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Abstract

We study a variation of the Eaton-Kortum model, a competitive, constant-returns-

to-scale multicountry Ricardian model of trade. We establish existence and unique-

ness of an equilibrium with balanced trade where each country imposes an import

tariff. We analyze the determinants of the cross-country distribution of trade volumes,

such as size, tariffs and distance, and compare a calibrated version of the model with

data for the largest 60 economies. We use the calibrated model to estimate the gains

of a world-wide trade elimination of tariffs, using the theory to explain the magnitude

of the gains as well as the differential effect arising from cross-country differences in

pre-liberalization of tariffs levels and country size.

Keywords: General Equilibrium, Ricardian trade theory, trade volume, tariff policy.
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1. Introduction

Eaton and Kortum (2002) have proposed a new theory of international trade,

an economical and versatile parameterization of the models with a continuum of

tradeable goods that Dornbusch, Fischer, and Samuelson (1977) and Wilson (1980)

introduced many years ago. In the theory, constant-returns producers in different

countries are subject to idiosyncratic productivity shocks. Buyers of any good search

over producers in different countries for the lowest price, and trade assigns production

of any good to the most efficient producers, subject to costs of transportation and

other impediments. The gains from trade are larger the larger is the variance of

individual productivities, which is the key parameter in the model.

The model shares with those of the “new trade theory” the important ability to

deal sensibly with intra-industry trade: trade in similar categories of goods between

similarly endowed countries. But unlike the earlier theory, the Eaton-Kortum (2002)

model is competitive, involving no fixed costs and no monopoly rents.2 Of course,

fixed costs and monopoly rents are present in reality, but theories based on compet-

itive behavior are much simpler to calibrate and permit the use of a large body of

general equilibrium theory to help in analysis.

One aim of this paper is to restate the economic logic of a variation of the

Eaton-Kortum model of trade in a particular general equilibrium context. In the next

section, we will introduce the basic ideas using a closed economy with a production

technology of the Eaton-Kortum type. In Section 3, we define an equilibrium with

balanced trade in a world with many countries, each one imposing import tariffs.

Section 4 gives sufficient conditions for this equilibrium to exist. The problem of

determining whether the equilibrium is unique and of finding an algorithm to compute

2See, for example, Ethier (1979, 1982), Krugman (1979), Helpman (1981), and the Helpman and

Krugman (1985) monograph. Baxter (1992) argues that competitive, Ricardian models are equally

capable of dealing realistically with intra-industry trade.
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it is addressed in Section 5.

A second goal of the paper is to find out whether the cross-country distribution

of trade volumes generated by a model of this type is consistent with the behavior

of volumes in the data. In Section 6, we calibrate some of the main parameters of

the theory. Section 7 discusses some instructive special cases that are simple enough

to work out by hand. Using estimates from Section 6, we examine the implications

of these special cases of the theory for the volume of trade, and the way that trade

volume behaves as a function of size, and compare these implications to data on total

GDP and trade volumes for the 60 largest economies. Sections 8 and 10 go over

the same ground numerically with more realistic assumptions. In these two sections

we apply the algorithm described in Section 5, calibrate the model to the observed

distribution of GDPs and the relative prices of tradeables to non-tradeable goods,

and introduce heterogeneity in transportation costs and tariff rates.

Our normative goal is to use the quantitative theory to estimate the welfare

gains from hypothetical trade liberalizations. Comparisons between free trade and

autarchy are carried out in Sections 7. Section 9 studies the optimal tariff policy of

a small economy. We also calculate the effects of a world-wide liberalization in which

every country’s tariffs are set to zero. We use the theory to explain the magnitude of

the average gains of trade, as well as differential effects arising from cross-country dif-

ferences in pre-liberalization tariff levels and country size. Section 10 also relates the

theory to growth accounting: the partitioning of cross-section differences in incomes

into their ultimate sources. Conclusions are contained in Section 11.

2. Preferences, Technology, and Closed Economy Equilibrium

The Eaton-Kortum model is Ricardian, with a continuum of goods produced

under a constant-returns technology. The new idea is a two-parameter probabilistic

model that generates the input requirements for producing each good. It will be
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useful to introduce this model of a technology in the simpler context of a single,

closed economy before turning to the study of a model of a world of n countries in

Section 3.

We develop a purely static model in which labor is the only primary (non-

produced) factor of production, and production requires only labor and produced,

intermediate goods as inputs. In the model, there are L consumers, each of whom

supplies one unit of labor, to which no disutility is attached, and produces and con-

sumes a single good in quantity c.3 This final good is produced with labor services

and a symmetric Spence-Dixit-Stiglitz aggregate q,

q =

·Z 1

0

q(u)1−1/ηdu
¸η/(η−1)

(2.1)

of a continuum of produced goods. We call these produced goods “tradeables,” with

an eye toward the role they will play in later sections.

Individual tradeable goods are in turn produced with labor and the tradeables

aggregate (2.1). Thus, consider a given tradeable q(u). Let s(u) be the labor used to

produce this good and let qm(u) be the level of the materials aggregate q, defined in

(2.1), used to produce q(u). The production technology relating these inputs and the

output they imply is assumed to be

q(u) = x(u)−θs(u)βqm(u)1−β.

Total factor productivity (TFP) levels x(u)−θ vary across goods. As in Eaton and

Kortum (2002), we model the individual x(u) as independent random variables, expo-

nentially distributed with parameter λ. These are then amplified in percentage terms

3We call L population, LPc total GDP, and c real GDP per capita. This usage will be fine

through the development of the theory in Sections 2-5. When we calibrate and apply versions of

the model, we will need to interpret these variables more carefully so as to accomodate physical and

human capital differences.
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by the parameter θ.4 Note that a low x-value means a high productivity level (and a

low unit cost).

To build a theory on this basis, we need to put enough structure on these func-

tions of u so that the integral in (2.1) has meaning. Instead of doing this directly,

we re-label the goods as follows. The only parameter that varies across these goods

u is this productivity level x(u), and all goods q(u) enter symmetrically in the aggre-

gate (2.1). It will be convenient, then, simply to re-name each tradeable good by its

productivity draw x, to re-write the aggregate (2.1) in the form

q =

·
λ

Z ∞

0

e−λxq(x)1−1/ηdx
¸η/(η−1)

, (2.2)

where λ is the parameter of the exponential distribution from which productivities

are drawn, and to re-state the production functions of the individual materials as

q(x) = x−θs(x)βqm(x)1−β. (2.3)

We speak of “good x”, and so on.

It important to emphasize that these productivity draws x are economy-wide

effects. Anyone is free to produce any specific good, and every producer of that good

has access to the same production technology (2.3), with the same stochastic intercept

x−θ, as other producers do. Since (2.3) is a constant-returns technology the number

of firms producing any good will be indeterminate, but whatever that number is, no

single producer has any market power and all prices will be set at marginal cost,

equivalent to minimum unit cost.

The production of the non-tradeable final good is given by a Cobb-Douglas func-

tion of the tradeable aggregate qf and the labor input sf :

c = sαf q
1−α
f . (2.4)

4We are using θ for the parameter that Eaton and Kortum call 1/θ, so that in this paper a larger

θ means a larger variance in individual productivities.
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The labor and tradeables inputs allocated to each production process must sum to

the totals available. In per capita terms, this means that

sf + λ

Z ∞

0

e−λxs(x)dx = 1, (2.5)

q = qm + qf , (2.6)

and

qm = λ

Z ∞

0

e−λxqm(x)dx. (2.7)

To sum up, feasible per capita allocations are numbers y, sf , q, qm, and qf and func-

tions s(x), q(x), and qm(x) on R+ that satisfy (2.2)-(2.7).

Let the prices of individual tradeables be p(x). Producers of all kinds will choose

purchases of the individual goods so as to obtain the tradeables aggregate at minimum

unit cost pm, say. That is, they will solve

pmq = min
q(x)

λ

Z ∞

0

e−λxp(x)q(x)dx

subject to ·
λ

Z ∞

0

e−λxq(x)1−1/ηdx
¸η/(η−1)

≥ q.

This problem is solved by the function

q(x) =

µ
λ

Z ∞

0

e−λxp(u)1−ηdu
¶η/1−η

p(x)−ηq.

It follows that

pm =

µ
λ

Z ∞

0

e−λxp(x)1−ηdx
¶1/1−η

. (2.8)

The individual production levels can be restated as

q(x) = pηmp(x)
−ηq. (2.9)
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Similarly, given the price w of the labor input and the aggregate materials price

pm, a final goods producer will choose labor and goods inputs so as to minimize the

unit cost p of the final good. That is,

pc = min
s,q
[ws+ pmq]

subject to

sαq1−α ≥ c.

This problem is solved by the values

sf =

µ
α

1− α

¶1−α ³pm
w

´1−α
c (2.10)

and

qf =

µ
1− α

α

¶αµ
w

pm

¶α

c. (2.11)

It follows that

p = α−α(1− α)−1+αwαp1−αm . (2.12)

Finally, given a price w of the labor input and an aggregate tradeable goods price

pm, any particular tradeable goods producer x will choose labor and goods inputs so

as to minimize the unit cost p(x) of his production, q(x). That is, he will solve

p(x)q(x) = min
c,q
[wc+ pmq] subject to x−θcβq1−β ≥ q(x).

This problem is solved by the values

s(x) = xθ
µ

β

1− β

¶1−β ³pm
w

´1−β
q(x) (2.13)

qm(x) = xθ
µ
1− β

β

¶β µ
w

pm

¶β

q(x) (2.14)

It follows that

p(x) = Bxθwβp1−βm , (2.15)
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where

B = β−β(1− β)−1+β.

In this Ricardian model, we can first solve for the equilibrium prices p, pm, and

p(x) in terms of the wage w. Then we can use these prices to calculate equilibrium

quantities. Combining (2.8) and (2.15), we have

pm =

·
λ

Z ∞

0

e−λx(Bxθwβp1−βm )1−ηdx
¸1/(1−η)

= Bwβp1−βm λ−θ
·Z ∞

0

e−zzθ(1−η)dz
¸1/(1−η)

, (2.16)

using the change of variable z = λx. We write A(θ, η), or sometimes just A, for

A(θ, η) =

·Z ∞

0

e−zzθ(1−η)dz
¸1/(1−η)

.

The integral in brackets is the Gamma function Γ(ξ), evaluated at the argument

ξ = 1 + θ(1− η). Convergence of the integral requires

1 + θ(1− η) > 0, (2.17)

which we assume to hold throughout this paper.5 In terms of A, (2.16) can be written

as

pm = ABwβp1−βm λ−θ.

and solving for pm yields

pm = (AB)
1/βλ−θ/βw. (2.18)

5If η were too large to satisfy (2.17), the integral in (2.16) would not converge. Economically, this

would mean unbounded production of the tradeable aggregate, as labor is concentrated on goods

where x is near zero (where x−θ is very high). Changes in the parameter η will affect the units in

which tradeables are measured, and hence relative prices that depend on these units. The allocation

of labor and materials between the two sectors is independent of the value of η. See note 7.
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Substituting from (2.18) back into (2.15) then yields the prices of individual

tradeables:

p(x) = A(1−β)/βB1/βxθλ−θ(1−β)/βw. (2.19)

The price of the final good is, from (2.12) and (2.18),

p = α−α(1− α)−1+α(AB)(1−α)/βλ−θ(1−α)/βw. (2.20)

Notice that all these prices, p, pm, and p(x) are different multiples of the wage rate w.

This is a labor theory of value: Everything is priced according to its labor content.

The shares of labor and materials inputs in the output value of each tradeable

good x are β and 1 − β respectively. Then the same equality must obtain for the

aggregates:

β =
w(1− sf)

pmq
and 1− β =

qm
q
. (2.21)

Using (2.6) we have qf = βq and then the relative price formula (2.18) gives

1− sf = (AB)
1/βλ−θ/βqf . (2.22)

A second equation involving sf and qf is obtained from (2.10) and (2.11):

sf
qf
=

µ
α

1− α

¶³pm
w

´
.

Using (2.18) again,
sf
qf
=

µ
α

1− α

¶
(AB)1/βλ−θ/β. (2.23)

The two equations (2.22) and (2.23) can be solved for sf and qf :

sf = α (2.24)

and

qf = (1− α)(AB)−1/βλθ/β. (2.25)
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From these equations, all equilibrium quantities can be calculated, just as equi-

librium prices can be calculated from (2.18)-(2.20). National income per capita, in

dollars, is w, and this must equal per capita nominal GDP, pc. Multiplying the figures

by L gives the economy totals. Real GDP per capita, which equals utility in the units

we are using, is

c =
w

p
= αα(1− α)1−α(AB)−(1−α)/βλθ(1−α)/β, (2.26)

using (2.20).

