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Abstract

This paper shows that a seemingly simple assumption, that of the time
horizon of economic agents, has important consequences when modeling
exhaustible resources but hardly makes any difference when modeling cap-
ital. It does so by exploring a common observation, namely, that economic
agents have a progressive finite time horizon, meaning that they make a
plan over a finite number of years but update this plan on a regular ba-
sis. This behavior can be observed in the business plans of firms, in US
social security and in the extraction decisions of natural resource owners.
Compared to an infinite horizon assumption, progressive finite time yields
virtually identical results when used in a standard model of capital accu-
mulation. However, used in models of natural resources, this behavior has
the effect of removing the scarcity consideration of resource owners, thus
letting only operating costs and demand determine the extraction rate.
This implies that extraction will be non-decreasing and resource prices
non-increasing for a long period of time — in line with the trends of a
majority of exhaustible resources in the last century. Using data on how
resource prices react to changes in resource stocks, the infinite horizon
hypothesis is consistently rejected in favor of the progressive finite time
hypothesis. A calibration of the model to the oil market yields a price
which closely fits the gradually falling real price up until 1998 and the
sharply increasing price thereafter.
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1 Introduction

How foresighted are economic agents? Macroeconomics tends to gravitate to-
wards the assumption that they have an infinite time horizon. The rationale
for this assumption is that also finitely lived agents may behave as if they are
taking the infinite future into account. This can either be because people care
about their offspring or because today’s agents care about the value of their
asset tomorrow which, in itself, depends on the value of the asset the day after
and so on. However, the infinite horizon assumption also requires that people
have some basic information about possible things to come many years from
now.
This paper departs from the infinite horizon assumption and instead explores

a common observation, namely, that people tend to make plans for only a finite
future and that the plan is revised regularly. In each time period, a plan is
formulated treating the distant future as so uncertain that it might as well
be ignored. The first period of the plan is executed and a new plan is then
formulated for an equally long future and so on. I call this behavior progressive
finite time1 .
The first question that arises is whether progressive finite time is a good

description of economic behavior. This will be elaborated upon in the next
section. The second question is if it really matters for the outcome whether a
progressive finite time horizon rather than an infinite horizon is assumed. It is
shown in the paper that while this type of behavior makes virtually no difference
in a standard capital accumulation model, it has a qualitative effect on natural
resource extraction and prices. This also provides an explanation for why we
observe non-increasing exhaustible resource prices and exponentially increasing
extraction and why the empirical literature generally does not find any support
for the infinite horizon resource model2 . The intuition is as follows.

In a basic infinite time exhaustible resource model with extraction costs, the
logic is that resource use will fall over time due to discounting of the future.
Hence, the resource price (the marginal product) will increase over time. More
precisely, in a general equilibrium, resource owners need to be indifferent be-
tween keeping the resource in the ground or extracting it and putting the money
in the bank. This leads to the conclusion that the resource price (net extrac-
tion costs) should rise at the rate of interest or, at the very least, that there
should be a strong correlation between price growth and the real interest. This
implication, which is maintained also under several extensions, scarcely has any
support in the data3 .

Progressive finite time changes these results since total depletion may not

1This is similar to what Goldman (1968) refers to as continual planning revision and Easly
& Spulber (1981) call rolling plans.

2For the basic model without extraction costs, see Hotelling (1931) and Dasgupta & Heal
(1974) and for the basic model with extraction costs, see Weinstein & Zeckhauser (1976).
Appendix C displays the trends of some resources. Examples of empirical studies are Heal &
Barrow (1981), Abgeyebge (1989) and Halvorsen & Smith (1991).

3See section 6 for a review of this literature and the previous footnote for some empirical
studies.
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at all be optimal within the current time horizon if the resource stock is large
enough or the time horizon short enough. The resource price would simply not
cover the marginal cost of extraction. Hence, since total depletion is not optimal
within the finite plan anyway, this essentially removes the scarcity consideration.
Then, the extraction cost and the demand for the resource alone will determine
the price and the rate of extraction. The outcome, which is an implementation
of the first instant of a sequence of plans, will yield non-decreasing extraction
and thus non-increasing prices for a long period of time. Furthermore, it will
decouple price growth from the interest rate. This is shown in the paper, using
the simplest possible model of exhaustible resources. By then adding technical
change that pushes demand upwards we get exponentially increasing extraction,
and by improving mining technology that reduces extraction costs, the resource
price may well remain constant or even fall over long time periods. These results
are in line with the factual trends of a majority of resources and are diffi cult to
obtain with models of natural resources when agents have an infinite horizon.
In contrast to the qualitative effects of the time horizon on resource models, it

is shown that deviating from infinite time to progressive finite time has almost no
effect on standard models of capital accumulation. The reason is that progressive
finite time really is a compromise between infinite and finite time models. As
is well known, a finite time model of capital initially displays qualitatively close
results to an infinite time model. Since in progressive finite time only the first
period of the plan is executed before a new plan is written, also the long-run
outcome will be qualitatively similar to an infinite time horizon. The difference
between progressive finite time and infinite time will be in the steady state level
and for reasonably long time horizons, also this difference will be marginal.
By using data on resource stocks over a large number of commodities during

several years, the infinite horizon hypothesis is tested empirically against the
progressive finite time hypothesis. Essentially, progressive finite time implies
that the price should react to revisions in the stock only if exhaustion is within
the market’s horizon. In contrast, an infinite horizon implies that the price
should react to revisions no matter how many years are left to exhaustion.
Testing for a structural break in the data, the infinite horizon hypothesis is
consistently rejected in favor of progressive finite time and suggests that the
horizon length is somewhere in the range of 20-25 years. A further calibration of
the model to the oil market closely replicates the falling real oil price after WWII
and accurately predicts the sharp price increase after 1998 up until the recent
financial crisis. However, it does not replicate the oil price shocks during the
1970:s which arguably were due to other factors than scarcity4 . In comparison,
a calibration of an infinite horizon model may replicate the falling price for a
few initial years but predicts an increase in the price occurring about 35 years
earlier than what is observed in the data.
Interestingly, even though progressive finite time has a qualitative impact

on exhaustible resource models and not on capital accumulation models, it is
the resource model that is time consistent while the capital model is not. In

4See e.g. Barsky & Kilian (2002) and Hamilton (2003).
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a progressive finite time world, resource prices and extraction are expected to
be constant and this is indeed also the realized outcome for many years. So if
rational expectations is an ability that grows out of a trial and error process,
then progressive finite time resource owners will find no reason to alter their
forecasting procedure for a long time. Also the welfare losses using progressive
finite time instead of an infinite horizon need not be that great. This is due to
that later losses of a lower stock are largely discounted away and compensated
for by higher consumption in the early days.
An important question is what value, if any, economic agents assign to hold-

ing the resource stock at the end of their horizon. Under full uncertainty, such a
value need to be formed through rules of thumb or guesses which are not neces-
sarily correct even on average and cannot be verified ex ante. Roughly speaking,
in terms of the model, adding a continuation value to the stock has no effect on
the outcome as long as the value is not based on rational expectations. In fact,
it may even strengthen the explanatory power of the model.
The paper starts by introducing the concept of progressive finite time in

more detail and presenting some microeconomic observations of such behavior.
Section 3 shows that standard capital accumulation models are hardly affected
by the choice of time horizon. Section 4 presents, by way of a simplistic model of
exhaustible resources, the qualitative difference between a progressive finite time
and a standard infinite horizon approach. It also addresses potential welfare
losses and how a final stock value affects the results. Section 5 shows what
the possibilities are of learning to improve one’s planning over time. Section
6 first reviews the exhaustible resource literature and contends that an infinite
horizon assumption is hard to reconcile with observed outcomes in the realm of
exhaustible resources. Second, it shows that a progressive finite time assumption
solves this disparity by using it in a model of exhaustible resources, capital
accumulation and technical change. Section 7 uses data on resource stocks to
test the model empirically. Section 8 calibrates the model to the oil market in
order to investigate how it fits the historical price and extraction of oil. Finally,
section 9 concludes by relating progressive finite time to other areas of economics
and discusses some welfare implications.

2 Introducing progressive finite time

The idea that agents continuously update finite plans was first formalized by
Goldman in 1968. The concept has been further explored in a few papers since,
mainly dealing with risk and stationarity (Easly & Spulber, 1981) and optimality
in settings of capital accumulation (Kaganovich,1985; Spulber, 1991)5 . It has
also been used extensively within supply chain management research, usually
referred to as rolling horizons (e.g. Clark, 1998; Perea-López et al, 2003).
A finite planning horizon is meant to catch the notion that the further into

the future we look the more uncertain we are of what the possible outcomes are

5Generally, progressive finite time has been found to yield results fairly close to the optimal
infinite time horizon when it comes to capital. This is also what is shown in the next section.
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and what probabilities to assign to them. At a far enough future the knowledge
is so limited that we perceive to be under full uncertainty. The exact reason for
this can possibly be modeled in many ways6 . In this paper I will use the simplest
possible assumption that enables analyzing the macroeconomic effects of having
finite plans. Namely that agents have fully certain and correct knowledge of
exogenous factors for the next T years, and have no information whatsoever
afterwards. This is admittedly a very crude way of modelling, but it contains
no obvious bias (compared to explicitly micro-modelling this behavior) since it
catches the driving mechanism that plans are finite. For a further discussion
see appendix A.
Graphically, progressive finite time is presented in figure 1. At a point

in time (q) the economic agent receives perfect information for the coming T
time periods (by perfect information is meant that they know the true outcome
of exogenous variables, parameters and functional forms). No information is
available, and the agent ignores forming beliefs over events beyond T . The
agent makes a plan for the next T time periods with the aim of maximizing the
aggregated discounted utility from consumption subject to some intertemporal
constraints, today’s state variable(s) and some terminal conditions. As part of
this plan, a forecast of endogenous variables up to time q + T is made (most
notably prices) and used in solving the finite maximization problem. The agent
then implements the first instant of the plan which determines also the state
variable(s) for the next instant. A new plan is then written encompassing the
time interval from q + ε to q + ε+ T taking the state variable(s) as given. This
way, writing of plans and executing the first instant of each plan, continuously
progresses into infinity7 . An important detail to note is that today’s plan does
not rely on the plans to be made in the future8 .
A subtlety in modelling progressive finite time is that the terminal conditions

may be as important as the finite time horizon itself. In both a social planner
and a decentralized setting this can be manifested through the beliefs on the
continuation value of the assets at the end of the horizon (in terms of market
value or in terms of welfare).
Now, when having no information about the distant future, whether and

how to include an unverifiable future asset value must essentially be based on
rules of thumb. To the extent that agents want to include the continuation value
in their business plan, their estimation of this must be based on a guess, which
will not necessarily be correct even on average. For most of the analysis the
imposed final asset value will be zero. But also the case of a positive final asset
value will be analyzed. The price forecasts within the planning horizon then
have to be consistent with this terminal constraint in a general equilibrium.

6E.g. through ambiguity aversion, maximizing over the worst possible outcomes, gradually
increasing uncertainty or increasing costs to forecasting. For a longer description see appendix
A.

7For a formal description see appendix A.
8To make plans contingent on future plans would indeed be impossible given that the

reason for making a finite plan in the first place is the complete uncertainty about the distant
future.
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Figure 1: Schematic of a progressive finite time horizon. Each horizontal rectangle is a plan.
The outcome is the diagonal formed by the first instant of each plan.

The essence of progressive finite time is perhaps best caught by the classical
proverb "We’ll cross that bridge when we get to it". It expresses the idea
that people know that things will change in the future, but not exactly how,
and that therefore there is no point in dealing with it now when the picture is
unclear. Casual observations of this behavior among economic agents abound.
Business plans of firms are exclusively stated finitely and updated regularly.
Another example is of US social security. On an annual basis the solvency of the
social insurance system over the next 75 years is updated in a report (Board of
trustees, 2009)9 . These forecasts and business plans are of course written today
in knowing that they will be updated again next year. Also most government
budgets are specified for a year or two at a time10 . Another suggestive piece of
evidence is that future markets for commodities such as oil seldom span more
than a few years into the future.
Furthermore, in interviews I have conducted with Scandinavian resource

owners, they state that the distant future is so uncertain that there is no point
in including it in a business plan. They further say that it would be bad policy to
deliberately save resources for an uncertain future and that they extract as long
as the price covers their (marginal) costs of extraction. This can also be verified
in some contract schemes. E.g. the Norwegian government, who is the owner of
several North Sea oil and gas fields, gives firms the right to extract, at a more or
less freely chosen rate, for ten years at a certain field. The rights are then given

9The report also includes an infinite horizon analysis. But, for policymakers the 75 year
analysis is the most used.
10For further examples see Easly & Spulber (1981).

6



to a new firm through a bidding process. This type of contract should indeed
induce extraction at the maximum possible speed with little consideration on
the side of the firm of the continuation value of the field after the ten years.
The choice of opening a new field for extraction is based on technical factors11 .
There is also plenty of experimental research suggesting that there are limi-

tations to how far ahead people plan and that, when making finite plans, they
assign no or low and certainly not a rational value to outcomes beyond their
horizon. Most conducive to the subject of this paper is a recent study by van
Veldhuizen & Sonnemans (2011). They show experimentally that when sub-
jects have access to a large stock of exhaustible resources they tend to ignore
the dynamic issue of resource allocation more than what rationality prescribes.
For a review of other experiments and a further discussion of issues related to
progressive finite time see appendix A.

3 Capital accumulation with progressive finite
time

As a benchmark, consider a standard Ramsey-Cass-Koopmans capital accumu-
lation economy consisting of a mass 1 of capital owners with an infinite time
horizon and competitive firms owned by the agents.

max

∞∑
0

βtU (Ct) dt

Kt+1 + Ct = rtKt + (1− δ)Kt + wt

K0 given, Ft = F (Kt)

With appropriate assumptions on utility (U) and production (F ) and a transver-
sality condition, the results of this problem are well known. There is a unique
path converging to a steady state of capital no matter which initial capital level
is assumed. In particular, if initial capital is lower than that of the steady state,
it will be increasing monotonically towards the steady state.
Now consider the finite time equivalent of this problem stretching from time

q to q + T .

max

∞∑
0

βtU (Ct) dt

Kt+1 + Ct = rtKt + (1− δ)Kt + wt

K0 given, Kq+T ≥ 0, Ft = F (Kt)

It is well established that the solution to this problem displays turnpike prop-
erties where (if Kq is small) capital initially increases and then falls as time
approaches q + T while consumption increases monotonically12 .

