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Abstract

We consider large, decentralized markets in which buyers and sellers obtain

information about past deals through their social network and they use this infor-

mation to make more accurate demands in bilateral bargaining rounds. We show

that the equilibrium depends crucially on the peripheral (least connected) individu-

als in each group, who weaken the position of the whole group. Comparative statics

shows that groups with high density and/or low variability in number of connec-

tions across individuals allow their members to obtain a better deal. An empirical

analysis of the observed price differential between Asian and white buyers in New

York’s wholesale fish market is consistent with these predictions. An extension ex-

plores an alternative set-up in which buyers and sellers belong to the same social

network: if the network is regular and the agents are homogeneous then the unique

equilibrium division is 50-50.
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The problem of a rational economic order is determined precisely by the fact that the knowl-

edge of the circumstances of which we make use never exists in concentrated or integrated

form, but solely as the dispersed bits of incomplete and frequently contradictory knowledge

which all the separate individuals possess. The problem is thus in no way solved if one

can show that all of the facts, if they were known in a single mind [...], would uniquely

determine its solution: instead we must show how a solution is produced by the interactions

of people each of whom possesses only partial knowledge.

F. A. von Hayek, ”The use of knowledge in society.” AER, XXXV (4), September 1945.

Individuals who belong to close-knit groups often enjoy an advantage in many market

interactions. For instance, Greif [1993] describes how in the 11th century Maghribi mer-

chants joined into tightly integrated communities to facilitate trading across the Mediter-

ranean in an environment characterized by a high degree of uncertainty and incomplete

information. Rauch [2001] reviews empirical evidence that the presence of ethnic im-

migrant communities significantly increases international trade volumes, especially for

commodities whose price is variable or uncertain. The goal of this paper is to explore

one type of advantage that these groups provide and to relate the internal structure of

interactions of a group to the observed market outcomes.

The core idea is that belonging to a group gives an informational advantage: indi-

viduals who are part of a group use their interactions to gather information about past

transactions which they employ in future bilateral negotiations. This set-up is relevant

for markets with a large number of individuals that are characterized by incomplete in-

formation, uncertainty about the price of the goods, and private bilateral negotiations.

In these markets an individual is unable to collect information on the current price of a

good due to the size of the market and the unobservability of private transactions, and

therefore she turns to other members of her group to gather information about recent

transactions before starting a trade.

Specifically, this paper develops a bargaining model between agents belonging to dif-

ferent groups in which the equilibrium outcome depends on the structure of interactions

within each group. In the long-term every agent in a group receives the same share of

the good, but the share varies across groups depending on their internal structure. This

share depends crucially on the least connected individuals in the group because these

individuals are the most susceptible to respond to noise present in the information they

receive from other group members they interact with. A consequence of this result is that

the optimal internal structure for a group has minimal variability in the number of con-

nections across individuals. Moreover, a testable comparative statics prediction is that

groups with high density and low variability in number of connections across individuals

allow their members to obtain a better deal.
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The model is applicable to markets with a large number of agents where there is

incomplete information on the price of a homogeneous commodity : there are no posted

prices and the agents communicate with each other to learn about the current price.

Similarly to classical bargaining models, each transaction is a private, bilateral negotiation

between two agents and the outcome in equilibrium will depend on the risk profile of the

agents in each group. However, the agents are boundedly rational: they base their bid on

information on past transactions they have collected from other agents in their group, and

they are unaware of the game they are playing or of the utility profile of their opponent.

There are many markets that share these characteristics. A prominent example is

markets in developing countries where prices fluctuate due to exogenous factors affecting

supply, and where the lack of strong institutions is an obstacle to the adoption of publicly

displayed prices allowing the proliferation of decentralized bilateral transactions.1 A

second example is markets in illegal commodities: the need to perform secret transactions

leads to incomplete information, private bilateral exchanges and fluctuations in price due

to frequent disruptions of the supply chain.2 A third example is some wholesale markets

where transactions are private between one buyer and one seller and the prices are very

sensitive to exogenous factors that affect the supply chain. For instance, many wholesale

fish markets are characterized by private, bilateral transactions and prices fluctuate due

to exogenous factors such as wind and wave height that affect the volume of the daily

catch of fish.3

Section 5 analyzes a dataset of prices from the Fulton wholesale fish market in New

York. A puzzling finding is that Asian buyers pay a significantly lower price than white

buyers for a homogeneous product sold by a white seller. The theoretical predictions from

the comparative statics analysis offer a potential explanation: the group of Asian buyers

is denser than the group of white buyers, and therefore Asians obtain more information

about the ongoing price of fish and they exploit this informational advantage to obtain

a lower price from the seller. The empirical analysis presents corroborating evidence in

support of this rationale: the price difference emerges only after a few hours, and the

variability of prices within the Asian group decreases over time while it remains constant

within the white group. These findings suggest that the price difference emerges only after

enough information is circulating within each group and that the process of information

sharing is faster within the group of Asians. A final piece of evidence comes from several

studies in the sociology literature which argue that Asian immigrants form very dense

1See, for example, Aker [2008] for evidence from grain markets in Niger.
2See, for example, Levitt and Venkatesh [2007] for evidence from the Chicago street-level prostitution

market.
3Kirman [2001] provides a detailed description of wholesale fish markets. Another example of a

wholesale market that can be described by this model is the fruit and vegetable market investigated in
Kirman et al. [2005].
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social networks.