3. General Equilibrium

The technology proposed by Eaton and Kortum for the production of tradeables,

described in the last section, involves a continuum of goods, produced under constant

returns with labor requirements that vary in a smooth, exogenously given way, defined

by the parameter pair (λ, θ). This is a special case of the technologies proposed by

Dornbusch, Fischer, Samuelson (1977) and Wilson (1980). An international trade

theory based on this technology can thus be developed along the lines of these papers.

Specifically, we consider an equilibrium in a world of n countries, all with the

structure described in Sections 2, in which trade is balanced. Let total labor en-

dowments be L = (L1, ..., Ln), where Li is the total units of labor in i. The ex-

ponential distributions that define each country’s technology have the parameters

λ = (λ1, ..., λn). Labor is not mobile. We use w = (w1, ..., wn) for the vector of

wages in the individual countries. Preferences and the technology parameters θ, β, α

and η are common to all countries. The structure of production in each country is

exactly as described in Section 2, except that now tradeables are traded, subject to

transportation costs and tariffs.

Transportation costs are defined in physical, “iceberg” terms: we assume that
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one unit of any tradeable good shipped from j to i results in κij units arriving in i.

Interpreting the terms κij as representing costs that are proportional to distance, it is

natural to assume that κij > 0, κij ≤ 1, with equality if i = j, κij = κji for all i, j,

and

κij ≥ κikκkj for all i, j, k. (3.1)

We also want to consider tariffs that distort relative prices but do not entail a

physical loss of resources. In practice, trade barriers take many forms, but here we

consider only flat rate tariffs levied by country i on goods imported from j, and where

the proceeds are rebated as lump sum payments to the people living in i. Define ωij

to be the fraction of each dollar spent in i on goods made in j that arrives as payment

to a seller in j.

In the closed economy analysis of Section 2 we exploited the assumptions of

competition and constant returns to solve for all equilibrium prices as multiples of

the wage w, with coefficients depending only on the technology. With this done, we

then calculated equilibrium quantities. This same two-stage procedure can be applied

to the case of many countries, though of course each stage is more complicated.

A new notation for the commodity space is needed. Let x = (x1, ..., xn) be the

vector of technology draws for any given tradeable good for the n countries. We refer

to “good x,” as before, but now x ∈ Rn
+. Assume that these draws are independent

across countries, so that the joint density of x is

φ(x) = (
Qn

i=1 λi) exp{−
Pn

i=1 λixi}.

Use qi(x) for the consumption of tradeable good x in country i, and qi for consumption

in i of the aggregate,

qi =

·Z
qi(x)

1−1/ηφ(x)dx
¸η/(η−1)

.

(Here
R
denotes integration over Rn

+.) Let pi(x) be the prices paid for tradeable good
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x by producers in i. Let

pmi =

·Z
pi(x)

1−ηφ(x)dx
¸1/(1−η)

(3.2)

be the price in i for a unit of the aggregate. Analogous to (2.9), we have

qi(x) = pηmipi(x)
−ηqi, i = 1, ..., n. (3.3)

The tradeable good x = (x1, ..., xn) is available in i at the unit prices

Bxθ1w
β
1p
1−β
m1

1

κi1ωi1
, ..., Bxθnw

β
np
1−β
mn

1

κinωin
,

which reflect both production costs (labor and intermediate inputs) and transporta-

tion and tariff costs. All producers in i buy at the same, lowest price:

pi(x) = Bmin
j

"
wβ
j p
1−β
mj

κijωij
xθj

#
. (3.4)

Note that without assumption (3.1), the right side of (3.4) would not necessarily be

the least cost way of obtaining good x in country i.

The price index pmi of tradeables in i must be calculated country by country. We

derive an expression for pmi from (3.2) and (3.4). The derivation uses two well-known

properties of the exponential distribution:

x ∼ exp(λ) and k > 0 ⇒ kx ∼ exp(λ
k
) (3.5)

and

x and y independent, x ∼ exp(λ), y ∼ exp(µ),

and z = min(x, y) ⇒ z ∼ exp(λ+ µ). (3.6)

>From (3.2), we have

p1−ηmi =

Z
pi(x)

1−ηφ(x)dx, (3.7)
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and note that the right side is the expected value of the random variable pi(x)1−η.

From (3.4)

pi(x)
1/θ = B1/θmin

j

"
w
β/θ
j p

(1−β)/θ
mj

(κijωij)1/θ
xj

#
.

Property (3.5) implies that zj ≡ w
β/θ
j p

(1−β)/θ
mj (κijωij)

−1/θxj is exponentially distributed

with parameter

ψij =

Ã
wβ
j p
1−β
mj

κijωij

!−1/θ
λj (3.8)

and property (3.6) implies that z ≡ minj zj is exponentially distributed with pa-

rameter
Pn

j=1 ψij. Applying (3.2) again, this proves that pi(x)
1/θ is exponentially

distributed with parameter

µ = B−1/θ
nX

j=1

ψij.

It then follows from (3.7) that

p1−ηmi = µ

Z ∞

0

uθ(1−η)e−µudu.

Using the change of variable z = µu, we have that

p1−ηmi = µ−θ(1−η)
Z ∞

0

e−zzθ(1−η)dz

= µ−θ(1−η)A1−η,

where A = A(θ, η) is the constant defined in Section 2. Then

pmi(w) = AB

Ã
nX

j=1

ψij

!−θ
≡ AB

 nX
j=1

Ã
wβ
j pmj(w)

1−β

κijωij

!−1/θ
λj

−θ , (3.9)

i = 1, ..., n.

We view (3.9) as n equations in the prices pm = (pm1, ..., pmn), to be solved for

pm as a function of the wage vector w. It is the same formula as (7) and (9) in Eaton

and Kortum (2002). The solution to (3.9), which will be studied in detail in Section
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4, is the analogue to (2.19) in Section 2. Notice that the country identifier i appears

on the right side of (3.9) only via the parameters κij and ωij.

Next we calculate the tradeables expenditure shares for each country i : The

fraction Dij of country i0s total spending pmiqi on tradeables that is spent of goods

from country j. Economically, the total spending in i on goods from j is just

pmiqiDij =

Z
Bij

pi (x) qi (x)φ(x)dx,

where Bij ⊂ Rn
+ is the set on which j attains the minimum in (3.4). Using (3.3) and

(3.4), this integral can be evaluated to obtain the expression (3.11) (below) for Dij.

One can also show that the Dij will simply be the probabilities that for a partic-

ular good x, the low price vendor for buyers in i are sellers in j. These probabilities

can be calculated directly, using a third fact about exponential distributions:

x and y independent, x ∼ exp(λ), and y ∼ exp(µ)

⇒ Pr{x ≤ y} = λ

λ+ µ
. (3.10)

>From (3.4) we have

Dij = Pr{w
β
j p
1−β
mj

κijωij
xθj ≤ min

k 6=j

"
wβ
kp
1−β
mk

κikωik
xθk

#
}

= Pr{
Ã
wβ
j p
1−β
mj

κijωij

!1/θ
xj ≤ min

k 6=j

Ãwβ
kp
1−β
mk

κikωik

!1/θ
xk

}.
By (3.5), the random variable on the left of the inequality is exponential with pa-

rameter ψij. By (3.5) and (3.6), the random variable on the right is exponential with

parameter
P

k 6=j ψik, and the two are obviously independent. Thus (3.10) implies

Dij =
ψijPn
k=1 ψik

= (AB)−1/θ
Ã
wβ
j pmj(w)

1−β

pmi(w)κijωij

!−1/θ
λj. (3.11)

Note that
P

j Dij = 1.
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We now impose trade balance. Under this assumption, the dollar payments for

tradeables flowing into i from the rest of the world must equal the payments flowing

out of i to the rest of the world. Firms in i spend a total of Lipmiqi dollars on

tradeables, including both transportation costs and tariff payments. Of this amount,

Lipmiqi

nX
j=1

Dijωij

reaches sellers in all countries. (The rest is collected in taxes, and rebated as a lump

sum to consumers in i.)

Buyers in j spend a total of LjpmjqjDji dollars for tradeables from i, but of this

total only

LjpmjqjDjiωji

reaches sellers in i. The rest remains in j, as rebated tax receipts. Trade balance

then requires that the condition

Lipmiqi

nX
j=1

Dijωij =
nX

j=1

LjpmjqjDjiωji (3.12)

must hold. Notice that the term LipmiqiDiiωii–country i’s spending on home-

produced tradeables–appears on both sides of (3.12). Cancelling thus yields the

usual definition of trade balance: payments to foreigners equal receipts from foreign-

ers.

Our strategy for constructing the equilibrium in this world economy draws on

the analysis of a single, closed economy in Section 2. As in that section, we first note

that all prices in all countries can be expressed in terms of wages. In the present case,

wages are a vector w = (w1, ..., wn) and we express the coefficients φij as functions of

w and pm, and then use the n equations (3.9) to solve for the prices pm = (pm1, ..., pmn)

as a function pm(w) of wages. This problem is the subject of Theorem 1 in the next

section. With tradeables prices expressed as functions of wages (and of the tax rates
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and other parameters involved in (3.9)), (3.11) expresses the expenditure shares Dij

as functions of wages and of tax rates, too. Then (3.12) can be viewed an equation

in wages w and the vector q of tradeables consumption.

The impact of the rest of the world on the behavior of individual producers in

i is entirely determined by pmi. In the absence of taxes–if ωij = 1 for all i, j–the

trade balance condition (3.12) reduces to

Lipmiqi =
nX

j=1

LjpmjqjDji.

Also in the absence of taxes, the equilibrium quantities can be calculated from the

relative price pmi/wi, exactly as we did in Section 2. In this case, (2.24) implies that

sfi = α, and then the share formula (2.21) implies

βLipmiqi = (1− α)Liwi. (3.13)

Applying this fact to both sides of the trade balance condition and cancelling, we

obtain

Liwi =
nX

j=1

LjwjDji(w), i = 1, ..., n. (3.14)

We do not need to restrict the transportation cost parameters κij to reduce (3.12) to

(3.14) because the effects of these costs are entirely captured in (3.9).

Theorem 2 in the next section provides conditions that ensure that (3.14) has

a solution w, but since our objective is to be able to analyze the effects of changes

in tariff policies, we cannot stop with this special case. Nor can we make use of the

share formulas (2.21) to simplify (3.12) in the general case: The presence of indirect

business taxes implies that (3.13) will not hold. Taxes appear in (3.9) too, but they

appear separately in (3.12) because tax receipts are recycled back to consumers as

lump sum transfers. To deal with the general case, it will be useful to review the

national income and product accounts for a country i.
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TABLE 1

Value-added in services Labor income in services

Lipici − Lipmiqfi Liwisi

Value-added in tradeables Labor income in tradeablesP
j LjpmjqjDjiωji − Lipmiqmi Liwi(1− si)

Value-added in importing Indirect business taxes

Lipmiqi − Lipmiqi
P

j Dijωij Lipmiqi
P

j 6=iDij(1− ωij)

GDP Total labor income plus indirect taxes

Lipici Liwi + Lipmiqi
P

j Dij(1− ωij)

Table 1 provides the accounts for country i, viewed as a three sector economy. All

entries are in dollars. The left side gives value-added in each sector; the right side

gives factor payments (labor payments plus indirect business taxes). Two of these

sectors are services (final goods) and tradeables. The third is an importing sector, in

which firms buy tradeable goods from both home and foreign producers, pay import

duties to their own government, and resell the goods to home producers. This is a

constant-returns, free-entry activity, so of course selling prices must be marked up

exactly to cover the taxes. If ωij = 1, the entries for this sector would be zero in both

columns. To verify that the three sector value-added terms sum to GDP, one needs

to use the trade balance condition (3.12).

We now use these accounts as an aid in calculating the fraction si of country i’s

labor used in final goods production. To do this, let

Fi(w) =
nX

j=1

Dij(w)ωij (3.15)
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denote the fraction of country i’s spending on tradeables that reaches producers (as

opposed to the home government). We will verify

si(w) =
α[1− (1− β)Fi(w)]

(1− α)βFi(w) + α[1− (1− β)Fi(w)]
. (3.16)

Evidently, without taxes Fi = 1 and (3.16) implies that si = α.

To verify (3.16), we use the share formulas from both producing sectors, the

resource constraint (2.6) on tradeables, and the trade balance condition (3.10). The

share formulas in final goods production are

wisi = αpici and pmiqfi = (1− α)pici,

implying that

wisi =
α

1− α
pmiqfi. (3.17)

The share formulas for tradeables production are

Liwi(1− si) = β
nX

j=1

LjpmjqjDjiωji = βLipmiqiFi (3.18)

and

Lipmiqmi = (1− β)
nX

j=1

LjpmjqjDjiωji = (1− β)LipmiqiFi. (3.19)

where the second equality is each line follows from trade balance (3.12) and the

definition of Fi. From (3.19) and the fact that qi = qfi + qmi we have that

qfi = qi[1− (1− β)Fi]. (3.20)

Then (3.17) and (3.18) imply

wisi =
α

1− α
pmiqi[1− (1− β)Fi] , (3.21)

and (3.21) and (3.18) imply

wi(1− si) = βpmiqiFi. (3.22)
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Finally, eliminating pmiqi between (3.21) and (3.22) and simplifying yields (3.16).