11For more information see NMPE (2008).
12For reference see Cass (1966).
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Figure 2: Phase diagram comparing a capital accumulation model of progressive finite time

horizon of 35 years with an infinite time horizon model. Grey dashed lines = Equilibrium lines;

Full grey line = Infinite time saddlepath; Full black line = Progressive finite time outcome ;

Dotted black lines = Progressive finite time plans.

The progressive finite time alternative in effect is a sequence of finite time
problems. In every instant of time (q) the representative agent makes a finite
time plan from q to q + T taking Kq as given. It executes the first instant (ε)
of this plan and then makes a new plan based on new information from q+ ε to
q+ ε+T taking Kq+ε as given. This procedure is repeated until infinity13 . The
result is an infinite sequence of plans, each one having turnpike properties, and
the realized outcome being an implementation of the first instant of each plan.
The results may be better understood with two simple figures. Figure 2

is a phase diagram showing the results of the infinite time problem and the
progressive finite time problem when initial capital is low. The figure shows
a saddle path of the infinite time problem representing the convergence to the
steady state. Additionally there is a sequence of progressive finite time plans.
The outcome of the progressive finite time case comes from the execution of the
first instant of each plan. We then get convergence to a steady state, like in the
infinite time version, but with a slightly lower level of capital and consumption.
The economy’s evolution over time is presented in figure 3. With progressive

finite time, each plan diverges from the infinite horizon case only at the end
of the plan - early on in each plan capital is scheduled to increase just like
with the infinite horizon. Since it is only the earliest part of each plan that is

13Note that every single plan is autonomous, in the sense that it is independent of what the
future plans look like. Thus, a single plan is exactly equivalent to a finite horizon solution.
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Figure 3: Time paths of capital with a progressive finite time horizon of 35 years and infinite
time horizon. Grey dashed line = Infinite horizon steady state; Full grey line = Infinite time

outcome; Full black line = Progressive finite time outcome ; Dotted black lines = Progressive

finite time plans.

ever implemented, the falling parts of the plans never really bite. This way the
outcome always lies on the upwards sloping part of the plan which has dynamics
very similar to the infinite horizon case.
If we were to impose a final constraint so that Kq+T ≥ Kmin > 0 that would

make little difference to the results shown here. The same goes if we attach
a final value to the capital stock. It would only lift the realized progressive
finite time path and if anything make progressive finite time and an infinite
time horizon look even more similar. For a large enough Kmin (or capital stock
value) we may even get more capital accumulation than in the infinite horizon
model.

4 Natural resource extraction with progressive
finite time

4.1 Basic results

To understand why the choice of time horizon matters in resource models, con-
sider now a simplistic model of natural resource extraction with a mass 1 of
identical resource owners having an infinite time horizon.
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max

∞∑
t=0

βtU (Ct) (1)

Ct = ptEt −M (Et) + wt (2)

St+1 = St − Et (3)

St+1 ≥ 0 (4)

S0 given, F = F (Et, 1) (5)

Now production of the consumption good is done using an exhaustible resource
E by competitive firms with w denoting the labor wage and p the resource price
after extraction. The cost of extracting the resource is M (E) and is borne by
the owners where M is an increasing and weakly convex function. The stock
of the resource S is depleted at the rate of extraction, and there is a resource
constraint stating that the stock cannot go below zero. Taking the first order
conditions this problem yields

pt+1 −M ′ (Et+1)
pt −M ′ (Et)

= 1/β
U ′ (Ct+1)

U ′ (Ct)

pt = F ′ (Et)

which together with equations (2)-(4) gives the classic Hotelling result. That
is, due to discounting of future utility, the solution displays falling extraction
and consumption while the resource price (in equilibrium determined by the
marginal productivity) , is increasing over time.
The formulation of the finite time version of this problem is seemingly simi-

lar. Let q denote the current year and T the number of future years to maximize
over.

max

T∑
t=0

βtU (Ct) (6)

Cq+t = pq+tEq+t −M (Eq+t) + wq+t (7)

Sq+t+1 = Sq+t − Eq+t (8)

Sq+t+1 ≥ 0 (9)

Sq given, F = F (E) (10)

In contrast to the infinite horizon case, now there can be two possible outcomes
of the problem. If the stock is large enough, or the time horizon short enough,
or the cost of extraction high enough, then it will not be optimal to deplete
the whole stock within T years. This is since the marginal cost of extraction
will surpass the marginal productivity of the resource. In effect the resource
constraint (Sq+t+1 ≥ 0) will not be binding. In this case it is optimal to extract
such that the marginal mining cost equals the price of the resource in every
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period which in equilibrium implies that

pt =M ′ (Et) = F ′ (Et) . (11)

This implies that extraction will be constant and so will the price. The other
alternative is if the stock is small enough to be depleted fully within T years.
Then the resource constraint will be binding and the solution will be qualita-
tively similar to the infinite time problem where extraction is falling and the
resource price is increasing over time.

pq+t+1 −M ′ (Eq+t+1)
pq+t −M ′ (Eq+t)

= 1/β
U ′ (Cq+t+1)

U ′ (Cq+t)
(12)

The progressive finite time version, again, is a sequence of finite time plans
where the first year of each plan is executed before a new plan is made taking
the current stock level as given. If the stock is initially high enough (supposedly
when q = 0), then the resource constraint will not be binding and the plan will
be to extract so that the marginal cost of extraction is equal to the resource
price forecasting that the resource price equals its marginal productivity - as
given by (11). Similar plans and forecasts will annually be formulated and the
first year executed, which implies the outcome of constant extraction and prices
for possibly a very long time. So it will continue until the stock becomes small
enough to be depleted within T years. At this point the new plan will change
character to include the binding resource constraint implying falling extraction
- as in (12). In the period after, the stock will be smaller necessitating lower
planned extraction and so on. This phase therefore yields the outcome of falling
extraction and consumption and increasing prices.
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Figure 4: An exhaustible resource model with progressive finite time horizon of 35 years
compared to infinite time horizon.

These results are visualized in figure 4. In total, the results of the infinite
horizon and the progressive finite time horizon version of the problem are qual-
itatively different. This is because, in the latter, extraction and prices may be
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constant for a significant length of time. Once the shift to the second phase
occurs the results are qualitatively similar to those of infinite horizon. But the
progressive finite time problem has faster decreasing extraction and faster in-
creasing resource prices. This is largely since the economy now has to cope with
a smaller stock of resources due to the overextraction in the early years.
The empirical observations speak of an extraction which is increasing over

time and a price which may be decreasing. To obtain such results it is enough
to add some technological improvements in the extraction technology. This,
and a few more enrichments of the model will be explored in section 6, in order
to analyze under what conditions the extraction is increasing and the price is
decreasing over time.

4.2 Empirical predictions

In preparation for the empirical tests, this section will outline formally some
additional results that contrast the infinite and progressively finite resource
extraction models. To help fix ideas, it will be assumed that the owner of the
resource is profit maximizing (i.e. linear utility) and that the extraction costs
are linear with B marginal extraction costs.

U (C) = C

M (E) = BE

These two assumptions are suffi cient, but far from necessary, to obtain the basic
results described earlier. For the purpose of empirical testing it also helps to
measure the resource scarcity in terms of years left to exhaustion. Now, if the
exhaustible resource is truly necessary for production the remaining years are
always infinite. However, a slight and, for most cases, realistic extension leads
to exhaustion in finite time - the existence of a renewable substitute at some
strictly positive level. Now the production function is

F (Et +R) .

Assuming that F is increasing and concave, a competitive equilibrium of the
infinite horizon model (equations 1-5) will yield the following result.

pt+1 −B
pt −B

= 1/β ∀t such that St+1 > 0 (13)

pt = F ′ (Et +R) . (14)

This is a form of the classic Hotelling result which states that the scarcity
rent is increasing at the rate of interest (1/β). Clearly, from equation (13),
it follows that pt+1 > pt as long as the stock is not exhausted. Additionally,
through concavity of F , it must hold that Et+1 < Et. To analyze what happens
after exhaustion, define the remaining years to exhaustion at time t as τ (St).
Implicitly it is given by

F ′ (R)−B
F ′
(
St+τ(St) +R

)
−B

= 1/β, (15)
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i.e. in the period of exhaustion, extraction is equal to the remaining stock. For
all time periods prior to this, equation (13) holds. A few additional results can
be derived.

Proposition 1 In an infinite horizon model with a renewable substitute, dptdSt
<

0.
Proof. dpt

dSt
= dpt

dEt
dEt
dSt
. From concavity of F follows that dpt

dEt
< 0. Equation

(13) and concavity of F imply that dEt+i
dSt

> 0 ∀i ∈ {0, ..., τ (St)}. The result
then follows.

The proposition implies that an unexpected increase in the stock will lead to
a decrease in the price when the market has an infinite time horizon. The effect
of the remaining years to exhaustion on the price is outlined in the following
proposition.

Proposition 2 In an infinite horizon model with a renewable substitute, if
τ (St) is increasing then pt is decreasing .
Proof. Backward induction of (15) and (13), with concavity of F , imply that
τ (St) is weakly increasing in St (weakly because τ is an integer). Proposition 1
implies that dptdSt

< 0.Thus, since τ (St) is increasing only if St is increasing and
pt is decreasing iff St is increasing, pt is decreasing if τ (St) is increasing.

The proposition implies that a resource with more remaining years to ex-
haustion should, ceteris paribus, have a lower price.
A final proposition connected to the infinite horizon model regards the

growth rate of the price and how it is affected by the size of the stock. Let
p∗t denote the price at time t given S

∗
t , and p

∗∗
t denote the price at t given S∗∗t .

Proposition 3 In an infinite horizon model with a renewable substitute, iff
S∗t > S∗∗t then

p∗t+1−p
∗
t

p∗t
<

p∗∗t+1−p
∗∗
t

p∗∗t
.

Proof. Define λ (St) ≡ pt − B. Then pt+1−pt
pt

= λ(St+1)+B
λ(St)+B

− 1. Using (3) in
this expression and the result that λ (St+1) /λ (St) = 1/β (from equation 13)
the price growth inequality can be rewritten to λ(S∗t )/β+B

λ(S∗)+B <
λ(S∗∗t )/β+B
λ(S∗∗)+B . This

inequality holds since dλ(St)
dSt

= dpt
dSt

< 0 (from proposition 1).

Corollary 4 In an infinite horizon model with a renewable substitute, if τ∗t >
τ∗∗t then

p∗t+1−p
∗
t

p∗t
<

p∗∗t+1−p
∗∗
t

p∗∗t
.

Proof. Follows from proposition 3 and that only if S∗t > S∗∗t then τ∗t > τ∗∗t
(see the proof of proposition 2).

Following the proposition and the corollary we should observe an acceleration
of the price growth as time progresses and that the closer we are to exhaustion
of the resource stock the higher should the price growth be. Also, an unexpected
stock increase should have a negative effect on the price growth.
Let’s contrast these results with the same model but with a progressive

finite time horizon (equations 6-10), again, with linear utility, linear extraction
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costs and a renewable substitute. First the plans will be characterized after
which the sequence of plans, which also form the outcome, will be described.
With competitive markets and a concave F , the plan may take two qualitatively
different forms. The first alternative is a counterpart of equation (11).

F ′ (Eq+t +R) = B ∀t ∈ [0, T ] if TEmax ≤ Sq. (16)

Emax ≡
[
(F ′)

−1
(B)−R

]
Here (F ′)−1 (B) is the inverse of F ′ with respect to B and thus (F ′)−1 (B)−R
is the extraction level where marginal productivity of the resource is exactly
equal to the marginal extraction costs14 . That way, Emax can be thought of
as the maximum profitable extraction level in one period15 . Equation (16)
then states that if the endowment at q is larger than what can profitably be
extracted in T years, then the extraction plan will be constant. If, on the other
hand, TEmax > Sq, the plan takes the second alternative form, which is the
counterpart of equation (12).

F ′ (Eq+t+1 +R)−B
F ′ (Eq+t +R)−B

= 1/β t ∈ {0, ...,min{τ (Sq) , T}} , (17)

Eq+t = 0 t ∈ {min{τ (Sq) , T}+ 1, ..., T}
T∑
t=0

Eq+t = Sq (18)

where τ (Sq), the remaining years to exhaustion, is implictly defined by

F ′ (R)−B
F ′
(
Sq+τ(Sq) +R

)
−B

= 1/β. (19)

If the endowment is smaller than the maximum profitable extraction level over T
years then we will get an extraction plan which is decreasing and a price forecast
which is increasing over time up until τ (Sq) - in similarity to the infinite horizon
model. Practically speaking, if T is large and Sq is small, the plan will dictate
a falling extraction and increasing price for τ (Sq) periods and a constant price
thereafter.
Letting x̃ denote a realized variable and S0 be the resource stock at time

zero, the observed outcome will go through three phases. Firstly, as follows
directly from equation 16, for the initial q = 0...S0/Emax periods

Ẽq = Emax (20)

p̃q = F ′ (R+ Emax) (21)

S̃q+1 = S0 − qEmax.
14 Implicitly it is assumed that F ′ is invertible.
15Or more exactly, the maximum marginally profitable extraction level.
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Secondly, for the periods q = S0/Emax+1...q (Sq) , where Sq solves
F ′(R)−B

F ′(Sq+R)−B =

1/β,

Ẽq = Eq (22)

p̃q = F ′ (R+ Eq)

S̃q+1 = S̃q+1 − Eq

where Eq is obtained by solving equations (17) and (18). Thirdly, for the periods
q = q (Sq) + 1...∞,

Ẽq = 0

p̃q = F ′ (R)

S̃q+1 = 0

In one sentence, the progressive finite time model predicts that we should
observe a constant price for a number of initial years, then an increasing price
until the resource stock is exhausted whereby the price will be constant until
infinity. To see why Ẽq is decreasing in the second phase we can note that
equations (17) and (18) imply an Eq which is decreasing with the stock (see
proof of proposition 1).
In order to perform the empirical tests, the equivalents of propositions 1 to

3 and corollary 4 will now be derived for the progressive finite time model.