The rest of the paper is organized as follows. Section 1 gives a more detailed overview

of the paper and surveys the related literature. Section 2 presents the model. Section 3

derives the bargaining solution and discusses its implications for the desirable network

structure for the members of a group. Section 4 investigates how changes in the internal

structure of a group affect the solution. Section 5 analyzes a dataset of prices in the

Fulton fish market and it shows corroborating evidence that the predictions of the model

explain the price differential between Asian and white buyers. Section 6 investigates a

different set-up of the model where buyers and sellers belong to the same communication

network. Section 7 concludes. Appendix A contains the proofs omitted in the main text,

and appendix B extends the model to allow for indirect communication.

1 Overview of the model and related literature

Consider a population of agents consisting of two disjoint groups of nB buyers and nS

sellers. At each time t a buyer b and a seller s are randomly drawn to play the Nash

demand game: b demands a fraction xt and s demands a fraction yt. If xt + yt ≤ 1 then

b and s get their demands, otherwise they get nothing. Note that the role of buyers and

sellers is completely interchangeable: the following description of the model will focus on

buyers only for expository purposes.

Each buyer maximizes a well-behaved utility function. At each time t the buyer

receives a sample of previous demands by sellers: she chooses an optimal reply to the

cumulative distribution of demands with probability 1− ε, and a non-optimal reply, i.e.

a ”mistake,” with probability ε.4 The amount of information that buyer b receives from

another buyer b′ is the realization of a Poisson process connecting b to b′. Thus, the

total information sample that b receives before the bargaining round consists of all the

information coming from the realization of the Poisson processes that connect b to the

other buyers she communicates with. A network gB is an abstract representation of the

average communication flows in the group of buyers: the strength of a link gbb′ is equal

to the rate of the Poisson process connecting b to b′.

Theorem 1 proves that if the communication networks of buyers and sellers are con-

nected and if they are not complete networks then the process without mistakes always

converges to a convention. A convention means that each buyer always makes the same

demand x and each seller always makes the same demand 1 − x. The condition on the

network structure guarantees that the information available to each agent on the history

of demands is sufficiently incomplete to avoid the whole process getting stuck in a cycle.

4Throughout the paper, the buyer is female and the seller is male.
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Theorem 2 proves that the process with mistakes converges to a unique stable division,

which is the asymmetric Nash bargaining solution (ANB) with weights that depend on the

network structure. Specifically, the weights are determined by the subset of peripheral

agents in each group with the least number of and/or weakest communication links.

A consequence of this result is that, given a budget of links to allocate, the desirable

architectures for a group are quasi-regular networks, i.e. networks where all the agents

are connected by strong links and have a very similar number of connections.

The solution in theorem 2 allows the exploration of how changes in the network

structure affect the equilibrium division. The changes are modeled in terms of first

and second order stochastic dominance shifts in the weighted degree distribution, i.e.

variations in the relative frequencies of agents with different number of connections.

Theorem 3 shows that individuals belonging to a group with a high density of connections

and/or a low variability of connections across individuals will fare better.

Section 5 analyzes a dataset on transaction prices in the Fulton wholesale fish market

in New York. A puzzling finding first highlighted by Graddy [1995] is that Asian buyers

pay a significantly lower price than white buyers for the same product sold by a white

seller. The predictions of theorem 3 provide the foundations for a story that explains

the price difference. Graddy’s field observations suggest that buyers communicate within

their ethnic group to learn the daily price of fish. Moreover, sociological evidence shows

that the group of Asians is very dense and therefore it is a better channel of information

than the group of whites on the uncertain price of the product. Over time the Asians re-

ceive more information and they exploit this additional knowledge to make more accurate

offers and obtain a lower price from the seller. An empirical analysis offers corroborating

evidence for this story by showing that the price difference emerges only after a few hours,

and the variability of prices within the Asian group decreases over time while it remains

constant within the white group.

An extension explores how the theoretical predictions change if buyers and sellers

belong to the same communication network, allowing in this way buyers to receive in-

formation from other buyers and sellers. The unique stable division is still the ANB

solution in theorem 2. However, the effect of varying the network structure is now dif-

ferent: a denser communication network leaves the ANB unchanged, but less variability

of connections across individuals narrows down the difference between the shares of the

two groups. If the network is a regular network, then the solution is the 50-50 division.