We next use the formulas (3.15), (3.16) and (3.22) to reduce the trade balance

equation (3.12) to a system of n equations in the n wage rates w, just as we derived

equations (3.14) for the no-tax special case. From (3.22),

pmiqi =
wi(1− si)

βFi
.

Inserting this expression into (3.12), we have

Liwi(1− si) =
nX

j=1

Lj
wj(1− sj)

Fj
Djiωji. (3.23)

We view solving these equations as finding the zeros of an excess demand system

Z(w):6,

Zi(w) =
1

wi

"
nX

j=1

Lj
wj(1− sj(w))

Fj(w)
Dji(w)ωji − Liwi(1− si(w))

#
. (3.24)

We sum up this section in the

Definition. An equilibrium is a wage vector w ∈ Rn
++ such that Zi(w) = 0 for

i = 1, ..., n, where the functions pmi(w) satisfy (3.9), the functions Dij(w) satisfy

(3.11), the functions Fi(w) satisfy (3.15), and the functions si(w) satisfy (3.16).

As in the closed economy analysis of Section 2, the full set of equilibrium prices

and quantities are readily determined once equilibrium wages are known. The unique

solution to (3.11), analyzed in Theorem 1 in the next section, gives tradeable goods

prices, as we will describe in Theorem 1 in the next section. Then (3.11) describes

the allocation of every country’s spending on tradeables, and (3.15) and (3.16) give

6Calling equations (3.24) an “excess demand system” could mislead, since goods prices have

been solved for (in terms of wages) and trade balance has been used in its derivation. The equations

describe excess demands for each country’s labor only, as functions of wages, just as in Wilson

(1980). But whatever terminology one prefers, (3.24) has the mathematical properties of excess

demand systems that will let us apply standard results from general equilibrium theory.
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the equilibrium allocation si of labor in country i. Then (3.17) and (3.18) determine

qi and qfi. Final goods production ci is determined by (2.4).

4. Existence of Equilibrium

The economy we analyze is specified by the technology parameters α, β, η and

θ, common to all countries, the country-specific populations and technology levels

L = (L1, ..., Ln) and λ = (λ1, ..., λn), the transportation parameters [κij], and the tax

parameters [ωij]. All these numbers are strictly positive. Moreover, we impose

Assumptions (A):

(A1) α, β < 1,

(A2) 1 + θ(1− η) > 0,

and for some numbers κ and ω,

(A3) 0 < κ ≤ κij ≤ 1 and 0 < ω ≤ ωij ≤ 1.
Under these assumptions, we study the existence and (in the next section) the

uniqueness of solutions to the excess demand system (3.24). Before turning directly to

these issues, Theorem 1 characterizes the function pm(·) : Rn
++ → Rn

+ relating trade-

able goods prices to wage rates, defined implicitly by equations (3.9). Then Theorem

2 shows that the excess demand system (3.24) satisfies the sufficient conditions for a

theorem on the existence of equilibrium in an n-good exchange economy. Theorem 3,

in Section 5, gives one set of assumptions that imply that this solution is unique.

To study (3.9), it is convenient to restate (3.8) and (3.9) in terms of the logsepmi = log(pmi) and ewi = log(wi) of prices and wages:

epmi = log(AB)− θ log

Ã
nX

j=1

(κijωij)
1/θ exp{−1

θ
[(1− β)epmj + β ewj]}λj

!
,

i = 1, ..., n. Define the function f : Rn ×Rn → Rn so that these n equations are

epm = f(epm, ew). (4.1)
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Let S = [ξij] be the n× n matrix with elements

ξij =
(κijωij)

1/θ (p1−βmj w
β
j )
−1/θλjPn

k=1 (κikωik)
1/θ (p1−βmk w

β
k )
−1/θλk

, (4.2)

so that
∂fi(epm, ew)

∂epmj
= (1− β)ξij.

The Jacobian of the system epm − f(epm, ew) with respect to epm is then I − (1− β)S.

We note that S is a stochastic matrix (ξij > 0 for all i, j and
P

j ξij = 1 for all i) and

that β ∈ (0, 1), so that the inverse of this Jacobean is the strictly positive matrix

[I − (1− β)S]−1 =
∞X
i=0

(1− β)iSi. (4.3)

If (3.9) has a differentiable solution epm(ew), its derivatives are given by the formulas
∂epm
∂ ewk

= [I − (1− β)S]−1βξk, (4.4)

where ξk = (ξ1k, ..., ξnk) denotes the k-th column of S.

Theorem 1. Under the assumptions (A), for any w ∈ Rn
++ there is a unique pm(w)

that satisfies (3.9). For each i, the function pmi (w) is

(i) continuously differentiable on Rn
++,

(ii) homogenous of degree one,

(iii) strictly increasing in w,

(iv) strictly decreasing in the parameters κij and ωij, and

(v) satisfies the bounds

pm(w) ≤ pmi (w) ≤ pm(w),

for all w ∈ Rn
++, where

pm(w) =

µ
AB

κω

¶1/β Ã nX
j=1

w
−β/θ
j λj

!−θ/β
(4.5)
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and

pm(w) = (AB)
1/β

Ã
nX

j=1

w
−β/θ
j λj

!−θ/β
; (4.6)

(vi) the derivatives of epm(ew) satisfy
ξ
k
≤ ∂epmi(ew)

∂ ewk
≤ ξk, (4.7)

where for each k, ξk = mini ξik and ξk = maxi ξik.

Proof. That the homogeneity and monotonicity properties (ii), (iii) and (iv) must

hold for any solution is evident from the properties of the functions fi(epm, ew) in
w, κij, ωij, and pmi. To verify the bounds (v), note first that if κijωij = a for all i, j

for any constant a then (3.9) is solved by

pmi(w) =

µ
AB

a

¶1/β Ã nX
j=1

w
−β/θ
j λj

!−θ/β
for all i. This fact together with properties (iii) and (iv) implies that any solution to

(3.9) must satisfy the bounds (v).

For given w ∈ Rn
++ define the set C by

C = {z ∈ Rn : log(pm(w)) ≤ zi ≤ log(pm(w)), all i}.

Under the sup norm

kzk = max
i
| zi |,

C is compact. We first show that f(·, ew) : C→ C. To see this, we write f(z, ew;ω, κ)
to emphasize the dependence on ω and κ. Then for any z ∈ C, (ω, κ) and ew, we have

log(pm(w)) = f(log(pm(w)), ew; 1, 1) ≥ f(z, ew;ω, κ),
using the bounds (v), the monotonicity properties (iv), and the fact that f is increas-

ing in z. Likewise,

log(pm(w)) = f(log(pm(w)), ew;ω, κ) ≤ f(z, ew;ω, κ).
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We next show that f(·, ew) is a contraction onC by verifying the Blackwell sufficient
conditions. We have already observed that f(·, ew) is monotone. Let a > 0 and apply
the mean value theorem to obtain

fi(z + a) = fi(z) +
nX

j=1

∂fi
∂zj
(z + a(1− v))a

= fi(z) + (1− β)a
nX

j=1

ξij

= fi(z) + (1− β)a,

using the formula below (4.2) and the fact that
P

j ξij = 1 for all i. Thus f(·, ew) has
the discounting property

fi(z + a) ≤ fi(z) + (1− β)a.

The contraction mapping theorem then implies the existence of a unique fixed pointepm(ew) for f and a unique solution pm(w) to (3.9).

The Jacobean of the system (4.1) has the inverse (4.3), so the implicit function

theorem implies that epm(ew) is continuously differentiable everywhere. To verify the
bounds (vi), we use the fact that ξk is the largest coordinate in ξk and write ξk ≤ ιξk,

where ι is a vector of ones. Thus (4.4) implies

∂epm
∂ ewk

≤ [I − (1− β)S]−1βιξk. (4.8)

Now Sι = ι, since S is a stochastic matrix, implying that

[I − (1− β)S]ι = βι

or that

[I − (1− β)S]−1βι = ι.

Thus (4.8) is equivalent to
∂epm
∂ ewk

≤ ιξk.

24



This verifies the upper bound in (4.7). An analogous argument shows that

∂epm
∂ ewk

≥ ιξ
k
.

This completes the proof of Theorem 1. ¤
To prove that an equilibrium exists, we will apply an existence theorem for an

exchange economy with n goods to the demand system Z(w) defined in (3.24).

Theorem 2: Under assumptions (A) there is a w ∈ Rn
++ such that

Z(w) = 0.

Proof. We verify that Z(w) has the properties

(i) Z(w) is continuous,

(ii) Z(w) is homogeneous of degree zero,

(iii) w · Z(w) = 0 for all w ∈ Rn
++ (Walras’s Law),

(iv) for k = maxj Lj > 0, Zi(w) > −k for all i = 1, ..., n and w ∈ Rn
++,

and

(v) if wm → w0, where w0 6= 0 and w0i = 0 for some i, then

max
j
{Zj(w

m)}→∞. (4.9)

Then the result will follow from Proposition 17.C.1 of Mas-Colell, Whinston, and

Green (1995), p. 585.

(i) The continuity of pmi is part (i) of Theorem 1. The continuity of the functions

Dij is then evident from (3.8) and (3.11). The functions Fi defined in (3.15) are

continuous, and are uniformly bounded from below by ω. The functions si defined in

(3.16) are continuous. The continuity of Z then follows from (3.24).

(ii) From Theorem 1, pmi is homogeneous of degree one. Then (3.8) and (3.11)

imply that the Dij are homogeneous of degree zero, and it is immediate that Fi, si,

and Zi all have this property.
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(iii) To verify Walras’s Law, restate (3.24) as

wiZi =
nX

j=1

Ljwj(1− sj)
1

Fj
Djiωji − Liwi(1− si)

and sum over i to get:
nX
i=1

wiZi =
nX
i=1

nX
j=1

Ljwj(1− sj)
1

Fj
Djiωji −

nX
i=1

Liwi(1− si)

=
nX

j=1

Ljwj(1− sj)
nX
i=1

1

Fj
Djiωji −

nX
i=1

Liwi(1− si) = 0

using (3.15).

The proofs of parts (iv) and (v) are in Appendix A. ¤

5. Uniqueness and Computation of Equilibrium

In this section we establish a sufficient condition for the equilibrium of Section 4

to be unique. To do so, we add to Assumption (A) the assumption that the import

duties ωij levied by country i are uniform over all source countries j, so that we write

ωij = ωi for i 6= j and ωii = 1. The main result of this section is

Theorem 3. If assumptions (A) hold, if ωij = ωi for all i 6= j, and if

(κω)2/θ ≥ 1− β, (5.4)

α ≥ β, (5.5)

and

1− ω ≤ θ

α− β
, (5.6)

there is exactly one solution to Z(w) = 0 that satisfies
Pn

i=1wi = 1.

Proof. In Appendix B, we use the results from Theorem 1, (iii) and (v), to establish

that Z has the gross substitute property:

∂Zi(w)

∂wk
> 0 for all i, k, i 6= k, for all w ∈ R++.. (5.7)
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(Since Z is homogeneous of degree zero, (5.7) will imply that

∂Zi(w)

∂wi
> 0 for all i, for all w ∈ R++.)

Then the result will follow from Proposition 17.F.3 of Mas-Colell, Whinston, and

Green (1995), p. 613.

Direct inspection of the sufficient conditions (5.4) and (5.6) shows that they

are satisfied if the tariff and transportation costs are small enough, that is if ω and

κ are close enough to one. For the parameter values for α, β and θ proposed in

Section 6, conditions (5.4) and (5.6) are only satisfied for small tariffs. For instance, if

α = 0.75, β = 0.5 and θ = 0.15, condition (5.4) is satisfied if tariffs and transportation

cost are no higher than 2.5% each (i.e. κω ≥ 0.95 ). For the same parameters,

condition (5.6) is satisfied if tariffs are no higher than 40% (i.e. ω ≥ 0.6). Condition
(5.5), requiring α > β, is easily satisfied for the benchmark calibration presented later

on.

Of course, the conditions (5.4)-(5.6) are sufficient, not necessary, conditions for

the gross substitute property to obtain. For the case of two countries, it can be shown

that (5.6) alone is sufficient and (5.4) and (5.5) are not required at all. Our numerical

experience also confirms that the gross substitutes property holds under much wider

conditions than (5.4)-(5.6), including quite high tariff and transportation costs.

We finish this section by discussing the algorithm that we use to compute equi-

librium. The gross substitutes property established in Theorem 3 suggests the use

of a discrete time analogue of the continuous time tatonnement process. Let ∆w be

defined as

∆w =

(
w ∈ Rn

+ :
nX
i=1

wiLi = 1

)
.