Proposition 5 In a progressive finite time model with a renewable substitute

1. dp̃q
dS̃q

= 0 if S̃q > TEmax

2. dp̃q
dS̃q

< 0 if S̃q < TEmax

Proof. The first part follows from equation 21 which implies that p̃q is indepen-

dent of the stock when S̃q > TEmax. The second part holds iff
dp̃q
dS̃q

=
dp̃q
dẼq

dẼq
dS̃q
.

From concavity of F follows that dp̃q
dẼq

< 0. Equation (17) and concavity of F

imply that the planned extraction has dEq+tdSq
> 0 ∀t ∈ {0, ...,min{τ (Sq) , T}}. In

particular, dEqdSq
> 0 which by (22) also implies that dẼq

dS̃q
> 0.

This proposition expresses that unanticipated resource findings will have
an effect on the price if and only if the previous stock was small. Or, put
differently, if and only if the remaining years to exhaustion before the finding
was less than the market’s horizon. It also follows that when S̃q = TEmax
the price is sensitive to stock decreases but not to stock increases. The next
proposition is the progressive finite time equivalent of proposition 2.
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Proposition 6 In a progressive finite time model with a renewable substitute
then, iff τ

(
S̃q

)
< T , p̃q is decreasing if τ

(
S̃q

)
is increasing.

Proof. See appendix.

The proposition expresses that a resource with fewer remaining years to
exhaustion should have a higher price. But, this should only occur when the
remaining years are less than the markets time horizon.
As a comparison to proposition 3 and corollary 4 the upcoming proposition

and corollary characterize how the price growth in the progressive finite time
model is affected by the stock and remaining years. As before, p̃∗q will be the
solution of the progressive finite time model with S̃∗q , and p̃

∗∗
q will be the solution

with S̃∗∗q .

Proposition 7 In a progressive finite time model with a renewable substitute,
iff S̃∗∗q+1 ≥ TEmax, then

p̃∗q+1−p̃
∗
t

p̃∗q
=

p̃∗∗q+1−p̃
∗∗
q

p̃∗∗q
= 0 if S̃∗q+1 > S̃∗∗q+1.

Proof. See appendix.

Corollary 8 In an infinite horizon model with a renewable substitute,

1. if T ≥ τ∗t > τ∗∗t > 0 then
p̃∗q+1−p̃

∗
t

p̃∗q
<

p̃∗∗q+1−p̃
∗∗
q

p̃∗∗q
.

2. if S̃∗q+1/Emax > S̃∗∗q+1/Emax ≥ T then
p̃∗q+1−p̃

∗
t

p̃∗q
=

p̃∗∗q+1−p̃
∗∗
q

p̃∗∗q
= 0.

3. lim
S̃q+1

+→TEmax

d
p̃q+1−p̃t

p̃q

dSq+1
= 0 < lim

S̃q+1
−→TEmax

d
p̃q+1−p̃t

p̃q

dS̃q+1

Proof. See appendix.

The proposition and corollary express that, in a progressive finite time world,
we should expect the price growth to be higher the smaller is the resource stock
only if exhaustion is nearer than the market horizon. On the contrary, if the
infinite horizon is right, then we should observe an increasing price growth no
matter how many years are left to exhaustion.

4.3 Terminal constraints and end values

By letting T grow the results of progressive finite time will eventually converge
to the case of an infinite horizon. This can be seen in, for example, proposi-
tion 7 and corollary 8 which, as T increases, converge to their infinite horizon
counterparts. This is since when T grows suffi ciently, the initial endowment S0
must necessarily be smaller than TEmax. Also if we use a resource constraint
S (t) ≥ Smin where Smin is large enough it is possible to get a progressive finite
time environment which is similar or even more conservationist than in an infi-
nite horizon case. If, on the other hand, Smin is small enough or if the rule of
thumb is to leave a certain, small enough, fraction of the stock at the end, the
original progressive finite time results go through.
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A more subtle result is if we let there be a value to the final stock. Agents
may use this value as a rule of thumb to proxy for scarcity or a longer horizon.
For clearness of the ensuing results it will be modelled, again, with a competitive
production market and atomistic and identical and profit maximizing resource
owners of mass 1 each owning an equally sized resource stock. Now a representa-
tive household with a progressive finite time horizon makes a plan for extraction
covering the next T years also considering there is some price, Pq+T+1, to every
unit of the stock left in the ground at the end. Thus, in creating the plan, the
following problem will be solved, where w is the wage and p is the resource price
after extraction.

max

T∑
t=0

βt [pq+tEq+t −M (Eq+t)] + β
T+1Pq+T+1

[
Sq −

T∑
t=0

Eq+t

]
Sq+t+1 = Sq+t − Eq+t

Sq given, Sq+t ≥ 0, F (t) = F (E (t) , 1) , β ∈ ]0, 1[

To solve this problem we need to make an assumption on how Pq+T+1 is de-
termined. Given that progressive finite time comes from lack of information
regarding events beyond T , the case of an exogenous unit price will be analyzed
first. Then the case of an endogenous unit price which is determined by the size
of the aggregate stock will be analyzed.
When the continuation value is exogenous there may be two types of out-

comes from this problem. The first type is just a straightforward maximization
which yields the following plan and forecast.

pq+t −M ′ (Eq+t) = βT−t+1Pq+T+1 ∀t ≤ T
pq+t = F ′ (Eq+t)

For standard functional forms this implies an extraction plan that is decreasing
over time. What the unit end value βT−t+1Pq+T+1 does is pushing a wedge be-
tween marginal productivity and marginal extraction. A wedge that is growing
with t. However, and perhaps more importantly to note, is that the planned
extraction for a certain period is determined independently of planned extrac-
tion in other periods. The reason for this comes from the assumption that the
unit price Pq+t+1 is independent of the size of the stock left behind. Thus, the
progressive finite time outcome, i.e. the implementation of the first period of
each plan is simply

F ′
(
Ẽq

)
−M ′

(
Ẽq

)
= βT+1Pq+T+1 , q = 0...∞.

From this expression it is clear that the time path of realized extraction is
determined by the time path of Pq+T+1. As an example consider the case
of a constant final unit value16 . In this case the realized extraction will stay

16This can be the counterpart of believing there is some fixed price tag for selling the mine
at the end of the horizon as a rule of thumb to roughly capture that there is some scarcity.
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Figure 5: Simulation of an exhaustible resource model with a progressive finite time horizon
of 20 years and an end value of the stock.

constant over time, just like in the case of no final value of the stock. Naturally
this implies also a fixed realized resource price. If Pq+T+1 is decreasing with q
then extraction will increase over time and vice versa. Moreover, the level of
Pq+T+1 has no effect on the time trend. Thus, even if the guess on Pq+T+1 is a
gross overestimation of the value that will eventually be observed, this has no
effect on the trend.
A constant extraction from a finite resource cannot continue indefinitely.

Eventually, the nature of the solution has to change, which leads to the second
type of outcome. Previously, the non-negativity constraint (Sq+t ≥ 0) was not
binding since the final value kept extraction low enough. Eventually, however,
the plan will imply leaving no stock at the end. Thus, every plan will look
like a standard Hotelling model with a finite horizon and a binding resource
constraint. Since the realized stock is falling over time the realized extraction
will fall and the price will increase.
Overall the total realized outcomes are displayed in figure 5. Here a constant

and fairly high end value is set and thus extraction is initially lower than what
would materialize in an infinite horizon case. However, extraction stays constant
and only starts falling after many years. To note is that it stays constant for
substantially longer than in the case of progressive finite time with no end value.
In fact, the higher the end value is set the longer constant extraction will be
upheld. A qualitative difference of adding an end value is that the plans in the
first phase now dictate falling extraction over time while the realized extraction
is constant17 .
Up until now the representative resource owner took the end value as an

17Recall that with no end value both plans and realized outcomes are constant in the first
phase.
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exogenous guess. If instead the end value is endogenous to the problem the
progressive finite time result may no longer hold. In particular if Pq+T+1 is
based on perfect information until infinity, then Pq+T+1 becomes a function
of the stock18 . This function perfectly incorporates all future profits of the
resource and the progressive finite time and infinite horizon cases therefore per-
fectly align. More generally, if agents believe the end unit price is a function
of the remaining stock, Pq+T+1 (Sq+T+1), then if they believe that P ′q+T+1 < 0
extraction will decrease over time since the value of saving the resource for the
future increases as the stock falls. This can be seen in the first order condition
determining the realized outcome.

U ′ (C (Eq)) [F
′ (Eq)−M ′ (Eq)] = βTPq+T+1 (Sq+T+1) , q = 0...∞.(23)

Sq+T+1 = Sq −
T∑
t=0

Eq+t

The left hand side of (23) is independent of Sq and decreasing in Eq19 . The
right hand side is decreasing in Sq and increasing in Eq. Thus, as Sq falls with
time also Eq must fall. If agents instead believe P ′q+T+1 > 0 then these results
are reversed. The realized extraction will increase over time with a falling price,
until the resource constraint is binding, whereby extraction will fall and prices
increase.
An overall conclusion from the previous analysis is that adding a continua-

tion value does not by itself undermine the main results of constant extraction
and prices. Rather it depends on how this value is changing over time and thus
how it is formed. If agents rationaly calculate the continuation value then we
get falling prices. But if they routinely just attach some final unit value, to
roughly catch that there is a future market, then constant prices and extraction
may be realized during a long time period. One can note that when progressive
finite time is coupled with a zero continuation value it is not the zero value by
itself that drives the results but rather the consequential assumption that when
the value is zero it is also constant.
A final discussion is that of potential welfare losses. To compare the welfare

of a world using progressive finite time with one of infinite horizon is analytically
hard. A numerical analysis however suggests that one either needs a very short
time horizon or unrealistic parameter settings for losses to be large20 . For
example, a time horizon of 35 years consistently yields losses on the level of less

18The total continuation value is equal to all discounted future profits of the resource,

Pq+TSq+T =
∞∑
t=1

βt−1
[
pq+T+tEq+T+t −M

(
Eq+T+t

)]
19Since we know that now F ′ (Eq) > M ′ (Eq).
20 In the simulations I have used a CRRA utility function varying σ ∈ [0, 5]; the cost function

M = Eθ

Am
varying θ ∈ [1, 4]; a concave production function F = AEα letting α = .3 mainly

but vary the technology ratio Am/A ∈ [1, 4]; a discount factor of 0.95 so that every period
should be interpreted as a year; vary the horizon T ∈ [5, 35]. Then I vary the initial stock so
that the phase of constant prices lasts between 0 and 100 years.
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than 2 percent. The reason for losses being small is that with progressive finite
time, consumption is initially higher than with an infinite horizon. For example,
in figures 5 and 4 it takes over 60 years for extraction to fall below the infinite
horizon counterpart. For subsequent losses to have an effect, economic agents
need to be either very patient or very inclined to consumption smoothing21 .
For standard values of discounting and concavity of the utility function and
reasonable horizon lengths22 and for initial resource stocks such that extraction
is non-decreasing for 50 years or more, the welfare losses stay under three percent
and mostly well below23 .
Another way of addressing welfare is to ask what gains a single agent with

an infinite horizon can make given that (s)he knows that everyone else has a
progressively finite horizon. For specific parameter settings it is possible to get
very large gains. For most parameter combinations however, and for those that
are the most realistic, gains stay at levels of 0.5-5%24 . The main reason for this
is, again, that the additional profits of an infinite horizon can only be realized
far into the future. When prices are constant for nearly a century, the later gains
of having a larger stock once prices do start rising, are effectively discounted
away. This also implies that, in the more complete model, of the upcoming
section 6 , that an agent that is outsmarting the market by having a longer
horizon will nevertheless extract at a growing rate. This is demonstrated in
appendix B. Considering that anything that approaches a reasonable accuracy
about the infinite horizon requires insights about the very far future and extreme
computational ability, to properly asses the gains and losses computed above
one has to compare them to the costs of making such plans. Furthermore, since
an agent cannot know the gains of infinite plans without actually making them
it may be interesting to analyze what signals agents receive regarding the quality
of their plans. This will be dealt with in the next section.

