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Abstract

Lieberman and Phillips (2017; LP) introduced a multivariate stochastic
unit root (STUR) model, which allows for random, time varying local depar-
tures from a unit root (UR) model, where nonlinear least squares (NLLS)
may be used for estimation and inference on the STUR coefficient. In a struc-
tural version of this model where the driver variables of the STUR coefficient
are endogenous, the NLLS estimate of the STUR parameter is inconsistent,
as are the corresponding estimates of the associated covariance parameters.
This paper develops a nonlinear instrumental variable (NLIV) as well as
GMM estimators of the STUR parameter which conveniently addresses en-
dogeneity. We derive the asymptotic distributions of the NLIV and GMM
estimators and establish consistency under similar orthogonality and rele-
vance conditions to those used in the linear model. An overidentification test
and its asymptotic distribution are also developed. The results enable infer-
ence about structural STUR models and a mechanism for testing the local
STUR model against a simple UR null, which complements usual UR tests.
Simulations reveal that the asymptotic distributions of the the NLIV and
GMM estimators of the STUR parameter as well as the test for overidentify-
ing restrictions perform well in small samples and that the distribution of the
NLIV estimator is heavily leptokurtic with a limit theory which has Cauchy-
like tails. Comparisons of STUR coefficient and a standard UR coefficient
test show that the one-sided UR test performs poorly against the one-sided
STUR coefficient test both as the sample size and departures from the null
rise. The results are applied to study the relationships between stock returns
and bond spread changes.



1 Introduction

Persistence is widely acknowledged to be one of the primary characteristics in
economic and financial time series. This feature is often well captured empir-
ically by using models with unit autoregressive roots or roots in the general
vicinity of unity. The use of a local unit root (LUR) as a modeling and in-
ferential tool has grown significantly since the early developmental research
on these models (Chan and Wei, 1987; Phillips, 1987) and the methodol-
ogy now provides useful mechanisms for uniform autoregressive inference in
both time series (Giraitis and Phillips, 2006; Mikusheva, 2008, 2011) and
panels (Chao and Phillips, 2017). The LUR mechanism for characterizing
local departures from unity uses a standard Pitman drift specification. This
approach is convenient mathematically for studying local power properties.
But it does not accommodate random departures from unity, formulations
that allow for time variation in the coefficients, or structural dependence
in the system between the coefficients and the equation errors, all of which
provide a richer environment for practical empirical work.

An alternative approach uses stochastic departures from unity, allows
for endogeneity, and leads to what we call an endogenous stochastic unit
root (STUR) model. The present paper is concerned with such models and
consistent methods of estimation of the localizing coefficients. The resulting
asymptotic theory, as will be shown, offers a methodology for testing unit
root persistence directly against random departures from unity even in the
presence of endogeneity. The model under consideration is the structural
stochastic unit root (STUR) system given by

5/1 = &1,
}/;5 = Bt (a;n)n—1+€tat:27"'7n7 (1)

where the STUR coefficient

a'uy
a;n) = ex , 2
B i) = exp (22 )
depends nonlinearly on an K x 1 vector of observed stationary variables u,
that are assumed to drive the localizing coefficient 3, (a;n). In the important
case where the vector a = 0, the model reduces to a simple unit root (UR)




time series model. When the vector a # 0 but has certain components
that are zero then a certain subvector of u; comprises the driver variables
of 8, (a;n). These submodels are of considerable interest in cases where the
UR model itself appears too restrictive and localized departures from unity
are considered more relevant, especially when there are potential endogenous
driver variables that are thought to influence the degree of persistence.

Examples of empirical models with roots in the vicinity of unity abound in
the literature and this phenomenon has motivated the use of alternative mod-
els such as the local UR (LUR) model, where the coefficient 3, (a;n) = en is
fixed for given n and some unknown scalar a = ¢ (Phillips, 1987; Chan and
Wei, 1987). In the STUR model (1)-(2), the coefficient 5, (a;n) is similarly
localized in an array format but is dependent on a group of stationary co-
variates u, with a localizing decay rate of n~/2 that is compatible with the
(assumed) stationarity of u,; and enables an asymptotic development. Some
examples of empirical applications of STUR models in finance include dual
stocks pricing (Lieberman (2012)), Exchange Traded Funds pricing (Lieber-
man and Phillips (2014)) and call option pricing (Lieberman and Phillips
(2017, hereafter, LP)). STUR models have the advantage that, under cer-
tain conditions, the coefficients may be identified and consistently estimated,
thereby enabling investigators to test for the presence of relevant driver vari-
ables that influence departures of the coefficient 53, (a;n) from unity. As will
be shown in the present paper, we may also allow for structural model formu-
lations in which the driver variables u, that appear in (2) are endogeneous.

Under the assumption that (u;,e;) is a martingale difference sequence
(mds), LP (2017) showed that in the limit as the sample size n — oo, the
standardized output n~'/2Y; of (1)-(2) takes the form of a nonlinear diffusion,
extending the well-known linear diffusion result for the LUR model. The
asymptotic distribution of the nonlinear least squares (NLLS) estimator a,,
of the localizing coefficient a in (2) then depends on this nonlinear diffusion.
The LP results show that a,, is inconsistent in the structural model case where
u; and €; are correlated. Thus, in a structural version of (1)-(2), endogeneity
bias is present in NLLS estimation in the limit, just as in linear models.
However, when the right hand side of (1) contains a drift, LP (2017) showed
that a, is y/n-consistent whether or not u; and &; are correlated, a result
due to the stronger regression signal that is present in the lagged variable
regressor in (1) in this case.

The main goals of the present paper are as follows. First, we extend the
central result of LP (2017) and derive the limit process of the standardized
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output n~'/?Y; when w; and ¢, are general linear processes. As expected,
this extension induces additional terms in the limit which do not appear
in the mds case. Second, we derive the asymptotic distribution of a, in
the model (1)-(2) for general weakly dependent u; and ;. The asymptotic
theory provides extensive implementation of recent weak convergence results
of sample covariances between nonlinear functionals of integrated processes
and short memory time series (Ibragimov and Phillips, 2008; Liang et al.
2016). We are particularly interested in the structural model case where wu;
and ¢, are correlated because it seems important to allow for such correlation
in practical work. Since the NLLS estimator a,, is inconsistent when u; and
¢¢ are correlated, it is important to develop an alternative procedure that
enables identification and consistent estimation.

As in the case of linear structural models, the primary alternative proce-
dure involves instrumental variables. The present paper develops a nonlinear
instrumental variable (NLIV) as well as (the more general) GMM estimators
of a, derives their asymptotic distribution, and shows consistency under sim-
ilar conditions to those used in the linear model. Furthermore, we derive
the asymptotic distribution of the Sargan-Hansen test for overidentifying re-
strictions in this model. The limit theory facilitates statistical testing of the
STUR model (1)-(2) against the simple unit root model where a = 0. Such
tests are valuable in empirical applications where the relevance of potential
driver variables warrants investigation.

The plan for the remainder of the paper is as follows. In Section 2 we
set up model assumptions, characterize the asymptotic limit process form of
n~Y%Y,, and derive the limit distribution of @,. The theory for the NLIV
estimator is presented in Section 3. Asymptotic theory for estimation of the
covariance parameters follows in Section 4 and a test statistic which accounts
for the estimation of nuisance parameters is suggested in Section 5. Limit
theory for GMM estimation and a test for overidentifying restrictions are
developed in Section 6. Simulation experiments evaluating the adequacy of
the limit theory are reported in Section 7 and a real data application is given
in Section 8. Section 9 concludes and proofs are given in the Appendix.

2 Preliminaries and Results on the NLLS

For the generating mechanism of the process w; = (u}, ;)" we adopt a linear
process framework similar to Ibragimov and Phillips (IP, 2008), making the



following assumption.

Assumption 1. The vector w; is a linear process satisfying

wy =G (L)n, = ZGjnt_j, Zj |G|l < o0, G (1) has full rank K +1,
=0 j=1

(3)
n, is @id, zero mean with B (n,n,) = X, > 0 and maxE|n,|" < oo, for some
p > 4.

