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Abstract

We investigate what can be learned about the coe¢ cients (�; ) in the linear pro-

jection model Y = X� + Z 0 + " from data consisting of two independent samples;

the �rst sample gives information on variables (Y; Z) but not X, while the second

sample gives information on (X;Z) and not Y . Here Y is a scalar response variable,

X is a scalar covariate, Z is a vector of other covariates, and " is an error term

uncorrelated with the covariates (X;Z). Complications arise because none sample

has joint information on the response variable and the covariates. The existing

literature suggests to overcome these complications by assuming either that there

exists an instrumental variable observed in both samples, or that Y and X are inde-

pendent conditional on Z. Our contribution is to sharply characterize the identi�ed

set of the coe¢ cients (�; ) when the latter assumptions are not invoked. This set

represents the limit of what can be learned about the coe¢ cients (�; ) given the

model and the data. We show that the identi�ed set is not a singleton, so the coef-

�cients of interest are set not point identi�ed by the linear projection model. This

result contrasts with the existing literature, where the assumptions have the power

to point identify the coe¢ cients of interest. We employ our characterization of the

identi�ed set to construct an estimator of it. Monte Carlo experiments illustrate

the implementation and the performance of the estimator.
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1 Introduction

Economists who use survey data for inferences often face the situation where the variables

of interest are observed in di¤erent samples. In this paper we investigate what can be

learned about the coe¢ cients (�; ) in the linear projection model Y = X�+Z 0+" from

data consisting of two independent samples with common variables Z; the �rst random

sample gives information on variables (Y; Z) but not X, while the second sample gives

information on variables (X;Z) but not Y . Here Y is a scalar response variable, X is a

scalar covariate, Z is a vector of other covariates (possible including a constant), and "

is an scalar error term uncorrelated with the covariates (X;Z). Ridder and Mo¢ t (2007)

survey applications �tting this framework.

Within the previous context, complications arise because the coe¢ cients (�; ) de-

pend on the joint distribution of the variables (Y;X), but none of the samples has joint

information on these two variables. The prominent method adopted to overcome these

complications is to assume that one of the covariates Z is an instrumental variable (c.f.,

Angrist and Krueger, 1992; Nicoletti and Ermisch, 2007; Anderson and Matsa, 2011). An

alternative is to assume that the response variable Y is independent of the scalar covariate

X conditional on the other covariates Z (c.f., Bostic, Gabriel and Painter, 2009), or that

the error term " is mean-independent of the covariates Z (c.f., Ichimura and Martinez-

Sanchis, 2010). Here we ask what can be ascertained about the coe¢ cients (�; ) when

the latter assumptions are not invoked. This is useful to evaluate the sensitivity of infer-

ences about the coe¢ cients (�; ) to failure of the assumptions adopted by the existing

literature.

Our contribution is to characterize the set of values of the coe¢ cients (�; ) compatible

with the linear projection model and hypothetical knowledge of the distribution of (Y; Z)

and of (X;Z). This set, called the identi�ed set of (�; ), represents the limit of what

can be learned about the coe¢ cients (�; ) given the model and the data. We show that

the identi�ed set of (�; ) is not a singleton, so the coe¢ cients of interest are set not

point identi�ed by the linear projection model. This result contrasts with the existing

literature, where the assumptions have the power to point identify the coe¢ cients of

interest. The size of the identi�ed set depends on the strength of the dependence between

the covariates (X;Z) and of the dependence between (Y; Z). Our characterization of

the identi�ed set of (�; ) is based on the insight that knowledge of the distribution of

(Y; Z) and of (X;Z) restricts the unknown distribution of (Y;X), and consequently the

coe¢ cients (�; ), through the Hoe¤ding-Frechet distributions.

We employ our characterization of the identi�ed set of (�; ) to construct an estimator

of it. The estimator exploits the fact that the identi�ed set is convex and bounded. Con-

vexity secures that the identi�ed set is characterized by its extreme points. Boundedness
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secures that these extreme points are �nite. In line with the literature on estimation

of convex identi�ed sets (e.g., Beresteanu an Molinari, 2008; Bontemps, Magnac, and

Maurin, 2011; Kaido and Santos, 2011), we write the extreme points of the identi�ed

set in terms of moments of the available data. The estimator is the sample analog of

these moments. We illustrate the performance and implementation of this estimator with

Monte Carlo exercises. We also show that our identi�cation and estimation results extend

to the ecological correlation problem discussed by Robinson (1950), and to the problem

of identifying the variance of the treatment e¤ect in the potential outcome model (c.f.,

Heckman, Smith and Clements, 1997).

Related Literature. This paper expands upon the work by Ridder and Mo¢ t (2007),
who suggest to employ the Hoe¤ding-Frechet distributions to bound the joint distribution

of the variables (Y;X;Z) when data are available from independent samples on (Y;X) and

on (X;Z). We use their insight to characterize the identi�ed set of the coe¢ cients (�; ).

To the best of our knowledge, this issue has not been addressed by the existing literature.

In a related paper, Cross and Manski (2002) examine identi�cation of the function ' in

the regression model Y = '(X;Z) + " when data are available from independent samples

on (Y; Z) and on (X;Z).1 Our work is in the same spirit as their contribution, but applies

to a di¤erent model. They impose mean-independence between the error term " and the

covariates (X;Z), whereas we impose the weaker condition that the error term " and the

covariates (X;Z) are uncorrelated. Then, when a linear parametric assumption on the

function ' is imposed, the mean-independence assumption by Cross and Manski (2002)

neither nest nor are nested by our assumptions.

While motivated by a di¤erent application, Fan and Zhu (2010) also employ Hoe¤ding-

Frechet distributions. In the context of a potential outcome model, they employ Hoe¤ding-

Frechet distributions to derive bounds on superadditive functionals of the joint distribu-

tion of potential outcomes. Our work overlaps with theirs in that each of the coe¢ cients

(�; ) can be interpreted as a superadditive functional. We express however the identi�ed

set in terms of moment in a di¤erent way than they do. This allows us to dispense with

numerical integration procedures, which is a step required to implement their estimation

procedure. Our work also bears some resemblance to Hu (2006), who bounds the coef-

�cients in a linear regression model with a mismeasured regressor when the variance of

this regressor is known. The mismeasured regressor here is X. His method however is

not applicable to our problem because the distribution of X, rather than its variance, is

known in our setting.

At a more general level, this paper belongs to the literature on set identi�cation of

linear models with incomplete data. Papers in this literature include Gini (1921), Frisch

1See also Vitale (1976) and Molinari and Peski (2006).
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(1934), Klepper and Leamer (1984), Krasker and Pratt (1986), Horowitz and Manski

(2006), and Bontemps, Magnac and Maurin (2011). Although the problem we are con-

cerned with here is di¤erent from those considered by the aforementioned authors, our

techniques are similar to theirs and we use several of their results in our analysis.