5 Is progressive finite time immune to learning?

A common discussion in economics is whether certain behavior and beliefs are
rational. One argument for imposing rationality on beliefs and behavior is that,
over time, agents would learn from their mistakes and eventually form beliefs
which are rational (i.e. stand the test of time) and thus also choose behav-
ior that, at least on average, maximizes their objective function25 . Since the
motivation for modeling progressive finite time comes mainly from information

21E.g. σ > 5 in a CRRA utility function.
22Annual discounting between 3 and 7 percent, σ ≤ 3, T > 20.
23Most likely this is an upper bound since the losses are driven by the convergence of

consumption to zero over time - i.e. the progressive finite time model converges to zero faster
than does the infinite horizon model. In a model with a renewable substitute there will be
a lower bound for consumption implying losses should be more limited than here. Resource
augmenting technical change should have a similar effect.
24For a typical result, see appendix B.
25 In other settings time inconsistency may be embedded in the preferences of agents. For

example, as modeled by hyperbolical discounting leading to "games against selves" (see Krusell
& Smith, 2003).
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constraints (rather than lack of care of the future), this notion of rationality is
important to address. Put differently, if agents constantly notice that their fore-
casts are wrong they may learn from this and over time improve the accuracy
of their forecasts - for example by extending the time horizon. So the question
to be answered in this section is to what extent progressive finite time agents
will get the opportunity to learn from potential mistakes they make26 .
If beliefs (i.e. the price forecast) and planned actions (i.e. state variables)

are in line with later observed outcomes I will refer to it as progressive finite time
being "immune to learning". In a sense this catches the spirit of self-confirming
equilibria (e.g. Fudenberg & Levine, 1993). The main idea is to capture that
agents on an aggregate level may be on a non-optimal path but that they may
not have any reason to suspect that some other actions are better since their
beliefs are always fulfilled. To see whether the requirements above are fulfilled
one essentially asks if and after how long time agents get the opportunity to
realize they have been wrong.
A capital accumulation model with progressive finite time is immune to

learning only up until a new plan is made. This can be seen in figure 3. Since
the first period of a plan is implemented, also the state variables of that next
period and thus the interest rate will be consistent with the forecast. However,
the new plan will differ from the previous regarding all ensuing periods, implying
that later outcomes will differ from what was forecast and planned in the first
plan.
This is contrasted by the exhaustible resource model. As long as the economy

stays within the first paradigm (when the resource constraint is not binding)
agents will not be proven wrong and will thus be immune to learning. This
is since prices are forecast to equal marginal extraction which is also what is
realized. This comes clear in figure 4, where the outcomes are equal to the plans
for the first 55 years. It implies that agents will not get signals that they need
to improve their forecasting since they turn out to be right. This will proceed as
long as the economy is in a state where the resource constraint is not binding27 .
It does not, however, continue when the resource constraint eventually starts
binding. Then, progressive finite time is only immune to learning up until a new
plan is made. This is since in the next plan extraction is revised downwards
and the price forecast revised upwards. Also this can be seen in figure 4 - when
the extraction rate falls the plan lies above the realization28 .
A noteworthy and possibly counter-intuitive implication of the results above

is the reversed connection between outcomes under different horizons and oppor-
tunities to learn from mistakes. When the observable outcomes of progressive
finite time and infinite horizon are qualitatively similar (in the capital model

26A formal treatment can be found in an online appendix on my website:
http://people.su.se/~dask4398/.
27Note that this holds also for an exhaustible resource model that incorporates exogenous

technical change in extraction and/or production, as long as agents have correct expectations
of technical advancement within the time horizon.
28These results of the resource model do not hold if agents asign an exogenous end value to

the stock. Then, the plans dictate falling extraction and increasing prices also initially, while
the realization is constant extraction and prices.
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and in the late years of the resource model) then agents will have the chance to
realize that plans are biased when using progressive finite time. But when the
qualitative results do differ between progressive finite time and infinite horizon
(in the early years of the resource model) then agents will not get the opportu-
nity to learn since they are not proven wrong29 .
As the economy reaches the change of phases in the resource model, agents

will start receiving signals that a short horizon yields inaccurate predictions.
This also coincides with an increase in welfare losses30 . It then seems reasonable
that over time agents may try lengthening their forecasts to horizons such that
welfare losses are small.

6 Explaining the observed price and extraction
trends

The models outlined in the previous sections were deliberately kept simplistic
to emphasize the main difference between how the time horizon affects capital
accumulation and exhaustible resources respectively. This section will present a
more complete model in order to explain the observed trends of extraction and
prices of exhaustible resources. The model results will be presented verbally
and graphically, but all claims have analytical support which is presented in
appendix B. But first a review of the resource literature and the empirical
observations to motivate why the observed trends need an explanation.

6.1 The resource extraction and price puzzle

During the last century a large majority of exhaustible resources have displayed
exponentially increasing extraction and constant or decreasing price trends (see
appendix C). Even though the price volatility has been substantial there are
only few examples of resource prices actually increasing over a longer period of
time.
The benchmark models of exhaustible resources without extraction costs

were developed by Hotelling (1931) and Dasgupta & Heal (1974) and with ex-
traction costs by Weinstein & Zeckhauser (1975), Solow & Wan (1976) and
Heal (1976). The focus of these papers was mainly to analyze the intertemporal
trade-off between using a resource today and saving it for later days. A central
result is then that the price of an exhaustible resource will contain two elements
- the marginal cost of extraction and the scarcity rent. The former may possibly
be decreasing over time but the latter must be increasing at the rate of interest.
Like was shown in figure 4, the benchmark model predicts that extraction will

29A striking example of this is Simon’s (1996) claims. Historically, people that have ignored
scarcity in their forecasts have turned out to be more right than people that have considered
resource scarcity a factor. Thus, according to Simon, the best way of making forecasts on the
resource markets is by ignoring scarcity.
30The numerical analysis suggests that the closer one is to the change of phases, the larger

the losses are.
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be falling and prices increasing over time, i.e. the opposite of the empirical
observations. The model also implies that there should be a direct correlation
between the interest rate level and the growth of the resource price.
By introducing a quickly improving mining technology one may get the in-

finite horizon model to exhibit non-decreasing extraction and non-increasing
prices for some time. But remember, the faster the mining technology will im-
prove the faster its effect wears off and the shorter the period of non-decreasing
extraction will be. Graphically, in figure 4, improving mining technology implies
a pivoting of the extraction graphs upwards and the price graphs downwards.
But this would also pivot the progressive finite time graphs in the same direc-
tion giving even more rapidly increasing extraction and falling resource prices.
So a progressive finite time assumption yields the observed results under much
weaker parameter, functional and technological conditions, than does the infi-
nite horizon assumption. To get falling resource prices over any longer period
of time, in an infinite horizon model, one would need to assume very specific
exogenous settings. These main theoretical results are also robust to some ex-
tensions31 . Meanwhile, it has been notoriously hard to find the empirical link
between the growth of resource prices and the level of the interest rate. Several
empirical papers reject that there is any correlation as implied by an infinite
horizon theory of exhaustible resources (Heal & Barrow, 1981; Abgeyebge, 1989;
Halvorsen & Smith, 1991).
Arrow & Chang (1982) model how new findings relax scarcity. They show

that a constant price trend can only be obtained if the true resource stock
is unlimited. If it is bounded (which should be the case for many important
resources such as oil, gas and coal) the price trend must be increasing, albeit
possibly at an initially slow pace. In these models it is indeed not possible to get a
falling trend of the resource price. The intuitive reason is that it is the expected
rather than the verified amount that determines scarcity and thus extraction and
prices. Unexpected discoveries may lower the price temporarily but likewise
the absence of discoveries should increase the price. If agents have rational
expectations about the true stock, this cannot be a consistent explanation for
non-increasing prices of a broad range of resources over a long period of time32 .
Another explanation to the extraction and price trends has been proposed

by Tahvonen & Salo (2001). Here a renewable substitute and endogenous tech-
nical change put a cap on resource prices. While this indeed is an alternative
explanation that holds for cases where there is a renewable substitute present
all along, the model results that now will be presented hold also without a

31E.g. the risk of a renewable substitute making the resource worthless (as in Kamien
& Schwartz,1978; Davison, 1978) in effect makes discounting of the future stronger, only
reinforcing the effect of decreasing extraction and increasing prices.
32Another model that explores the exploration aspect is that of Pindyck (1978). Here there

is a cost to finding new reserves, but the total reserves are known. The result of a potentially
falling resource price critically hinges on two assumptions. That the per unit extraction cost is
falling with the number of wells and that extraction costs are not convex within one well. This
is in opposite to the common understanding that new findings are usually costlier to extract
from and that there are usually physical limits to extraction per time unit, for example due
to well pressure and infrastructure limits.
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renewable substitute.

6.2 The model

Consider a representative agent with a discrete progressive finite time horizon33 .
For each time period q = 0, 1, ...∞ (s)he aims to write a plan by maximizing the
following objective.

max

T∑
t=0

βtU (Cq+t) , β ∈ ]0, 1] , U ′ > 0, U ′′ < 0 (24)

The economy consists of competitive firms whose production facilities (H) dis-
play CES properties.

Hq+t =
[
γF

(σ−1)/σ
q+t + (1− γ)G(σ−1)/σq+t

]σ/(σ−1)
, σ > 0 (25)

Fq+t = Kα
q+t
(AL,q+tLq+t)

1−α (26)

Gq+t = ANR,q+t (Eq+t +R) (27)

Here σ represents the substitutability between the production capacity (F ) and
the resource capacity (G). The production capacity is based on the amount of
machines (capital, K), workers (L = 1) and how effi cient these workers are (AL).
The production capacity is assumed to be of Cobb-Douglas type. The resource
capacity (G) is determined by the amount of a constant and exogenously given
renewable resource (R ≥ 0) and how much of an exhaustible resource (E) that
is being extracted in each time period. For tractability the renewable and ex-
haustible resource are assumed to be perfect substitutes and there is a resource
augmenting technology (ANR) making their use more effi cient. Furthermore, at
a time period q there is a stock (Sq ≥ 0) of exhaustible resources from which
to extract. Thus, for a plan to extract Eq+t we get the law of motion of the
resource stock and the resource constraint as follows.

Sq+t+1 = Sq+t − Eq+t (28)

Sq+t+1 ≥ 0 (29)

The process of extracting the exhaustible resource is subject to a cost.

M (E,AM ) ,
∂2M

∂E2
> 0 ∀ E, M (0, Am) = 0,

lim
E→∞

∂M

∂E
= ∞, ∂M

∂AM
< 0 if E > 0. (30)

Thus, the marginal cost is strictly increasing with scale which can be motivated
by infrastructure investments (for transport or digging) that are needed if ex-
traction rates are to be increased. Moreover, as is the case for oil, there is a flow

33Discrete time is used for clarity of exposition. The continous time counterpart of course
yields the same results but requires a bussier notation.
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of the resource given by the geological structure that effectively determines the
maximum extraction rate34 . AM is a technology making the extraction process
more effi cient. Suppressing the variables of technology we can now state the
budget constraint35 .

Cq+t+Kq+t+1 = pq+t (Eq+t +R)+ rq+tKq+t+wq+t−M (Eq+t)+ (1− δ)Kq+t

(31)
At time q an equilibrium plan is defined as a set of prices {pq+t, rq+t, wq+t}Tt=0
and resource stocks, factor inputs and consumption {Sq+t, Eq+t,Kq+t, Cq+t}Tt=0
such that markets clear and the problem (24)-(31) is solved. The outcome will
be the realized first period control variables and the second period state variables
from each plan {Eq, Cq, Sq+1,Kq+1}∞q=0.

6.3 Non-scarcity phase

The economy described above will go through two phases, if the initial resource
stock is large enough (see proposition 11 in the appendix). Initially there will
be a finite but potentially very long phase with no perceived scarcity of the
exhaustible resource. This will be taken over by a phase where the resource
constraint is binding. The results are visualized in figure 6. In this particular
simulation the non-scarcity phase lasts for 66 time periods.
The initial phase where no scarcity is perceived occurs since total depletion is

not optimal within the time horizon of the economic agents, in essence implying
that the exhaustible resource will be treated as non-exhaustible. In this phase
the marginal productivity and marginal extraction costs alone determine the ex-
traction rate (equation 34). Since there is no perceived bound to the extraction
- other than the extraction costs - any change that either increases demand or
decreases the extraction cost will lead to increased extraction. Furthermore, any
change that increases demand will increase the resource price and any change
that decreases the extraction cost will decrease the resource price (proposition
13 and corollary 14). More precisely, labor augmenting technology will increase
extraction and the price; mining technology will increase extraction and lower
the price; the effect of resource augmenting technology depends on parameters.
Under fairly general conditions we can then get extraction which is increasing
exponentially and a resource price which is non-increasing for a long period of
time. This happens if capital is initially low and the mining technology improves
fast enough to offset the increased cost when extraction increases.
During this phase capital accumulation, output, consumption and the real

wage will be increasing over time. The returns to capital will be roughly constant
and profits of resource owners will be positive (equation 37) - all in line with the
stylized macroeconomic facts of the last century36 . Furthermore, if production

34For a summary see Witze (2007) or Davidson (1963).
35 It is assumed that the representative agent owns the capital, the resource stock and

performs the extraction.
36These results hold also for other production functions and for more weakly specified
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Figure 6: A ten year horizon economy’s evolution over time. The vertical line marks
the shift from "Non-scarcity" to the "Shadow of exhaustion" phase.

is of Cobb-Douglas type there exists a balanced growth path of capital, output,
consumption, real wage and extraction but where the resource price is non-
increasing if the extraction cost function is not "too" convex37 . The intuition for
this is that when extraction is increasing over time the cost function cannot be so
convex as to outweigh the improvement in extraction technology (propositions
16 and 17).

6.4 Shadow of exhaustion phase

Increasing extraction cannot be sustained forever with a finite resource. Even-
tually, as the stock becomes small enough, total depletion will be possible within
the time horizon of the representative agent. At this point the resource owners
will start treating the resource as exhaustible implying that also the scarcity
rent will start affecting the extraction rate. I call this phase "the Shadow of
exhaustion" as the economic agents act based on the resource limits. In figure
6 this phase is represented by period 67 onwards.

mining cost functions. The reason for not stating all functions completely general is that it
would yield a plethora of subcases to prove. Essentially, any functional combination where
the marginal producitivity of resources intersects the marginal extraction costs from above
(in a schedule of extraction on the x-axis and price on the y-axis), will yield similar results.
This way we can even have a marginal extraction cost which is decreasing with scale. This
arguably covers most of the reasonable cases of production and mining. The way labor and
capital are specified in production plays little role here.
37A rough calibration yields the extraction cost function should not be more than quadratic.
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Here the economy will behave more or less as described by the classical
Hotelling model with extraction costs (see for example Weinstein & Zeckhauser’s
1975 article or equations 42, 43 and 44 in the appendix). In this phase extrac-
tion can be increasing for a few time periods but soon enough it will start falling
and the resource price start to increase. In this model, with a single type of an
exhaustible resource, the economy will experience a downturn. This is since pre-
viously, the production process relied on large quantities of a "cheap" resource
that was perceived to be limitless, which now falls in supply and increases in
price. A detail to note is that this shift between the economic phases will appear
smoothly, where the change will manifest itself through the trend of variables,
but there will be no discrete level effects. This is because, even though agents
do not have a perfect foresight, they do get an early warning to consider scarcity
before total depletion becomes factual. Of course, the shorter the time horizon
is the more abrupt the change will be. In a sense, this model predicts an unfold-
ing of events somewhere in between the doomsday scenario of total economic
collapse, when we for example start running out of oil, and the optimistic take
that resource scarcity will never be an issue.
During this phase the technologies are assumed to continue evolving over

time. If there exists a renewable substitute or if resources are not essential in
production, the exhaustible resource will loose its role over time (equations 45-
48). The improvements in production effi ciency will then eventually lead the
economy onto a new growth path based on renewable resources only.