Under Assumption 1, w; is zero mean, strictly stationary and ergodic,
with partial sums satisfying the invariance principle

1/9 ] P p Eér Eér
nV ;wt:3<.)EBM(zr), st — ( T (of)? ) (4)

where |-| is the floor function and B = (B,, B.)" is a vector Brownian mo-
tion'. The matrix X = G (1) $,G (1)’ > 0 is the long run covariance matrix
of wy, with K x K submatrix 3% > 0, scalar (0?’)2 > (0 and K x 1 vector
Y. In component form, we write (3) as

o= (=60 &) ()= @06 o
(=)

where 1, is K x 1, n,, is scalar, G ; is K x (K 4+ 1) and G is 1 x (K + 1).

Denote the contemporaneous covariance matrix of w; by ¥ > 0, with
corresponding components ¥, = E(uu)) > 0, ¥, = E(usg) and 02 =
[ (¢2) > 0. The one-sided long run covariance matrices are similarly denoted
by A =32 E(wowy,) and A =Y 7° [ E(wow),) = A + X, with correspond-
ing component submatrices Ay = > 7o E(uge)), Ace = > 5 E(g0e),) and
Aue = 3520 B (uoe),), Ace = 3537 B (€0g},)-

In the special case where w; is an mds, ¥ = . For that case, Lieber-
man and Phillips (2014, 2017) showed that the standardized output process
n~Y2Y,_ |, of (1) converges weakly to a nonlinear diffusion process. The

'Primitive conditions under which the functional law (4) holds are given, for example,
in Phillips and Solo (1992).



following Lemma extends the result of LP (2017) to the present case of sta-
tionary driver variables and equation errors satisfying Assumption 1.

Lemma 1 For the model (1)-(2), under Assumption 1,

n_l/QYLm*j — @' Bu(r) (/ e—a’Bu(p)ng (p) — a'Aug/ e—a,Bu(p)dp) =Gy (1).
0 0
(6)

Importantly, the quantity a’A,. in (6) involves the one-sided long run
covariance matrix A,. between u and . This quantity measures the impor-
tance of the random drift effect, [ e”(B«()=Bult)dp that is induced in the
limit process G, whenever a # 0 and A,. # 0. If a = 0, the limit process is
standard Brownian motion B, as expected.

Denote by a, the NLLS of a which minimizes the criterion @, (a) =
S AV — B, (a;n) Y1} By H and L we denote the

(K412 x (K+1)(K+2)/2and (K+1)(K+2)/2) x (K +1)

duplication and elimination matrices, respectively, of zeros and ones, which
for a (K + 1) x (K + 1) matrix A, satisfy

vec (A) = Hvech (A) and vech (A) = Lvec (A). (7)

If 7, has finite fourth moments, centred partial sums of 7,7, satisfy the in-
variance principle

nr|

!
% Z vech (), —%,) = v (r), ()

where v (r) is vector Brownian motion with covariance matrix

Spen = E (vech (nm, — S,) (vech (n,n, — £,)))

= E(L((mn@n,)—EMm2n,)) (0 @n,) —E®,@n))L).

Furthermore, for any [ # 0, by ¢ (r) we denote the vector Brownian motion
with a covariance matrix

B (vee (naf) (vee (nm))) = £, © .

n&n
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Finally, we denote the matrix of third order moments of n by

Mz = E ((n, @n,)m}) - (9)

The following theorem was established in LP (2017) for the case where 7,
is a strictly stationary mds and is extended below to the case where 7, is a
zero mean, strictly stationary and ergodic process, satisfying Assumption 1.

Theorem 2 For the model (1)-(2), under Assumption 1, the asymptotic
behavior of a,, is given by:

1
1) (4, —a) = % Ga(’“)drxflzug, if S # 0.
f G2(r)dr ¥

(2) @, = ﬁ%z 19, if Sue £ 0 and a = 0.
(3)

+ i (GQJ‘ & Gl,j) M3 ((JZ: Gl,i) a /1 Ga (T’) d?” + (Z Gg 2)
+ Z (sz ® lej) / Ga (7’) dC (T)
i#k 0
+{E (g;uuy) } a/o G (1) dr) , i X =0. (10)



(4)

1
Jha, = 5
fol B2 (r)dr

Jj—1 !
+Z (Gay ® Ga) My (Z%)

Z(GQJ®G1] H/ r) do (r)

7=0

j=1 i=0
1
+Z(G2,k®G1,j)/ B. (r)d¢ (7“)>,
ik 0
if Yue = 0 anda=0.

Remark 1 The results in Theorem 2 depend directly on the contemporaneous
covariance matrices ¥, = Z;io G1,;%,GY; and B = Z;‘;O G %Gy, where
X, = E(nm,), and in view of (6), on the long run covariances indirectly,
through G, (r).

Remark 2 Ifn, has a symmetric distribution around zero and K =1, then
E (equpuy) = gtut Z Go ;G5 nt_j) =0, and M3 =0

because all odd moments of a symmetric distribution around zero are equal
to zero. In this case, eq’n (10) reduces to

. 1 [
Vi, —a) = qu (JZO(G%@GH H/ ) dv (r)

1
+3  (Gay ® Ghy) / G, (r)d((r)),
j#k 0

if Sue = O.

Remark 3 If (u},&;) is a vector MDS, Go; = 0 and G1; = 0 Vj # 0 and



eq’n (10) simplifies to

\/ﬁ(dn - a)
1
= T
fo G2 (r)dr
if Yue = 0.

= Gu () B () (B et} [ Ga i),

It follows from Theorem 2 that a, is inconsistent when ¥, # 0. It
is emphasized that this result pertains to the model (1)-(4) in which it is
assumed that the drift parameter equals zero. When the drift parameter is
non-zero, LP (2017) showed that the least squares estimator of @ is consistent
even when ¥,,. # 0.

The present paper develops consistent IV and GMM estimators for a and
derives their limit distributions. The conditions imposed on the instruments
are similar to those that are used in linear model IV. The results are used to
test the null hypothesis of a unit root against the STUR alternative which is
given by eq’ns (1)-(2).

3 IV Estimation of the STUR Model

Let Z;, be an ¢ x 1 vector of instruments for u;,, ¢ > K, and nf be a
(K +q+1) x 1- random vector. We extend the setup of (5) by letting

Ut oo Gi1 (L) ST

wi=1| & | =G L) =) Gmi;=| Ga(L) Moy

Zy j=0 Gs (L) UEY:

Gu (L) Gia(L) Giz(L) T >0 G

= Goi (L) Gaa (L) Gas(L) My | = | Xm0 GoMij
Ga (L) Gs (L) Gss(L) Nst >0 G n,

Assumption 2: The vector w; satisfies

Sl

Jj=1

< 00, G* (1) is full rank,

ny is did, zero mean with B (niny’) = X,» > 0 and maxE |n}|" < oo, for
some p > 4.



This framework is sufficiently rich to include many known models, includ-
ing the stationary and ergodic ARMA model.

Assumption 3: For all t,

E (Zt&ft) = Z ngEn*ng = 0, (11)
j=0
E(Zu;) = Szo=» Gs%,G}; has full rank K. (12)
=0

In the remainder of this section we shall consider the ¢ = K case, in
which the IV estimator, a!", solves the K-moment conditions:

n

> (Yi=8,(a)in) Yia) Zo =0 (13)

t=2

The more general ¢ > K case will be discussed in Section 6. Under Assump-

tion 2,
[nr]

n2Y" Ze, = By (r), (14)

t=1

where By, (r) is a Brownian motion with a covariance matrix

[e.e] [e.e]

Vo= Y B(ZZ ecm) = Y B(Z2),,)B(EEmm) (15)

h=—00 h=—00

if Z; is uncorrelated with ¢, for all s, t.
The asymptotic distribution of the IV estimator is as follows.

Theorem 3 For the model (1)-(4), under Assumptions 2-3, for ¢ = K,

ZEiBZe (1)

fol G (r)dr (16)

It is emphasized that the matrix ¥z, appearing on the right side of (16)
is the contemporaneous covariance between Z and u. Several remarks are in
place.



Remark 4 Unlike the least squares estimator, Theorem 3 implies that al
s consistent for a, whether or not ¥,. = 0.

Remark 5 The role of the usual IV orthogonality condition (11) in As-
sumption 3 is evident in eq’'n (55) of the Appendix, where it is clear that
ZfE (Ztgt) 7é 0, th@n

Y zu ( /0 1 G, (1) dr> (al —a) = E(Zz).

%4

Hence, a violation of condition (11) renders alV inconsistent as expected.