The desirable architectures for the buyers are core-periphery networks : the buyers form

a core network where they are connected by strong links and they have a very similar

number of connections, while the sellers are at the periphery where each one of them is

connected by one link to a buyer.
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In previous contributions there are at least two complementary explanations of why

belonging to a group leads to a competitive advantage in a market with incomplete

information. The first one was originally advanced by Greif [1993]: an individual trader

in a group can rely on the other members of the group to inflict a costly punishment to

a cheater by cutting all future trade between any member of the group and the cheater.

He illustrates this with a simple model in a repeated game framework, and he draws on

historical records to discuss its relevance for trading in the 11th century.

The second explanation is the core idea behind the model presented here: an individual

in a group has access to information from other group members and this leads to a com-

petitive advantage in a market where information is incomplete. Rauch and Casella [2003]

proposed a model where information-sharing within ethnic groups influences resource al-

location in international trade markets affected by incomplete information. Rauch and

Trindade [2002] show that the information-sharing story fits observed international trade

flows better than the collective punishment one. One of the key differences between this

paper and these previous contributions is that it explicitly models the role of the network

structure of interactions within a group.

In the economics of networks literature a number of papers investigate how a network

that constrains agents’ interactions affects the outcome of a bargaining process. Selected

contributions include Calvó-Armengol [2001], Calvó-Armengol [2003], Corominas-Bosch

[2004], Polanski [2007] and Manea [2008]. The framework adopted here is conceptually

different. In all the references listed above, the network is a constraint on the interactions

that agents are allowed to have. On the other hand, in this paper the network is a

constraint on the information about past bargains that agents have as they enter a

bargaining round. Moreover, the focus of this paper is also different. Previous work in

the literature investigates how the position of one agent in a network affects her individual

payoffs. Here the aim of the paper is to understand how the overall structural properties

of the network determine the payoff that every individual in the whole group receives,

independently on their position in the network.

Methodologically, this paper is based on the evolutionary bargaining framework first

formulated by Young [1993a]. The bargaining procedure and the behavior of agents is

the same as in Young’s model: individuals from two groups of bargainers are randomly

matched to play the Nash demand game and they make demands by choosing best replies

based on an incomplete knowledge of precedents. The novel element introduced here

is the modeling of the process by which agents receive information to play the game:

information travels through a communication network that connects the agents in each

group.

The introduction of the network demands the construction of a different Markov pro-
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cess to describe the evolution of the system, which requires a novel equilibrium analysis.

The equilibrium outcome depends on the underlying network and therefore this allows

the comparative statics analysis in section 4, which would not be possible in the model

without the network. Another key advantage of introducing the network is that it opens

up the possibility of testing the comparative statics predictions of the model on real mar-

ket data, as the empirical exercise carried out in section 5 illustrates. Finally, section 6

analyzes the case when buyers and sellers belong to the same communication network: the

equilibrium outcome is unchanged, but the comparative statics predictions are different,

and this type of analysis is only feasible in the model with the network.

The contribution of this paper is threefold. First, it constructs a model to investi-

gate the role of a group’s communication structure in markets with a large number of

agents where there is incomplete information. This provides a theoretical underpinning

to previous empirical studies that emphasized the informational role of social structure

in determining market outcomes. Second, it derives predictions on the effects of changes

in the communication structure on the equilibrium outcome. Third, it illustrates the

relevance of these predictions in the context of the New York wholesale fish market.

2 The Model

This section presents the main elements of the model: the network concepts used, the

adaptive play bargaining process, and the Markov process which describes the evolution

of the system.

Networks. A weighted, undirected network g is represented by a symmetric matrix

[gij]
n×n, where gij ∈ R+. The entry gij indicates the strength of the communication link

between i and j. If gij > 0 then agents i and j are connected and they communicate

directly with each other. If gij = 0 then i and j are not connected in the communication

network. Throughout this paper let gii ≡ g, i.e. an agent is connected with herself and

the strength of this self-connection is the same for all agents.