7 Empirical tests

This section has two objectives. Firstly, it will test whether there is empirical
support for the infinite horizon or the progressive finite time assumption in
the resource extraction model. It will pit the predictions (outlined in section
4.2) of the two alternative assumptions against each other. Secondly, and to
some extent simultaneously, it will assess what the market’s time horizon is,
contingent on the progressive finite time assumption being correct.

7.1 Data

Data over remaining reserves has been collected from the US geological survey
(USGS) for each year in 1996-201138 . They publish a yearly mineral commodi-
ties summary which reports the remaining "Reserve base" and "Reserves" for
roughly 80 commodities. In the report, the reserve base is defined as "...en-
compassing those parts of the resources that have a reasonable potential for
becoming economically available within planning horizons beyond those that
assume proven technology and current economics". Reserves are defined as
"that part of the reserve base which could be economically extracted or pro-
duced at the time of determination". Thus, the reserves estimation is a subset
of the reserve base. After excluding some resources where data is lacking and

38See www.usgs.gov.
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some where reserves are suffi cient for any conceivable time horizon (like stone,
sand and salt) a dataset of 52 commodities was constructed. Reserve data was
then added for oil and gas which goes back to 1980 (from BP, 2011), i.e. a total
of 54 commodities. Extraction and price data for these commodities was also
collected from the USGS (and BP’s Statistical review of World Energy in 2011,
for oil and gas)39 .
The predictions from the progressive finite time model depend on whether

the resource constraint is binding within the market’s time horizon. In order
to know whether this is the case for a specific observation, a measure of the
remaining years to exhaustion is needed. Denote the remaining years by τ i,q
where q ∈ {1996...2011} is the observation year and i ∈ {1...54} is the com-
modity number. τ i,q should be based on the production prognosis made at year
q for the specific commodity. In absence of actual market forecasts, τ needs
to be proxied in some way. The method here will be to make a production
prognosis and compare it to the known reserves at the time. For this purpose,
the production trend from the years preciding q was extrapolated forward. The
base method was to use the previous 15 years and give more weight to recent
years when calculating the trend. Now, it is hard to know whether this is good
approximation of how the market makes forecasts. A number of other meth-
ods were therefore tested for robustness. Namely, varying the previous years
used for the trend; giving all previous years the same weight; using the simple
reserve to production ratio; using the growth in the upcoming years for all re-
sources combined, to proxy for the trend. Generally, the exact method used had
no significant effects on the results, except for the reserve to production ratio
which undermined the results for both the infinite and progressive finite time
assumptions.

7.2 The effect of stock revisions on the price growth

The main empirical test employed will be to use changes in stocks and see how
that affects the price. The change in the stock is plausibly an exogenous event.
Although market participants may expect that the reserve estimates will be
revised from time to time, it seems reasonable to assume that they don’t know
exactly when, to what extent and in what direction. This is the reason why, also
theoretically, new reserve findings will have short run effects on the price but no
long run effects (see Arrow & Chang, 1982). In practice reserve revisions may
follow from new findings, revisions of current stocks or from access to better
data from some, quite often less developed, countries. A problem here is that,
with yearly data, the exact timing of the news is a bit vague. Whether they
arrived early or late in the year will affect how much the average price of that
year will be affected. Therefore it should be expected that the data contains
large amounts of noise. Furthermore, one could expect the reserves to be revised
every year purely as a consequence of extraction. However, a closer look at the
data shows that far from all observations have an update of the stock. A guess

39www.bp.com
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to why this is the case could be that often the extraction is not extensive enough
to put a dent in the reserves and that only major surprises, such as a new finding
or a substantial up- or downgrading of the current stock will lead to a revision.
Thus, in the upcoming tests revised stocks will interpreted as news arriving
beyond what could have been expected in the previous period.
A potential source of endogeneity is that as exhaustion is nearing more

exploration efforts are made. Thus there may be a reversed causality where price
increases lead to more exploration. This should not affect the results directly
since the price growth following a revision is always compared to the price
growth before. It may, however, imply that there are fewer observations where
the stocks are revised and there are still many remaining years to exhaustion.
In practice it should blow up the standard errors when the remaining years are
long. It will therefore be important to also look at the sign of the coeffi cient
when evaluating the results. Another source of worry may be that somehow
market participants are better at foreseeing or have better information about
revisions that occur when the remaining years are short. This should imply that
the effect on the price growth will occur before the time when the is it logged in
the data. Thus, this will push down the coeffi cients when the remaining years
are short which will be unfavorable to the progressive finite time hypothesis.
Propositions 3 and 7 express the effect from reserve revisions on the price

growth. In essence the infinite horizon assumption (proposition 3) implies that
revisions upwards should have a negative effect on the price growth while the
progressive finite time assumption (proposition 7) implies this effect to occur
only if the remaining years are less than the market’s horizon40 . To discriminate
between these two alternatives the observations will be grouped according to
how many years are left to exhaustion, i.e. τ q,i. The following equation will be
estimated using OLS.

4pq+,i
pq+,i

− 4pq−,i
pq−,i

= a+ b1

(
Sq,i − Sq−1,i

Sq−1,i

)
(32)

+b2

(
Sq,i − Sq−1,i

Sq−1,i

)2
+ b3

(
4pq+,comp
pq+,comp

− 4pq−,comp
pq−,comp

)
+ εq,i

4pq+,i
pq+,i

is the growth rate of the price from year q onwards and 4pq−,ipq−,i
is the

price growth rate leading up to to year q. The coeffi cient of interest is here
b1 which catches the first order effect of a one percent increase in the stock on
the growth rate of the price after the change compared to before. pq,comp is a
composite price index of all commodities. Thus, the term connected to b3 is
a control variable for price changes of commodities in general - a sort of time
fixed effects. If the infinite horizon assumption is right we should expect b1 to be
negative no matter how data is grouped, i.e. for all τ q,i, while if the progressive
finite time assumption is right we should expect b1 to be negative if and only if
τ q,i < T and ambiguous otherwise.
Figure 7 displays the coeffi cient b1 and its 95% confidence interval (y-axis)

40An equivalent reasoning applies to reserve downgrades.
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when grouping observations by τ q,i (x-axis). I.e. equation 32 is estimated once
for every subset of the remaining years to exhaustion41 . Clearly, from the figure,
when using observations with more than 25 remaining years b1 is insignificant
and when there are more than 34 remaining years b1 even has the wrong sign.
This lends support to the progressive finite time assumption compared to an
infinite horizon. Where the exact cutoff for b1 is is hard to judge from the figure.
Indeed, although the qualitative result of the existance of a cutoff remains, the
exact placement may vary up or down by a few years depending on the exact
values chosen for grouping, maximum revision size and prior and posterior years
used when calculating the price growth.
To better pin-point the cutoff and also test whether it is significant, a

41 In this specific figure
4pq+,i
pq+,i

was calculated using the average growth rate 3 years after

q.
4pq−,i
pq−,i

used the 3 years preceeding q. Furthermore, observations with revisions exceeding

±50% of the stock were discarded. Finally, observations were grouped according to τq,i ± 15
years.

30



CUSUM test of structural breaks was used. The test checks for what cutoff
of remaining years to exhaustion (τ) it is most likely to have a structural break
in the data. Practically, the sample was partitioned into one pool with τ q,i ≤ τ
and another pool with τ q,i > τ . The regression (32) was then run on each
pool separately and the sum of square residuals of both regressions together
was calculated. The results are displayed in figure 8. The leftmost graph dis-
plays the sum of squared residuals when varying the cutoff τ from 10 to 70.
The structural break is most likely to occur at τ = 20 remaining years as this
is the min point of the residuals. A Chow test rejects, at 1% level, the null
hypothesis (no structural break) in favor of the hypothesis of a break occuring
at τ = 20 years. The middle schedule of figure 8 displays the observations and
the estimated coeffi cients b1 and b2 for the pool with τ q,i ≤ 20. As predicted by
proposition 7, an increase in the stock will have a first order effect of lowering
the growth rate of the price (and vice versa) since b1 is negative. It is significant
at the 99% level. The second order effect implies that this effect is not linear
since b2 > 0 although it is less significant and less strong than the first order ef-
fect. The rightmost schedule shows the equivalent results for observations with
τ q,i > 20. In line with proposition the results for b1 and b2 here are not signifi-
cant at any standard level of confidence and b1, most importantly, even shows
the wrong sign from what the infinite horizon model predicts in proposition 3.
Thus, proposition 7 and a progressive finite time horizon gets stronger support
from these empirical tests compared to the competing proposition 3.
As tests of robustness, changes were made to the modeling choices. I.e.

the number of years used for calculating the price growth, the number of years
used for making production forecasts, what size of revisions to include and
whether to include the quadratic term (b2) and the composite price index (b3).
Generally, the main results survive these tests although the exact cutoff may
change, usually upwards but below 30 years. What can be noted is that in the
occasional empirical test where no support is found for the progressive finite time
assumption this also discredits the infinite horizon assumption. An interesting
observation is that when using the "reserve base" as a measure for the stock
instead of the "reserves" all the results turn ambiguous. An interpretation of
this is that the market operates on the basis of the reserves rather than the
reserve base.
At what horizon the market reacts to news about the stock was tested in

an additional way. Now the theoretical predictions of interest are expressed in
proposition 3 and its corollary (for the infinite horizon) and proposition 7 and
its corollary (for the progressive finite time horizon).

4pq+,i
pq+,i

−4pq−,i
pq−,i

= a+b1τ q,i×(Sq,i > Sq−1,i)+b2

(
4pq+,comp
pq+,comp

− 4pq−,comp
pq−,comp

)
+εq,i

As before, the dependent variable is the change of the price growth after com-
pared to before a revision of the stock. But the variable of interest, b1, now
represents what an additional year to exhaustion implies for the price growth
given that the stock has been revised downwards. Thus, stock revisions is now
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a dummy variable. Since the size of the revision is likely to play a role (like
was shown in the previous tests) one can expect large amounts of noise to seep
through in this test as all downward revisions are considered equal. As before,
a CUSUM test of structural breaks was made and thus, choosing a cutoff τ ,
the sample was divided into a pool of observations with τ q,i ≤ τ and a pool
of observations with τ q,i > τ . Following the theoretical predictions, to support
the infinite horizon assumption we should find no significant break in the data
while support for the progressive finite time assumption will be given if there is
a break and b1 < 0 for τ q,i ≤ τ and ambiguous otherwise.

The results are displayed in figure 9. The structural break is most likely to
occur at a horizon of 25 years (left schedule). Indeed, the Chow test rejects the
null hypothesis of no break in the data with 99% confidence, although one cannot
reject that the structural break may occur at a longer horizon than 25 years.
Thus the accuracy of this test seems less reliable. For the pool of observations
with τ q,i ≤ 25, b1 is negative and significant (95%) while it is positive and
insignificant for observations with τ q,i > 25. Also these results were tested
for robustness by varying the modelling specifications and the central findings
mainly survive.

7.3 The effect of remaining years to exhaustion on price
growth

A word of caution is in place regarding a potential selection bias in the previ-
ous tests. Practically, the market’s horizon may vary between the commodities.
More precisely, one could expect that important commodities with large rev-
enues such as oil, gas and iron ore should have a longer horizon than other
resources with more niche usage. Furthermore, it seems reasonable to assume
that the reserves for these important resources are more precisely measured im-
plying that they are revised more regularly but with smaller steps. Also, fewer
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major surprises should occur for these resources. The results in the previous
tests were largely driven by major revisions and surprises rather than the small
increments made for the important resources. It therefore seems plausible that
the results will mainly reflect those resources which have a rather short time
horizon and that there will be a downward bias in τ . With the limited amounts
of observations, where reserves are revised, there is little hope to deal with this
within the same identification framework as above. Therefore, this section will
estimate how the price growth correlates with the remaining years to exhaustion
for those observations where no or only small (<10%) revisions to the stock are
made. The word correlates is in italics to emphasize that we no longer have any
plausibly exogenous variation to rely on for the identification. Although this
test may be more representative of the more important commodities it is less
sharp in terms of picking up the direction of causality.
Again, propositions 3 (for the infinite horizon) and 7 (for the progressive

finite time) will be put against each other. Proposition 3 expresses that the
price should be growing in the absence of any news about the stock, due to
increasing scarcity. In comparison, proposition 7 predicts that the price growth
should have no component of increasing scarcity if τ q,i > T . Thus, if progres-
sive finite time is a correct assumption then, holding other things equal, there
should be an additional component in the price growth when we come closer
to exhaustion than the market’s horizon. This additional component should be
roughly constant and equal to the rate of return of comparative investments. It
is represented by the coeffi cient a in the following regression.

4pq+,i
pq+,i

= a+ b2
4pq+,comp
pq+,comp

+ εq,i

The dependent variable
(
4pq+,i
pq+,i

)
is simply the growth rate of the price in the

years following the observation. b2 represents the effect from growth in the
commodity price index. Once again a structural breaks test was run to see
where and if there is any place, as exhaustion is approaching, where "suddenly"
there is an additional component to the price growth.
The results are presented in figure 10. This test suffers substantially from the

yearly volitility in the price (see appendix C). Thus, to smooth the price growth
the average was calculated using the eight years following the observation. This
also implies that observations late in history could not be used as price data,
for obvious reasons, only is available for up to 2010. Of most interest is the left
schedule showing the CUSUM test. There seems to be a break in the data at
around 40 remaining years to exhaustion whereby the price growth rate goes
from 3% to 12% anually. The Chow test rejects the hypothesis of no break
with 90% confidence. This can also be verified by occular inspection in the
right schedule where, below 30-40 remaining years, there are many observations
which exhibit a rather high price growth. Whereas, for the observations with
more remaining years the price growth is more centered around zero. A T-test
also confirms this difference.
To see whether these results are robust, a few other methods were used
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to indicate what the time horizon may be. These are more numerically and
less econometrically oriented as they rely on Monte Carlo simulations where
modelling choices are varied. They are described in more detail in appedix C.
Generally, it is found that a ball-park guess for the time horizon lies somewhere
around 40 years.