Organization of the Paper. The outline of the paper is as follows. In the next

section, we set out the linear projection model, and describe the available data. Section

3 presents the identi�cation results. There, we characterize of the identi�ed set of the

coe¢ cients (�; ) delivered by the linear projection model. Section 4 discuss the estimation

of the identi�ed set and the construction of con�dence intervals. Section 5 illustrates the

estimation and inference procedures discussed in Section 4. Section 6 concludes, and an

appendix collects all the proofs and tables.

2 The Setup

In this section, we lay out the assumptions de�ning the linear projection model that will

be used in the rest of the paper. We also describe the available data consisting of two

independent random samples with common variables.

Consider a collection f1; ::; i; ::; Ng of observational units (i.e., individuals, �rms, etc.)
to be studied at a given period in time. For each observational unit i, we begin by

assuming that a scalar outcome variable Yi is determined by a linear response equation.

Assumption 1 (Linear Response Equation). The outcome variable Yi is determined by
the linear response equation:

Yi = X
0
i�o + Z

0
io + "i (A1)

where (�o; o) is a vector of unknown real numbers, and (Xi; Zi; "i) is a random vector

de�ned on the probability space (
;A; Po) with 
 a sample space, A a sigma-algebra of

subsets of 
, and Po some probability measure on A.

In what follows, we suppress the subscript i in the notation whenever this can be done

without causing confusion. We use uppercase letters to denote random variables de�ned

on (
;A; Po), and lowercase letters to denote their realizations. We use the subscript
(superscript) "o"("o") attached to any expression to distinguish the "true" value from

any other value of that expression. We index a distribution functions by the random

variables they refers to. The absence of arguments for a function denotes the entire

function rather than its value at a point. Thus, for instance, F oX denote the distribution

of X induced by Po, and F oX(x) denotes such a distribution evaluated at x. The expression

E denotes the expectation with respect to the measure Po.
The following restrictions complete the description of the linear projection model:

Assumption 2 (Regularity). The distribution of (X;Z; "), say F oX;Z;", is such that:4



(A2.i) The error " and the covariates (X;Z) are uncorrelated i.e., E[(X;Z)0"] = 0.
(A2.ii) The 1+dZ vector of covariates (X;Z) satis�es rank (E[(X;Z) � (X;Z)0]) = 1+dZ ,
where rank() stands for the rank of the matrix within the parenthesis.

(A2.iii) The random vector (Y;X;Z) from 
 to Y � X � Z has �nite variance.

We call the triplet (�o; o; F
o
X;Z;") the true structure. All the elements in the true structure

are unknown. Since in most application only the coe¢ cients (�o; o) are of interest, we

focus on them and not on the distribution F oX;Z;". We interpret the coe¢ cients (�o; o) as

partial correlations, or as the coe¢ cients of the best linear predictor under quadratic loss

of Y based on (X;Z).

We now describe the available data. If a common sample of (Y;X;Z) were available,

identi�cation and inference on the coe¢ cients (�o; o) would be straightforward. Here a

common sample of (Y;X;Z) is unavailable. Instead, we assume that data are available

from two independent random samples with common variables:

Assumption 3 (Data are Available from Independent iid Samples). Let F oY;X;Z denote

the distribution of (Y;X;Z) generated by the true structure (�o; o; F
o
X;Z;"). We denote

by GoY;Z the (Y; Z)-marginal distribution of F
o
Y;X;Z. A similar notation is adopted for

GoX;Z . The data are available from independent samples drawn from GoY;Z and G
o
X;Z .

The �rst sample, say fYi; Zign1i=1; contains independent and identically distributed (iid)
replications of the variables (Y; Z) generated from GoY;Z for a group of n1 observational

units. The second sample, say fXj; Zjgn+1j=n1+1
, contains iid replications of the variables

(X;Z) generated from GoX;Z for a group of di¤erent n2 = n� n1 observational units.

Since we are working with iid samples, the distribution of the sample fYi; Zign1i=1 and
fXj; Zjgn+1j=n1+1

are fully characterized by the distributions GoY;Z , G
o
X;Z , respectively. We

say thus that GoY;Z and G
o
X;Z represent the available data free of sample variation. For

identi�cation purposes, we assume that the distributions GoY;Z and G
o
X;Z are known, even

if their exact knowledge can not be derived from any �nite number of observations. This

is useful to separate the identi�cation problem from the statistical inference one.

2.1 Example

Here we discuss a concrete example that �ts the previous setup. This example comes from

the work by Bostic, Gabriel, and Painter (2009), who employ two samples to measure the

partial correlation between housing wealth and consumption at the household level in the

United States.

We concentrate only in one of the regressions considered by Bostic et. al. (2009).

Let Yi denote the log of the total expenses of a household i living in the US in 2001.

The standard speci�cation for Yi proposed by Bostic et. al. (2009) is Yi = Xi�o +

Z 0io + "i, where Xi is the log of household�s house value, and Zi is a vector of household5



characteristics such as the household current income, human capital and like controls

including number of members in the household and education, age and marital status of

the head of the household. As in Bostic et. al. (2009), we assume that the error term "

and the vector of covariates (X;Z 0) are uncorrelated. This is a strong assumption which

may fail, for instance, if the income, or some of the components of Z, are chosen by the

household after observing ". Here however we follow Bostic et. al. (2009) and we abstract

from such type of situations. The interest is on the coe¢ cient �o, which represents the

partial correlation between log consumption Y and log household�s house value X after

controlling for the variables included in Z 0.

Learning about the coe¢ cient �o would ideally require a sample of household with

measurements on (Y;X;Z). Such sort of data however is not available. Bostic et. al.

(2009) employ two samples in order to learn about �o; the Consumer Expenditure Survey

(CEX), and the Survey of Consumer Finances (SCF). The CEX provides information on

household expenses and income, that is on (Y; Z), but not on household�s house value X.

The SCF provides information household house value and income, that is on (X;Z) but

not on household expenses Y . The CEX and CSF do not survey the same households be-

cause they are independent samples. To overcome the lack of joint realizations on (Y;X),

Bostic et. al. (2009) employ an imputation procedure under the assumption that Y and

X are independent conditional on Z. By contrast, we do not impose such a conditional

independence assumption. The results we present below can thus be employed to evalu-

ate the sensitivity of their inferences to a failure of the latter conditional independence

assumption.

3 Identi�cation

In this section, we ask whether the linear projection model and the two independent sam-

ples described in the previous section provide information about the unknown coe¢ cients

of interest (�o; o). To answer this question, we characterize the identi�ed set of the

coe¢ cients (�o; o): This set contains all values of the coe¢ cients of interest compatible

with the linear projection model and the available data. This characterization is the main

result of the paper. We employ it to show that the coe¢ cients (�o; o) are set not point

identi�ed.