Then we define the function T , mapping ∆w into itself as follows:

T (w)i = wi (1 + νZi(w)/Li) , i = 1, ..., n, (5.8)
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where ν is an arbitrary constant satisfying ν ∈ (0, 1]. To interpret (5.8), notice that
Zi (w) /Li is country i0s labor excess demand per unit of labor. Thus, T prescribes

that the percentage increase in country i’s wage be in proportion to a scaled version

of country i’s excess demand. To see that T : ∆w → ∆w, note first that T (w)i ≥ 0 if
1 + νZi (w) /Li ≥ 0, since Zi is bounded below by −Li by part (iv) of Theorem 2.

Note second that for any w ∈ ∆w

nX
i=1

T (w)i Li =
X
i

wi

µ
1 + ν

Zi

Li

¶
Li =

nX
i=1

wiLi + ν
nX
i=1

wiZi (w) = 1

where the last equality uses Walras’ Law. To calculate T (w) numerically, one first

needs to calculate pm (w), the solution to (3.11). We used an algorithm based on the

contraction property of the function f , defined in (4.1) and used to prove Theorem 1.

This function T is closely related to a continuous time version of the tatonnement

process. To see this, interpret T dynamically as giving the value T (w) to w(t + ν)

whenever w(t) takes the value w. Then (5.8) becomes

1

wi(t)

wi(t+ ν)− wi(t)

ν
=

Zi(w(t))

Li
.

Letting ν → 0, we obtain
d logwi(t)

dt
=

Zi(w(t))

Li
. (5.9)

Although (5.9) differs from the standard tatonnement process, given by dwi/dt =

ci Z (wi (t)) for some constant ci, it has the same stability properties : If Z satisfies

the gross substitute property, the differential equation (5.9) converges globally to the

unique equilibrium wage. A proof that (5.9) converges to the unique equilibrium can

be constructed by showing that L (w) = maxi {Zi (w) /Li} is Lyapounov function for
this system. In our computational experiments, we found that setting the parame-

ter ν of (5.8) equal to one always produced monotone convergence, in the sense of

sequences with decreasing Lyapounov function L (w).
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6. Calibration

The general structure of the theory is now in place. In the rest of the paper,

we will use a series of algebraic examples and numerical simulations to get an under-

standing of the properties of the model, of its ability to account for some of the main

features of world trade, and of its implications for the effects of some simulated policy

changes. We intend these inquiries to be quantitative, so we will need estimated val-

ues for the parameters θ, α, β and η that are assumed to be constant across economies,

and for the endowments L = (L1, ..., Ln), the technology parameters λ = (λ1, ..., λn),

and the matrices [κij] and [ωij] that describe transportation costs and tariff policies.

For the substitution parameter η used in forming the tradeables aggregate, we

used a conventional value of 2: The results we report are not at all sensitive to this

choice.7 For α and β, we use the estimates 0.75 and 0.5, based on U.S. Bureau

of Economic Analysis data and related data from other countries from the United

Nations and the World Bank. Conceptually, in our theory, β is the share of labor

in the total value of tradeables produced, and α is closely related to the fraction

si of employment that is in the non-tradeables (final goods) sector. We discuss the

relationship of these theoretical magnitudes to observation, and then review recent

evidence.

The theory divides production into two categories: tradeables and non-tradeables.

Provisionally, we used value-added, employment, and capital in agriculture, mining,

and manufacturing in the U.S. to estimate value-added, employment, and capital in

“tradeables” production. Using the BEA input-output tables, the value-added share

of these sectors was about 0.2 for the U.S. for the years 1996-99, consistent with an α

7See note 5. The parameter η does not affect the expenditure shares Dij (see (3.11)), and so does

not affect the variables Fi and si (see (3.15) and (3.16)), and so does not affect equilibrium wages

(see (3.24)).
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value of 0.8. Using employment shares would yield α = 0.82, and fixed capital shares

would imply α = 0.73.

In fact, according toWorld Development Indicators (WDI at http://www.worldbank.org)

data for the U.S. for the same years, trade in goods was only about 77% of total trade

(exports plus imports over two) in goods and services. The average of this figure for

the countries listed in Table 2 (below) is 0.8. These figures led us to augment the

tradeables share to 0.25 = .2/.8. We use α = 0.75 in all the simulations reported

below.

The United Nations Common Database (UNCDB at http://unstats.un.org) for

1993 reports value-added in agriculture, mining, and manufacturing averaging around

0.3 for the OECD countries, and levels ranging to 0.5 and higher for poorer countries.

The OECD input-output tables (http://www.oecd.org) for 1990 imply an α value

of .72 for the OECD countries. In short, 0.75 seems a reasonable value for α in

the industrialized world. It is a serious overstatement for economies that are still

substantially pre-industrial.

To calibrate the parameter β, we need to think of the primary factor Li as

“labor-plus-capital” or perhaps as “equipped labor” and to identify wiLi with total

value added, not just compensation of employees. Based on the BEA input-output

tables for 1996-99, the ratio of value added in manufacturing to the total value of

production in this sector was about 0.38. This figure can be compared to the U.N.

(UNIDO Industrial Statistics database) estimate of a world average value of 0.38 in

manufacturing for 1998. The OECD input-output table for 1990 gives an average of

0.38 in agriculture, mining, and manufacturing. Since labor’s share in most services

is higher, including tradeable services in total tradeables would require a higher value

of β. For instance, in the 1997 U.S. input-output table, the average of the ratio of

value added to gross product across sectors, weighted by the share of each sector in

U.S. exports, is 0.5. Based on these considerations, we use β = 0.5 throughout this
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paper.

The parameter θ describing the variability of the idiosyncratic component to

productivity is central in quantitative applications of the theory. Its role in the

theory is analogous to the role played by elasticities of substitution in theories based

on the Armington assumption that goods produced in different countries appear as

separate goods in utility functions. In either the Armington context or this one, the

estimation of these parameters is related to the estimation of transportation and other

costs, since all these factors interact to produce the trade patterns we observe.

Eaton and Kortum (Sections 3-5) obtain joint estimates of θ and trade cost using a

bilateral “gravity” formula implied by the theory and bilateral trade data and prices of

individual goods. They obtain an estimate of θ = 0.12. Other, similar estimates range

from 0.08 to 0.28. Their estimated trade cost (transportation plus tariffs and other

artificial barriers) corresponding to θ = 0.12 is large: 28% for neighboring countries up

to 66% for distant pairs. Anderson and Wincoop (2004) survey analogous bilateral,

gravity-type estimates of the (assumed uniform) Armington substitution elasticity.

The connection, based on the bilateral gravity formula, is θ = 1/(σ − 1), where σ is
the elasticity.8 They conclude, based on several studies, that a reasonable range is

σ ∈ [5, 10], which corresponds to θ ∈ [0.11, 0.25]. Based on these findings, we report
numerical experiments based on θ values of 0.1, 0.15, and 0.25.9

As remarked, the estimation of trade barriers is related to the estimation of θ.

Anderson-Wincoop (2004) also report direct evidence of transportation costs–freight

charges–on the order of 4% for the U.S. using trade weights and 11% for simple

averaging. Adding interest costs on cargo in transit may add 9%. Such estimates

8See Anderson and Wincoop (2004), pp. 19-22.
9There is large and persistent variability in value added per worker in individual U.S. plants (see

Baily et al. (1992), Bernard et al. (2003), and Syverson (2003)). The across-economy variance we

want cannot be estimated from these data alone, but Bernard et al. report the estimate θ = 0.25

based on productivity comparisons between U.S. plants that export and those that do not.
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applied to the world at large support an estimate of κ = 0.9. This estimate would be

consistent with a θ value at the low end of the range we explore. Indirect statistical

evidence using distance measures, presence or absence of common borders, and the

like can support κ values as low as 0.65. In most of our simulations we used κ = 0.75,

applied symmetrically to pairs i, j with i 6= j, which is consistent with an intermediate

estimate of θ.

Some direct evidence on tariff costs is given in column (4) of our Table 2, described

below. They range from 5% or less for wealthy economies (which account for almost

all trade) to as high as 40% for some poor ones. Values like this show up in many

studies. Most experts think that non-tariff barriers are at least as important, but they

are hard to quantify. Anderson and Wincoop review evidence from OECD countries,

where non-tariff barriers are estimated to be equivalent to an 8% tariff. In some of our

simulations, we assume the value ω = 0.9, applied uniformly to all foreign suppliers.

Neither the endowments L = (L1, ..., Ln) nor the technology parameters λ =

(λ1, ..., λn) can be observed directly, and the problem of inferring their values from

characteristics we can observe will be a focus of Section 8 and 10. Here we simply

describe the limited, aggregative data set we use for this and other purposes.

We use the 2002 WDI cdRom to assemble a cross-section of the 59 economies

with the largest total GDPs. These countries and the variables measured for each are

listed in Table 2. We also include a residual, rest-of-world category (with 5 percent

of world GDP), treated as the 60-th economy. Column (1) of the table is the Penn

World Table measure of per capita real GDP. We used this variable to order the

countries. For each country, five variables are recorded, along with the utility gains

from a simulated tariff reform that will be described in Section 9.

Column (1) is total GDP, denoted Y = (Y1, ..., Yn). These are IMF-based nominal

values, converted to U.S. dollars at market exchange rates (where available). They

are not on a purchasing power parity basis. In the table they are expressed as frac-
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tions of total world GDP. These flows, and all the import and export flows that we

used were averaged over the years 1994-2000 in order to reduce the importance of

trade imbalances and year to year fluctuations, about which the theory evidently has

nothing to say.

Column (2) is trade volume, denoted V = (V1, ..., Vn), defined as the average of

the values of imports and exports, also from the 2002 WDI cdRom, divided by GDP.

Both imports and exports are defined to include services as well as goods.

Column (3) reports the ratio of the consumption goods deflator for each country

to an index of the prices of machinery and equipment, from the 1996 benchmark year

in the Penn World Table. We will use them as observations P = (P1, ..., Pn) on the

prices (p1/pm1, ..., pn/pmn) in the theory.

Column (4) of Table 2 lists estimates of average 1996-2000 import tariff rates for

each country. These are unweighted averages of ad valorem tariffs applied to different

commodities. They are available in the World Bank database “Data on Trade and

Import Barriers,” and are described in Dollar and Kraay (2004). (For the three

countries for which we do not have tariff data, indicated by asterisks, we substituted

tariffs from a second source: ratios of import duties to imports, from WDI 2002. For

the residual ROW, we used the average of the rest of the column.)

Column (5) contains simulation results that are discussed in Section 9. Column

(6) is a 1994-2000 average of per capita income, on a purchasing power basis, from

the Penn World Table. This last series is not used in any of the calculations reported

below.

INSERT TABLE 2

7. Examples

The algorithm proposed in Section 5 makes it easy to compute equilibria with

many countries, differing arbitrarily, but it will be instructive to work through some
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examples first that are simple enough to solve by hand. We derive the predictions

of special cases of the theory for the behavior of trade volumes and the gains from

trade, as measured by the effects of changes in trade on real consumption.

For future reference, we start with the derivation of some useful formulas for trade

volumes and gains, under the assumption–used also in Theorem 3–that tariffs are

uniform: ωij = ωi for all i 6= j. We first derive expressions for the value of imports

Ii and the volume of trade vi, defined as the ratio of the value of imports to GDP.

The value of imports Ii is the fraction of tradeable expenditures bought abroad,

Ii = Lipmiqi
X
j 6=i

Dij .

From the share formula (3.22), using (3.18) to eliminate si, and collecting terms,

Ii = Liwi
(1− α)

α+ (β − α)Fi
(1−Dii) . (7.1)

Now GDP equals wages plus indirect business taxes,

Lipici = Liwi + Ii (1− ωi) ,

so using the expression (7.1) for imports implies

Lipici = Liwi

·
1 +

(1− α) (1− ωi)

α+ (β − α)Fi
(1−Dii)

¸
. (7.2)

Then dividing and using the definition (3.15) of Fi and the uniform tariff assumption,

we have

vi =
Ii

Lipici
=

(1− α)

β(Dii/ (1−Dii) + ωi) + 1− ωi
. (7.3)

Notice that (1− α)/β is an upper bound for vi.

Using these formulas, we consider first the case of costless trade: κij = ωij = 1,

all i, j. This is the analogue of the zero-gravity case analyzed in Section 4.4 of Eaton

and Kortum (2002). We solve for each country’s wages wi, the prices of non-tradeable
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goods relative to tradeables pi/pmi, the shares in world GDP Liwi/
P

j Ljwj, and the

volume of trade vi, all as functions of the parameters Li and λi. With costless trade

every country buys the intermediate inputs from the same lowest cost producer, so

the pmi are the same for all countries with the common value

pm = (AB)
1/β

Ã
nX

j=1

w
−β/θ
j λj

!−θ/β
.