The neighborhood of i in g is Li(g) = {j ∈ N |gij > 0}.5 di(g) ≡ |Li(g)| denotes

the size of i’s neighborhood, or the degree of i, in g. zi(g) ≡
∑

j∈Li(g)
gij is the weighted

degree of i in g. Let Z(g) = maxi∈N zi(g) be the maximum weighted degree of any agent

in the network g. A complete network is a network that belongs to the class of networks

gC = {g|gij > 0, ∀i, j ∈ N} where every pair of agents is connected. A regular network

gd,a of degree d and link strength a is a network that belongs to the class of networks

5Note that this definition is slightly different than the standard one adopted in the literature because
it allows for i’s neighborhood to include i as well. This is because in our framework agent i’s own degree
gii is allowed to be positive. This difference affects the ensuing definitions as well.
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gd,a = {g|gij = {0, a}; di(g) ≡ d; ∀i, j ∈ N ; a ∈ R+}. A regular weighted network gk of

weighted degree k is a network that belongs to the class of networks gk = {g|zi(g) = k;

∀i ∈ N ; k ∈ R+}.
The weighted degree distribution of a network is a description of the relative frequencies

of agents that have different degrees. Let p(z) denote the weighted degree distributions

of network g, i.e. the fraction of nodes that have weighted degree z in network g, and

let µ[p(z)] denote the mean of the distribution. The comparative statics analysis in

this paper will investigate changes in the communication structure that are captured by

stochastic dominance shifts in this degree distribution. The following are more formal

definitions of these notions.

Definition 1. A distribution p′ first order stochastic dominates (FOSD) another distri-

bution p if ρ′(x) ≤ ρ(x) for any x ∈ [0, Z], where ρ(x) =
∑x

z=0 p(z) is the cumulative

distribution of p(z). The FOSD shift is variance-preserving if V ar[p(z)] = V ar[p′(z)].

Definition 2. A distribution p′′ strictly second order stochastic dominates (SOSD) an-

other distribution p if
∑x

z=0 ρ
′′(z) ≤

∑x
z=0 ρ(z) for any x ∈ [0, Z]. The SOSD shift is

mean-preserving if µ[p(z)] = µ[p′′(z)].

If p′(z) FOSD p(z) then a network g′ is denser than a network g. Note that in the

context of weighted networks denser means that agents in g′ have on average a higher

number and/or stronger links than agents in g. If p′′(z) SOSD p(z) then a network g′′

is more homogeneous than a network g. Similarly, more homogeneous means that there

is less variability across agents in g′′ in terms of the number and/or strength of their

connections than across agents in g.

Adaptive play bargaining process. Consider two finite, non-empty and disjoint

groups of individuals B = {1, ..., nB} and S = {1, ..., nS}: the buyers and sellers. In

each period t one buyer and one seller drawn at random meet to divide a pie of size

normalized to one. They play the Nash demand game: b demands a fraction xt and s

demands a fraction yt, if xt + yt ≤ 1 then b and s get their demands, otherwise they get

nothing. Assume that the set of possible divisions is discrete and finite, and let δ be the

smallest possible division. The sequence h = {(x1, y1), ..., (xt, yt)} is the complete global

history up to and including period t. Each agent remembers the last m rounds of the

bargaining game that she has played, where m stands for the memory of the agent and

m > max{Z(gB), Z(gS)}.
Agents receive information to play the game as follows. Suppose agent b ∈ B is

picked to play the game at t + 1: in the ∆t = 1 time period she receives information

from some of the other buyers in B about past bargaining rounds. Information arrival is

modeled as a Poisson process. Specifically, in the ∆t = 1 time interval, the probability
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P (sbj(∆t = 1) = k) that b receives a sample sbj(∆t = 1) of k past bargains from agent j

is equal to:

P (sbj(∆t = 1) = k) =
e−gbjgkbj
k!

where gbj is the rate of arrival of information to b from j. By standard properties of

Poisson processes, the expected amount of information b receives from j before each

bargaining round is E[P (sbj)] = gbj. Thus, we have that
∑

j∈Lb(g)
E[P (sbj)] = E[P (sb)] =∑

j∈Lb(g)
gbj = zb(g), and therefore before each bargaining round the expected size of the

sample of past demands is dzb(g)e, where d.e is the ceiling function to round it up to

the nearest integer. Clearly, at each point in time the realization of the Poisson process

that determines how much information b receives from j may be higher or lower than gbj,

but over a long period of time the average amount of information per time period that b

receives from j will be equal to gbj. Thus, the network g captures the average information

flows between each pair of agents in the group over a long period of time.6

The variability of an agents’ information sample over time poses significant challenges

to an analytical investigation of the model. In order to overcome this, throughout the

paper we impose the mean-field assumption that the total amount of information an agent

b receives is the same across bargaining rounds. More formally, assume that the size of the

information sample of the buyer b is constant and equal to the amount of information b

receives in expectation given the Poisson processes involving b, i.e. sb(t) ≡ d
∑

j∈B gbje =

dzb(g)e. Note that this assumption still allows for the realization of each individual

Poisson process to vary, and it fixes only the sum of the realizations of all the Poisson

processes. Thus, in some bargaining rounds agent b may receive most of the information

from her neighbor b′, while in other rounds b′ may not provide any information. However,

the total size of the information sample b receives before playing each bargaining round

is always the same.

Agents are boundedly rational as they are not aware of the game they are embedded

in and they base their decision exclusively on the information they receive. Specifically,

agents do not have prior knowledge or beliefs about the utility function of the other side,

and they do not know the distribution of utility functions in the general population.