Remark 6 The limit distribution in (16) is not defined if the relevance con-
dition (12) of Assumption 3, that Xz, has full rank, is violated. In particular,
if some instruments are irrelevant and ¥z, has deficient rank, then the IV
estimator will be inconsistent, although in such cases some contrasts (linear
combinations) of a may be consistently estimable.

Remark 7 In the K =1 case, under the null hypothesis Hy : a = 0,
1 1
/ Ga(r)dr:/ B.(r)dr =y N (0.(¥)" /3).
0 0

AV N(Oﬂ’lzra)
Vna, UzuN< Y /3) (17)

where 0z, = Cov(Z,u). If, in addition, Z, and &, are independent mds
processes, then

so that,

N (0,02%0%)
oz.N (0,02/3)

\/_AIV

where 0% = Var (Z;), Vt.

(18)

The limit distributions (17) and (18) are scaled ratios of normal variates
which have heavy Cauchy tails because the denominator has positive density
at the origin and is not perfectly correlated with the numerator?. This feature
of the limit distribution is manifest in finite samples and affects the simulation

20f ¢ = 2—; where (£,&,) ~ N (0,%%) and £ > 0 has components {a%l,a%,a%},
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results of Section 7, where large outliers occurred in the computation of
simulated means and variances.
To explore this issue further, we rewrite the result (17) as

vnalV = &

UZuSQ’

say. The vector (£,,&,) is N (0, Zf), ¥¢ is positive definite and with compo-

nents {O’%l, a%, 022} Then

\/ﬁdn/:> 12 4 052 _. 12 B
" O'Zufz O'ZuOéQ O'Zufz ’

say, giving the bias B = a% /aZuo§2 in the limit distribution. When the
covariance parameters in B are estimated, which will be at a \/n rate if
the variables form an mds or, more typically, at a lower than /n rate if
they are weakly dependent and long run variances/covariances need to be
estimated, we will effectively end up with centred asymptotics of the following
form. Thus, if the rate of convergence is \/k, for %” — 0 and we have

Vkn (B — B> = N (0,V3), then we will have

Vil =B = aal ~ 5+ (8- B) - vial - 5+0, ()

1/2
1 ol
= 12 _ 151.2 C.
Now, under Assumption 2,

‘712 =Cov (§1,&,) = ( ZZt5t> (#ZZq) .
1

s=1 j=1

13 3 2
then & = $2 + 712 where & , = & — Zi2¢, NN(OJ% 2) ,and 0%, , = 0§, — 72 > 0.
62 0'22 N 0-22 ' - o

e \1/2
Since £, , is independent of &,, the ratio 551—22 ~ (01—3) C, where C is standard Cauchy,

922

ot ¢ 1/2
and so £ = Tz + (01%) C is non-central Cauchy and has Cauchy tails.

G292
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If Z, is independent of €;, as assumed in the second part of Remark 7, then
0% =0 and so, B = 0. Otherwise,

o, = ZZE@&Z@)

t=1 s=1

_ ZZE(ZGMm kZGmt ZZZszm m)

t=1 s=1 7=1 m=0

= % Z Z FE (Z Z Z Z G3,kG2,lG2,m77t—k77t—l77j—m>

t=1 s=1 k=0 I=0 j=1 m=0

= % Z Z Z Z Z G3,kG2,kG27mE (n?ﬁk) 1 {t —k=j— TTI,} .

t=1 s=1 k=0 j=1 m=0

This term will be zero if 1, has a symmetric distribution. In these cases, (17)
simplifies to

v = L (Gha) e L (o - ( 17 ) c

and (18) reduces to

el = Y3z (19)

O Zu
respectively. For inference, this scaled Cauchy distribution can be used.

We note that, unlike the ADF t¢-test in the linear case, the estimated
standard deviation of @' does not have a closed form. In principle, t-ratio
and Wald tests might be constructed by simulating the standard deviation
of the right side of (16) and extacting the corresponding limit theory of the
ratio. Such a construction substantially complicates implementation relative
to the coefficient test and it is unclear whether this approach brings any
benefit over the simpler coefficient test implied by (16).

To complete this section we compare the STUR approach to a direct
DF test of the UR null implied by Hy : @ = 0. Simple calculations based
on the earlier asymptotic theory show that the usual UR coefficient test of

12



B, (a;n) = B =1, Vt, has the following limit theory

. B.dB. + A..
n (6 - 1) fo hi , under Hy :a = 0. (20)

i B2

Under the alternative we have

AY, = (e“'“*/ﬁ - 1) Yia+e = (1),

a’uy
NG
and using the results?

1
_thyt 1;s/ PN [ Ga)dra A (2)
0

 [— 1 1 1
n3/2 Z utY?*l = / Gcgt <T) dB, (T)+2 (A;ua/ Gz (T) dr + Aye / G, (T) dT) )
t=2 0 0 0

(22)

n 1
n? Z Y, = / G2 (r)dr
t=1 0

which obtain the following limit behavior

. 1IN Y AY,
n<6_1>:n %:t:ln ty12 t
n?y o Y
n (i Yiae) £ Pd 0wV + o, (1)
n2y L Y2

= ( / 1 G2 (r) dr) h ( / 1 G (r)dB: (r) (23)

+ A, /G dr+A€€+a</G2 )dB, (1)

(s [ Gt [ )

3The proofs of (21) and (22) are similar to that of Lemma 8 and are available on request
from the authors.
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The limit (23) shows that standard UR tests based on the estimate 3 have
local power which depends on the magnitude of a and the process G, (7).
Finite sample performance is investigated numerically in Section 7.

4 Estimation of the covariance parameters

The hmlt theory of the least squares-based estimators of a , 2 and X,
6§n, Zun and Eusn, respectively, was given in Theorem 3 of LP (2017), in

the case where w; is a strictly statlonary and ergodic mds process. It follows
from their results that that o a , and Zue’n are inconsistent. Let

=Y, — et VY, =2, (24)
We show in the next result that for j = 0,1, 2, ..., the IV-based estimators

2 AV o v v AIV .
75,71(]) - Z € € —j /u/gn Z utet >

"z j+2 oz G2

n
1
~ IV K _ v IV
’Yan(J) - E E Zt —i€t Ci_js
t=j+2

of vy, (j) = Cov (e, e—), YVue (j) = Cov (ut,e4—j) and v, (j) = Cov (Ztgt, Z{_jgt_j)

1V

are all consistent. In particular, %{\7/1 (0) = (66771)2 is consistent for 0%, and

)y Zun = %2?22 Zyuy is consistent for ¥z, by ergodicity.
Theorem 4 Under Assumptions 2-3, for ¢ = K,

L AL () =7 () = 0, (n77?).

2 Auten (1) = Y (3) = Op (n7172),

3. Agem (1) = 72 () = Op (n712).

The variance estimate im, defined through vech (f]un> = % > i vech (uguy),

does not depend on a and is y/n-consistent.

14



5 A Test Statistic with Nuisance Parameters
Estimated

The limit distribution in (16) depends on the unknown parameter ¥z,. In
fact, under Assumptoin 1 and from eq’n (55) of the Appendix, we have

Vn </01 Gy (1) dr) Szu (@l —a) = Bz (1) + 0, (n?) . (25)
The left side of (25) is equal to
NG ( /0 1 Gy (1) dr) S gun (6 — a)
+/n ( /0 G (r) dr) (EZU . i:zm> (! - a)

_ Jn ( /0 ) dr) S gun (Y — a) + 0, (n1/2)
By (1) 40, ().

Therefore, to first order we may replace the right sides of (16) and (18) by

(270) By (1)

26
fol G (r)dr (26)
and
Brell) 1)
0 zum [y Be(r)dr

respectively. The long run covariances associated with the distributions in
(26) and (27) can be consistently estimated using the results of Theorem 4
and a standard tapering argument. For instance, the covariance matrix %,
of Bz. (1) may be consistently estimated by a Bartlett-Newey-West HAC

estimator using the autocovariance estimates 45, ,, ().
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6 GMM Estimation and a Test for Overiden-
tifying Restrictions

The approach may be extended to allow for ¢ > K instruments in Z;. In such
cases, we may estimate a by GMM and a Sargan-Hansen-type test may be
used to test for overidentifying restrictions. This section develops this analy-
sis and provides limit theory for the GMM estimator and overidentification
test. Let

n

NOEES S AAGIPA
t=1
a% =a¢ (W) = argmin J, <a, W) : (28)

where

Ju (@ W) = ng, () Wou (a)

W is a q X ¢, symmetric positive definite matrix, possibly dependent on the
sample, such that W —, W, and W is a weighting matrix. In this case Xz,
is given by (12) but is (¢ x K), with the possibility that ¢ > K. The limit
theory for a¢ is as follows.