Characterizing the identi�ed set of the coe¢ cients (�o; o) involves to characterize �rst

the set of values of the expectation E (Y X) compatible with the distributions GoY;Z and
GoX;Z . To see why, note that under Assumptions (A1) and (A2.i), the coe¢ cients (�o; o)

are de�ned by the equations:
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�o �
�
E (Y X)� E(XZ 0)E(ZZ 0)�1E(ZY )

�
�
�
E(X2)� E(XZ 0)E(ZZ 0)�1E(ZX)

��1
(1)

o � E(ZZ 0)�1 � [E(ZY )� E(ZX)�o] (2)

where the expression " � " stands for "de�ned by". The rank restriction (A2.ii) secures
that the denominators in the latter display are di¤erent from zero, so the coe¢ cients of

interest (�o; o) are well-de�ned. The consequence of having observations on (Y; Z) and

(X;Z) but not on (Y;X) is that all the expectations in the right hand side of (1) are

known except for E (Y X). However, the values that the expectation E (Y X) can take are
not completely free; they are restricted by the marginal distributions GoY;Z and G

o
X;Z .

Our strategy to characterize the identi�ed set of (�o; o) has two parts. In the �rst

part, we characterize the identi�ed set of the expectation E (Y X). In the second part, we
characterize the identi�ed set of the coe¢ cients (�o; o) by employing the characterization

of the identi�ed set of the expectation E (Y X).

3.1 The Identi�ed Set of the Expectation E (Y X)

Here we show that the identi�ed set of the expectation E (Y X) is a segment of the real line,
and we express the extreme points of this segment in terms of moments of the available

data. This characterization of the identi�ed set of E (Y X) is key to derive the main result
of the paper, namely, a characterization of the identi�ed set of the coe¢ cients (�o; o).

We begin by de�ning the identi�ed set of E (Y X). Heuristically, this set contains
all the values of the expectation of the product between Y and X compatible with the

available data free of sample variation. Since in our case the available data free of sample

variation are represented by the marginal distributions GoY;Z and G
o
X;Z ; we formally de�ne

the identi�ed set of E (Y X) by:

�I �

8>>>><>>>>:
� 2 R : � =

R R
yxfY;X(y; x)dydx

fY;X(y; x) =
R
Z fY;XjZ(y; xjz)g

o
Z(z)dz

goY jZ(yjz) =
R
X fY;XjZ(y; xjz)dy 8x 2 X ; z 2 Z

goXjZ(xjz) =
R
Y fY;XjZ(y; xjz)dy 8y 2 Y ; z 2 Z

9>>>>=>>>>; ; (3)

where fY;X denotes the density of (Y;X), and similarly for fY;XjZ ; goZ , g
o
Y jZ and g

o
XjZ .

Heuristically, � belongs to �I if and only if there exists a collection of conditional densities�
y; x 7! fY;XjZ(y; xjz)

	
z2Z matching the density of (Y;X) induced by the model, that is

fY;X , with the available data free of sample variation, that is the densities goY jZ and g
o
XjZ .

The above de�nition of the identi�ed set of E (Y X) is not an operational one, in
the sense that it does not allow the computation of �I . We look for an operational
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characterization, next.

3.1.1 Conditional Hoe¤ding-Frechet Distributions

To �nd an operational characterization of the identi�ed set of E (Y X), we �nd useful to
interpret this set as the range of a mapping. To describe this mapping, let FY;X;Z denote
the class of distribution functions with support on Y�X�Z for which the (Y; Z)-marginal
and the (X;Z)-marginal are given by GoY;Z and G

o
X;Z ; respectively. We view the identi�ed

set of E (Y X) as the range �I of the mapping FY;X;Z 7!
R
yxdFY;X;Z(y; x; z) from the

class FY;X;Z into the real line.
Our strategy to characterize the identi�ed set of E (Y X) has two steps. In the �rst

step, we establish the convexity of domain class FY;X;Z , and then show that the mapping
FY;X;Z 7!

R
yxdFY;X;Z(y; x; z) carries this property over its range �I . Convexity enables

to characterize �I by its extreme points. The second step of our strategy is to write the

extreme points of �I in terms of moments of the available data. The fact that the class

FY;X;Z has been previously studied in the literature on distribution with given marginals
(c.f., Ruschendorf, 1991) facilitates the actual implementation of this strategy.

To proceed, we establish the following properties of the class FY;X;Z :

Proposition 1 (Geometric Properties of FY;X;Z) Let FY;X;Z denote the class of distribu-
tion functions with support on Y �X �Z for which the (Y; Z)-marginal and the (X;Z)-

marginal are given by GoY;Z and G
o
X;Z, respectively. The class FY;X;Z is non-empty and

convex.

Proof. See the Appendix A.
Since FY;X;Z 7!

R
yxdFY;X;Z(y; x; z) is a linear map, and convexity is preserved under linear

transformations (see Rockafellar, 1970) , we have the following corollary to Proposition 1:

Corollary 1 (Geometric Properties of the Identi�ed Set of E (Y X)) Let assumptions
(A1) and (A2) hold. De�ne the identi�ed set �I as in (1). Then, �I is a non-empty

convex subset -i.e., a segment- of the real line.

As a consequence of Corollary 1, the identi�ed set �I can be characterized by the smallest

�L and largest �U value that the mapping FY;X;Z 7!
R
yx dFY;X;Z(y; x; z) can take over

the space of functions FY;X;Z . These values are formally de�ned by the programming
problems:

�L � minFY;X;Z
R
yx dFY;X;Z(y; x; z)

s.t. GoY;Z(y; z) = limx!1 FY;X;Z(y; x; z) 8y 2 Y ; z 2 Z
GoX;Z(x; z) = limy!1 FY;X;Z(y; x; z) 8x 2 X ; z 2 Z
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for the smallest value �L, and the corresponding maximization problem for the largest

value �U . These programming problems have linear objective functions with linear con-

straints. They are the object of study in the literature on mass transportation. Solving

this type of programming problem is a potentially delicate issue, that have attracted con-

siderable attention. However, since here y; x 7! yx in the objective function is a strictly

superadditive function, our problem is much less complicated and has a well known unique

closed form solution (see Ruschendorf, 1991). In particular, the function

GLY;X;Z(y; x; z) =

Z z

�1
maxf0; GoY jZ(yjs) +GoXjZ(xjs)� 1gdGoZ(s) (4)

solve the minimization problem we have described above. In turn, the function

GUY;X;Z(y; x; z) =

Z z

�1
minfGoY jZ(yjs); GoXjZ(xjs)gdGoZ(s) (5)

solves the corresponding maximization problem. The functions GLY;X;Z and G
U
Y;X;Z are

referred to as the conditional Hoe¤ding-Frechet distributions. The lower conditional

Hoe¤ding-Frechet distribution GLY;X;Z can be interpreted as the copula on (Y;X;Z) with

given GoY;Z and G
o
X;Z marginals minimizing the correlation between Y and X. A similar

interpretation follows for the upper conditional Hoe¤ding-Frechet distribution GUY;X;Z .

3.1.2 Characterization of the Identi�ed Set of the Expectation E (Y X)

The next theorem provides an operational characterization of the identi�ed set of E (Y X).
This characterization arises after evaluating the mapping FY;X;Z 7!