8 Calibration to the oil market

Section 6 showed under what conditions a progressive finite time model repli-
cates the overall historical trends of most resource markets - i.e. a long period
of increasing extraction and non-increasing prices. This section aims to test
whether the model fits the price and extraction of oil for the period 1949-2009.
For this purpose the larger model of section 6 will be applied. Data will be
used for all parameters and variables letting only the oil extraction and price
be determined endogenously by the model. The only parameters which are not
available from previous research and public data are the time horizon, the tech-
nological improvements in mining and the curvature of the mining cost function.
The mining technology and the cost curvature will be chosen in order for the
model to match the extration and price data as well as possible, while the time
horizon will be based on the empirical results in the previous section.

8.1 Data and parameter values

In order to perform the calibration a number of parameter values and data are
needed. A diffi culty here is that while oil prices and scarcity are determined on
the world market many parameter values, most notably on the demand side,
are not available on an aggregate global level. To circumvent this problem the
model is calibrated to the US economy and then, based on the US share of
world oil consumption, the labor and capital inputs are scaled accordingly. E.g.
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if the US consumes 50% of the world supply of oil in a certain year then the
US labor and capital inputs are multiplied by two to get the world economy.
The implicit assumption underlying this procedure is that capital and labor are
equally substitutable with energy (like in the CES specification in equation 25)
and that the energy and labor technologies evolve equally fast in the rest of
the world as in the US. Stated differently, the oil input for a unit of output is
assumed to be the same globally as in the US.
To get the initial oil reserves in 1949 the oil consumption from 1949-2009 is

added to the reserves left in 2010 - i.e. 2.56 ∗ 1012 barrels42 . Thus it is assumed
that the beliefs of the reserves in 1949 were about equal to those manifested
in 2010 and that the reserves reported in 2010 are representative of the true
beliefts of the market43 .
For most parameters and time series the calibration uses the same values as

used by Hassler et al (2011)44 . Using US data on energy consumption, labor,
capital and output they calibrate the time series for energy saving technology
and labor/capital augmenting technology45 . They also calibrate the elasticity
of substition between energy and capital/labor to be close to zero which means
that production is close to a Leontief specification. Hence, I will use σ = 0.0546 .
To match the US energy share of output, γ is chosen to 5% and to get the
capital to labor ratio α = 30%.
The subjective discount factor β is chosen to a 0.95, i.e. a yearly discount

rate of 5%, and a CRRA utility function is used with a risk aversion constant
of 1.
The three most important calibration choices pertain to the time horizon, to

the amount of alternative energy inputs (R in equation 27) and to the extraction
costs. The time horizon is important since it will determine when the shift to
the scarcity phase will occur and thus when prices will start to rise.
Following the previous empirical tests and guessing that the oil market has

a longer horizon than the average commodity the time horizon T is chosen to
40 years.
The amount of alternative energy inputs is important mainly since it will

affect how hard scarcity of oil will hit the economy when the oil reserves even-

42Data from BP’s statistical review of world energy from 2011, can be obtained at
www.bp.com. Consumption data is not available on the US level prior to 1965. To get
US oil consumption from 1949 the trend from 1965 onwards is extrapolated backwards. The
estimated reserves in 2010 are roughly equal in size to the amount consumed from 1949 to
2009.
43Assuming instead that beliefs in 1949 equal those in 1980 (the earliest year where oil

reserves are reported by BP) makes no difference. As will be seen in the results, the size of
the oil reserves are only binding from about 1998 onwards, thus the assumption really boils
down to agents in 1998 having the same beliefs on the reserves as those in 2010.
44 I’m grateful to Conny Olovsson for supplying their data and results. The prices, costs,

reserves and inputs obtained from other sources were deflated appropriately to match the
units from Hassler et al’s paper.
45Energy consumption from the US Energy Information Administration (EIA), labor from

the Bureau of Labor Statistics (BLS) and capital and output from the Bureau of Economic
Analysis (BEA).
46Hassler et al get a match of σ between 0 and 0.05.
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tually start binding. A smaller amount of alternative energy implies a steeper
increase in price when scarcity hits. Data for the oil share of energy in the US
in each year is taken from the Energy Information Administration47 .
Finally, the extraction costs need to be calibrated. The functional form will

be Mt = Eθt /Am,t. Three parameter choices need to be made here. Firstly, θ
catches the curvature of costs with respect to the amount extracted in a single
year. Secondly, gm,t = (Am,t+1 −Am,t) /Am,t, represents how fast the mining
technology evolves. Data on these two parameters is not readily available or
easily calibrated. For simplicity I will assume that both of them are constant.
The model will be simulated multiple times to see which parameter combination
- θ and gm - that best fits the data and how sensitive the results are for changes
in these parameters. As it will turn out, the choice of these parameters is not
very important, within reasonable bounds. Thirdly, the mining technology level
need to be pinned down. Also this value is scarcly attainable. But, given that
we have chosen a value for θ and gm, it is enough to know the average mining
costs and the amount extracted in one year and from that deduct the mining
technology level in all other years. Although far from perfect, the best available
source for the average mining cost for various regions that I have found comes
from a recent online news article by Reuters48 . They give estimates of the
average extraction costs (operating and capital costs) in the most important oil
producing countries49 . Weighing the average extraction costs by the size of the
reserves in that country the average global extraction cost is set to 12$/barrel
in 200850 .

8.2 Results

In figure 11 the oil consumption and price are compared to data51 . The best
results are obtained with θ = 1.1 and gm = 1.5%. A first remarkable result
is that the model’s oil consumption path closely follows the one obtained from
data. This is largely due to the choice of near Leontief production which essen-
tially does not leave much freedom in choosing oil consumption to be anything
else than what matches the data on capital, labor and the technologies. Thus,
the real test of the model comes in how well it does in matching the price of
oil. As can be seen, the model’s price matches closely the downward sloping
price trend in the years before the first oil crisis. It also accuratelly predicts
the sudden change of trend observed in 1998 and closely follows the sharply
increasing prices thereafter. What the model cannot explain is the sharp price
increase in 1972-1981 and the subsequent decrease in 1982-1986 - also known
as the oil crisis. However, although there is an ongoing debate about what the

47Yearly data was used but in general it oscilates around 40% with a downward trend, i.e.
the US share of world oil consumption is falling over time.
48http://www.reuters.com/article/2009/07/28/oil-cost-factbox-idUSLS12407420090728
49They base their estimates on the International Energy Agency world report from 2008

and on interviews they have conducted with various oil companies.
50E.g. the average cost per barrel was estimated to 4-6$ in Saudi Arabia, 15-30$ in Nigeria

and 20$ in Venezuela.
51The real domestic First Purchase Price for the US is used.
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Figure 11: The progressive finite time model calibrated to the oil market. θ =
1.1, gm = 1.5%, Extraction cost per barrel in 2008 =12$, T = 40.

most important reasons for the oil crisis were, there seems to be a consensus
that it had little to do with resource scarcity. Rather, a mix of failing price
limitations, monpoly power, monetary expansion and wars in the middle east
seem to explain these particular historical events52 . As none of these market
imperfections are included in the model of this paper I do not attempt to match
the model to the data of these years when choosing θ and gm.
A sensitivity analysis is now in place. Firstly, varying the extraction cost

parameters of θ and gm does not alter the model results much as long as θ
stays between 0.7 and 1.3 and the technological improvement in mining is kept
between zero and three percent annually. Depending on the exact values we may
get a price which is closer to constant in the earlier years and a slight change of
the slope after 1998. Thus, it seems that extraction costs are roughly linear and
that mining technology has improved at a low to medium rate53 . If instead we
change the average cost production to be below 12$ in 2008, the main effect is
to shift the price schedule uniformly down while the broad shape of first slowly
decreasing prices and then sharply increasing around 1998 remains.
Finally, in regard to the choice of the time horizon, it mainly affects the

timing of the price increase. Choosing a time horizon of 30 years will roughly
delay the break in the price trend by about ten years and choosing a horizon
of 50 years will make the break happen about ten years earlier. An interesting
comparison can be made with a model of infinite horizon. Simulating such
a model and varying the parameters θ and gm yields a price path which is
increasing slowly from about 1965 and onwards (see figure 12). The infinite
horizon model thus predicts that the price increase should happen about 30

52See for example Barsky & Kilian (2002), Hamilton (2003), Barsky & Kilian (2004) and
Kilian (2009) and references therein.
53 Implicitly, when matched with data, the parameter gm catches also the possibility that

extraction costs may go up as extraction is made deeper in the ground or at sea or at more
remote locations.
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Figure 12: Calibration results of the the infinite horizon model. Average extrac-
tion cost in 2008 = 12$/barrel. Best fit obtained using θ = 0.9 and gm = 0%.

years too early. For such a story to be reasonable one would need to believe
that the oil crisis was indeed an indication of scarcity and that the U-shape of
the oil price in 1981 to 2008 was due to some annomally.

9 Concluding discussion

This paper has shown that a seemingly simple assumption, that of the time hori-
zon of economic agents, has important consequences when modelling exhaustible
resources but hardly makes any difference when modelling capital. The initial
models are kept as simplistic as possible in order to highlight this point. In
a more complete model, it is shown that progressive finite time can explain
why the extraction of resources has been increasing over the last century while
prices have been decreasing or remained constant. This model is also consistent
with all standard observations of capital accumulation, output, consumption,
interest rates and labor wage. Empirical tests using sudden changes in resource
stocks lend support to the progressive finite time assumption and consistently
reject the infinite horizon assumption. Furthermore, the model shows significant
predictive power when calibrated to the oil market.
One question that may arise is how economic agents value keeping reserves

past their forecasting horizon. It was shown that attaching a final value to the
stock does not by itself alter the main results. Rather it depends on how this
final value changes over time. Furthermore, it was shown that even though there
is a qualitative difference between progressive finite time and an infinite horizon
in exhaustible resource models, progressive finite time expectations will be time-
consistent since constant prices are both expected and realized. Resource owners
will not get the opportunity to learn from experience that making finite plans
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is not optimal.
It is not only capital accumulation models that show similar results with both

infinite and progressive finite time. Also a model where agents consume some
wealth with which they are initially endowed will have this property. Here, the
difference will be that consumption will fall slightly faster within a progressive
finite time model compared to one of infinite horizon. The outcome of the
progressive finite time model will look much like an infinite time model with
slightly more impatient agents. It may be so that in earlier evaluations of
capital and wealth models, progressive finite time behavior has been confused
with impatience since, as far as outcomes go, they are usually hard to tell apart.
Finally, it was shown that the direct welfare losses of having a progressive

finite time horizon are possibly small for a resource owner, especially considering
what it would entail to gather and process information about anything that
resembles infinity. However, a common expectation is that if prices were to rise,
a substitute for the resource would be searched for and eventually found. But
if the trend and level of the resource price do not reflect the scarcity of the
resource, which is the case with progressive finite time, then this search will be
initiated too late. Scarcity may then become a serious limitation to the economy
before a substitute resource or technology has been found.
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10 Appendix A - Further discussion of progres-
sive finite time

10.1 A formal description

For each q ∈ [0,∞) the representative agent forms a plan and executes its first
period. Let C denote the control variable of consumption and X a possibly
singular set of state variables. Also, let the subscript letter denote the date the
plan is formulated from and the letter within parenthesis denote the date within
the plan. Let ε→ 0, a plan formulated at q is then a set

[
C∗q (t) ,X

∗
q (t+ ε)

]T
t=q

that satisfies max
T∑
0

βtU(Cq(t)) subject to Ẋq (Cq(t),Xq (t)) , the initial con-

ditionXq (q) and appropriate terminal conditions applied toXq (T ). The actual

outcome then is a set
[
C̃q (q) , X̃q (q + ε)

]∞
q=0

, i.e. a sequential implementation

of the first period of each plan.

10.2 Experimental evidence

Shortsightedness and underestimation of future values has support by experi-
mental research. Hey & Knoll (2007) show that many people do not plan ahead
also when the intertemporal problem is simple to solve. Instead, they maximize
their current payoff and attribute no value to future outcomes (Hey & Knoll,
2007; Bone et al, 2009). Regarding the problem of time inconsistency, this re-
search shows that people are unable to predict their own behavior (Hey, 2002)
and that they themselves do not assume that their own future behavior will be
rational (Carbone & Hey, 2002). Also the ability to backward induct properly
is limited (Johnson et al, 2002) and the subjects in these experiments do not
necessarily learn from experience (Bone et al, 2009).