Theorem 5 For the model (1)-(4), under Assumptions 2-3 and for ¢ > K,

Bz (1)
(fol G (r) dr) |

Vi (a§ —a) = (2, WSz,) " S, W (29)

Remark 8 If the model is just identified, the result of the Theorem collapses
to (16).

Remark 9 Consider the linear model
}/; = l’;(g + &4,

where xy is K x 1. Let Zy be a g x 1 vector of instruments for x;, with ¢ > K,
and W is defined above. It is well known (e.g., Hayashi, 2000) that the GMM

16



estimator 35 of ¢ in this model is

~G ~ -1 ~

5o = (S’ZXWSZX> Sy Wy, (30)
where

1 < 1 «
Syx = — 5 Zyxy and Sxy = — E . Y;.
n n
=1 —1

The correspondence between (29) and the usual linear formulation (30) is
clear.

A Sargan-Hansen-type test for overidentifying restrictions in this context
can be based on the statistic

(@S ((050) ) G5e) ) = 8 (750) " G

. . lr or \ 1
=0 6 (5.0 7)) = L35 0,3 (5,07) ).
and 44 Zen 18 a consistent estimator of v n» defined in (15). The limit theory

for this statistic has the usual Xq— K form as given in (31) below.

Theorem 6 For the model (1)-(4), under Assumptions 2-3 and for q > K,
. or -1 or -1 o fatr N—1 .
T (@ (05 ) G5) ) =8 (F0) "= ke (3D)
Remark 10 The XZ_ x limit distribution for the overidentifying test again
corresponds to that in the linear model discussed in Remark 9.

7 Simulations

This section reports an investigation of the finite sample performance of the
limit theory for the coefﬁment estimator al, the coefficient test (27), the
efficient GMM estimator a¢, and the overldentlﬁcatlon test. We consider the

following scenarios.
Case 1:
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itd

% ~Ul-1,1], Z oy — 3bon,.

up ~ N (O,Ui) ,Ui =0.1,¢ ~ bug + 1,1,

Case 2:

itd itd

u ~U [—1, 1] ,Zt ~ Ut — 36037%

u N (0,02) 0% = 0.1, 2, % buy + 21,7,

Case 3:

Uy YN (O,Ji) o2 =0.1,¢ YN (O,Ui),

u; are independent of &, 7, Ly —1,1], 7, oy — 3bo ;.

Case 4:

Uy ~ N (O7012J,) 70121, =0.1& ~ N (O,Ui) + 20

u; are independent of €, 7, Ly —1,1], Z oy — 3ba>n,.

For each case, we simulated 5000 replications with n = 100, 1000, 10000
and b = 0.2. These scenarios are summarized in Table 1 below.

Table 1. Covariances in each case.
Case Y, 2z 2z

1 40 =0 #0
2 A0 #£0 #£0
3 =0 =0 #0
4 =0 #£0 #£0

Cases 1-2 correspond to the situation in which ¥,,. # 0, but Assumption
3 holds for Case 1, because

E(eZy) = E ((but + 1) (Ut - 350%%)) = bai - 3603‘/@7 (n,) =0,

whereas in Case 2, X7, # 0. Similarly, Cases 3-4 correspond to the situa-
tion in which ¥,. = 0, but Assumption 3 holds for Case 3, whereas in Case
4, ¥z # 0. For each case we consider also two subcases: a = 0.15 and
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a = 0. The data was simulated according to (1) and (2) and the IV esti-
mator was solved in each replication as a solution to the nonlinear moment
condition (13). To assess the adequacy of the results of Section 4, we have
also added Cases 5 and 6, which are cases 1 and 3 with )y zun Teplacing X z,.
A 1%-trimming was enforced in the simulations because large outliers were
encountered, some due to the limit distribution being a scaled ratio of nor-
mals and some due to the fact that large simulated u;-values can result in
large exponentials and consequently, numerically unstable results.

PP Plots of the left side of (16) against its limit distribution (coded as
right side) and against the estimated normal distribution of the left side were
formed. A selection of the plots is presented and more details are provided
in the working paper version (Lieberman and Phillips, 2016). The typical
situation is given in Figures 1-2. As expected, for cases 1,3,5, in which
Assumption 3 holds, the left side and right side in each case are very close
for as little as n = 100. There is no noticeable difference between the 3,. = 0
and Y, # 0 cases. On the other hand, as expected, the left and right sides
become very different as n grows in cases 2,4,6, when ;. # 0. Figure 3
reveals that replacing >z, by )y zun does not cause a noticeable difference.
In cases 1,3,5, in which Assumption 3 holds, the asymptotic distribution
of the test statistic has a peaked distribution compared with the normal
distribution. This is evident in the PP plots and Figure 4, which provides
kernel density estimates of the left and right sides and estimated normal
density of the left side. Finally, for the case a = 0, the comparisons drawn in
Figure 5 between the distribution of \/na!" and the scaled Cauchy variate,
given in (19), show a near perfect fit.

In the second part of the analysis we investigated the empirical p-values
(PV) of the hypothesis test Hy : @ = 0 using (27). The results are of interest
for applications with small to moderate n and/or a. Each of the experiments
were based on 2000 replications. We considered the process

tid iid 1id
M ~ N <0707271> y Mo ™ N <070372> ) Tlge ™~ N (0’0%3) (32)
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02 =0.673,02 =0.129,02 =0.5
1 T2 UE

n
U = nl,t + 0-432771715_1 - 0.2].772715_1

€t = 1Mot — 0‘251771,15—1 + 0-12772,t—1
Zt - 7737,5 + 0’37]115 + 0.47]3’t_1. (33)

In this setting, Cov (u,e) # 0, Cov (u, Z) # 0 and Cov (¢, Z) = 0. For the
first part of the analysis, we set n = 2000 and varied the true a over the
values 0, 0.2, 0.5, 1, 2, 5. The results are given in Table 2 and Figure 6. For
the second part of the analysis, we fixed a at 0.2 and 1 and varied n over
the values 100, 500, 1000, 1500, 2000, 5000. The results for this part of the
analysis are given in Tables 3-4. In Table 2, clearly, as a increases, both the
one-sided and two-sided PVs decrease from about 0.5 to about 0.01 and 0.02,
respectively, and the sample mean of al" is accurate. In Table 3-4 we also
observe a decrease in the PVs and a decrease in the standard deviations of
the estimator, as n increases, as expected.

For the same setting we simulated PVs of the DF statistic against the
distribution of (n™* Y7 | ¥, 1AY;) / (n72 Y7, Y/2,) with Y, generated under
all the true parameters of the process as given by (32)-(33). Accordingly, the
simulation reports performance of an ‘ideal’ DF test because the parameters
A.. and o? that are needed for the simulation of the right side of (20) were
taken to be known. Even with this prior advantage that the (one-sided) DF
test has over this paper’s coefficient test in which nuisance parameters are
estimated, it is clear from Tables 2-4 that the DF test lacks power when it
is applied, as is conventional, in a single direction. More specifically, Table
2 reveals that one-sided DF test PV does not change for small to moderate
values of a and decreases very slowly (and much slower than the IV-STUR
coefficient based test) as a increases from 1 to 5. Tables 3-4 show that
for small to moderate values of a, as the sample size increases the PV of
the DF test is essentially fixed and close to 0.5 over the full range n €
{100, 500, 1000, 1500, 2000, 5000}. In contrast, the IV-STUR coefficient test
has PVs that decrease from 0.46 to 0.25 when a = 0.2 and from 0.3 to 0.06,
when a = 1, over this range of sample sizes.

The performance of the DF test in these simulations is obviously affected
by the (conventional) one-sided implementation of the test. The one-sided
DF test is naturally expected to have power limited by the fact that in
the STUR model we get mildly explosive departures 50% of the time with a
symmetric u; - distribution. In such (subperiod) cases the departures will not
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contribute power to a left sided UR test against stationarity. This manifests
itself in the simulations. In summary, the one-sided directional IV-STUR
test has good power which increases with both a and n, and in all cases
gives better discriminatory power than the usual directional DF test against
stationarity.