R
yx dFY;X;Z(y; x; z)

at the Ho¤ding-Frechet distributions (4) and (5).

Theorem 1 (Characterization of the Identi�ed Set of E (Y X)). Suppose that data are
available from independent random samples of (Y; Z) and of (X;Z) as described in As-

sumption (A3). Let QoXjZ denote the quantile function of X given Z, and de�ne the

quantities:

�L = E[Y �QoXjZ(1�GoY jZ(Y jZ)jZ)] ; �U = E[Y �QoXjZ(GoY jZ(Y jZ)jZ)]

where GoY jZ is the distribution of Y given Z. Then, the identi�ed set of E (Y X) delivered
by the linear projection model is the interval �I = [�L; �U ].

Proof. See the Appendix A.
The characterization of the identi�ed set of E (Y X) in Theorem 1 is operational because

it express �I in terms of moments of the available data. This result seems to be novel.

It is key in the characterization we derive below of the identi�ed set of the coe¢ cients
9



(�o; o). Theorem 1 prescribes the bounds �L � E (Y X) � �U on the expectation E (Y X).
These bounds are sharp in the sense that they can not be improved unless additional

assumptions are imposed. Note that the lower bound �L does not coincide with upper

bound �U because 1�GoY jZ(Y jZ)jZ) and GoY jZ(Y jZ) neither does. Then, the identi�ed set
of the expectation �o delivered by the linear projection model has more than one element.

This means that di¤erent structures admitted by assumptions (A1)-(A2), and compatible

with the available data, can deliver an identical value of �. No amount of data generated

according to assumption (A3) can distinguish the elements in the identi�ed set �I from

E (Y X). As a result, we say that the expectation E (Y X) is set identi�ed, and all the
values of � in the segment �I = [�L; �U ] are observational equivalent to E (Y X).
We can interpret the bounds �L � E (Y X) � �U as follows. Observe that the ex-

pression de�ning the upper bound �U replaces Xi in the expectation E (YiXi) by the

quantity QoXjZ(G
o
Y jZ(Y jZ)jZ); that is, the quantile of X conditional on Z evaluated at

the distribution of Y conditional on Z. Given the data, the quantity QoXjZ(G
o
Y jZ(Y jZ)jZ)

is the least upper bound for the value that the unobserved variable Xi can take. Simi-

larly, QoXjZ(1�GoY jZ(Y jZ)jZ) is the greatest lower bound on Xi. Since joint realization of

(Yi; Xi) are not observed, we can think of Xi as an unobserved real random variable brack-

eted by the observed random variables QoXjZ(1�GoY jZ(Y jZ)jZ) and QoXjZ(GoY jZ(Y jZ)jZ).
The bounds �L � E (Y X) � �U correspond to the expectation between Yi and the vari-
ables bracketing Xi.

Before going on, it is important to say that there is a way to bound the expectation

E (Y X) alternative to Theorem 1. This alternative way involves to invoke the Cauchy-

Schwarz inequality (c.f., Ridder and Mo¢ t, 2007). The bounds on the expectation E (Y X)
delivered by the Cauchy-Schwarz inequality however are not sharp in general. The in-

tuition behind such a di¤erence is that the Cauchy-Schwarz inequality restricts the cor-

relation between Y and X conditional on Z to lie in the interval [�1; 1] regardless of
the functional form of the marginal distribution functions GoY jZ and G

o
XjZ , whereas for

some speci�c functional forms of GoY jZ and G
o
XjZ the bounds in Theorem 1 restrict such

conditional correlation to lie in the interior of the interval [�1; 1].

3.2 The Identi�ed Set of the Coe¢ cients (�o; o)

Here we characterize the identi�ed set of the coe¢ cients (�o; o) delivered by the linear

projection model. To do so, we employ the characterization of the identi�ed set of the

expectation E (Y X) derived in Theorem 1.

To proceed, we de�ne the identi�ed set of (�o; o). The linear projection model (A1)-

10



(A2) implies that the equations:

� =
[� � E(XZ 0)E(ZZ 0)�1E(ZY )]

[E(X2)� E(XZ 0)E(ZZ 0)�1E(ZX)] (6)

 = E(ZZ 0)�1E(ZY )� E(ZZ 0)�1E(ZX)�(�) (7)

have one and only one solution (�; ) for any value of � in the the identi�ed set of E (Y X).
The identi�ed set of (�o; o), say IS, is the collection of such solutions:

IS �
�
(�; ) 2 R1+dZ : (�; 0)0 = m(�; Po) for all � 2 �I

	
wherem(�; Po) is a 1+dZ-dimensional vector collecting the equations (6)-(7). The function

� 7! m(�; Po) relates the coe¢ cients (�; ) with the expectation � of the product between

Y and X. Note that this function is linear. The identi�ed set of (�o; o) is therefore

nonempty (set e.g., � = E (Y X)), convex and bounded (since it is a linear transformation
of the convex and bounded set �I).

The above de�nition of the identi�ed set of (�o; o) is not an operational one, in the

sense that it does not allow the computation of IS based on hypothetical knowledge of
GoY jZ and G

o
XjZ . We look for an operational characterization of the set IS, next

3.2.1 The Support Function

The key object that we exploit to characterize the identi�ed set of (�o; o) is its support

function. To formally de�ne this function, we need to introduce some notation. Let q be

a vector of dimension 1 + dZ belonging to the unit sphere S1+dZ in R1+dZ . The support
function q 7! s(q; Po) of the set IS is de�ned by:

s(q; PojIS) � sup
�2[�L;�U ]

q0 �m(�; Po) for some q 2 S1+dZ

To each direction q, the support function s(q; Po) equals the signed distance between zero

and the orthogonal hyperplane that is tangent to IS.
The fact that the identi�ed set IS is convex guarantees that its support function

q 7! s(q; Po) fully characterizes it (see Rockafellar, 1970). The support function represents

the identi�ed set IS as an element of a functional space. To gain some intuition about this
concept, note that the support function of the identi�ed set of the expectation E (Y X)
is s(q; Poj�I) = I(q = 1)�U � I(q = �1)�L for q in f�1; 1g. Beresteanu and Molinari
(2008), Bontemps, Magnac and Maurin (2011), and Kaido and Santos (2011) also employ

the support function to characterize convex identi�ed sets but in di¤erent applications.
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3.2.2 Characterization of the Identi�ed Set of the Coe¢ cients (�o; o)

The next theorem provides an operational characterization of the identi�ed set of (�o; o).

This characterization arises after writing the support function s(q; PojIS) in terms of
expectations of the available data.

Theorem 2 (Characterization of the Identi�ed Set of (�o; o)). Let Assumptions (A1)-
(A2) hold and suppose that data are available from independent random samples of (Y; Z)

and of (X;Z) as described in Assumption (A3). De�ne the scalars �L and �U as in

Theorem 1, and the function � 7! �(�) as in equation (6). Let �L = �(�L) and �U = �(�U)

denote the values of the function � 7! �(�) evaluated at the scalars �L and �U , respectively.