Inserting this information into (3.11) yields

Dij(w) =

Ã
nX

k=1

w
−β/θ
k λk

!−1
w
−β/θ
j λj. (7.4)

Notice that the expenditure sharesDij do not depend on the identity i of the importer.

With ω = 1, expression (3.18) gives si = α, and the excess demand functions (3.24)

can now be written

Zi(w) =

µ
1− α

β

¶Ã nX
j=1

Dij(w)

wi
Ljwj − Li

!
.

Equating Zi(w) to 0 and applying (7.4) , we solve for equilibrium wages

wi =

µ
π
λi
Li

¶θ/(β+θ)

, (7.5)

where the parameter π, which does not depend on i, will be set by whatever normal-

ization we choose for w. Compare to equation (22) in Eaton and Kortum (2002).

Setting π = 1, total GDP for country i is

Liwi = L
β/(β+θ)
i λ

θ/(β+θ)
i , (7.6)

a geometric mean of productivity in tradeables λi and labor in efficiency units Li.

Notice that if θ = 0, so that there is no variation of productivities, then country

i’s GDP Liwi is simply Li. Using (2.12) and (7.5), the price of the final non-tradeable

goods relative tradeables goods in country i is given by

pi
pm

= α−α(1− α)−1+α
µ
λi
Li

¶αθ/(β+θ)

p−αm , (7.7)
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so that countries with high productivity λi in tradeables have a high relative price

of non-tradeables.10 From (7.6) and (7.7), we can solve for Li and λi in terms of

observables:

Li =
1

k
YiP

−1/α
i (7.8)

and

λi = kβ/θYiP
β/(αθ)
i . (7.9)

In this world of costless trade, then, data on GDPs Yi and on relative prices Pi can

be used to infer each country’s labor endowment Li and its tradeables productivity

parameter λi. We will see in Section 10 that the idea of using relative price data Pi

to separate the effects of Li and λi on production can also be applied in the general

case where tariff and transportation costs are positive. The volume of trade vi in the

costless trade case is given by

vi =
1− α

β
(1−Dii) =

1− α

β

Ã
1− LiwiP

j Ljwj

!
. (7.10)

Our second example explores a different special case. We study a symmetric

equilibrium with equal sized countries Li = L = 1, identical technologies, λi = λ, and

uniform transportation costs and tariffs, described by

κij = κ and ωij = ω if i 6= j

and κii = ωii = 1. In these circumstances, there will be a common equilibrium wage

wi = w, all i. We normalize it to w = 1. Everyone will face the same tradeables price

pm, and the formula (3.11) can be solved for

pm =
(AB)1/β

(1 + (n− 1)(κω)1/θ)θ/β λθ/β
. (7.11)

10The idea that countries with a more advanced technology will have a high relative price of

non-tradeables is known as the Balassa-Samuelson effect (Balassa (1964), Samuelson (1964)).
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The price of final goods is given by (2.12), which with w = 1 and pm given by (7.11)

yields

p =
α−α(1− α)−1+α (AB)(1−α)/β

[1 + (n− 1)(κω)1/θ]θ(1−α)/βλθ(1−α)/β . (7.12)

With w = 1, (3.11) implies

Dij =
(κω)1/θ

1 + (n− 1)(κω)1/θ

for i 6= j. Then applying (7.3), the imports/GDP ratio v equals

v =
1− α

β

(n− 1)(κω)1/θ
1 + (1 + βω − ω)(n− 1)(κω)1/θ/β . (7.13)

Nominal GDP per capita in this example is

pc = 1 + I (1− ω) = 1 + vpc(1− ω),

with v given by (7.13), and consumption, or utility per unit of labor, is given by

c =
1

1− v(1− ω)

1

p
. (7.14)

We calculate the utility gain from eliminating a tariff ω. Denote by c, I and p the

levels of consumption, imports, and the consumption price corresponding to a tariff

ω and by c0, I0 and p0 the values corresponding to the case of no tariff: ω = 1. Then

using (7.12).

c0
c
= [1− v(1− ω)]

µ
[1 + (n− 1)κ1/θ]
[1 + (n− 1)(κω)1/θ]

¶θ(1−α)/β
. (7.15)

We use equations (7.13) and (7.15) to derive an expression for the gain Λ ≡
log (c0/c) of going from pure autarchy, ω = 0, to costless trade, κ = ω = 1. Specializ-

ing (7.14) to the autarchy-costless-trade comparison, we get

Λ ≡ log (c0/c) = θ (1− α)

β
log(n) . (7.16)
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In the last section we argued that the values α = .75 and β = .5 are empirically

reasonable, at least for the high income countries. Using the value 0.15 for θ, (7.16)

then implies the gain estimate

Λ = (.075) log(n).

We can think of n in (7.16) as the ratio of world GDP to the home country’s, so

that taking values from Table 2, n = 3.6 ∼= 1/.28 for the United States, n = 6.2

for Japan, and n = 170 for Denmark. In percentage terms, this formula implies

benefits of 10 percent of consumption for the U.S., 14 percent for Japan, and 38

percent for Denmark. These are fantasy calculations–even ideally free trade is not

costless trade–but they give useful upper bounds for the magnitude of gains we will

be discussing in the rest of the paper.

These examples make clear that the parameters determining trade volume are

informative about the welfare effects of tariffs. To see this, notice that trade volume

given by (7.10) or (7.13) is a function of (1− α) /β, which is the same expression

appearing in the welfare gains (7.16). Also observe that trade volume in (7.13) as

well as gains of trade in (7.16) are increasing functions of θ.

Next we return to the case of positive transportation costs and tariffs, retaining

symmetry. The properties of the volume and welfare gain functions defined in (7.13),

and (7.14)-(7.15) are illustrated in Figures 7.1 through 7.4. In all cases, we used the

values α = 0.75, β = 0.5, and κ = .75. In the figures, the values of θ and the tariff

parameter ω are varied, as shown.

Figure 7.1 shows the gains of eliminating a tariff corresponding to ω = .9 for

the same three values of θ. Of course, the gains from eliminating a 10 percent tariff

are far smaller than the gains (7.16) of moving from autarchy. Notice too that the

gains in Figure 7.1 are not always decreasing in the the size of the country: This is

due to the effect of the revenue from the tariff. As the formula (7.15) makes clear,

38



there are two effects of eliminating a tariff (setting ω = 1). One is to reduce the

price of the final, non-tradeable consumption good (that is, to increase p/p0). The

other is that tariff revenues are lost. These effects have opposing effects on welfare,

and are stronger if n is large (i.e. if countries are small). The first effect must

dominate–eliminating the tariff must be welfare improving–but the welfare gain

need not decrease monotonically in n.

Figure 7.2 plots the gains from eliminating a tariff for different ω values, holding

θ fixed at 0.15. Note that the difference in the welfare gains from eliminating a 30

percent versus a 20 percent tariff is smaller than the difference between eliminating

a 40 percent versus a 30 percent tariff.

Figures 7.3 and 7.4 are plots of the relation between the volume of trade, (7.13),

measured as the ratio of import value to GDP, and the size of the economy. The

volume of trade is decreasing in size, and is bounded above by the ratio of (1− α) to

(1− (1− β)ω), which equals 0.45 for our benchmark parameter values and ω = 0.9.

Figure 7.3 shows this curve for different θ values. Small economies have trade volumes

that nearly attain the bound for even very small θ values. For large economies,

increases in θ have large effects for θ less than .15, but by θ = .25 or larger, trade

volume approaches the upper bound. In Figure 7.4, θ is held at 0.15 and ω is varied

between 0.7 and 1. The effects of variation in ω are large for economies of all sizes.

Figures 7.1 - 7.4 refer to symmetric world economies, where all economies have the

same size and technology levels. These are not cross-sections. The scatter of points

in Figure 7.5 are GDPs, Yi, and Import to GDP ratios, Vi, for 60 large countries:

columns (1) and (2) in Table 2. These data are a cross-section. But the continuous

curve on the picture is calculated for a symmetric world, with a 10% tariff (ω = 0.9)

just as in Figures 7.3 and 7.4, except that the x -axis is transformed to logs so that

one can see the observed pairs for small countries.

The data and all of the parameter values used to compute the theoretical curve
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in Figure 7.5 have all been discussed in Section 6. No adjustments have been made

to fit the curve to the data. The theoretical curve reproduces the negative relation

between trade volume and size in the data, but implies a higher average trade volume

than the average implied by the data.

In a world with very different national policies toward trade one would not ex-

pect equal trade volumes at each GDP level, even if the assumptions underlying the

construction of Figure 7.5 were correct: The points should not lie on the theoreti-

cal curve. If the theory were accurate, the rich economies with similar and more or

less free trade–roughly, the OECD–should be near the curve, and the protectionist

economies should fall below it by varying amounts.

There are also four striking outliers in the figure: Hong Kong, Singapore, Malaysia,

and Belgium, with trade volumes much higher than others’, and much higher than

our theoretical upper bound. It is a characteristic of port cities that a high volume

of goods passes through, counted as imports when they enter and exports when they

leave. Countries in which such ports are important would appear as “low β” coun-

tries in our parameterization, so it is possible that relaxing the assumption that β is

uniform across economies would yield a better fit of the volume-size curves in Figures

7.5 and 8.2, below.

There is some evidence supporting this interpretation of the outliers in Figure

7.5 as low-β port cities. The UN Statistics Division (Commodity Trade Statistics

Database: COMTRADE) collects data on re-exports of goods–exports of goods

that have been imported with no local value added–for 50 countries, 10 of which

are in our 60 country data set. Of the four outlying high-volume countries in Figure

7.5, only Hong Kong has re-export data. Hong Kong reports that goods re-exports

averaged about 85% of total goods exports during 1994-99. Since goods exports were

about 86% of total exports, removing re-exports from total exports would lead to

a reduction in the estimated trade volume in Hong Kong from 1.4 to 1.4 × (.14 +
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.86 × .15) = .38, or to about the level of the theoretical curve in Figure 7.5. For

the other 50 countries in the COMTRADE data set, re-exports are less than 10% of

goods exports, and for most countries they are less than one percent of the total.

INSERT FIGURES 7.1 - 7.5

8. Volume of Trade

The algorithm described in Section 5 lets us replace the theoretical curve in Fig-

ure 7.5, based on an assumption of symmetry, with the volume predictions of the gen-

eral theory, calibrated to fit the actual distribution of economies by size. In addition,

the general theory lets us incorporate other kinds of international differences–for

example, differences in tariff policies–into the trade volume predictions. We do this

in this section, in two ways.

Once the assumption of identical countries is dropped there is no reason for equi-

librium wages to be equal, and if they are not, observed GDPs Y cannot be taken as

direct observations on labor-capital endowments L. Even without tariff distortions,

Yi will be the product wiLi, and neither w nor L can be directly inferred from obser-

vations on Y . What can be done about this depends on what other data are used.

We discuss several possibilities in the next three sections.

The simplest calibration method uses the theory to infer w and L from the data

on Y only. To do this, it seems a natural starting point to think of the parameter λi

in any country as proportional to that country’s effective labor endowment Li. That

is, we assume that if country 1 has twice the labor endowment of country 2, that

country will also have twice as many “draws” from the distribution of productivities.

With exponentially distributed productivities, this means λ1 = 2λ2, and in general,

that the vector λ is proportional to the endowment vector L. This assumption of

uniform ratios λi/Li surely has more appeal that assuming uniform levels λi. In the
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latter case, there would be enormous diseconomies of size: Denmark would be the low

cost producer of as many goods as the United States is, but with its much smaller

workforce, Danish wage rates would be bid up to much higher levels the wages in

the U.S.11 Of course, these are not the only possibilities. The assumption λ = kL is

at best a kind of steady state or very long run hypothesis, in the spirit of Kremer’s

(1993) idea that the stock of useful ideas should be proportional to the number of

people.

Under this assumption, the equilibrium condition

Z(w,L, λ) = 0, (8.1)

written so as to emphasize the dependence of the excess demand system Z on L and

λ, is specialized to Z(w,L, kL) = 0. The choice of the constant k is just a matter of

the units chosen for tradeables and labor input. We set it equal to one:

Z(w,L, L) = 0. (8.2)

A second set of equations in the variables w and L is given by the GDP-equals-national

income conditions

L · ε(w,L) = Y, (8.3)

where εi(w, λ) is wi adjusted for indirect taxes using the function of the equilibrium

wage vector defined in equation (7.2):

εi(w, λ) = wi

·
1 +

(1− si(w, λ))(1− Fi(w, λ))

βFi(w, λ)

¸
. (8.4)

11See the costless trade formula (7.5), for example. Note that although the hypothesis λ = kL

avoids an unrealistic diseconomy of scale, it leaves in place an unrealistic scale economy. In the

theory, transportation costs within an economy, no matter how large, are taken to be zero. Insofar

as the parameters κij measure the resources used in moving goods over space, this is a deficiency

that can only be fixed by introducing some actual geography.
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(Notice that without tariffs, ωi = 1 and εi(w, λ) = wi.) We view (8.2) and (8.3) as

2n equations in the pair (w,L), given the data Y .