In the third part of the analysis we analyzed the small sample performance
of the distributions of the efficient two-step efficient GMM estimator and the
Jp-test for overidentifying restrictions based on it. The first step weighting
matrix was taken to be W = n (3.1, Z,Z/)"" — see, for instance, Hayashi
(2000, p. 213). To this end we generated 5000 samples of n = 100, 500,
according to the following law:

My ~ N(07]4) » €t = Ty

Uy = gy + (922,0772t + 922717;27,5_1) + (9237077315 + 923717]3775_1)
+ (92470/’74t + 924,17747t,1)

Zvy = (932.0M2¢ + 9321M24-1) + (933.0M3 + 9331M3,4-1) + (934,004 + 934,1744-1)
Zor = (Ga2.0M2¢ + 942.1M2,4—1) + (943.0M30 + 9a3.1734—1) + (9aa.0Ma + Gaa1Mas1) -

The ¢’s were generated from a uniform distribution U]0.1,0.35] once only
and a = 0 and 0.15. Clearly, Assumptions 2-3 are satisfied with ¢ = 2 and
K = 1. Additional figures supplied in the working paper version of the paper
(Lieberman and Phillips, 2016) show that the pp-plots for the distribution
of a¢ against the right side of (29) is very accurate for as little as n = 100
observations, in both the a = 0 and a # 0 cases and that the asymptotic
distribution of J,, against the x? (1) limit distribution is reasonable for n =
100 and is excellent for n = 500.

8 Empirical Application

We estimated the STUR model (1)-(2) with Y; being the log spread be-
tween an index of U.S. dollar denominated investment grade rated corporate
debt publically issued in the U.S. domestic market, and the spot Treasury
curve. To qualify for inclusion in the index, securities must have an in-
vestment grade rating (based on an average of Moody’s, S&P, and Fitch)

21



and an investment grade rated country of risk (based on an average of
Moody’s, S&P, and Fitch foreign currency long term sovereign debt rat-
ings). Each security must have greater than 1 year of remaining maturity,
a fixed coupon schedule, and a minimum amount outstanding of $250 mil-
lion. It was calculated from the BofA (Bank of America) Merrill Lynch
US Corporate Master Option-Adjusted Spread. The variable u; was taken
to be the demeaned 1001log(SPys:/SPysi—1), where SPyg; is the opening
rate of the SPDR S&P 500 ETF Trust (SPY). The instrument 7, is calcu-
lated as the demeaned 1001log(SPys:/SPaxvspt), where SPax uspy is the
Australian currency adjusted iShares Core S&P 500 ETF (IVV.AX) open-
ing rate. The data is measured at the daily frequency and covers the pe-
riod from January 5, 2010 to December 30, 2015, giving a total of 1454
observations. The stock data was obtained from the Yahoo Finance Web-
site (https://au.finance.yahoo.com/) and the Spread data was retrieved from
the Federal Reserve Bank of St. Louis (FRED). For further details re-
garding the construction methodology of this series, the reader is refered
to https://fred.stlouisfed.org/series/BAMLCOAOCM.

The model chosen for the application follows up the findings of Kwan
(1996) that returns on stocks and yield changes on bonds are negatively
correlated and that lagged stock returns have explanatory power for bond
yield changes, so that stocks lead bonds in reflecting firm-specific information.
To this end, it is emphasized that in our data the information in u; and in
Z; are recorded prior to the information on 1, on any given day.

The sample correlations in the data are given by p, A, = —0.52, p, , =
0.26 and p, o, = —0.08. Thus, for the data under consideration, there is
indeed a negative correlation between stock returns and bond spread changes,
as Kwan (1996) reported. This also means that the NLLS of the STUR model
is inconsistent. The figures for p, , and p, 5, justify Z; as a good instrument
for wu;.

The results for the model estimation are as follows. First, alV = —0.245
whereas G, = —0.297. The mean squared prediction error (MSPE) of the
random walk model is 32.8% larger than the one obtained by the NLIV
estimated STUR model. The ADF test of a unit root in y; yielded a p-value
of 0.76. For the hypothesis Hy : a = 0, the simulated p-value using (18) is
0.188 and using (19) with covariance estimates it is 0.207. To assess how
significant this value is, we simulated 2000 replications of two processes with
n given by the empirical sample size: a random walk with covariances given

by the sample covariances of the data and a STUR model with a = alV
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and covariances as in the random walk simulation. Against H; : a < 0, the
simulated p-value in the random walk model was 0.502, whereas in the STUR
simulation it was 0.303. The ADF test p-values in the two simulations was
0.500. Table 3 also reveals that for a simulated STUR process with a = 0.2
and n = 1500 observations (albeit with different covariance configuration),
one should expect a p-value of 0.329. Therefore, the p-values obtained in
the application, together with the NLIV estimate a!V = —0.245 and the
improvement in terms of MSPE compared with the random walk model are
all strongly indicative of a STUR process in the spread data. On the other
hand, for n and a of the magnitudes given here, the ADF test does not
appear to identify departures from the random walk model in the direction
of a STUR alternative.

9 Conclusion

This paper explores a structural version of the STUR autoregressive model
and extends the existing limit theory for both the output process and for the
nonlinear least squares estimator of the localizing STUR coefficient in the
weakly dependent time series case. Just as in linear and nonlinear models
involving only stationary variables, instrumental variables are shown here
to be useful in providing consistent estimates of the localizing coefficients
of the driver variables in the structural version of the STUR model under
orthogonality and relevance conditions that mirror those used in other imple-
mentations of IV. The limit distribution of the nonlinear IV estimators in the
just identified case turns out to be Cauchy-like and involves a bias term. The
limit distribution of the Sargan-Hansen test for overidentifying restrictions
turns out to be Xg_ x just as in the linear case, facilitating inference.

It is of particular interest in empirical applications of STUR models to be
able to test for the presence of driver variables in determining the STUR co-
efficient. The coefficient-based test for the relevance of driver variables that
is proposed in the present paper has a convenient limit theory and simula-
tions show that its performance in finite samples is satisfactory. The theory
is potentially useful in cases where the data generating process can only be
approximately described by a unit root process and which is more likely to
fit data with a time dependent coefficient that is influenced by covariates
that may be endogenous. The IV and GMM procedures given here enable
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inference about structural STUR models and provide a mechanism for test-
ing the local STUR model against a simple UR null. The STUR test appears
to have promising power performance characteristics against standard di-
rectional UR coefficient tests both as the sample size rises and departures
from the null increase. The STUR test gains this advantage from its greater
specificity concerning the alternative model, which enables focus on potential
driver variables that influence departures from unit root behavior.
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Appendix

Proof of Lemma 1. In what follows, the notation o, (1) and O, (1)
stands for orders in probability which are uniform wrt ¢. In view of the

functional law (4), in an appropriately expanded probability space we may
write, for t = [nr] and any r > 0,

n2Y "n; = B(t/n) +0,(1), (34)

j=1
so that

t

nY2Y, = n7Y? Z e\% ZEZSHU%S + 0, (n_l/z)

s=1

t
o’ t . _ a’ s X
S Ve v D=1 Uj E :6 T =1 Yig, 4 0, (n—l/z)

s=1

t ! !
— Y2{d'Bu(t/n)+op(1)} Z 6{*% 3520 Ui G s e+ 0, (n—l/Z)
s=1

_ n—1/2€a’Bu(t/n)

t /
% Z o~ 10/ Bu((s=1)/n)+op(1)} <1 _ Ci/% +0, (nl)) e+ 0, (1)

s=1
t t ,
= o/ Bult/) N =/ Bulls=)/m) s _ @Bult/m) N =o' Bullo=1)/m) (““sfs)
¢ ¢ € e +0,(1).
s=1 \/ﬁ s=1 n

(35)

Setting ¢ = |nr| and noting that E (e“"Bu(p))2 < 00, the first term on the
right side of (35) has the following limit in an appropriately defined space

Bu() 3 e (5) =
ea n e n
s=1 \/ﬁ

—, ea’Bu(T) {/ e—a’Bu(p)dB€ (p) _ A;aa/ e—a'Bu(p)dp} =: GZ (7") (36)
0 0
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The limit (36) makes use of a result on the weak convergence to stochastic
integrals with random drift of sample covariances involving functions of par-
tial sums (see Ibragimov and Phillips, 2008, theorem 3.1; Liang et al, 2016,
theorems 2.3 and 3.1). Again, as in (34), we assume that the probability
space has been expanded to permit the representation of (36) as a limit in
probability.