Let q denote a vector belonging to the unit sphere in in R1+dZ . Split the vector q into
q = (q�; q

0
)
0, where q� is a scalar and q is a vector with the remaining dZ components.

Then, the identi�ed set of the coe¢ cients (�o; o) delivered by the linear projection model

is characterized by

IS =
�
(�; ) 2 RdZ+1 : q0 � (�; ) � s(q;GoY jZ ; QoXjZ) ; for all q 2 SdZ

	
where the support function s(q;GoY jZ ; Q

o
XjZ) equals to:

s(q;GoY jZ ; Q
o
XjZ) = I(q� 6= 0) [�L � I(q� < 0) + �U � I(q� > 0)] + E(q0��1Z ZY )

�E
�
q0�

�1
Z ZX � �U � I(q0��1Z Z < 0)

�
�E

�
q0�

�1
Z ZX � �L � I(q0��1Z Z � 0)

�
with ��1Z = E(ZZ 0)�1 the inverse of the variance matrix of Z.

Proof. See the Appendix A.
Putting di¤erently, Theorem 2 characterizes the extreme points of the identi�ed set of

(�o; o) in terms of moments of the available data. According to Theorem 2, the identi�ed

set IS has more than one element because the bounds �L = �(�L; Po) and �U = �(�U ; Po)
do not coincide. Therefore, the coe¢ cients (�o; o) are set not point identi�ed when data

are available from independent samples on (Y; Z) and (X;Z). We stress the fact that the

characterization of the identi�ed set of (�o; o) in Theorem 2 is sharp, that is, it contains

the values of the coe¢ cients of interest compatible with the linear projection model (A1)-

(A2) and the data described by assumption (A3) and no others. This means that all the

elements in IS are observational equivalent to (�o; o). The characterization in Theorem 2
is operational in that it can be employed, by the way of the analog principle, to construct

an estimator of the identi�ed set. We discuss the construction of such an estimator in

Section 4.

12



Underpinning the characterization of the identi�ed set IS are the conditional Hoe¤ding-
Frechet distributions introduced above. Ridder and Mo¢ t (2007) employ these distrib-

utions to bound the joint distribution of (Y;X;Z). In the literature on treatment ef-

fects, Fan and Zhu (2010) also employ them to bound functionals of the joint distri-

bution of potential outcomes. Theorem 2 seems the �rst result employing conditional

Hoe¤ding-Frechet distributions to bound the coe¢ cients of a linear projection model.

Since Hoe¤ding-Frechet distributions are usually not informative about the distributions

they bound, it is tempting to think that IS would not very informative about (�o; o).
However this is not generally the case. If the quantity E(ZZ 0)�1E(ZX) is "small", data
can be informative about o. For instance in the extreme case where Z and X are un-

correlated, i.e. E(ZX) = 0, the partial correlations o are point identi�ed. On the other
hand, if the partial correlation between the response variable Y and one of the common

covariates Z is "small", data can be informative about �o. To see why, consider the ex-

treme case where Z is an scalar whose partial correlation with Y is zero, that is, o = 0.

This case corresponds to the instrumental variable assumption on Z putting forward by

many authors. When Z is an scalar instrument, it follows from the equation in (6) linking

 and � that the coe¢ cient �o is equal to �o = E(Y Z)=E(XZ). Then, �o is point iden-
ti�ed because E(ZY ) and E(XZ) so do (and the denominator E(XZ) is di¤erent from
zero because the rank condition A2.ii).

Theorem 2 is useful to characterize the smallest and largest values of the coe¢ cients

(�o; o) compatible with the data. This is useful for practical purposes because these

values, rather than the whole identi�ed set, are usually of interest in applications. In

particular, the smallest and largest values of that the coe¢ cients (�o; o) can take equal

the support function evaluated at the canonical directions. To be more precise, de�ne qkL
in SdZ as a vector whose k0th entry is equal to minus one. Since qkL lives in the unit sphere
S1+dZ all the other entries are necessarily equal to zero. We call qkL the negative canonical
k-direction. Similarly, de�ne qkU in SdZ as a vector whose k0th entry is equal to one. We
call qkU the positive canonical k-direction. Notice that the value of the support function

in the negative canonical 1-direction is s(q1L; G
o
Y jZ ; Q

o
XjZ) = �L, that is, the smallest value

of the coe¢ cient �o compatible with the available data. In the same sense, the value of

the support function in the positive canonical 2-direction s(q2U ; G
o
Y jZ ; Q

o
XjZ) is equal to the

largest value of the �rst component of the vector o compatible with the available data.

3.3 Discussion of Other Applications

Here we discuss two other potential applications of our identi�cation results. These ap-

plications are the measurement of the variance of the treatment e¤ect (e.g., Djebbari and

Smith, 2008), and the measurement of the correlation coe¢ cient from aggregate data

(Robinson, 1950).
13



3.3.1 Variance of the Treatment E¤ect

The evaluation of social programs is a �rst application where our identi�cation results

apply. To be more precise, let Y; X and Z represent, respectively, the potential outcome

from receiving a treatment, the potential outcome from not receiving the treatment,

and some background variables not a¤ected by the treatment. In some investigations in

this literature (e.g. Heckman, Smith and Clements, 1997; Djebbari and Smith, 2008)

knowledge is sought about the variance �2(�o) of the di¤erence Y �X :

�2(�o) � V(Y ) + V(X)� �o + E(Y )E(X)

where �o � E(Y X) denotes the expectation of the product between Y and X, and V
denotes the variance operator. The parameter �2o(�o) is the so-called variance of the

treatment e¤ect.

In randomize experiments, data are available from independent samples on (Y; Z) and

on (X;Z). This implies that all the expectations in the de�nition of �2o(�o) are point

identi�ed except �o. Theorem 1, and the fact that the function � 7! �2(�) is decreasing,

imply that the identi�ed set the variance of the treatment e¤ect is:

�I =
�
�2 2 R+ : �2o(�U) � �2 � �2o(�L)

	
The support function of the identi�ed set �I is:

s(q;GoY jZ ; Q
o
XjZ) = I(q = 1)�2o(�L)� I(q = �1)�2o(�U) for q 2 f�1; 1g

The bounds �2o(�U) � �2(�o) � �2o(�L) are sharp, unless additional assumptions are

invoked.

Discussion. The latter characterization of the identi�ed set of the variance of the treat-
ment e¤ect is new in the formed stated. Concurrent work by Fan and Zhu (2010) stud-

ies identi�cation on superadditive integral functionals of the joint distribution of (Y;X)

when the distributions of (Y; Z) and of (X;Z) are given. Since FY;X 7! ��2o(FY;X) is
a superadditive functional, the variance of the treatment e¤ect �ts their setting. Our

characterization of the identi�ed set �I is however di¤erent from theirs. We express the

bounds �2o(�U), �
2
o(�L) in terms of moments in a di¤erent way than they do. In the next

paragraph, we show that this allows us to dispense with numerical integration procedures

while estimating the bounds �2o(�U) and �
2
o(�L), a step required by the latter authors.

