptotically

Xm ∼ N

((
ρ

γ

)
,

(
σ11 σ12

σ12 σ22

))
With the Delta method

V (α̂) =
1

γ2

(
σ11 − 2

ρ

γ
σ12 +

ρ2

γ2
σ22

)
Abadie and Imbens (2006) tells us how to find σ11, σ22 which are V (ρ̂) , V (γ̂). We want

to extend their approach to σ12.
The challenge in getting the variance correctly for matching with replacement, is that

the matches are not independent. Some observations from the control pool appear in
more than one match. Following Abadie Imbens we write

V
(
Xm

)
=

1

N1

∑
m

(
Xm −Xm

)T (
Xm −Xm

)
+

1

N1

∑
T=0

(Ki (Ki − 1)) V̂i

with

V̂i = V̂

(
logwi

OOIi

)
where N1 is number of treated units,Ki is the number of times observation i from the con-
trol pool was used. V̂i is a 2x2 matrix of the variance for that particular observation. The
first part is a standard variance calculation. The second part corrects for the covariance
between the matches.

If an observation i is usedKi > 1 times, then there areKi (Ki − 1) > 0 pairs of matches
that both use it, and so their covariance is not 0, but includes V̂i.

To estimate V̂i we follow Abadie and Imbens (2006) and use nearest neighbor from the
control group. So for every control observation we find a match from the control group
as well and write

V̂i =
1

2

(
logwi − logwm(i)

OOIi −OOIm(i)

)(
logwi − logwm(i)

OOIi −OOIm(i)

)T

This is asymptotically unbiased.
In practice, the only difference from Abadie and Imbens (2006) is that we also have a

covariance component.
COV (ρ̂, γ̂)
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Which we estimate with

1

N1

∑(
logwm (1)− logwm (0)

)(
OOIm (1)−OOIm (0)

)
− ρ̂γ̂+

2 ∗ 1

2
∗
∑
T=0

Ki (Ki − 1)
(
logwi − logwm(i)

) (
OOIi −OOIm(i)

)
If our two variables were the same (logw = OOI) then this would be the standard

Abadie and Imbens (2006) formula for variance, as expected.

C Data Appendix

C.1 LIAB

In this section we clarify the coding of some of the variables we use. Our panel data,
allows us to observe some variables several times in the data, and correct for coding
errors. In particular, we set German citizenship to one, if this worker was ever reported
as a German citizen by her employer.

We also take the highest level of education we observed until every year. All upper
secondary school certificates are coded as upper-secondary. In some years intermediate
and lower secondary education are coded with the same value. In these cases, if we ob-
serve the worker in other years and can infer their schooling level we use that. Otherwise,
we code these workers in a separate category for either lower or intermedia secondary
education.

For training occupation, we use the occupation in which workers spent the longest
time in training. The LIAB data specify whether a worker is in vocational training and
their occupation. For the large majority of workers, there is only one occupation in which
they perform their vocational training. In rare cases where workers have conducted train-
ing in more than one occupation, we use the occupation in which the training was longer.
If the we never observe the worker during vocational training, we take the occupation
in which they conducted an internship. If this is unobserved as well, we use the first oc-
cupation they were observed in, as long as at least ten years have passed since we first
observed them.

We calculate distance at the district level. For each district, we calculate the district
center, by taking the weighted average of the latitude and longitude coordination of each
city in this district. We then calculate the distance between the districts, taking into ac-
count the concavity of the earth.

88



C.2 BIBB Survey

In this section we describe in more detail the BIBB survey and PCA analysis.
We use data from the 2011-2012 wave of the German Qualification and Career Sur-

vey conducted by the Federal Institute of Vocational Training (BIBB) and the Institute for
Labor Market Research (IAB). The data cover 20,000 employed individuals between the
ages of 16 and 65. We run PCA on this survey by questions category and aggregate the
results by 2-digit industry and 3-digit occupations. We link the results to our main data.
The top question in each category are shown in Table A2.
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