The second term on the right side of (35) is

t , t
— e Bult/m 7 B (““sgs) — e Pl 3 e Bu()
€ e n = a e e n
s=1 n s=1
sCs T Eu Eu
% <U 9 - € + 6) (37)

n
t

! 1 —a’ s—1)/n -
= /Dy P 26 Bue-0/m) 4 0, (n?)

— —a’Ziee“’Bu(”/ e~ Bul®) qp.
0
Hence,
N ) =y G (1) = a'Byee B0 /0 e Bl gp

— @' Bu(r) (/ e BuP)gB_ (p) — A;sa/ e~ Bul®) gp
0 0

—a'S,. / e~ Bu (p)dp)
0

— @'Bu(r) (/T €_QIB“(p)ng (p) —dA,. /T e—a’Bu(p)dp>
0 0
(38)

giving (6), as required. W

The following lemma will be used in the sequel. The terms H, v (r) and
M3, which appear in it, were defined in (7), (8) and (9), respectively.
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Lemma 7 Under Assumption 1,

n 1
Z utet}/tfl = n3/22u€/ Ga (T) dr
0

in (i(Gm@Gu # [ Gy
+Z GQ] ®G1] (ZGll) / a(T) dT+ (JZGZZ)

+3 (Gay ® Ghy) /0 G, (r)d¢ (7“)) +0,(n).

%k

Proof of Lemma 7: Throughout we use column vectorization. The
term under consideration is

n o ,
# X;Utgtnl 3/2 Z (Z Gy J> (Z G2,j77t—j> Y
t=

J=0
n

- # Z (Z Z Gl,jnt—jn;—kGZ,k - Z G17]'E77G/2,j + ZUEY;‘/1> .

t=2 \j=0 k=0 §=0

The leading term is

1 - !
3_/22118 Z Y;ﬁ—l = Eua/o Ga (T) d”/’,
t=2

but we also need to consider

% Z <Z Z lejnt—jn;—kGé,k - Z G1,j2¢,G127j> Y, 4.

t=2 \j=0 k=0 §=0

28



First,
1 - / !
n Z vec (Gl,o (memy — ) Gzo) Yig
t=2

1 n
= (Goo®Gro) H > wech (g, = ) Yica

t=2

s (Gao ® Gho) H /0 G ) du (). (39)

Further, since E (G on,m,_1G%,) = 0, we have

1 n
= (Gromn, 1 Goy = B (Groml 1Gha)) Yies

t=2
/
a Ut

1 & _
= tZ; Gronm;1Gaa { (1 + . + 0, (n 1/2)) Yo+ 6t-1}

1 ¢ 1 o
= Z G1om-1G2,1 Y2 + 32 Z Grom—1 G0 w12

t=2 t=2

1 n
+ o Z Gl,onm;_lGé,ﬁt—l + 0, (1). (40)
t=2

As in the developments leading to (39), but because 7,7, _; is not a symmetric
matrix, the first term in (40) yields

1 1
- > G, 1GyYia = (Ga1®Ghy) - > wee (1) Yis

t=2 t=2

= (02,1 &® Gl,O) A G, (7“) dg (7”) , (41)
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where ( (1) is defined following (8). The second term in (40) yields

n
1
/ !/ !
3/2 E :G17077t77t—1G2,1a (D
n
t=2

1 n
= 52 > E(Gromt 1Gh1d' 1) Yiea + 0, (1)

t=2

= 0p(1).

The third term in (40) yields
1< ,
o Z Gl,ommflG’z,ﬁt—l =L (Gl,onleGé,lé?t—l) +0p(1) =0, (1).
t=2
Therefore,

]' - / ! / !/ !
" Z (G1,077t77t71G2,1 —E (G1,077t77t71G2,1)) Yio1 = (G2 ® Giy) / Gq (r)dC (r) .
t=2 0

Further,

1 n
n Z (G1,177t7177;—1G/271 - E (G17177t71"7:§—1G,2,1)) Yia
=2

1 "y B
-~ tz:; Gia (Wt—177271 - En) G, { (1 + a\qj%l + 0, (n 1/2)) Yioo + €t1}

1< R
= > G (g — ) G Yia + i D G (g — ) Ghya'us1Yio
t=2 t=2

1 n
+E Z Gia (Wt—177:571 - En) Gha-1+0p (1) (42)
=2
As in (39), the first term in (42) is

1 o / ! !
- D Gy (i — By) Gh1Yia = (G ® Ghy) H/ G (r)dv(r).
t=2 0
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The second term in (42) is
1 n
n3/2 Z G (m-amior — 29) GY a1y o
=2

1
= B (Gl,l (771:7177;—1 - En) Gl2,1alut—1) / G (r)dr
0

1
= E [Gl,l (7715—177;&71 - En) Gl2,1 (alGl,Ont—l)] /o Go (r)dr

= E[Guine_1m-1Gay (a'Grone)] /01 Gy (r)dr

= BlGun GGl [ 6.0

= (G21®G11) E (021 @ 0y1) i) Ga /01 G, (r)dr
= (Gay ® Ghy) MsGl g /0 G () dr

The third term in (42) is

1 n
n Z Gia (Wt—177271 - En) G/2,1€t71 = E [Gm (m_m;,l — Zn) G/2,15t71]
=2
= B [Glylnt—lngflG,2,1G2,077t—1} = (G211 ® G1,) M3G/2,0-

Hence,

n

1
n (G17177t—177;—1G,2,1 —-E (G1,177t,177;;_1G'2’1)) Y1

t=2

S (Ga1 ® Ghy) (H /O G () do () + M <G’L0a /0 G () dr + G’ZO)) |
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Further,

Yi1 =exp

(5 o

! /
= exp a4 <ut\1/;l_i_ utZ)) Y, 3 +exp (a:j%l) €19+ E1_1.
So
Ly (G ' Gl FE (G oGl Y,
n 1,17 1M 29 0 — ( 1,112 2,2)) t—1
=2

n 1 n
= o Z G1,177t_177;_2G,2,2Yt—1 = o Z Gl,mt_mé_zGQQYt—?)

t=2 t=2

1 — 1 .
+ nd/2 Z G1,177t7177::—2G/2,2&/ (tp—1 +up—2) Yig + o Z G1,177t71772—2GI2,2 exp ( NG
t=2 P
1 n
+ n Z Gl,lﬁt—177272G/2,2€t—1- (43)
=2

Using (41), we obtain
1 & !
> Gt GhaYis = (G2 ®Gu) [ Gu)dC(r). (a9
=2 0

The second term in (43) is

1 n
75 2 Gran, oGl (w1 +u-2) Yieg = 0, (1).
t=2

The third term in (43) is

1 & a'up_q 1 &
o Z G1,177t7177::—2GI2,2 exp ( NG ) €2 = o Z G1,177t7177;—2G,2,25t72 + 0, (1)

=2 t=2
= 0, (1)
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and the last term in (43) is £ 377" ) G11n, 10} _5Gh o811 = 0, (1) . Therefore,

]' - / ! / ! !
n Z (Gl,lnt—lm—2G2,2 - K (G1,177t—177t—2G2,2)) Vi1 = (G2 ® G1,1)/ Gq (r)dC (r) .
0

t=2

(45)
Further,

1 n
" Z (G1,277t—277272G/2,2 —FE (G1,277t_277;,2G’2’2)) Y,
t=2

1 1 <
o Z G (m—2772—2 - En) G/2,2Y;f—1 o Z G2 (7775—2772—2 - Zn) G,2,2Yt—3
t=2

t=2
1 n
+ 32 Z G (77t—277;f2 - 277) G’272a’ (w-1 + u—2) Yi3
=2

= v

1 n
+ o Z Gz (77t_277;e—2 - En) G/2,25t71- (46)

t=2

1 « a’uy_
+o > Gra (nom) o — Ty) Ghexp (—tl> Et-2

The first term in (46) is

1 - / ! !
G (ot~ 50) GhaYia = (Gaa® Gua) H [ Gultr)do(r).
t=2 0

The second term in (46) is
1 n
3 D G (nami—o — %) Ghad (w1 +wi ) Vi g
=2

1
= E <G1,277t—2771/5—2GI2,2 ((Gl,l + Giy) nt_g),a> /0 Gy (r)dr

1
== (Ggg & GLQ) M3 (G171 + GLO), a Ga (7") dr.
0
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The third term in (46) is