A plug-in sample analog estimator of these bounds can be obtained after replacing

in their expressions the integral by sums and the unknown functions QoXjZ and G
o
Y jZ by

nonparametric estimates. To facilitate the description of such estimator, and without loss

14



of generality, suppose that Y and X have both zero (known) mean and unit (known)

variance. Then, the estimator of the lower bound �2o(�U) is:

�̂L = 2� n�11
n1X
i=1

YiQ̂XjZ(ĜY jZ(Yi; Zi)jZi)

where ĜY jZ is a nonparametric estimator of the distribution function GoY jZ . A similar

expression follows for the estimator of the upper bound. We now compare the previous

estimator with the one proposed by Fan and Zhu (2010). Fan and Zhu�s (2010) estimator

of the lower bound �2o(�U) is:

�̂FZL = 2� n�1
nX
i=1

Iib

Z 1

0

Q̂Y jZ(ujZi)Q̂XjZ(ujZi)du (8)

where Iib � I (jZij � b) is a trimming sequence with I(�) the indicator function, and
Q̂Y jZ ; Q̂XjZ are, respectively, nonparametric estimates of the quantile functions QoXjZ ,

QoXjZ .Implementing the estimator �̂
FZ
L requires to employ a numerical integration proce-

dure to compute the integral in (8). Unlike �̂FZL , no numerical integration procedure is

required to implement �̂L. To establish the connection between �̂
FZ
L and �̂L, it su¢ ces

to perform the change-of-variable u = GoY jZ(Y jZ) in (8) and replace GoY jZ by its non-
parametric estimate. The estimator �̂L thus replace the numerical integration required to

implement �̂FZL by the use of an empirical sum.

3.3.2 Ecological Correlation

The so-called ecological correlation problem is another application where our identi�cation

results apply. There knowledge is sought about the correlation coe¢ cient between two

discrete random variables, say Y and X,:

�(�o) =
�o � E(Y )E(X)
V(Y )1=2V(X)1=2

but data provide only with estimates of the distribution of (Y; Z) and of (X;Z). A

leading example of this situation arises in the study of voting behavior in elections with

secret ballot. Let Yi denote the vote of individual i, let Xi denote the educational level

of voter i, and let Zi denote the precinct where i votes. Suppose we are interested in

the correlation �(�o) between voting behavior Y and educational level X in a presidential

election with secret ballot. Since votes are secret, it is impossible to jointly observe voting

behavior Yi and educational level Xi. Election returns, however, allow us to estimate the

distribution GoY jZ of the voting behavior by electoral precinct. Moreover, from census

data we can estimate the distribution GoXjZ of educational level by electoral precinct.
15



Hence the available data free of sample variation consist of the distributions GoY jZ and

GoXjZ as in Assumption A3. Under hypothetical knowledge of these distributions, all the

expectations in �(�o) are known except for �o.

The current approach to solve the ecological correlation problem (e.g., Gentzkow, 2006;

Snyder and Stromberg, 2010; Da Silveria and De Mello, 2011) is to aggregate the discrete

variables Y and X by Z into shares, and then calculate the correlation between these

shares. Robinson (1950) criticizes the tacit interpretation of the correlation between the

shares, the so-called ecological correlation, as the correlation between Y and X. He points

out the fact that there are many values of the correlation between Y and X compatible

with knowledge of the estimates of the distribution of (Y; Z) and of (X;Z). Nevertheless,

he neither characterizes such feasible values nor proposes inference procedures. Since

� 7! �(�) is linear and increasing, Theorem 1 can be employed to extend the insight by

Robinson (1950) to provide a sharp characterization of the feasible values of the correlation

between Y and X.

4 Inference Procedures

In this section, we discuss estimation and inference procedures for the coe¢ cient of interest

(�o; o). These procedures are based on the identi�cation results derived in the previous

section.

4.1 Estimation

We focus on the estimation of the smallest and largest values of the coe¢ cients (�o; o)

compatible with the available data. Our focus on these values, rather than in the whole

identi�ed set of (�o; o), is motivated by two reason. First, in most applications only

the smallest and largest values of (�o; o) are of interest. Second, estimates of the whole

identi�ed set of (�o; o) can be di¢ cult to display and communicate when the dimension

of the covariate Z is greater than two (which is usually the case).

According to Theorem 2, the smallest (�L; L) and largest (�U ; U) values of the

coe¢ cients (�o; o) are de�ned by in terms of the support function s(q;G
o
Y jZ ; Q

o
XjZ) by

the unconditional moment conditions:

�L � s(q1L; GoY jZ ; QoXjZ) = 0 ; �U � s(q1U ; GoY jZ ; QoXjZ) = 0 (9)

k;L � s(qkL; GoY jZ ; QoXjZ) = 0 ; k;U � s(qkU ; GoY jZ ; QoXjZ) = 0 (10)

for k = 1; ::; dZ . Moment conditions (9)-(10) contain the unknown functions GoY jZ and

QoXjZ . The values (�L; L; �U ; U) can be estimated by the method-of-moments after

replacing the unknown functions GoY jZ and Q
o
XjZ by nonparametric estimates. We denote16



the corresponding estimator by (�̂L; ̂L; �̂U ; ̂U). Di¤erent nonparametric estimators for

the functions GoY jZ and Q
o
XjZ are available in the literature. These include kernel-type

estimators, local-linear estimators, and series-based estimators. In the illustration below,

we estimate GoY jZ and Q
o
XjZ by series of cubic splines.

The estimator (�̂L; ̂L; �̂U ; ̂U) belongs to the class of two-step semiparametric esti-

mators studied, among others, by Chen, Linton and van Keilegom (2003). Consistency,

root-n consistency, asymptotic normality, and validity of the bootstrap can be established

after verifying the conditions proposed by these authors. In what follows, we assume

that our setting meets the conditions proposed by these authors for root-n asymptotic

normality and validity of the bootstrap.

It is important to note that the plug-in estimator (�̂L; ̂L; �̂U ; ̂U) is related to the

general estimation procedure studied by Bontemps, Magnac and Maurin (2011) for incom-

plete linear models. The di¤erence is that here the support function q 7! s(q;GoY jZ ; Q
o
XjZ)

involved in the de�nition of the estimator depends on the in�nite-dimensional nuisance

parameters GoY jZ , Q
o
XjZ . This di¤erence prevents us to directly apply their asymptotic

results the case at hand.

4.2 Con�dence Intervals and Hypothesis Testing

The construction of con�dence intervals for set identi�ed parameters, such as (�o; o),

raises a number of conceptual and technical issues that are subject of a currently active

literature. We discuss two of these issues, next.