Agent b chooses an optimal reply to the cumulative probability distribution G(y) of the

demands yj made by sellers in the sample that she receives, where G(y) = h
sb(t)

if and

only if there are exactly h demands yl in the sample sb(t) such that yl ≤ y.

Agent b has a concave and strictly increasing von Neumann-Morgenstern utility func-

tion u(x). Assume that u(x) is defined for all x ∈ [0, 1] and that it is normalized so

that u(0) = 0. Buyer b’s expected payoff from demanding x is then equal to Eu(x) ≡
6Note also that there is no need to assume that the Poisson process is truncated given that the

memory m can be arbitrarily large.
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u(x)G(1 − x). Thus, b chooses xt+1 so as to maximize Eu(x), and if there are several

values of x to choose from then each one of them is chosen with positive probability.

The set-up for seller s is analogous, and the utility function of the sellers will be

denoted by v(y).

Markov process. Let S be the state space, whose elements are sets of vectors s =

{v1, ...,vn}, where vi stands for agent i’s memory, which is a vector of size m, and

n ≡ nB + nS. If i ∈ B then vi = {yik−m+1, ..., y
i
k}, i.e. the entries of vi are the m

last demands made by sellers in bargaining rounds involving i. Similarly, if i ∈ S then

vi = {xik−m+1, ..., x
i
k}. Let qb(x | s) be agent b’s best-reply distribution, i.e. qb(x | s) > 0

if and only if demanding x is b’s best-reply to a sample received when the system is in

state s. Analogously, qs(y | s) is seller s’s best-reply distribution.

Assume that the process starts at an arbitrary time t0 > n ·m, and denote the initial

state by s0. At each t > t0, one pair of agents (b, s) ∈ B × S is drawn at random

with probability π(b, s), where π(b, s) > 0, ∀(b, s) ∈ B × S. At time t, consider a state

s = {vb,vs,v−b,v−s}, where vb = {ybk−m+1, ..., y
b
k} and vs = {xsk−m+1, ..., x

s
k}. Define s′ to

be a successor of s if it has the form s′ = {v′b,v′s,v−b,v−s}, where v′b = {ybk−m+2, ..., y
b
k+1}

and v′s = {xsk−m+2, ..., x
s
k+1}. The transition probability Pss′ of moving from state s to

state s′ is then equal to:

Pss′ =
∑
b∈B

∑
s∈S

π(b, s)qb(xt+1 | s)qs(yt+1 | s) (1)

Mistakes. In the process described so far agents always give a best reply to the sample

they happen to pick. In reality, people make mistakes for a variety of reasons: human

beings are poor at computing probabilities and they might miscalculate the expected

utility from an offer, they are prone to get distracted, they experiment, or sometimes

they are outright irrational. The following is a more formal definition of a mistake.

Definition 3. Let s = {vb,vs,v−b,v−s} and let s′ = {v′b,v′s,v−b,v−s} be a successor

of s, where vb = {ybk−m+1, ..., y
b
k}, vs = {xsk−m+1, ..., x

s
k}, v′b = {ybk−m+2, ..., y

b
k+1} and

v′s = {xsk−m+2, ..., x
s
k+1}. The demand xsk+1 is a mistake by b if it is not a best response

to any sample b could have received given that the system is in state s. A mistake ysk+1

by s is defined similarly.

Another concept that will be useful in the analysis of the perturbed process is the

resistance in moving from one state s to another state s′.

Definition 4. Let s and s′ be two states of the system. The resistance r(s, s′) is the

least number of mistakes required for the system to go from state s to s′.
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Note that if s′ is a successor of s then r(s, s′) ∈ {0, 1, 2} given that the maximum

number of mistakes in any one-time transition is two, i.e. both the buyer and seller

involved in that bargaining round make a mistake.

Now let ε be the absolute probability that agents in the model make mistakes, and let

λb, λs be the relative probabilities that buyers and sellers do so respectively. Thus, ελb

and ελs are the probabilities that buyers and sellers make a mistake. Denote by wb(x | s)

the buyer’s conditional probability of choosing x given that the current state is s and

that she is not giving a best-response offer to the sample picked, and define ws(y | s)

analogously. Assume λb, λs, ε > 0 and that wb(x | s), ws(y | s) have full support.