1 iG (27,5 = B) Ghpexp (—a,u“) e
. L2 \It—2"lt—2 = “n 2,2 t—2
n NZD

= F (Gl,z (77157277::—2 - Zn) G’2,25t72) =F (G1,277t7277;—2G,2,2G2,077t72)
= (G22®G12) M3G/270-

The fourth term in (46) is

1 n
- Z G (Mot — Bn) Ghoern = E(Gran,_on; 2G5 2Ga17,5)
t=2
= (G22® Gi2) M3G/2,1-

Therefore,

n

1
n (G1,277t7277;—2G/2,2 - E (G1,17]t,2772_2G'2?2)) Y1

t=2

1
— (G2 ®G1s) (H / G () dBe ()
0
1
+M3 ((Gl,l + GI,O)/ CL/ Ga (T) dT —f- (G270 + GQJ)I)) .
0

In view of the above we deduce that for j # k,

1 — 1

- > (Grim i xGhy — E (Gryn i 1xGhy)) Yier = (Goy @ Gl,j)/o G (r)d¢(r),

t=2

whereas for j = k,

1 n
n Z (Grgm 3Gy — E(Grgm_ ;G5 ;) Yer

= (GQJ‘ ® Gl,j) <H/0 G, (T) dv (7‘)
+M3 x 1 {j Z 1} (jz_: Gl,i) a/l Ga (7”) dT’ + (JZ_: Ggﬂ')

34



The result of the lemma follows upon aggregation over the indices j and k.
|

Proof of Theorem 2. We trace through the proof of Theorem 2 of LP
and extend the derivations there to the linear process case. The objective

function is
n

Qula) =) {Yi—Bi(a)Yia}. (47)

t=2

Minimizing (47) with respect to a yields
Qn () = =2 {Y; = B, (n) Vi1 } By (@) Yiy = 0
t=2
= Z {Y: = 8, (an) Vi1 w3y (Gn) Yie1 = 0
t=2

— > Vi (an) Yior = > uf5i (n) Y724 (48)
t=2 t=2

The third line in (48) is equivalent to

Z By (n) {8 (@) Vi1 + e} Y1 = Z Utﬁ? (an) Ytz,l
t=2

t=2

or

Z Utﬁ? (4n) Y2, — Z w3y (an +a) Y2, = Z weBy (an) Vi
t=2 t=2 t=2

As B7 (a,) = f, (2a,,), to second order the last expression equals

n n

1 . 1 N2 . 2
= ugttl (@, — a) Y2, + o Z Uy ((Qa;ut) — ((an + a)" uy) ) Y2,

t=2 t=2

(49)

3
3

Il
£
O
B
_|_

[S—y
™

o

g
=

S

3

e
AR
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Now,
E:utut Yt21
Ul Y; 2
= 0325, ( —a/G2 dr+n§ (tt u>(dn—a)<t—\/__1) :
n

The second term above is O, (n (G, — a)). In the ¥, # 0, we only need to
maintain terms in (49) which are O, (n*?), so the second term above can
be neglected. In the X,. = 0 case, we only need to retain terms which are
O, (n). Because in this case @, —a = O, (n~'/?), this term is negligible also
in this case. Thus, we only need to consider in both cases

1 < 1A 2 3/2 N /1 2
—E wuy (4, —a) Y2 ~n??3, (4, —a G (r)dr.
\/ﬁtzz tt< t—1 ( ) o ()

The next term to consider is
1 — X X 5
% Z Ut ((QG;L’LLt)Z — ((an + a)/ ut) ) }/;2_1
= —Zut{ —a) "y (3G, + a) ut}Y;l

This term is O, (n) in the ¥,,. # 0 case and O, (nl/Q) in the »,. = 0 case. So,
this term is negligible in both cases. The next term in (49) is Y, weYs 1,
whose behavior is given by Lemma 7. The last term in (49) is

1 © !
Z ey, Y1 = nlE (gqupuyay,) / Go (r)dr+o,(n).
\/_ 0
Ignoring negligible terms, we thus seek a solution to (49) as

1 1
n®2%, (6, — a)/ G? (r)dr = n3/22u5/ Gy (r)dr
0 0
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—I—n(oo(ng@GU H/ r)d§ (r)

=0

+Z Gaj ® Grj) M. (ZG“> / a(@dw(i@g,i)

+3 " (Gor G ) /0 G (r) dC (r)

ik
1

+E (stutugdn)/ G, (1) dr) ,
0

giving the results stated in the theorem. H

Proof of Theorem 3. Expanding the moment conditions (13) yields
the (asymptotically equivalent) equation

Z (Ye = By (@, 5n) Yier) Z, = Z (B (a;n) Yiea + &0 — B, (0,5 n) Yia) Z4
=2 =2
- Z {Bt (CL; n) — B4 (&év; n)} Yi1Zi + Z Zige
1=2
_HIv uy)? — (a1V'u,)? 1 -
—Z{ a—al ) t+(aut) 275 Ut) +o, (E>}3€_1Zt+§Zt5t
— 0. (50)

Under Assumption 2,

[nr)
n~1/2 Z vee (Zyuy — Yz,) = Bz, (1),

t=1
where By, (r) is vector Brownian motion with covariance matrix
o0
r o
EZ®u - § FZ®u(h)
h=—00
and

Lzeu(h) = B(ZiZy, ), @ wy,y) — B(Z @ w) E(Z; ® uy) .
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By an application of Lemma 7,

n 1
ZY;,thu; = ng/QZZu/ Go (r)dr+0,(n). (51)
t=1 0
Hence,
(CAL{LV_CL /i Y. .7 1 iy 7 (AIV ) O ( (AIV ))
Ut Yy — 12 a.’ —a) = nla.’" —a
\/ﬁ s tLt—14¢ \/— £ t—14t Uy n D n
(52)
Next,

(a'ut)2 — (&iv'ut)Q = (a — dflv)lut (a + dflv)lut.

Therefore, the leading term in the factor

n 1,,0N2  (AIVr, )2
Z { ) 2 (6w } Y12
n

t=2

which appears in (50), is

Finally, by (14),

z”: Ziey = nB (Zig) + VnBz- (1) + 0, (n) (54)

t=2

where, temporarily, we have not imposed Assumption 3 requiring E (Z;e;) =
0, in order to examine its role in Remark 5. Collecting the dominant terms
in (51)-(54), we need a solution to the equation

(nEZu /O 1 G, (r)dr + O, (\/ﬁ)> (alY —a) = v/nBz- (1) + nE(Ze). (55)

The desired result follows immediately upon imposition of Assumption 3. B
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Proof of Theorem 4. Using (24), we have

ef =Y~ B, (a) Vi
=Y — B, (a) B, (drlzv - a) Y

=Y, — B, (a) (1"‘%—
=& — [, (a) (M + 0, (\/ﬁ)) Y1 (56)
As (@, —a) = O, (n*1/2),
(AIV !

alV' —a) w

Jn Yioi = B (a) (drlzv - a)/ut (Ga(r) +0p(1))

= 0, (n’l/z) )

By (a)

The next order term in the expansion (56) is
() (@2 —a)u)’
) m i = 51& (CL) 2\/ﬁ
— 0, (n?).

By (a (Ga(r) +0,(1))

Therefore,

n

) = 53 (6t Oy (7)) (euny 0y (177) = 7. ()40, (n7)

t=j+1

and part (1) of the Theorem is established. The proofs for parts (2)-(3) are
similar and are therefore omitted. W

Proof of Theorem 5. The solution to (28) must satisfy

090 (057) \ i ¢
(%) Wan (ag) = 0.
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Now,

09, (a5
a(a/ = n3/2 Zﬂt }/t lut t7

so, we need to solve

(Zﬁt ) Yieauy )VV (tin; (Y, = B, (a5) Yi1) Zt> (57)
(Zﬁt )Yz, >W<n1((5t() B, (aS)) Yi- 1+6t)Z>

t=

=0.