We describe the algorithm used to solve (8.2)-(8.3). Define w∗(λ,L) to be the

function that solves (8.1). Its values can be calculated using the algorithm described

in Section 5. Define ϕ by

ϕi(L) =
Yi

εi(w∗(L,L), L)
/

nX
j=1

Yj
εj(w∗(L,L), L)

. (8.5)

Then ϕ maps the n-dimensional simplex ∆n into itself, and if L is a fixed point of ϕ,

the pair (w∗(L,L), L) satisfies (8.2)-(8.3). We located a fixed point by iterating using

(8.5), applying the algorithm from Section 5 to compute w∗ at each iteration, from

an initial guess for L. In practice, this algorithm always converged to a fixed point.12

Figure 8.1 displays the equilibrium wages calculated in this way as a function

of size (GDP share). The benchmark parameters used in Figures 7.1-7.5 were used,

and the same range of θ values. The equilibrium wages are increasing with size,

reflecting the scale economy in transportation enjoyed by larger economies. Since the

technology level λ is assumed proportional to size L in the construction of the figure,

it cannot provide a second source of wage variation.

Given equilibrium wages and endowments computed in this way, the analogues to

Figures 7.1-7.4 are readily constructed. We were surprised to find that the new figures

constructed in this way were very similar to the figures based on the assumption of

equal size countries and wage equality, even though these two sets of assumptions

seem very different.

This finding is illustrated in Figure 8.2. This figure is the exact analogue to

Figure 7.5, except that the very high volume countries have been left off so as to

12Indeed, under the assumptions of Theorem 3 it can be shown that ϕ : int(∆n)→ A ⊂ int(∆n),

where A is closed and convex, and that ϕ is continuous, so that the existence of a fixed point follows

from Brouwer’s theorem.
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get higher resolution on the others. The volume and GDP data used in both figures

are the same. The theoretical curve plotted in Figure 7.5, based on a symmetric

model with identical countries and uniform wages, is reproduced on Figure 8.2, as

is a new second curve, constructed by solving the general equilibrium system with

endowments L calibrated in the way we have just described. Despite the completely

different computational methods used to construct them the two curves are very

similar, except for the largest economies–Japan and the U.S.–where the symmetric

model predicts a smaller volume than the more realistic one does. This is due to

the effects of size on wages in the calibrated economy, shown on Figure 8.1. The

implication we draw from the similarity of the two curves is that even though an

economy’s size relative to the world economy matters for the determination of trade

volume, the way the rest of the world is configured matters very little.

INSERT FIGURES 8.1 - 8.2

Neither of these curves is a particularly good fit: They pick up the effects of

size on trade volume, and nothing else. Some other factors were remarked on in our

discussion of Figure 7.5, and other possible influences will occur to anyone. Here

we examine the possible effects of tariff policies, under the assumption–also used

in Sections 5 and 7–that each country i imposes a uniform tariff factor ωi on all

countries j.

We introduce tariffs simply by repeating the simulation (8.2)-(8.3) with a uniform

tariff factor of ω = 0.9 replaced by the vector Ω = (Ω1, ...,Ωn) of observed tariff

factors, obtained from the tariff rates from column (4) of Table 2, interpreting Ωi as

the uniform tariff factor that country i imposes on all imports. Results are shown on

Figure 8.3, based on the same GDP and volume data as Figures 7.5 and 8.2. The

o’s are the data, the continuous curve is obtained from the calibrated model with a

uniform tariff ω = 0.9. The asterisks are predictions from the calibrated model using
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the tariff factors Ω implied by Table 2, column (4).

INSERT FIGURE 8.3

As a basis for comparison, we ran a regression of volume on GDP and tariffs

levels for the 60 countries. The results were

log(V̂i) = a− (0.23) log(Yi)− (0.029)(100)(1− Ωi). (8.4)

The associated R2 was .34.13 The same statistic but with the estimates V̂i of Vi

calculated from the theory (the x’s on Figure 8.3) was also R2 = (.58)2 = .34. With

the uniform tariff imposed, the comparable statistic was R2 = (.45)2 = .20. The slope

parameters in (8.4) are freely chosen to fit the data. The effect of tariffs derived from

the calibrated model was not selected in any way to improve the fit, and no actual

tariff data (beyond average levels) was used in the calibration. Yet the tariffs have

exactly the same (considerable) ability to improve the fit when constrained to work

through our theory as with a freely chosen regression coefficient.

We also experimented with making κij a function of the distance between coun-

tries, and by taking into account the free trade agreements between countries in our

data set. In both cases the simulated trade volumes became more correlated with the

trade volume from the data, but the changes were small.

To model the effect on distance on transportation cost we let dij be the dis-

tance between countries i and j, measured in linear miles between the capitals of

the two countries, normalized so that the average distance equals 1. We let κij =

κ exp (−δ0 (dij − 1)) , so that δ0 has the interpretation of the elasticity of transporta-
tion cost with respect to distance. Using δ0 = 0.05, a number consistent with the

empirical literature, we found that the correlation between the (log) model trade

volume and the (log) trade volume in the data is 0.61.

13We obtained only slightly different estimates when the four countries with trade volumes ex-

ceeding 0.75 were excluded from the regressions.
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To model the effect of the free trade agreements we let ωij = 1 for any two

countries with a free-trade agreement, and otherwise used the tariffs described in

Table 2. We considered the European Union, NAFTA, CEFTA and Mercosur. In

this case we found that the correlation between the (log) model trade volume and the

(log) trade volume in the data was 0.60.

9. Gains from Trade

In Section 7 we studied the gains from trade using the autarchy versus costless

trade example and hypothetical tariff reductions in the context of a symmetric world

economy. In this section, we incorporate differences among countries it a more realistic

way, using the general version of the theory calibrated to the actual world GDP

distribution and the measured tariff factors Ω used in Section 8.

Results of a specific, world-wide tariff reduction are described below and dis-

played in figure 9.2. But before turning to these results, it will be helpful to study

the effects of unilateral tariff changes in a small economy, or to calculate the “best-

response function” for a small economy, taking the tariff policies of rest of the world

as given. Studying this problem will help us to interpret the results of a uniform,

multilateral tariff changes.

We focus on the case of economy 1, say.We use the notationL−1 = (L2, L3, ...Ln) and

λ−1 = (λ2, λ3, ..., λn) to denote the parameters corresponding to countries other than

1, and similarly with w−1, c−1, and pm−1. Assume that country 1 applies a uniform

tariff ω to all its imports, and assume that all other countries apply a common tariffbω to country 1’s exports. Our interest is in analyzing the behavior of country 1’s
welfare (final goods consumption) c1 as a function of the pair (ω, bω).

To make precise the idea that country 1 is small, consider a sequence of world

economies {Lr, λr} with (Lr, λr) → (L, λ), and with λr1/L
r
1 = k > 0 along the

sequence. Let {wr, cr, prm} denote the corresponding sequence of equilibrium values,
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and let (w, c, pm) be the corresponding equilibrium values of the limiting economy.

In Appendix C we establish that as Lr
1 → 0, the limiting behavior (w−1, c−1, pm−1) of

the other n − 1 economies is equal to the equilibrium of a world economy with

n−1 countries and endowments (L−1, λ−1), and that the limiting behavior of economy
1, (w1, c1, pm1), is given by

w1 =

·
α+ (β − α)ω

ω1−(1−β)/θ
k

¸θ/(θ+β) bω(1+θ)/(θ+β) ŵ1, (9.1)

c1 = ω(1−α)/(θ+β) [1 + (β − 1)ω]
× [α+ (β − α)ω]−(αθ+β)/(θ+β) bω(1−α)(1+θ)/(θ+β) k (1−α)θ

θ+β ĉ1, (9.2)

and

pm1 = p̂m1 / ω1, (9.3)

where the numbers p̂m1, ŵ1 and ĉ1 do not depend on ω, bω and k.

The expression (9.2) can then be used to calculate the optimal tariff: the level

of ω that maximizes utility c1 for country 1. One can show, provided that β < α,

that there is a unique ω∗ that maximizes c1 and that the optimal tariff is strictly

positive (that ω∗ ∈ (0, 1)) and increasing in θ. This result is quite intuitive. For small
θ values, there are small differences across countries, and hence a given increase in

tariffs produces a large decrease in the demands for the products of country 1. Con-

sequently, the optimal tariff is decreasing in θ. Figure 9.1, based on (9.2), illustrates

the way utility c1 varies with ω for different θ values. The vertical axis in the figure

is log(c1(ω))− log(c1(1)).
Should we be surprised at this persistence of market power as the economy be-

comes vanishingly small? Equation (9.3) states that as a buyer of tradeable goods

the limit economy 1 is a price-taker. The set of tradeables it produces for home use

has zero measure zero and it has no effect on the pre-tax price p̂m1 of the tradeables

aggregate. But under the Eaton-Kortum technology, any economy, no matter how
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small, has some goods which it is extremely efficient at producing, and even a small

country can serve a large part of the world market for these particular goods. In

our case, this market power cannot be exploited by individual sellers, because others

in the same economy have free access to the efficient, constant returns technology.

But as Figure 9.1 illustrates, it can be exploited by the government. Since we do

not permit export duties, the way to restrict supply of these goods is through import

tariffs.14

INSERT FIGURE 9.1

It follows from these observations that a Nash equilibrium of a world-wide tariff

game involving many small countries would involve strictly positive tariff levels for

every country. We did not compute such an equilibrium. Instead, we calculated

the analogue to the equilibrium shown in Figure 8.3 that results when the observed

tariff factors Ω are replaced with the free-trade factors (1, 1, ..., 1).We then calculated

the percentage increase in consumption that each country would receive under this

elimination of tariffs. These gains are reported in Column (5) of Table 2.15 They are

shown in Figure 9.2, plotted against each country’s initial tariff rate, (1−Ωi)× 100.
14A similar point is made in Helpman and Krugman (1989) and Gros (1987), in a context of

imperfect competition. This analysis of the optimal tariff applies only for the small open economy

case, but we have numerically verified for our calibrated economy that the calculations in Figure

9.1 are an excellent approximation for all but the largest economies. Compare to the Eaton and

Kortum (2002, p. 1774) finding that if the U.S. were to reduce its tariffs on manufacturing goods

unilaterally, it would suffer a welfare loss of about .0005%.
15The overall magnitude of these estimates is within the rather wide range of estimates of static

gains from tariff elimination that other economists have obtained. For example, Anderson (2004,

Table 1) reports estimates of the gains from a hypothetical “full global liberalization” carried out

in 2005 that range from $254 to $2080 b.(1995 dollars). Using an estimate of 2005 world GDP in

1995 dollars of $32000b. (our calculation) the implied range in percent is 0.8 to 6.5. Most studies

are nearer the lower end of this range. Our estimates are also similar to those reported by Eaton

and Kortum (2002) for the mobile labor version of their model.
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Figure 9.3 reports the results of the same calculation, with the welfare gains plotted

against size to facilitate comparison with Figure 7.1.16

INSERT FIGURES 9.2 AND 9.3

One can see the optimal tariff structure in Figure 9.1 reflected in the U-shaped

pattern of gains from trade shown in Figure 9.2. The figure shows the effect of a tariff

reform beginning from a situation in which tariffs vary realistically cross-sectionally

and ending with all tariffs at zero. In the post-reform situation, every country would

like to have its tariff at the best response to a world of zero tariffs. Countries with

initial tariffs near this level lose the most frommoving their own tariffs to zero, though

they still gain from others’ tariff reductions. Countries with very high initial tariffs

gain from a reduction to the optimal tariff, but then lose some of these gains back as

they continue toward zero. Countries with very low initial tariffs were never at their

optimal tariff, so they only gain from others’ reductions. From Figure 9.3, we can

see two features already present in the symmetric example of Figure 7.1: first, for

small countries with tariffs near 10% both figures give similar estimates of the welfare

gains and, second, that the gains from trade are larger for smaller countries. Using

the averages presented in Table 2, the world wide cost of the current level of import

tariffs is 0.5% of world GDP and 31% of world tariff revenues.

10. Sources of Income Differences

As equations (7.7)-(7.9) of the costless trade example suggest, cross-section ob-

servations on the relative prices of tradeables and non-tradeables can be used to

identify the vectors L and λ separately, in which case the proportionality assumption

16Incorporating distance into the transportation cost and incorporating the main free trade ag-

greements in the modeling of [ωij ] as explained in section 8 have very small effects on the estimated

welfare effects of a world trade liberalization.
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λ = kL can be dropped. We base our final simulation on this idea.