This process also yields a stationary Markov chain on S that can be described by

the probability of moving from a state s to a successor state s′, similarly to equation (1)

above. Assume that the process starts at an arbitrary time t0 > n ·m, and denote the

initial state by s0. At each t > t0 one pair of agents (b, s) ∈ B × S is drawn at random

with probability π(b, s), where π(b, s) > 0, ∀(b, s) ∈ B × S. Let s be the state at time t,

and let s′ be a successor of s, where s and s′ are defined above. The transition probability

P ε
ss′ of moving from state s to state s′ is then equal to:

P ε
ss′ =

∑
b∈B

∑
s∈S

π(b, s)[(1− ελb)(1− ελs)qb(xt+1 | s)qs(yt+1 | s) + ε2λbλswb(xt+1 | s)ws(yt+1 | s)]+

+ ελb(1− ελs)wb(xt+1 | s)qs(yt+1 | s) + ελs(1− ελb)ws(xt+1 | s)qb(yt+1 | s) (2)

The limit of the perturbed process is clearly the unperturbed one: limε→0 P
ε
ss′ = Pss′ .

Note that this Markov process is more complex than it needs to be to generate the

results presented in this paper because it allows for the relative probabilities that buyers

and sellers make mistakes to vary due to the λb and λs factors. This heterogeneity does

not affect the results because the analysis is asymptotic in the limit as mistakes go to

zero.

3 Equilibrium analysis

This section presents the results of the equilibrium analysis. Section 3.1 shows that

the process without mistakes converges to a convention as long as the network is not

complete. Section 3.2 derives the stochastically stable division. Section 3.3 characterizes

the desirable communication network structure for the members of a group and discusses

the relevance of this result to a long-standing debate in the sociology literature.
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3.1 Convergence

First, consider the unperturbed process P . The first step in the analysis is to define an

appropriate concept of stability for this system, and to show that in the long-term the

process will reach it. Intuitively, the system will be in a stable state if after a certain

time t any buyer will always make the same demand x because the sellers have always

demanded 1− x, and vice versa for the sellers. The following definition states this more

formally.

Definition 5. A state s is a convention if any vi ∈ s with i ∈ B is such that vi =

(1− x, ..., 1− x), and any vj ∈ s with j ∈ S is such that vj = (x, ..., x), where 0 < x < 1.

Hereafter, denote this convention by x.

It is straightforward to see that the convention x is an absorbing state of P . If a buyer

receives a sample in which all sellers’ demands are equal to 1−x then she will demand x.

Similarly, if a seller receives a sample in which all buyers’ demands are equal to x then

he will demand 1− x. Clearly, this will go on forever so x is an absorbing state of P .

Lemma 1. Every convention x is an absorbing state of the Markov process P in (1).

The following theorem shows that if information about the history of play is suffi-

ciently incomplete then the process P converges to a convention. The incompleteness of

information is delivered by the network structure: if the network is not complete then

some agents do not receive information on past demands in rounds played by individuals

that do not belong to their neighborhoods.

Theorem 1. Assume both gB and gS are connected and they are not complete networks.

The bargaining process converges almost surely to a convention.

The example networks in figure 1 help understanding the intuition behind the proof.

The goal is to show that from any initial state s there is a positive probability p inde-

pendent of t of reaching a convention within a finite number of steps. The assumption

that gB is not a complete network implies that there are at least two agents b′ and b′′

such that gb′b′′ = 0. Moreover, given that gB is connected, there are at least two agents

like b′ and b′′ such that the intersection of their neighborhoods includes at least one agent

b. The same applies to the sellers’ network, where agents s and s′′ are the equivalent of

agents b′ and b′′ respectively.

Now, consider the following path which happens with positive probability from any

state s at time t. First, b and s are picked to play the game for m periods, they draw

samples σ and σ′ respectively, they demand best-replies x and y respectively, and therefore

we have a run ξ = {(x, y), ..., (x, y)} such that vb = (y, ..., y) and vs = (x, ..., x). Second,
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Figure 1: Example networks of buyers (left) and sellers (right). Gray-colored nodes are
mentioned in the text to give intuition about the proof.

b′ and s′ are picked to play the game for m periods, they draw samples from vb and

vs each time, they demand best-replies 1 − y and 1 − x respectively, and therefore we

have a run ξ′ = {(1 − y, 1 − x), ..., (1 − y, 1 − x)} such that vb′ = (1 − x, ..., 1 − x) and

vs′ = (1− y, ..., 1− y). Third, b′′ and s′′ are picked to play the game for m periods, they

draw samples from vb and vs′ each time, they demand best-replies 1−y and y respectively,

and therefore we have a run ξ′′ = {(1− y, y), ..., (1− y, y)} such that vb′′ = (y, ..., y) and

vs′′ = (1−y, ..., 1−y). Hereafter it is clear that there is a positive probability of reaching

a convention x = (1− y, y).

Theorem 1 in Young [1993b] proves adaptive play converges almost surely to a con-

vention in any weakly acyclic game with n agents as long as information is sufficiently

incomplete. In Young [1993b]’s the incompleteness of the information is given by bounds

on the size of the sample the agents can draw to base their play on. Here the incom-

pleteness of information is given by the network structure: if the network is not complete

there will be agents who cannot sample some past rounds because they were played by

agents in their group with whom they do not communicate.