We shall need the following results. First,

aG’

Zﬁt ) YiruZ{ = Z (1+ :‘/_t +o0, (n7'? )) wZyY;
=n??%, (/O G, (r)dr + o, (1)) +nE (a5 uuZ;) (/01 G, (r)dr + o, (1)) +0,(n).

By (54),

thzt VnBz. (1) + o0, (V) , (58)

Finally,

t=1 t=

- - a—a%) u,
Z (515 (a)Y,—1 — B, (5%?) Yt—l) Zy = (% + 0, (n_1/2)> Y 17
)

1
=nYz, (a—af Gy (rYdr + o, (n(a—a%)) .
; p

The result of the theorem follows upon substitution of (58)-(59) into (57). W
Proof of Theorem 6. We know from (54) that

1 ,
\/ﬁgn = % ; Ztgt = BZS (1) ~ N (OaﬁyéZE) :
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It follows that

g0 = 9 (a5 ((G%0) ")) = Zzt (82—, (a9 ((5.0)7")) Vi)

- -zz,m zzt(ﬁt i =8, (a5 ((35.0)7) ) Yimn)

Therefore,
\/ﬁgn - BZz—: (1)
~G 44 -1 !
1 " a—ay, (( Ze n) )) Ut
+%Zzt NG + 0, (7)) [ Yiei 40, (1)

The second term above is equal to

+%<nzm( 5 (3 )1))/ (r) dr
+0p (n (o - ( 7))

= Vit (a =S (3. ")) Galr)dr +0,(1)

0

= wa([lawa) (655 2 ()
kacw(Aaxoqw)+qxn

r -1 -1 2 br -1
— [h T (2 65 5a) S (5 B ) 40, )
= BnBZE (1) + 0p (1> )
say. The test for over-identifying restrictions is given by
. NS A NIV N
T (@S ((050) ) A%n) = il (350) i

= ngB, (&KZTM)_1 B.g+o,(1).
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The middle term in the last line is equal to

A

B ( Yze n) ' Bn
- |: ern ZZU <Z,Zu ( Zre n)_l ZZU> Z/Zu:| ( Zra n)_l
I Or -1 -1 ! 4l -1
|:I - ZZU <2Zu ( Yze n) EZU) ZZu (’YZE,TL) :|
_ _ _ -1 _
= (ﬁ/éZTs,n) ' - (;}/gs,n) ' EZU (ElZu (&ZZTE,n) ' EZU) leu (;YZZTE n) '
= (350 (1= 6™ B (B (35) " 82) B G5 )™
= (%) )

Zemn

say. Thus,

R | , o\l
pfatr \=Y2 2 (atr 12 _
= ng/ (WZZ:S,TL) Mn (’yéZe,n) g + Op (1) :
The result of the theorem follows from the facts that (7 Jem) e
and M, is symmetric and idempotent with rank ¢ — K. B

g= N (0,1,
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Table 2. Simulated p-values (PV) and estimates

a 0 0.2 0.5 1 2 5
One sided PV 0.502 | 0.311 | 0.179 | 0.096 | 0.042 | 0.010
DF one sided PV | 0.500 | 0.500 | 0.496 | 0.501 | 0.449 | 0.134
Two sided PV 0.502 | 0.374 | 0.226 | 0.109 | 0.052 | 0.022
G —0.047 | 0.231 | 0.482 | 0.999 | 2.0029 | 5.003
o (an) 0.676 | 0.623 | 0.532 | 0.602 | 0.513 | 0.147

Table 3. Simulated p-values (PV) and estimates

Note: n = 2000, the number of replications is equal to 2000. The values
were obtained for the model (1) and (2) with a 1% trimming from each tail.

n 100 | 500 | 1000 | 1500 | 2000 | 5000

One sided PV | 0.458 | 0.393 | 0.363 | 0.329 | 0.303 | 0.246
DF one sided PV | 0.498 | 0.500 | 0.498 | 0.500 | 0.500 | 0.499
Two sided PV | 0.508 | 0.458 | 0.431 | 0.399 | 0.371 | 0.297
(i 0.196 | 0.173 | 0.177 | 0.163 | 0.231 | 0.200

o (Gn) 1.719 | 1.202 | 0.817 | 0.812 | 0.623 | 0.415

Table 4. Simulated p-values (PV) and estimates

Note: a = 0.2, the number of replications is equal to 2000. The values were
obtained for the model (1) and (2) with a 1% trimming from each tail.

n 100 | 500 | 1000 | 1500 | 2000 | 5000

One sided PV | 0.302 | 0.158 | 0.128 | 0.099 | 0.084 | 0.055
DF one sided PV | 0.501 | 0.501 | 0.498 | 0.502 | 0.492 | 0.508
Two sided PV | 0.394 | 0.211 | 0.161 | 0.114 | 0.108 | 0.065
(n 0.893 | 0.967 | 1.029 | 1.024 | 0.966 | 0.990

o (an) 1.723 | 1.033 | 0.969 | 0.668 | 0.534 | 0.443
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Note: a = 1, the number of replications is equal to 2000. The values were
obtained for the model (1) and (2) with a 1% trimming from each tail.
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Flgure PP plots of the distributions of \/n (a" —ao) (blue) and
1)/ (O'Zu [ Ga(r)dr) (gold) against the estimated normal distribution
of \/‘ (alV — ag), with n =100, X, # 0, Xz. =0, 0, # 0, a = 0.15.
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Flgure : PP plots of the distributions of /n (al¥ —ag) (blue) and
1)/ (074 [ Ga (1) dr) (gold) against the estimated normal distribution
cﬁJX&V—%men:1mm&W¢Q2&¢Qam¢ow=m15
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Flgure PP plots of the distributions of /n (@ —ag) (blue) and
( 6 zun | Ga (r)dr) (gold) against the estimated normal distribution
d¢_( Vi—ap), withn =100, . #0, Xz. =0, Xz, = 07, # 0, a = 0.15.
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Figure 4: Kernel density estimates of +/n(al¥ —ap) (blue) and
B.7; (1) / (024 [ G4 (r)dr) (gold) against the estimated normal distribution
of \/n (al¥ — ag), with n = 10000, £, # 0, ¥z =0, 0z, # 0, a = 0.15.
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Figure 5: PP plots of the distributions of \/n (dﬁv — ao) against the scaled
Cauchy variate, n = 100, ¥, #0, Xz. =0, 07, # 0, a = 0.
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Figure 6: PP plots of the distributions of\/n (al¥" — ag) against the scaled
Cauchy variate, with the scaling factor estimated, n = 100, X,. # 0, ¥Xz. = 0,
ozu # 0, a=0.
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Figure 7: Kernel density estimates of \/n (al¥" — ag) (blue) against the scaled
Cauchy variate (brown), n = 100, ¥, # 0, Xz. =0, 0z, # 0, a = 0.
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Figure 8: Trimmed (1% from each side) RHS (blue) and LHS kernel distri-
butions, based on 2000 replications with n = 2000 . light brown (a = 0),
green (a = 0.2), red (a = 0.5), magenta (a = 1), dark brown (a = 2).
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Figure 9: PP plots of the distributions of +/n (&f — ao) against
1

(JGa(r)dr) 1 (B W Ez,)7 150, Bz:(1), with n = 100, X,. # 0, ¥z = 0,
0

ozu # 0, a =0.15.
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PP plots of the distributions of /n(a$ —ag) against
¥, W Yz,) 1%, Bz (1), with n = 100, ¥,. # 0, 7. = 0,

ozu # 0, a=0.
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Figure 11: PP plots of the distributions of .J,(a%, W) against x(1) distribu-
tion, with n = 100, X, #0, Xz. =0, 0z, # 0, a = 0.15.
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Figure 12: PP plots of the distributions of J,(aS, W) against y(1) distribu-
tion, with n = 100, ¥,. #0, Xz. =0, 0z, # 0, a = 0.

0.8 -
0.6 -
04

0.2

00 T T O MO SR |
0.0 0.2 0.4 0.6 0.8 1.0

Figure 13: PP plots of the distributions of J,(aS, W) against y(1) distribu-
tion, with 7 = 500, Sy # 0, Xy = 0, 04 # 0, a = 0.15.
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Figure 14: PP plots of the distributions of J,(a&, W) against x(1) distribu-
tion, with n = 500, ¥,. # 0, Xz. =0, 0z, # 0, a = 0.
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