In the general case, equation (2.12) implies that equilibriumwages and prices satisfy

pi
pmi

= α−α(1− α)−1+α
µ

wi

pmi(w, λ)

¶α

for all i, where the notation emphasizes that the right side can be computed as a

function of w and λ. Write ψ(w, λ) for the n-vector of right side values, and view

the relative prices on the left as the theoretical counterparts to the observed relative

prices Pi in column (3) of Table 2. Then we can obtain estimates of w,L, and λ by

solving

Z(w,L, λ) = 0, (10.1)

L · ε(w, λ) = Y, (10.2)

and

ψ(w, λ) = P, (10.3)

where ε is defined implicitly in (7.2). The system (10.1)-(10.3) consists of 3n equations

to be solved for the 3n unknowns w,L, and λ. To solve this system, we used an

algorithm that parallels the one described in Section 8.

The asterisks in Figure 10.1 are the equilibrium wages implied by this calculation,

plotted against the log of GDPs. The circles in the figure are the equilibrium wages

from the analogous calculation described in Section 8, in which the ratios λi/Li are

constrained to equal a common value. (Neither reported calculation uses tariff data,

but we have carried out versions that do so: The figure is not much affected.) One

can see that constraining λi/Li to be constant suppresses most of the cross-country

variability in equilibrium wages, relative the case where variations in λi and Li are

permitted to exercise independent influences. The two log standard deviations in the

upper right of the figure quantify this difference.

INSERT FIGURE 10.1
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In these calculations relative price data were used to identify these effects sepa-

rately. Cross-country data on real wages of labor at equal skill levels could have been

used for this purpose, too, or some combination of the two. One can see from Table

2 that the observed relative prices Pi are strongly correlated with per capita GDPs.

This is also true of the equilibrium wage rates wi obtained by solving (10.1)-(10.3),

and we believe it would be true of measured wages as well (though controlling for

international skill differences would not be easy, and we have not carried this latter

comparison out).

Interpreting the simulation results in this section and in Section 8 entails a kind

of cross-country accounting of the sources of income differences, similar to growth

accounting based on time-series data. In Sections 8 and 9, where λi is constrained to

be proportional to Li, individuals in all countries are viewed as drawing production-

related ideas from a common distribution. Productivity differences for individual

goods are just a matter of chance and these differences average out over the whole

economy. Differences in overall production are almost all due to differences in resource

endowments: population and human and physical capital per person.

Of course, the focus of Sections 8 and 9 was on the determination of trade flows

and the consequences of policy changes that affect these flows, and we think we have

made some progress on these questions. It is reassuring that the simulations of this

section, with λi/Li left free, give very similar answers on the volume of, and gains

from, trade as the constrained simulations do.

11. Conclusion

We think of this paper as a kind of trial run of a particular version of the Eaton

and Kortum trade theory. As we formulated the theory, the problem of solving

for equilibrium prices and quantities can be reduced to solving for the vector of

equilibrium wages in the n countries that comprise the world economy, very much
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along the lines of Wilson’s (1980) analysis. We have shown that such an equilibrium

exists under reasonable conditions and that under somewhat tighter assumptions

it will be unique. We have proposed and tested an algorithm that is essentially a

tatonnement process for calculating equilibria. We have discovered that “toy versions”

of the theory can provide surprisingly accurate approximations to predictions about

wages, trade volumes and gains from trade, so pencil-and-paper calculations can be

used to provide inexpensive checks on quantitative conjectures and to help interpret

simulation results.

For the most part, objects in the theory match up naturally to counterparts in

the national income and product accounts, input-output accounts, and standard trade

statistics. This makes much of the calibration easy to carry out, lets us focus attention

sharply on small regions of the theory’s parameter space, and facilitates interpretation

of simulation results. These features are essential to successful quantitative economics.

The calibrated model accounts fairly well for the overall volume of world trade in

the 2000, and for the way volume varies cross-sectionally with an economy’s size and

tariff levels. With its assumption of continuous trade balance, the theory is obviously

not designed to interpret short term fluctuations. We have not tested the theory’s

ability to account for trends in trade volumes (as studied, for example, in Yi (2003))

nor have we responded to Kehoe’s (2002) challenge to provide a satisfactory account

of the effects of NAFTA or other important trade agreements. These issues are high

on our agenda, as they are on every quantitative international economist’s.

We have kept the analysis in this paper on a strictly static basis, in order to keep

complications within bounds and to understand better the connections with other

trade theories. The cost of this decision was to leave the model’s many connections

to growth theory and public finance unexplored. A more satisfactory treatment of

physical capital is needed, in which the dynamics of capital accumulation can be

examined as well as the contributions of capital to current production. Capital goods
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play a large role in trade, so it is natural to conjecture that tariff and other barriers

have large effects on the return to investment and hence on capital accumulation and

growth. We are currently exploring this topic. Another natural direction, already

examined by Eaton and Kortum (1999), will be to introduce technology diffusion by

introducing a law of motion for the parameters λ. Perhaps in some combination such

extensions can help us to discover the long-sought theoretical link between trade and

growth.
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Appendix A: Proofs of Theorem 2, (iv) and (v).

Proof of part (iv).The lower bound on Zi(w) is implied by

Zi(w) =
1

wi

"
nX

j=1

Ljwj(1− sj)
1

Fj
Djiωji − Liwi(1− si)

#

≥ −Li(1− si)

≥ −Li.

Proof of part (v). Suppose that {wm} is a sequence in Rn
++, that w

m → w0 6= 0,
and that w0i = 0 for some i. We need to verify that (4.9) holds for this sequence. For

any w ∈ Rn
++, we have

max
k

Zk(w) = max
k

"
nX

j=1

Lj
wj

wk
(1− sj)

1

Fj
Djkωjk − Lk(1− sk)

#

≥ max
k

nX
j=1

Lj
wj

wk
(1− sj)Djkωjk −max

k
Lk

≥ max
k,j

Lj
wj

wk
(1− sj)Djkωjk −max

k
Lk.

By Assumption (A), ωjk ≥ ω, implying in turn that the functions Fi take values in

[ω, 1]. Then (3.18) implies that the shares 1− sj are uniformly bounded away from

zero. Thus (4.9) will be proved if it can be shown that

max
k,j

wm
j

wm
k

Djk(w
m)→∞ (A.1)

for the wage sequence {wm}.
From (3.11) we have, for any w,

Djk(w) = (AB)
−1/θ p1/θmj

Ã
wβ
kp
1−β
mk

κjkωjk

!−1/θ
λk

≥ (AB)−1/θ (κω)1/θ λkw−β/θk p
1/θ
mj p

−(1−β)/θ
mk

57



or that

Djk(w) ≥ (AB)−1/θ (κω)1/θ λk
µ
pmk

wk

¶β/θ µ
pmj

pmk

¶1/θ
. (A.2)

Using (3.11) directly,µ
pmj

pmk

¶1/θ
=

"
nX

r=1

µ
wβ
r p
1−β
mr

κjrωjr

¶−1/θ
λr

#−1 nX
r=1

µ
wβ
r p
1−β
mr

κkrωir

¶−1/θ
λr ≥ (κω)1/θ . (A.3)

Using the lower bound established in Theorem 1, (v), we haveµ
pmk

wk

¶β/θ

≥ w
−β/θ
k (AB)1/θ

Ã
nX

r=1

w−β/θr λr

!−1
. (A.4)

It follows from (A.2)-(A.4) that

wj

wk
Djk(w) ≥ (κω)2/θ λk

Ã
nX

r=1

µ
wk

wr

¶β/θ

λr

!−1
wj

wk

and therefore that for all w,

max
k,j

wj

wk
Djk(w) ≥ (κω)2/θ

³
min
k

λk
´Ã nX

r=1

µ
mink wk

wr

¶β/θ

λr

!−1
maxj wj

mink wk

≥ (κω)2/θ
³
min
k

λk
´Ã nX

r=1

λr

!−1
maxj wj

mink wk
.

Since the wm → w0 6= 0 with w0i = 0 for some i

max
j

wm
j → max

j
w0j > 0

and

min
k

wm
k → min

k
w0k = 0.

This verifies (A.1) and hence (4.9) and completes the proof of Theorem 2. ¤
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Appendix B: Proof of Theorem 3.

We show that Z has the gross substitute property (5.7):

∂Zi(w)

∂wk
> 0 for all i, k, i 6= k, for all w ∈ R++..

Before calculating the derivatives, note that Zi can be written as

Zi(w) =
(1− α)β

wi

"
nX

j=1

LjwjDjiωj

α+ (β − α)Fj
− LiwiFi

α+ (β − α)Fi

#
,

using (3.18) to substitute for sj in (3.24) and using the fact that

(1− α)βFj + α [1− (1− β)Fj] = α+ (β − α)Fj.

Thus we can write the derivatives in (5.7) as

∂Zi(w)

∂wk
=

(1− α)β

wi

nX
j=1,j 6=i,j 6=k

Ljwjωj
∂

∂wk

µ
Dji

α+ (β − α)Fj

¶
+
(1− α)β

wi
Lkωk

∂

∂wk

µ
wkDki

α+ (β − α)Fk

¶
+(1− α)βLi

∂

∂wk

µ
Dii − Fi

α+ (β − α)Fi

¶
.

In the following three steps we sign each of the three terms of this derivative.

- Step (ia): If (5.4) holds, then

∂

∂wk
Dji > 0

for all j 6= i. To see this, notice that direct computation gives

∂Dji

∂wk
=

Dji

wk

1

θ

·
∂p̃mj

∂w̃k
− (1− β)

∂p̃mi

∂w̃k

¸
.

Let

ξ̂k ≡
³
wβ
kp
1−β
mk

´−1/θ
λkPn

r=1

³
wβ
r p
1−β
mr

´−1/θ
λr
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so that the definitions of ξik, ξk, and ξ̄k imply

(κω)1/θ ξ̂k ≤ ξ
k
≤ ξik ≤ ξ̄k ≤

1

(κω)1/θ
ξ̂k

for all i. Then Theorem 1 (vi) implies

∂Dji

∂wk
≥ Dji

wk

1

θ

h
ξ
k
− (1− β) ξ̄k

i
≥ Dji

wk

1

θ
ξ̂k

"
(κω)1/θ − (1− β)

(κω)1/θ

#
=

Dji

wk

1

θ (κω)1/θ
ξ̂k

h
(κω)2/θ − (1− β)

i
which is positive if (5.4) holds.

- Step (ib): If β ≤ α then for j 6= k

∂

∂wk
(α+ (β − α)Fj) ≤ 0.

To see this, notice that under the assumption of uniform tariffs

Fj = ωj + (1− ωj)Djj = ωj + (1− ωj) (AB)
−1/θ

µ
pmj

wj

¶β/θ

λj. (B.1)

Hence
∂

∂wk
(α+ (β − α)Fj) = (β − α) (1− ωj)

∂Djj

∂wk

and for j 6= k
∂Djj

∂wk
= (β/θ)

Djj

pmj

∂pmj

∂wk
> 0,

by (iii) in Theorem 1. Thus if (5.5) holds (if β ≤ α) then

∂

∂wk
(α+ (β − α)Fj) = (β − α) (1− ωj) (β/θ)

Djj

pmj

∂pmj

∂wk
≤ 0.

Clearly, (ia) and (iib) imply that

nX
j=1,j 6=i,j 6=k

Ljwjωj
∂

∂wk

µ
Dji

α+ (β − α)Fj

¶
> 0.
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- Step (ii): If (5.5) and (5.6) hold for k 6= i,

∂

∂wk

µ
wkDki

α+ (β − α)Fk

¶
> 0.

To see this notice that direct computation gives

∂

∂wk

µ
wkDki

α+ (β − α)Fk

¶
=

(Dki + wk∂Dki/∂wk) (α+ (β − α)Fk)− wkDki (β − α) ∂Fk/∂wk

[α+ (β − α)Fk]
2

In step (ia) we verify that (5.4 ) implies that ∂Dki/∂wk ≥ 0 so that it will suffice to
show that

Dki (α+ (β − α)Fk)− wkDki (β − α) ∂Fk/∂wk

[α+ (β − α)Fk]
2 ≥ 0.

Using (B.1),

∂Fk

∂wk
= (1− ωk)

∂Dkk

∂wk
= (1− ωk)

Dkk

wk

β

θ

·
∂p̃mk

∂w̃k
− 1
¸

≥ − (1− ωk)
1

wk
(β/θ)

since Dkk ≤ 1 and ∂p̃mk/∂w̃k > 0. Thus

∂

∂wk

µ
wkDki

α+ (β − α)Fk

¶
≥ Dki

(α+ (β − α)Fk) + (β − α) (1− ωk) (β/θ)

[α+ (β − α)Fk]
2

=
Dki

[α+ (β − α)Fk]

·
1− (α− β) (1− ωk) (β/θ)

[α+ (β − α)Fk]

¸
and since Fk ∈ [ω, 1] and β ≤ α

∂

∂wk

µ
wkDki

α+ (β − α)Fk

¶
≥ Dki

[α+ (β − α)Fk]

·
1− (α− β) (1− ωk) (β/θ)

β

¸
=

Dki

[α+ (β − α)Fk]

·
1− (α− β) (1− ωk)

θ

¸
and thus if if condition (5.6) holds the inequality in step ii) is verified.