Appendix B extends the model to a setting where indirect communication is allowed

so that agents receive information from friends of their friends up to a social distance

r. The statement of the theorem extends naturally to this setting: if there are at least

two agents at a distance higher than r then there is convergence to a convention. The

rationale is the same: there is incompleteness of information because at least two agents

are not able to sample the whole history of past demands. Clearly, theorem 1 above is

the special case for r = 1.

Second, consider the perturbed process P ε. Given that the distributions wb and

ws have full support, P ε is irreducible. Thus, P ε has a unique stationary distribution.

Moreover, P ε is strongly ergodic, i.e. ∀s ∈ S, µεs is with probability one the relative

frequency with which state s will be observed in the first t periods as t → ∞. The

stability concept for this kind of perturbed process is a stochastically stable convention
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by Foster and Young [1990].

Definition 6. A convention s is stochastically stable if limε→0 µ
ε
s > 0. A convention s is

strongly stable if limε→0 µ
ε
s = 1.

Intuitively, in the long-run stochastically stable conventions will be observed much

more frequently than unstable conventions when the probability ε of mistakes is small.

A strongly stable convention will be observed almost all the time. The technique to

compute the stochastically stable conventions is standard and it will not be explained in

detail below, see Young [1998] for an excellent introduction.

Construct a weighted, directed network [rsisj ]
k×k, where the nodes are the states s ∈ S,

the links are the resistances rsisj connecting si to sj, and k is the total number of states

in S. Define an x-tree tx ∈ Tx to be a collection of links in [rsisj ]
k×k such that, from

every node x′ 6= x, there is a unique directed path to x and there are no cycles. This

construction leads to the definition of the concept of stochastic potential of a convention

x.

Definition 7. The stochastic potential γ(x) of a convention x is the least resistance

among all tx ∈ Tx. Mathematically:

γ(x) = min
tx∈Tx

∑
(x′,x′′)∈Tx

r(x′,x′′) (3)

Theorem 4 in Young [1993b] explains how to compute the stochastically stables states.

The following is a special case of that result.

Theorem. [Young [1993b]] Let µ0 be a stationary distribution of the unperturbed pro-

cess P . Then limε→0 µ
ε
s = µ0. Moreover, µ0 > 0, i.e. s is stochastically stable, if and

only if s = x is a convention and γ(x) has minimum stochastic potential among all

conventions.

3.2 Asymmetric Nash bargaining solution

Let us apply the methodology outlined above to find the division which the process will

converge to. Define Bmin = {j ∈ B | dzj(gB)e ≤ dzb(gB)e,∀b ∈ B} to be the subset of

buyers with the least weighted degree. Let zminb (gB) = dzj(gB)e for j ∈ Bmin. Equivalent

definitions apply to the sellers. The first step is to compute the minimum resistance to

moving from the convention x to the basin of a different convention x′. This is done in

the following lemma.
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Lemma 2. The minimum resistance to moving from x to a state in some other basin is

dR(x)e, where:

R(x) = min

{
zminb (g)

(
1− u(x− δ)

u(x)

)
, zmins (g)

v(1− x)

v(1− δ)
, zmins (g)

(
1− v(1− x− δ)

v(1− x)

)}
(4)

The intuition is as follows. Some agents have to make mistakes in order for the system

to move from one convention to a state in the basin of another convention. The agents

who will switch with the least number of mistakes in their sample are the ones who

receive the smallest samples. This explains the factors zminb (g) and zmins (g) in equation

(4). Now, consider the case when some sellers make a mistake. The smallest mistake

they can make is to demand a quantity δ more than the conventional demand 1 − x. If

they do this, buyers will attempt to resist up to the point when the utility from getting

the conventional amount x some of the time, i.e. when sellers do not make a mistake, is

equal to the utility from getting the lower amount x− δ all the time. This gives the first

term in equation (4). The third term is the equivalent of the first one, but this time the

buyers make a mistake and demand δ more than the conventional amount x.

Another possibility is that some buyers make a mistake, but this time they demand

less than the conventional amount x. The ”worst” mistake, from the buyers’ point of view,

would be to demand the minimum amount δ. If they do this, sellers will only switch at

the point when the utility from getting the higher amount 1 − δ some of the time, i.e.

when buyers make a mistake, is higher than the utility from getting the conventional

amount x all the time. This gives the second term in (4). There should also be a fourth

term, i.e. the equivalent of the second one with the roles of buyers and sellers reversed,

but it is not included in (4) because it is never strictly smaller than the last term.