The �rst issue relates to the object to be covered by the con�dence interval. In

particular, should a con�dence interval cover a set (such as the interval [�L; �U ] in our

case), or should it cover the true value of the parameter (such as �o)? The answer to this

question depends on what is conceived as the quantity of interest. Romano and Shaikh

(2010) provide methods to construct con�dence intervals and testing hypothesis when the

quantity of interest is a set. Their methods apply to our case whenever the estimator

(�̂L; ̂L; �̂U ; ̂U) converges in distribution to a limit continuous distribution (such as the

normal). As alluded before, the asymptotic normal approximation can be obtained in our

case after verifying the conditions by Chen, Linton and van Keilegom (2003). Imbens and

Manski (2004) propose con�dence intervals for the true value of the coe¢ cient of interest.

Their methods apply to our case whenever the estimator (�̂L; ̂L; �̂U ; ̂U) converges in

distribution to a normal limit distribution.

The second issue relates to the coverage probabilities of di¤erent con�dence intervals.

Some con�dence intervals display undesirable behavior because they fail to capture the

possibility that parameters of interest might be point identi�ed. This undesirable behavior

is re�ected in the lack of coverage probabilities close to the nominal values for some

possible distributions generating the data. Romano and Shaikh (2010) provide su¢ cient
17



conditions under which their con�dence intervals exhibit uniform coverage probabilities.

Stoye (2009) discusses the case for con�dence intervals covering the true value of the

parameter of interest. Applied to our case, the conditions by Stoye (2009) include the

existence of an asymptotic normal approximation for the estimator (�̂L; ̂L; �̂U ; ̂U), and

the inequality restriction (�̂L; ̂L) � (�̂U ; ̂U) elementwise Here, this inequality restriction
is satis�ed by construction.

5 Illustration

In this section, we employ simulated data to illustrate the implementation and perfor-

mance of the estimation and inference procedures discussed above.

Data Generating Process. For computational simplicity, we let Zi to be a univariate
random variable. For a true parameter (�o; o) = (:5:5), we then generate:

Yi = Xi�o + Zio + "i i = 1; ::; n

where "i is a standard normal random variable independent of (Xi; Zi). The joint dis-

tribution of (Xi; Zi) is bivariate normal. In order to create two independent sample as

described in Assumption (A3), we drop the realizations of " and split the n drawn of the

vector (Y;X;Z) into two samples of size n1 and n2, respectively. In the �rst sample, we

also drop the realized values of X, while in the second sample we drop the realized values

of Y . We end up with two independent random samples fYi; Zign1l=1 and fXi; Zign2=n�n1i=1 .

It should be notice that the distribution F oX;Z;" in the true structure (�o; o; F
o
X;Z;") is

completely determined by covariance matrix of (X;Z; "). We �x the variances of X and

Z to one. The design variable of the experiment is the correlation between X and Z, say

�X;Z . We choose values for �X;Z in the set f�:25; :25g to contrast the sensitivity of the
identi�ed set IS to changes in the correlation between X and Z. We choose a sample size

of n1 = n2 = 250. The number of replications in each experiment is equal to 1000.

Implementation. We estimate the distribution function GoY jZ and the quantile function
QoXjZ by series of cubic splines. Implementing such estimators requires to choose the

location and the numbers of knots. We place the knots at the quantiles of Z. We

choose di¤erent numbers of knots and evaluate the sensitivity of the results to these

di¤erent choices. All the experiment were carried out in the program R using the libraries

"mvtnorm" (to generate bivariate normal random numbers), "splines" (to generate cubic

spline basis) and "quantreg" (to solve estimate the quantile function QoXjZ).

Results. Table I reports the smallest and largest values of the coe¢ cients (�o; o) com-
patible with the available data for di¤erent values of the correlation between the covariates

X and Z. As expected, the di¤erence between the largest U and smallest L value of18



o decreases as the correlation �XZ between the covariates X and Z approaches to zero.

The smallest �L and largest �U value of �o compatible with the data do not change with

the correlation between X and Z.

Table II reports the mean square error (MSE) of the estimated smallest and largest

values of the coe¢ cients (�o; o), together with their Monte Carlo average (labeled Mean),

for di¤erent values for the correlation between the covariates (�XZ), and di¤erent choices

of the number of knots. The results suggest that the choice of the number of knots has

an important e¤ect on the mean square error of the estimator of the lower and upper

bounds on the coe¢ cients of interest. In the experiments, the mean square error seems to

be minimized for a choice of the number of knots between 40 and 50. There, the variance

term is the main component of the mean square error. When the number of knots is

too small (ie, 10) or too big (i.e. 90), the estimator exhibits a signi�cant mean square

error. There, the variance term accounts only for a half of the mean square error. When

the number of knots is small, the bias is negative for the estimators of the lower bounds

and positive for upper bounds. Then, the bias renders the estimator more likely to be

outside the identi�ed set. In such a case, we can expect con�dence intervals with coverage

probabilities above the prespeci�ed nominal value. By contrast, when the number of

knots is to big, the bias renders the estimator more likely to be inside the identi�ed set

(because the bias is positive for the estimators of the lower bounds and negative for upper

bounds). Then, when the number of knots is too big we can expect con�dence intervals

with coverage probabilities below the nominal value.

6 Summary and Conclusions

Applied researchers employing the linear projection model are often confronted to the case

where there is no single database that contains all the relevant variables. The existing

literature suggests to overcome the di¢ culties associated to such lack of data by imposing

ancillary assumptions. Researchers invoking such ancillary assumptions however rarely

warn the readers about the consequences on the results of a failure of them. We conjecture

that this omission is due to the lack of appropriate methods to determine the reliability of

the results. This paper supplies such methods and given examples of their implications.

The most important �nding is that the coe¢ cients in the linear projection model are

set not point identi�ed when no ancillary assumptions are invoked. The extent of the

identi�ed set depends on the dependence between the covariates.

There are at least two issues which deserves further research. The �rst one relates to

the generalization of our results to the case where the covariate X observed in only one

sample is a random vector rather than an scalar. The second issue relates the choice of

the tuning parameters in the estimator we propose for the identi�ed set.
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Appendix A: Proofs and Tables

Proof of Proposition 1 The class FY;X;Z is non-empty because it contains the multi-
variate distribution which is such that Y and X are conditionally independent given Z -

i.e., the distribution F (y; x; z) =
R
GoY jZ(y; s)G

o
XjZ(x; s)dGZ(s) is in FY;X;Z . To verfy that

FY;X;Z is convex, consider the elements F; ~F both in FY;X;Z with associated densities f ,
~f . These two elements satisfy:Z Z x

�1

Z z

�1
f (y; a; b) dydadb = GoX;Z(x; z);Z Z x

�1

Z z

�1
~f (y; a; b) dydadb = GoX;Z(x; z)

Let � be a number between zero and one. Multiply both sides of the �rst equality by

�. Multiply both sides of the second equality by (1 � �): Sum the resulting expressions.