10.3 Possible behavioral explanations

Do agents really have full information up until a certain point in time and
then no information beyond? This is obviously a simplification. This section
will discuss behavioral mechanisms pointing towards a progressive finite time
horizon and roughly sketch a few more elaborate ways of modelling it. However,
the simplification made in this paper carries no obvious bias, since the driving
mechanism is the plan being finite and not whether there is some uncertainty
within the plan.
This said, it may be more realistic to have uncertainty increasing gradually

with time but going to infinity within finite time. Another alternative mecha-
nism is to have agents ignore all outcomes that have a low enough probability
to endogenize progressive finite time.
A further option is the concept of ambiguity aversion which also points to-

wards agents using progressive finite time. It has been shown that people gen-
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erally avoid gambling on, and assign low values to, lotteries where they cannot
assess the probability distribution (e.g. Ellsberg, 1961; Gilboa & Schmeidler,
1989). In a progressive finite time context this corresponds to preferring to use
the assets in the near future, where the outcomes are either known or can be
assessed by probabilities, than to use them in the far future where one does not
have the information to even form expectations. This is at least numerically eas-
ily verified in a simple two-period model of resource extraction with ambiguity
aversion, fearing a backstop will make the resource worthless. If the probability
distribution of the backstop appearing is unknown the resource owner will want
to leave no resources for later.
Related to this is a study by Gneezy et al (2006). They show that the

certainty equivalence of a lottery can be lower than the worst outcome of that
same lottery. In a progressive finite time setting this would be equivalent to
believing that the continuation value of the asset is negative.
Another possible explanation for a finite horizon may be that finding and

processing information is costly. When working on forecasts, at some point an
agent has to decide to stop looking further into the future and how to treat the
unknown beyond. One could possibly model the additional gains from informa-
tion and compare them to the costs.
If, instead, one would assume that agents do not at all care about the utility

in the very long run but are not constrained by information, the natural resource
results of progressive finite time collapse. This is since these agents do care about
the price of their assets tomorrow which in itself is determined by the price the
day after and so on. This way the outcomes of the infinite future unfold back
to today even though today’s agents may not directly care about it. Thus,
the distinction in progressive finite time is of agents being myopic due lack of
information rather than lack of care.
On a theoretical basis one may well point out the time inconsistency in a

person having a plan that (s)he knows might change tomorrow. The question
is then why the change is not made already today. But, it would indeed be
impossible to know how the plan will be updated tomorrow if one does not have
tomorrow’s information already today. For a discussion on this see Dequech
(2001) or Dunn (2001). The notion of rationality mostly used in economics
works well in the setting of decision making under risk, meaning agents know
the possible outcomes and can assign probabilities to them, as described by
Friedman & Savage (1948). However, if economic decisions need to be made
under Knightian uncertainty (Knight, 1921), i.e. without knowing the outcome
space and/or the probability distribution, then the standard notion of rationality
is hardly applicable. In addition, the dynamic inconsistency will, as this paper
shows, be fairly small in most cases making progressive finite planning a fairly
accurate rule of thumb for most, also in hindsight.
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11 Appendix B - Analytical results

11.1 Empirical predictions

Proof of proposition 6
As a guide to how to understand the upcoming proof, we can note that the

proposition pertains to how the price reacts to changes to the forecast years to
exhaustion. Thus it has to do with variables within the plan. The proof will
therefore use the plans rather than the outcomes.

We start with the "if" part of τ
(
S̃q

)
< T. Backward induction of (19) and

(17), with concavity of F , imply that τ
(
S̃q

)
is weakly increasing in S̃q (weakly

because τ is an integer). Proposition 5 gives that dp̃q
dS̃q

< 0. Thus, since τ
(
S̃q

)
is increasing only if S̃q is increasing and p̃q is decreasing iff S̃q is increasing,

p̃q is decreasing if τ
(
S̃q

)
is increasing. Now for the "only if" part. Suppose

τ
(
S̃q

)
≥ T , then equation (16) applies. Here Ẽq = Emax is independent of S̃q

and thus p̃q is independent of S̃q.�
Proof of proposition 7
Start with the "if" part of S̃∗∗q+1 ≥ TEmax, then by equation (16) p̃∗q+1 =

p̃∗t = p̃∗∗q+1 = p̃∗∗t = B which implies that
p̃∗q+1−p̃

∗
t

p̃∗q
=

p̃∗∗q+1−p̃
∗∗
q

p̃∗∗q
= 0. Now

for the "only if" part. Suppose first that TEmax > S̃∗q+1 > S̃∗∗q+1. Define

λ
(
S̃q

)
≡ p̃q − B. Then p̃q+1−p̃t

p̃q
=

λ̃(S̃q+1)+B
λ̃(S̃q)+B

− 1. We know that dλ(S̃q+1)
dS̃q+1

=

dp̃q+1
dS̃q+1

< 0 when TEmax ≥ S̃∗q+1(proposition 5, second statement). Thus, D ≡

λ
(
S̃q+1

)
/λ
(
S̃q+1 + Ẽq

)
> 1 (note that this holds also in the special case

of S̃q+1 + Ẽq > TEmax, then λ
(
S̃q+1 + Ẽq

)
= 0, with the convention that

limλq→0 λq+1/λq =∞). Using D, the price growths are unequal,
λ(S̃∗q+1)D+B
λ(S̃∗q+1)+B

<

λ(S̃∗∗q+1)D+B
λ(S̃∗∗q+1)+B

, since
dλ(S̃q+1)
dS̃q+1

< 0 (proposition 5, second statement). Secondly

suppose S̃∗q+1 ≥ TEmax > S̃∗∗q+1, then by the same steps as previously
p̃∗∗q+1−p

∗∗
q

p̃∗∗q
>

p̃∗q+1−p̃
∗
t

p̃∗q
= 0. This concludes the "only if" part and thus the proof.�

Proof of corollary 8
The first part follows from the "only if" part of the proof of proposition 7

and that only if S̃∗t > S̃∗∗t then τ∗t > τ∗∗t (see the proof of proposition 6). The
second part follows from the "if" part of the proof of proposition 7. The third
part follows directly from propostion 7 and its proof where it’s shown that,

at S̃q+1 = TEmax,
d
p̃q+1−p̃t

p̃q

dS̃q+1
= 0 for increases of S̃q+1 and

d
p̃q+1−p̃t

p̃q

dS̃q+1
< 0 for

decreases of S̃q+1.�
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11.2 Full model - basic results

Lemma 9 If K > 0 then lim
E→0

HE (E) > 0.

Proof. There are a few cases depending on R and σ. When R = 0, for σ < 1 we
have that σ−1σ < 0 which implies that lim

E→0
HE = lim

E→0
H (E)

1/σ
G (E)

σ−1
σ 1−γ

E =

lim
E→0

(1− γ)A
σ−1
σ

NR︸ ︷︷ ︸
0< <1


0< <∞︷ ︸︸ ︷

γ

(
F

E

)σ−1
σ

︸ ︷︷ ︸
=0

+ (1− γ)A
σ−1
σ

NR︸ ︷︷ ︸
0<



<0︷ ︸︸ ︷
1

σ − 1

︸ ︷︷ ︸
>0

which is larger than 0. For

σ = 1 we have that lim
E→0

HE = lim
E→0

H (E) 1−γE = ∞ since H (E) is Cobb-

Douglas. For σ > 1 we have that σ−1
σ > 0 which implies that lim

E→0
HE =

lim
E→0

(1− γ)H (E)1/σ︸ ︷︷ ︸
>0

A
σ−1
σ

NR︸ ︷︷ ︸
>0

E−1/σ︸ ︷︷ ︸
=∞

= ∞. When R > 0, H (0) > 0, G (0) > 0,

0 + R > 0 which implies that lim
E→0

HE = lim
E→0

H (E)
1/σ

G (E)
1−σ
σ 1−γ

E+R > 0.

Thus, for all possible cases lim
E→0

HE (E) > 0.

Lemma 10 If K > 0 then lim
E→∞

HE (E) <∞.
Proof. There are a few cases depending on σ. For σ < 1 we have that σ−1σ < 0

which implies that lim
E→∞

G (E)
σ−1
σ = 0, lim

E→∞
H(E)1/σ

E+R =

= lim
E→∞

γF σ−1
σ (E +R)

1−σ︸ ︷︷ ︸
=∞

+ (1− γ)A
σ−1
σ

NR (E +R)
−(σ−1)2

σ︸ ︷︷ ︸
=0


<0︷ ︸︸ ︷
1

σ − 1

︸ ︷︷ ︸
=0

= 0 which

implies that lim
E→∞

H(E)1/σ

E+R G (E)
1−σ
σ (1− γ) = 0. For σ = 1 we have that σ−1σ = 0

which implies that lim
E→∞

HE = lim
E→∞

H (E) 1−γ
E+R = 0 since H (E) is Cobb-

Douglas. For σ > 1 we have that σ−1σ > 0 which implies that
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lim
E→∞

HE = lim
E→0

(1− γ)A
σ−1
σ

NR︸ ︷︷ ︸
0< <∞



0< <∞︷ ︸︸ ︷
γ

 F

E +R︸ ︷︷ ︸
=0


σ−1
σ

︸ ︷︷ ︸
=0

+ (1− γ)A
σ−1
σ

NR︸ ︷︷ ︸
0< <∞



>0︷ ︸︸ ︷
1

σ − 1

︸ ︷︷ ︸
0< <∞

E→∞

∈ ]0,∞[.

Thus, for all possible cases lim
E→∞

HE (E) <∞.

Proposition 11 If S0 is suffi ciently large, then there exist two economic phases.

The first phase is defined by
T∑
t=0

E∗q+t < Sq. The second phase is defined by
T∑
t=0

E∗q+t = Sq.

Proof. For the first phase, letting Sq → ∞, lim
E→∞

∂M
∂E = ∞ and Lemma 9

imply that if
T∑
t=0

E∗q+t = Sq then the marginal extraction cost is higher than the

resource price (which equals marginal productivity since the production sector

is competitive) which clearly violates optimality, thus
T∑
t=0

E∗q+t < Sq. For the

second phase, letting Sq → 0, M ′ (0, AM ) = 0 and Lemma 10 imply that the
marginal extraction cost is below the resource price and that is would be profitable

to extract more, thus the resource constraint must be binding
T∑
t=0

E∗q+t = Sq.

11.3 The non-scarcity phase

For the problem (24-31) and q such that
T∑
t=0

Eq+t < Sq the terminal condition

is given by Cq+T = maxH (Eq+T ,Kq+T )−M (Eq+T ). With competitive firms
(p = HE) it has a unique solution when

HE (Eq+T ,Kq+T ) =M ′ (Eq+T ) (33)

This equation can be solved to get Ẽq+T = Ẽq+T (Kq+T ) (where ˜ indicates
that Ẽq+x is a function of Kq+x). Using backward induction, planning for time
T − 1 and backwards until t = 0, the full plan at time q is characterized by the
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following set of equations for t = 0...T − 1.

Kq+T+1 = 0

Cq+T = pq+T

(
Ẽq+T +R

)
+ rq+TKq+T + wq+T −M

(
Ẽq+T

)
+ (1− δ)Kq+T

M ′
(
Ẽq+T

)
= HE

(
Ẽq+T ,Kq+T

)
(34)

U ′ (Cq+t) = βU ′ (Cq+t+1) [rq+t+1 + (1− δ)] , (35)

M ′
(
Ẽq+t

)
= HE

(
Ẽq+t,Kq+t

)
= pq+t

Cq+t = pq+t

(
Ẽq+t +R

)
+ rq+tKq+t + wq+t −M

(
Ẽq+t

)
−Kq+t+1 + (1− δ)Kq+t(36)

px = HE

(
Ẽx,Kx, Lx

)
, rx = HK

(
Ẽx,Kx, Lx

)
, wx = HL

(
Ẽx,Kx, Lx

)
One such set of equations will be solved for each current time period (q) as long

as
T∑
t=0

Ẽq+t < Sq. For T − 1 ≥ t > 0 the equations describe a plan for how to

choose Ẽq+t, Kq+t and Cq+t while for t = 0 they describe the true outcome, i.e.
Ẽq, Kq and Cq.
For the use of exhaustibles the actual evolution over time is HE (Eq,Kq) =

M ′ (Eq), HE (Eq+1,Kq+1) = M ′ (Eq+1) and so on. From these expressions we
can note that the extraction of the exhaustible resource is determined fully by
the current state of capital (and technology). Thus, during this paradigm there
is no intertemporal choice of how much of the exhaustible resource to use. Using
this and the next lemma we can establish the subsequent results.

Lemma 12 HEE ≤ 0 ∀ E.
Proof. It can be shown that

HEE = − (1−γ)γσ A
σ−1
σ

NR

[
γ
(

F
E+R

)σ−1
σ

+ (1− γ)A
σ−1
σ

NR

] 2−σ
σ−1

F
σ−1
σ (E +R)

σ−1
σ ≤

0 ∀ R, E and σ.

Proposition 13 If at time q the plan is such that
T∑
t=0

Eq+t < Sq, then there

exists a unique equilibrium where Eq > 0.
Proof. That there exists an equilibrium follows from lim

E→0
M ′ (E) = 0, lim

E→∞
M ′ (E) =

∞, lim
E→0

HE (E) > 0, lim
E→∞

HE (E) < ∞ , together with HE and M ′ being con-

tinuous in R+ and the intermediate value theorem. Uniqueness follows from
M ′′ > 0 ∀ E and HEE ≤ 0 ∀ E (Lemma 12). That there is no equilibrium when
E = 0 follows from lim

E→0
M ′ (E) = 0 and lim

E→0
HE (E) > 0.

Let pq denote the price of exhaustibles at time q.
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Corollary 14 All else equal; ∂Eq
∂AM,q

> 0, ∂pq
∂AM,q

< 0; ∂Eq
∂AL,q

> 0, ∂pq
∂AL,q

> 0;
∂Eq
∂Kq

> 0, ∂pq
∂Kq

> 0; if σ ≥ 1 then ∂Eq
∂ANR,q

> 0 and ∂pq
∂ANR,q

> 0.

Proof. We can start by noting in proposition 13 that in the two dimensional
plane of E and prices, HE will be intersecting M ′ from above. Thus, any
downward shift of HE will cause E to increase and the unique intersection (the
equilibrium price) to decrease and vice versa. Any upward shift of M ′ will
cause E to increase and the unique intersection (equilibrium price) to increase
and vice versa.

∂Eq
∂AM,q

> 0, ∂pq
∂AM,q

< 0: Follows from ∂M ′

∂AM
< 0 and the above statement;

∂Eq
∂AL,q

> 0, ∂pq
∂AL,q

> 0: When E > 0,

∂HE
∂AL

= (1− γ) γ
σ
A
σ−1
σ

NR︸ ︷︷ ︸
>0

[
γ

(
F

E +R

)σ−1
σ

+ (1− γ)A
σ−1
σ

NR

] 2−σ
σ−1

︸ ︷︷ ︸
>0

F
−1
σ

(E +R)
σ−1
σ

∂F

∂AL︸ ︷︷ ︸
>0

>

0. The statement follows from this and the initial statement about shifts in M ′

and HE ;
∂Eq
∂Kq

> 0, ∂pq
∂Kq

> 0: Same approach as the previous proof;

That if σ ≥ 1 ∂Eq
∂ANR,q

> 0, ∂pq
∂ANR,q

> 0: Firstly, we can rewrite HE in the

following form HE = (1− γ)
[
γ
(

F
E+R

)σ−1
σ

A
(σ−1)2
σ

NR + (1− γ)A
(σ−1)3

σ2

NR

] 1
σ−1

. Sec-

ondly, when E > 0, the derivative is ∂HE
∂ANR

= (1−γ)
σANR

[·]
1

σ−1−1
{
γ
(

F
E+R

)σ−1
σ

A
(σ−1)2
σ

NR (σ − 1) + (1− γ) (σ−1)
2

σ A
(σ−1)3

σ2

NR

}
≥

0 if σ ≥ 1 but ambiguous otherwise. The statement follows from this and the
initial statements about shifts in M ′ and HE .�

In equilibrium the price of resources is equal to the marginal extraction cost.
This implies that the profits for resource owners will be given by

π = EM ′(E,AM )−M(E,AM ) (37)

Proposition 15 In equilibrium, there will be strictly positive profits from ex-
tracting resources.
Proof. Follows from (37) and convexity of M with respect to E.