- Step (iii) For k 6= i,

∂

∂wk

µ
Dii − Fi

α+ (β − α)Fi

¶
> 0 .
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To see this, use (B.1) so that

Dii − Fi

α+ (β − α)Fi
=

−ωi (1−Dii)

α+ (β − α) (ωi + (1− ωi)Dii)
.

Hence

∂

∂wk

µ
Dii − Fi

α+ (β − α)Fi

¶
=

∂

∂Dii

µ −ωi (1−Dii)

α+ (β − α) (ωi + (1− ωi)Dii)

¶
∂Dii

∂wk

with
∂Dii

∂wk
= (β/θ)

Dii

pmi

∂pmi

∂wk
> 0

and

∂

∂Dii

µ −ωi (1−Dii)

α+ (β − α) (ωi + (1− ωi)Dii)

¶
=

ωi (α+ (β − α) (ωi + (1− ωi)Dii)) + ωi (1−Dii) (β − α) (1− ωi)

[α+ (β − α) (ωi + (1− ωi)Dii)]
2

=
ωiβ

[α+ (β − α) (ωi + (1− ωi)Dii)]
2 > 0

which establishes the inequality in step (iii).

This shows that Z satisfies the gross substitute property, and hence that the

equilibrium is unique. ¤

Appendix C: Behavior of the Limiting Economies

We verify that as Lr
1 → 0, the limiting behavior (w−1, c−1, pm−1) of the other n−1

economies is equal to the equilibrium of a world economy with n − 1 countries and
endowments (L−1, λ−1), and that the limiting behavior of economy 1, (w1, c1, pm1),

satisfies (9.1)-(9.3). We proceed under the hypothesis that w1 ∈ (0,∞) , which we
verify later on. Then when λ1 = kL1 = 0, (3.11) implies

pmi = AB

 nX
j=2

Ã
wβ
j p
1−β
mj

κijωij

!−1/θ
λj

−θ ,
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for all i and, using the assumption that country 1 imposes a uniform tariff ω,

pm1 = ω−1AB

 nX
j=2

Ã
wβ
j p
1−β
mj

κ1j

!−1/θ
λj

−θ = ω−1 p̂m1.

The second equality defines p̂m1 and verifies (9.3).

The fraction of country j’s expenditures on tradeables produced by country 1 is

Dj1(w) = (AB)
−1/θ

·
pmjκj1ωj

p1−βm1 w
β
1

¸1/θ
λ1 = 0.

As Lr
1 → 0, this fraction goes to zero for each j, limr→∞Dj1 (w

r) = 0. Inspection of

the expression for Zi (w) then confirms that when λ1 = kL1 = 0 the excess demand

system Z−1 (w) ≡ (Z2 (w) , Z3 (w) , ...Zn (w)) = 0 does not depend on w1, bω, ω. The
continuity of Z implies that w−1 solving Z−1 (w1, (w−1)) = 0 is the desired limit.

The next step is to derive an expression for the limit for economy 1. We take

w−1 as given in the previous step. For L1 > 0, we have that Z1 (w1, w−1) = 0 is

equivalent to Z1 (w1, w−1) /L1 = 0, so we analyze the latter expression. It can be

shown, using the formulas (3.17) and (3.18) that for L1 > 0

Z1(w1, w−1)
L1

= 0

is equivalent to
nX

j=2

Lj
wj(1− sj)

Fj
(AB)−1/θ (pmjκj1)

1/θk
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1
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= w
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(1− α)βF1
α+ (β − α)F1
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(AB)−1/θ
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pm1
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#
As λ1 = kL1 → 0, then D11 → 0, and hence F1 = D11 + (1−D11)ω → ω. Thus,

taking the limit as L1 → 0 yields
nX

j=2

Lj
wj(1− sj)

Fj
(AB)−1/θ (pmjκj1)

1/θk ω̂(1+θ)/θ

= w
1+β/θ
1

(1− α)βω

α+ (β − α)ω
(pm1)

(1−β)/θ .
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Solving for w1 yields (9.1), where it can be seen that the factor ŵ1 does not depend

on ω, bω and k.

Finally we turn to the calculation of c1. From (7.2) we have that with uniform

tariffs

p1c1L1 = L1w1

·
1 +

(1− α) (1− ω1)

α+ (β − α)F1
(1−D11)

¸
.

and since D11 → 0 and F1 → ω1 as L1 → 0 then

lim
L1→0

p1c1 = w1

·
1 +

(1− α) (1− ω1)

α+ (β − α)ω1

¸
= w1

·
βω1 + (1− ω1)

α+ (β − α)ω1

¸
.

Using the expression for p1 in (2.12),

c1 =
1

α−α (1− α)−1+α

µ
w1
pm1

¶1−α ·
βω + (1− ω)

α+ (β − α)ω

¸
.

Using the expression for pm1 in (9.3) and for w1 in (9.1),

c1 =
1

α−α (1− α)−1+α

µ
ω

p̂m1

¶1−α ·
βω + (1− ω)

α+ (β − α)ω

¸

×
Ã
α+ (β − α)ω

(1− α)βω

µ
ω

p̂m1

¶(1−β)/θ
G (w−1) k bω(1+θ)/θ! (1−α)θ

θ+β

,

where

G (w−1) =

"
nX

j=2

Lj
wj (1− sj)

Fj
(AB)−1/θ(pmjκj1)

1/θ

#θ/(θ+β)
.

Collecting terms involving ω, bω and k :

c1 = k
(1−α)θ
θ+β ω

1−α
θ+β [1 + (β − 1)ω] [α+ (β − α)ω]−

αθ+β
θ+β bω (1−α)(1+θ)

θ+β ĉ1

where it can be seen that the factor ĉ1 does not depend on ω, bω or k.
ĉ1 =

(p̂m1)
−(1−α)[ 1+θθ+β ]

α−α (1− α)−1+α

µ
G (w−1)
(1− α)β

¶ (1−α)θ
θ+β

This completes the proof. ¤
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                                          TABLE 2:  DATA AND SIMULATION RESULTS

       Size  Trade Volume  Relative Price   Tariff  (in %)   Welfare Gain Per Capita GDP
Country Name  GDP as % of  Imports /GDP Consumption /  Mean across   of eliminating  PPP Adjusted

 World GDP Mach. & Equipt     goods tariffs, in percent       US =1
          Yi   [1]            Vi  [2]          Pi    [3]  100x(1-Ωi)  [4]                   [5]             yi    [6]

United States 27.99 0.10 1.37 5.40 0.15 1.00
Japan 15.69 0.08 1.65 5.48 0.25 0.83
Germany 7.35 0.27 1.48 5.86 0.41 0.76
Rest of the World 5.25 0.32 0.70 11.49 * 0.20 0.10
France 4.86 0.24 1.55 5.86 0.52 0.73
United Kingdom 4.30 0.28 1.28 5.86 0.56 0.70
Italy 3.85 0.25 1.27 5.86 0.59 0.71
China 2.86 0.22 0.70 (*) 18.58 0.47 0.10
Brazil 2.29 0.09 1.00 13.73 0.42 0.23
Canada 2.06 0.33 1.30 5.10 0.84 0.82
Spain 1.93 0.26 1.35 5.86 0.79 0.56
Mexico 1.40 0.29 0.72 14.26 0.56 0.26
India 1.34 0.13 0.70 (*) 33.44 2.79 0.07
Australia 1.32 0.17 1.13 5.30 0.94 0.76
Netherlands 1.31 0.48 1.51 5.86 0.89 0.75
Russian Federation 1.09 0.28 0.48 12.47 0.63 0.24
Argentina 0.94 0.11 1.02 12.40 0.66 0.39
Switzerland 0.91 0.31 1.70 0.68 * 1.56 0.88
Belgium 0.85 0.73 1.61 5.86 0.99 0.80
Sweden 0.80 0.39 1.61 5.86 1.00 0.71
Austria 0.72 0.35 1.57 5.86 1.02 0.79
Turkey 0.61 0.25 0.62 12.20 0.75 0.21
Indonesia 0.59 0.32 0.60 9.88 0.81 0.10
Denmark 0.58 0.35 1.50 5.86 1.05 0.82
Hong Kong, China 0.52 1.39 1.70 0.00 1.74 0.76
Norway 0.50 0.36 1.67 4.04 1.24 0.90
Thailand 0.49 0.49 0.64 18.00 0.91 0.21
Poland 0.47 0.27 0.65 15.55 0.81 0.25
Saudi Arabia 0.47 0.36 0.70 (*) 12.48 0.78 0.37
South Africa 0.47 0.24 0.70 (*) 8.30 0.92 0.29
Finland 0.41 0.34 1.39 5.86 1.10 0.70
Greece 0.40 0.19 1.08 5.86 1.10 0.48
Portugal 0.36 0.34 0.97 5.86 1.11 0.50
Israel 0.32 0.39 1.65 7.55 1.00 0.60
Iran, Islamic Rep. 0.32 0.21 0.48 4.90 1.21 0.18
Colombia 0.31 0.19 0.70 (*) 11.70 0.85 0.20
Venezuela, RB 0.29 0.24 0.71 12.28 0.84 0.20
Malaysia 0.29 1.00 0.70 (*) 9.18 0.93 0.26
Singapore 0.29 1.62 2.02 0.16 1.78 0.67
Ireland 0.26 0.63 1.29 5.86 1.14 0.72
Egypt, Arab Rep. 0.25 0.22 0.22 27.60 2.05 0.11
Philippines 0.25 0.48 0.67 11.22 0.88 0.12



                                          TABLE 2:  DATA AND SIMULATION RESULTS

       Size  Trade Volume  Relative Price   Tariff  (in %)   Welfare Gain Per Capita GDP
Country Name  GDP as % of  Imports /GDP Consumption /  Mean across   of eliminating  PPP Adjusted

 World GDP Mach. & Equipt     goods tariffs, in percent       US =1
          Yi   [1]            Vi  [2]          Pi    [3]  100x(1-Ωi)  [4]                   [5]             yi    [6]

Chile 0.23 0.29 0.82 10.25 0.91 0.28
Pakistan 0.20 0.18 0.76 39.90 5.16 0.06
New Zealand 0.19 0.26 1.29 4.84 1.25 0.61
Peru 0.18 0.16 0.72 13.30 0.88 0.15
Czech Republic 0.18 0.60 0.52 7.04 1.09 0.43
Algeria 0.16 0.27 0.70 (*) 24.60 1.63 0.16
Hungary 0.15 0.46 0.52 13.42 0.89 0.35
Ukraine 0.15 0.47 0.24 10.20 0.94 0.12
Bangladesh 0.14 0.15 0.68 21.30 1.27 0.05
Romania 0.12 0.31 0.38 16.03 0.95 0.21
Morocco 0.11 0.30 0.50 30.77 2.68 0.11
Nigeria 0.11 0.41 0.61 24.06 1.58 0.03
Vietnam 0.08 0.25 0.28 15.15 0.94 0.06
Belarus 0.08 0.62 0.30 12.63 0.92 0.20
Kazakhstan 0.07 0.40 0.37 1.15 * 1.71 0.16
Slovak Republic 0.06 0.64 0.43 6.88 1.14 0.32
Tunisia 0.06 0.45 0.40 31.17 2.77 0.18
Sri Lanka 0.05 0.41 0.57 7.67 * 1.09 0.10

Simple Average 1.67 0.370 0.94 11.26 1.12 0.41
Weighted Average 0.210 7.62 0.50

Sources:
  [1]: Share in world gdp. GDP in current dollars. From WDI 2002 cdRom, average 1994-2000
  [2]: 0.5*(Exports+Imports)/GDP, all in current dollars. From WDI 2002 cdRom, average 1994-2000
  [3]: Price of machinery and equipment relative to consumption, from benchmark PWT year 1996. 
        Average of other countries for ROW. The countries marked with (*) are not in the 1996 PWT benchmark,
        so we use the average for the other countries. [3] displays the reciprocal of this number.
  [4]: Average 1996-2000 ad valorem tariff rate, simple average across products, from Dollar and Kraay, 
        using worldbank database "Data on Trade and Imports Barriers", when available. When it is not available,
        indicated as *, import duties/imports from WDI 2002. Average of other 59 countries for ROW
  [5]: Calculations described in section 9, Figure 9.2
  [6]: Penn World Table average 1994-2000
  The Weighted averages are GDP weighted for Trade Volume and Welfare gains,
  and weighted by Imports for tariffs
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FIGURE 7.3: VOLUME OF TRADE
Three values of dispersion parameter θ
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FIGURE 7.4: VOLUME OF TRADE
Three values of tariff factor ω
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Three values of θ
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FIGURE 10.1: WAGES IN THE TWO CALIBRATIONS
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