After taking common factor GoX;Z(x; z), we have:

�

Z y

�1

Z Z z

�1
f (y; a; b) dydadb+ (1� �)

Z y

�1

Z Z z

�1
~f (y; a; b) dydadb = GoX;Z(x; z)

Then, the convex combination of F; ~F has marginal (X,Z)-marginal distribution GoX;Z : By

a similar argument, it is possible to show that the convex combination of F; ~F has marginal

(Y; Z)-marginal distribution GoY;Z : It follows then that �F (y; x; z) + (1 � �) ~F (y; x; z)
belongs to FY;X;Z . Therefore, FY;X;Z is convex. �

Proof of Theorem 1 (Characterization of the Identi�ed Set of �o). We start by replacing
the lower Hoe¤ding-Frechet bound GLY;X;Z in the objective function of the programming

problem de�ning the extreme point �L:

�L =

Z
Z

Z
Y�X

y; xdGLY;X;Z(y; x; z)dG
o
Z(z)
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Let QoY jZ(� ; z) and Q
o
XjZ(�; z) denote, respectively, the � -quantile of Y given Z = z and

the �-quantile of X given Z = z. By using the quantile substitution y = QoY jZ(� ; z) and

x = QoXjZ(�; z) we get,

�L =

Z
Z

Z
[0;1]�[0;1]

QoY jZ(� ; z)�QXjZ(�; z)dmaxf0; � + � � 1gdGoZ(z)

Since dmaxf0; �+��1g is di¤erent from zero only at �+��1 = 0, we have the following
analytical expression for �L:

�L =

Z
Z

Z
[0;1]

QoY jZ(� ; z)�QoXjZ(1� � ; z)d�dGoZ(z)

By the change-of-variable � = GoY jZ(yjz) :

�L =

Z
Z

Z
Y
y �QoXjZ(1�GoY jZ(yjz); z)dGoY;Z(y; z)

= E[Y �QoXjZ(1�GoY jZ(Y jZ)jZ)]

where the expectation is with respect to the joint distribution of (Y;X), GoY;Z . A similar

reasoning leads to �U = E[Y �QoXjZ(GoY jZ(Y jZ)jZ)]. �

Proof of Theorem 2 (Characterization of the Identi�ed Set of (�o; o)). The support
function of the set IS is de�ned by:

s(q; Po) � sup
�2[�L;�U ]

q0 �m(�; Po) for some q 2 S1+dZ

where m(�; Po) � (�(�; Po); (�; Po)
0)0 is the function that relates the coe¢ cients (�; )

with the expectation � of the product between Y and X. Recall that �(�; Po) (�; Po) are

equal to

�(�; Po) = [� � E(XZ 0)E(ZZ 0)�1E(ZY )]� [E(X2)� E(XZ 0)E(ZZ 0)�1E(ZX)]�1

(�; Po) = E(ZZ 0)�1E(ZY )� E(ZZ 0)�1E(ZX)�(�)

Split the vector of directions q into q = (q�; q
0
), where q� is a scalar, and q is a vector

with dZ components. Using this notation, we can reexpress the support function as

s(q; Po) � sup
�2[�L;�U ]

�
q��(�; Po) + q

0
(�; Po)

�
for some (q�; q0) 2 S1+dZ

Since � 7! �(�; Po) and � 7! (�; Po) are linear functions, the support function s(q; Po)
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evaluated at q is equal to:

s(q; Po) � sup
�2[�L;�U ]

q��(�; Po) + sup
�2[�L;�U ]

(�; Po)

Since the function � 7! �(�; Po) is increasing, the value function of the linear programming

problem sup�2[�L;�U ] q��(�; Po) is:

I(q� 6= 0) [�L � I(q� < 0) + �U � I(q� > 0)]

where �L = �(�L; Po) is equal to the function � 7! �(�; Po) evaluated at �
L, and similarly

for �U . In turns, the value function of the linear programming problem sup�2[�L;�U ] (�; Po)

is:

E(q0��1Z ZY )� E
�
q0�

�1
Z ZX � �U � I(q0��1Z Z < 0)

�
�E

�
q0�

�1
Z ZX � �L � I(q0��1Z Z � 0)

�
Therefore, the support function is equal to:

s(q;GoY jZ ; Q
o
XjZ) = I(q� 6= 0) [�L � I(q� < 0) + �U � I(q� > 0)] + E(q0��1Z ZY )

�E
�
q0�

�1
Z ZX � �U � I(q0��1Z Z < 0)

�
�E

�
q0�

�1
Z ZX � �L � I(q0��1Z Z � 0)

�
Since �L and �U depend on the distribution function G

o
Y jZ and the quantile function Q

o
XjZ

so does the support function s(q;GoY jZ ; Q
o
XjZ). �

Tables

Table I. Smallest and Largest Values of the Coe¢ cients Compatible with the Data

Bound Correlation Between X and Z (�XZ)

�:9 �:75 �:5 �:25 �:1 0 :1 :25 :5 :75 :9

�L -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5

�U .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5

L -.4 -.25 0 .25 .25 .5 .5 .5 .5 .5 .5

U .5 .5 .5 .5 .5 .5 .6 .75 1 1.25 1.4
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Table II. Monte Carlo Exercises. Mean Square Error and Bias of the Estimator

Sample Sizes: n1 = n2 = 250: Value of the coe¢ cients: (�o; o) = (:5; :5)

�XZ = �:25 �XZ = 0 �XZ = :25

Knots Bound MSE Mean %Bias MSE Mean % Bias MSE Mean % Bias

10 �̂L .295 -.881 48 % .252 -.851 48 % .168 -.784 47 %

�̂U .201 .812 48 % .251 .848 48 % .352 .915 49 %

̂L .028 .162 26 % .012 .488 21 % .034 .395 31 %

̂U .021 .581 30 % .009 .542 18 % .017 .813 23 %

40 �̂L .021 -.576 29 % .009- .536 14 % .021 -.488 1 %

�̂U .006 .509 1 % .009 .535 13 % .006 .594 34 %

̂L .008 .232 3 % .007 .474 8 % .008 .482 2 %

̂U .005 .497 1 % .007 .529 10 % .005 .758 1 %

50 �̂L .007 -.495 1 % .010 -.467 10 % .028 -.400 34 %

�̂U .013 .443 22 % .011 .457 15 % .008 .512 2 %

̂L .007 .254 1 % .009 .476 5 % .000 .500 1 %

̂U .005 .485 3 % .008 .521 5 % .006 .728 7 %

60 �̂L .025 -.419 25 % .028 -.396 38 % .052 -.352 41 %

�̂U .044 .361 44 % .028 .395 37 % .021 .431 21 %

̂L .009 .271 4 % .008 .471 9 % .009 .527 7 %

̂U .006 .479 6 % .006 .512 2 % .008 .725 6 %

90 �̂L .112 -.271 46 % .139 -.244 46 % .226 -.178 45 %

�̂U .193 .199 46 % .171 .251 36 % .129 .266 41 %

̂L .012 .306 26 % .006 .487 2 % .015 .561 23 %

̂U .017 .419 36 % .006 .512 2 % .018 .671 33 %
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