For balanced growth to occur we need to restrict the functional forms such
that production is of Cobb-Douglas type (i.e. σ = 1) and that there is no
renewable resource, R = 0, thus H = KγαA

(1−α)γ
L E1−γA1−γNR . Formally proving

the convergence to balanced growth is generally hard since one would have to
analyze a sequence of plans. But, intuitively, since progressive finite time is a
hybrid of finite and infinite time it is hard to imagine why the economy would
not converge to balanced growth. For the extraction cost a tractable functional

form that abides by the restrictions in (30) is M (Eq,t) =
Eθq,t
AM,q,t

, θ > 1. In
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equilibrium HE =M ′, thus

E =

[
KγαA

(1−α)γ
L A1−γNR AM (1− γ)

θ

] 1
θ−1+γ

(38)

Since θ > 1, it is immediate to see from (38) that extraction E is increasing
in all state variables. Assuming U = ln (c) and letting gL ≡ AL,q+1

AL,q
, gNR ≡

ANR,q+1
ANR,q

and gM ≡ AM,q+1
AM,q

and using (35), (36) and (38) we get expressions for
the growth rate of the endogenous variables.

Eq+1
Eq

= g
(1−α)γ

(1−αγ)θ−(1−γ)
L g

(1−γ)
(1−αγ)θ−(1−γ)
NR g

(1−αγ)
(1−αγ)θ−(1−γ)
M (39)

Cq+1
Cq

=
Mq+1

Mq
=
Hq+1

Hq
=
Kq+1

Kq
=

g
(1−α)γθ

(1−αγ)θ−(1−γ)
L g

(1−γ)θ
(1−αγ)θ−(1−γ)
NR g

1−γ
(1−αγ)θ−(1−γ)
M (40)

Proposition 16 In the first paradigm, if the economy is on a BGP and gL, gNR, gM ≥
1 then the extraction rate, capital, output and consumption will be increasing ex-
ponentially.
Proof. Follows directly from the exponents in equations (38) and (40).

The trend of the resource price on a BGP in equilibrium is given by

M ′q+1
M ′q

= g
(1−α)γ(θ−1)

(1−αγ)θ−(1−γ)
L g

(1−γ)(θ−1)
(1−αγ)θ−(1−γ)
NR g

−γ(1−α)
(1−αγ)θ−(1−γ)
M (41)

Proposition 17 In the first paradigm, if the economy is on a BGP where gL =
gM = gNR > 1 then the price of exhaustibles is decreasing if γ−αγ

(1−αγ) > (θ − 1),
constant if γ−αγ

(1−αγ) = (θ − 1) and increasing if
γ−αγ
(1−αγ) < (θ − 1).

Proof. Follows directly from the exponents on equation (41) .

11.4 Scarcity phase

For q such that the plan dictates
T∑
t=0

Eq+t = Sq, i.e. the resource constraint

(29) will be binding at t = T . Using backward induction applied to (24), (28),
(29) and (31), imposing a terminal condition of where no resources or capital
are left for T +1, we get the following set of equations defining the plan for each
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current time period (q) within the paradigm.

Cq+T = pq+T (Eq+T +R) + rq+TKq+T + wq+T −M (Sq+T ) + (1− δ)Kq+T

Sq+T+1 = 0, Eq+T = Sq+T , Kq+T+1 = 0

Cq+t +Kq+t+1 = pq+t (Eq+t +R) + rq+tKq+t + wq+t −M (Eq+t) + (1− δ)Kq+t(42)

U ′ (Cq+t)

U ′ (Cq+t+1)
= β

pq+t+1 −M ′ (Eq+t+1)
pq+t −M ′ (Eq+t)− µq+t

(43)

rq+t+1 + (1− δ) =
pq+t+1 −M ′ (Eq+t+1)
pq+t −M ′ (Eq+t)− µq+t

(44)

px = HE (Ex,Kx, Lx) , rx = HK (Ex,Kx, Lx) , wx = HL (Ex,Kx, Lx)

Here equations (42), (43) and (44) are for t = 0...T − 1. The actual outcome
in this paradigm is Sq, Kq and Cq for a sequence of q, q + 1 etc. µq+t is the
multiplier on the resource constraint (29). For most cases the resource constraint
will be binding only in the last period, t = T . However, there are cases when
the resource constraint is binding also before. In particular, this happens when
there is a renewable substitute (R > 0) and T is large.

11.5 Beyond scarcity

We can begin by noting that as the use of exhaustibles decreases and extraction
technology improves the cost of extraction will become irrelevant for the total
evolution. It is then immediate that with high substitutability (σ > 1) the long
run growth of the economy as a whole depends on the progress of the fastest
of either labor augmenting or resource augmenting technical change. This can
be seen in the following expression of output growth, where the larger of the
resource capacity (G) or production capacity (F ) shapes the output growth.

Hq+1

Hq
=

γF σ−1
σ

q+1 + (1− γ)G
σ−1
σ

q+1

γF
σ−1
σ

q + (1− γ)G
σ−1
σ

q

 σ
σ−1

(45)

When σ ≤ 1 there exist two cases - with or without a renewable substitute R.
When R > 0 and E → 0 the model essentially becomes one of capital

accumulation in the presence of a fixed resource - e.g. land. Given gL ≡
AL,q+1
AL,q

> 1 and gNR ≡ ANR,q+1
ANR,q

> 1 the economy will grow at whichever of these
rates that is the lowest if σ < 1. While if σ = 1 and assuming U = ln (c) there
exists a balanced growth path where the following growth rates apply.

gk ≡
kq+1
kq

= gH = gc = g
1−γ
1−γα
NR g

(1−α)γ
1−γα
L (46)

When instead R = 0 the prospect for long run growth is more ambiguous,
since the lowering of extraction has a decreasing effect on the economy. For
σ = 1 there exists a balanced growth path where growth or decline depends on
if the technological progresses are fast enough to outweigh the discount rate.
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Note that an implicit assumption here is that the mining technology progresses
fast enough so that the mining cost plays no role, even if the economy displays
negative growth.

gE ≡ Eq+1
Eq

= (1− γ)β (47)

gk = gH = gc =
[
[(1− γ)β]1−γ g(1−α)γL g1−γNR

] 1
1−αγ

(48)

If σ < 1 the chances for growth are even smaller. In this case the effect from
the discount rate needs to be outpaced by the progress of resource augmenting
technology alone.
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12 Appendix C - Empirical observations and nu-
merical results

12.1 A small infinite horizon agent in a progressive finite
time world

A possible perturbation to the model is to have a small agent who has an
infinite (or at least significantly longer) time horizon and therefore can foresee
that resource prices will eventually rise. Would it save its resources for the
future? The answer is that also it would extract as much as it can for a very
long initial phase. This is because it knows that prices will not increase for a
long time and any possible additional profits will be realized only far into the
future and are therefore largely discounted away today. It is only when the
market is approaching suffi ciently near the change of phases that an infinite
horizon agent will lower its extraction, since only then arbitrage profits have a
high enough present value. Below is how such an agent would extract in the full
model simulation.
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Figure 13: Simulation of the extraction decision of a market with a ten year horizon and
how an atomistic resource owner with a 60 year horizon (deviator) will choose to extract given

this market. The simulation uses the full model of section 6.
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Figure 14: The additional relative profits a single atomistic infinite horizon agent can make
given that everyone else has a progressive finite time horizon of 35 years. The simulation uses

the basic resource model of section 4 with ρ=2. Note that an initial stock of 25 in this setting
implies a constant price for 20 years and an initial stock of 75 implies a constant price for 60

years.

12.2 Time horizon calibration using Monte Carlo

The model predicts that when the resource stock is binding within the owners
time horizon the price should start rising (or rise more than before). Thus, in
this exercise, a rising price in the data will indicate that the stock is binding.
By then extrapolating the production path into the future and comparing with
the remaining reserves, a number for the remaining years of production before
exhaustion is obtained. This value will indicate a minimum time horizon54 .
Likewise, a non-increasing price in the data will indicate that the stock is not
binding within the owners’ time horizon. Then a comparison of the reserves
and the production trend yields the number of remaining years of production
which will be interpreted as the maximum time horizon of the resource owner55 .
Repeating this procedure for a large number of resources and over many years
yields one distribution for the minimum horizon and one distribution for the
maximum horizon with the "true" horizon being somewhere in between.
Now, there are many ways of defining what manifests a price increase and

there are many potential methods that the market may use to make production
forecasts. Which price rule and forecast method that are the "right" ones to
use in the estimation is therefore unknown. To circumvent this the estimation
was performed multiple times using different price rules and forecast methods
(i.e. a Monte Carlo procedure).
To calculate the remaining years the reserves will last a production progno-

sis needed to be made. A number of methods were used. One method was to
take the trend of the last z ∈ [5, 15] and extrapolate it forward. I.e. varying
54A minimum horizon since we do not know if the price would have risen had the time

horizon been longer.
55A maximum time horizon since we do not know if the price would have been non-increasing

had the remaining years of production been even shorter.

54



the number of years that firms look backwards when extrapolating forwards. A
potential problem with this method is that a humped extraction path may be
extrapolated as constant which may be highly inaccurate. Therefore a higher
weight was given to the trend in the later years. A second method was to use
the standard reserve to production ratio, i.e. the current production is assumed
to continue unchanged. This method was not used in the main specification
as it created a lot of noise in the data, possibly due to it being an inaccurate
description of how the market makes forecasts. The third method was to use
the average growth rate of all resources combined in the last z years and ex-
trapolate forward. The main benefit of this method is that it washes out short
run fluctuations arising from a single commodity.
To indicate when a price is defined as increasing the requirement was that the

price should increase in a share x ∈ [0.5, 1] out of the upcoming y ∈ [3, 8] years.
By varying x and y various price increase indicators were tested. Another price
increase indicator was to require that the price in a share x of the upcoming y
years be higher than it is at the year of observation, varying x and y similarly
as in the previous method. Optimally, one would like to use a large number of
future years to determine when a price is increasing - the fewer years the more
noise, due to short run factors such as bottlenecks in extraction and distribution.
However, since the number of years in the dataset is only sixteen. Using many
years to indicate price increases implies cutting many observations towards the
end of the time series.
Each production forecast method was combined with each price increase in-

dicator. Taking one specific price increase indicator and one specific production
forecast method a distribution of minimum time horizon was obtained (i.e. those
observations where the price rises) and a distribution of maximum time horizons
was obtained (i.e. those observations where the price does not rise). Combined,
the two distributions consist of roughly 400 observations56 . The means of these
two distributions was then saved to a meta-distribution consisting of all the
rounds of the Monte Carlo estimation57 .
A few caveats are worth mentioning. First of all it seems plausible that

not all resource markets have the same time horizon. Owners of important
and large revenue resources such as fossil fuels or iron ore probably have longer
horizons than owners of more niche resources. This means that the maximum
and minimum horizon distribution from each estimation round can be expected
to overlap considerably. Furthermore, most resource prices are very volatile and
react sharply to short run demand and supply side shocks. Hence, whichever
rule is used for determining that a price is rising, large amounts of noise can be
expected to seep through making the rule inaccurate.
In figure 15 the results are reported when using the first production method58 .

5653 commodities during 15 years, net of some missing data and the number of years towards
the end that fall out due to the price indicator requiring y future years.
57 In total, the Monte Carlo method consisted of about 300 rounds.
58Similar results are obtained when using the third production forecasting method (averag-

ing the growth rates of all commodities) - a slightly longer time horizon is obtained but with
a clearer division between min and max horizon. The second method (reserve to production
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Figure 15: Distributions of means from the Monte Carlo simulation using the
first production forecast method.

As can be seen the distribution of the means is significantly different between
the minimum horizon and the maximum horizon. The mean of the minimum
horizon distribution is 38.7 years and the mean of the maximum horizon dis-
tribution is 42.6 years59 . A T-test confirms the difference, showing that we
can expect the minimum horizon to be shorter than the maximum horizon at
all conventional levels of confidence. To see that this is not driven by some
outliers, a T-test was run separately on each Monte Carlo round. Although
not as conclusive as the T-test for the mean, the separate tests show a positive
value in more than 85% of the rounds (i.e. the minimum horizon is smaller
than the maximum horizon) but at much lower levels of confidence each time.
Finally, putting together all the observations from all the Monte Carlo rounds
into a maximum and a minimum distribution and performing a T-test yields a
significant difference between the two at all conventional levels.
As a test to see whether the results are driven by some structure of the

data the above procedure was performed using the data for reserve base instead
of the more narrowly defined reserves. Generally, the reserve base for most
commodities will last for more than 100 years. Thus, if agents use a progressive
finite time horizon, the remaining reserve base should be a bad predictor of price
increases. Running the above procedure yields no significant difference between
the maximum and the minimum horizon (in fact, the T-tests even show the
wrong sign).

ratio), gives inconclusive results.
59The standard deviations are 3.9 and 1.4 years respectively.
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12.3 Empirical observations

Extraction and price paths of a few exhaustible resources (data from the US
geological survey and BP). For each extraction path a dashed trend line of the
type E = AeBt or E = AtB has been fitted to the real values through calibration
of A and B. For the prices seven year averages have been calculated (dashed).
For tantalum only four year averages were used due to data constraints.
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