The expression for R(x) in (4) is the minimum of three monotone functions: the

first two are strictly decreasing in x, while the last one is strictly increasing in x. Thus,

R(x) is first strictly increasing and then strictly decreasing as x increases, so it achieves

its maximum at a unique value x∗.7 Using this fact, the following theorem shows that

there is a unique stable division, which is the asymmetric Nash bargaining solution with

weights that depend on the agents in each group with the least weighted degrees.

Theorem 2. There exists a unique stable division (x∗, 1−x∗). It is the one that maximizes

the following product:

uz
min
b (x)vz

min
s (1− x) (5)

In other words, it is the asymmetric Nash bargaining solution with weights zminb (gB) and

7Technically, R(x) can achieve its maximum at one value x∗ or at two values x∗ and x∗+ δ. As δ → 0
these two values clearly converge to a unique maximum x∗.
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zmins (gS).

If the precision δ is sufficiently small then over time the two groups will settle on a

conventional division, which is the asymmetric Nash bargaining solution. This solution

crucially depends on the communication networks that buyers and sellers use to learn

about past bargaining rounds to determine what to demand once they are picked to play.

More precisely, ceteris paribus (i.e. agents’ risk-aversion in the two groups is the same),

the division depends on the agents in the group with the least number and/or weakest

communication links. The intuition is that these agents will be the least informed when

it comes to play the game, and therefore they will be the most susceptible to respond

to mistakes from the other side. Over time, this susceptibility weakens the bargaining

position of the whole group.

The proof of the theorem follows from two lemmas from Young [1993a]. The first

lemma shows that a division (x, 1 − x) is generically stable if and only if x maximizes

the function R(x) in equation (4). The second lemma shows that the maxima of R(x)

converge to the asymmetric Nash bargaining solution which maximizes the product in

(5). This solution is clearly analogous to the one in theorem 3 in Young [1993a]. The

key difference is that the solution in theorem 2 above depends explicitly on the internal

communication structure of the group of buyers/sellers. This allows the derivation of

the comparative statics results in section 4 and the empirical analysis of the Fulton fish

market.

Figure 2: A weighted network with 10 agents: strong links (in bold) have weight 2 and
weak links have weight 0.5. Color-coded nodes are the least connected agents.

Figure 2 is an example of a weighted network formed by 10 agents connected by two

types of links: strong links with weight 2 and weak links with weight 0.5. The subset

Bmin of agents with the least information has three individuals, who are color-coded in

the figure. Note that there are at least two typologies of agents who can belong to this

subset. The first one is represented by the two agents color-coded in dark gray: they

rely on a single source for information on past bargaining rounds, and in both cases the
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source belongs to their own sub-community. They are strongly linked to their source, but

they are very susceptible to potential mistakes in the information coming from her. They

are peripheral agents in the network, who rely excessively on information from their own

community. On the other hand, the second typology is represented by the agent color-

coded in light gray: she relies on a high number of sources from both sub-communities,

but they are only weakly connected with her. She is connected to different parts of the

network making her very exposed to any kind of information circulating in the network,

including potential mistakes. She is an agent with weak links who is very susceptible to

information flowing in the network because she connects across communities. Section 3.3

below will include further discussion on this.

Obviously, as in standard bargaining models, the solution also depends on the utilities

of the agents. Ceteris paribus (i.e. the least connected agents in each group have the

same weighted degree), a group with less risk-averse agents will have a stronger bargaining

position because these agents are more likely to take chances, and therefore they are more

demanding.

Finally, it is possible to derive an equilibrium division that depends on the network

structure in a richer way than the solution in theorem 2. Appendix B extends the model

to a setting where indirect communication is allowed, so that agents receive information

about past demands not only from their friends but also from friends of their friends up

to a social distance r. In the extended model the statement of theorem 2 is unchanged

except for the weights that are now determined by the agents with the smallest decay

r-centrality, a metric that captures the number and/or strength of connections in their

extended neighborhood up to a distance r.

3.3 The weakness of weak ties

What is the desirable communication structure for the members of a group of individuals

that engage in this bargaining process with another group? In order to answer this

question, let us define a class of quasi-regular networks, which are generated by a given

regular network.

Definition 8. Consider the set G of undirected networks with n nodes and at most L

links. Let gd,a be a regular network with degree d =
⌊
2L
n

⌋
and link strength a, i.e. it

belongs to gd,a which is the class of largest regular networks in G. The network g ∈ G
is a quasi-regular network generated by gd,a if it can be obtained by randomly adding k

links of any strength to gd,a, where k ∈ [0, L− n
2
).

A quasi-regular network is a network that is similar to a regular network in the

sense that the links are distributed evenly among the nodes and there is minimal degree
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variation. Note that if L/n ∈ N, i.e. the links can be exactly divided among the nodes,

then the set of quasi-regular network coincides with the class of regular networks gd,a. If

L/n /∈ N then each node has at least as many links as in the generating regular network,

and the remaining links are randomly assigned. The following corollary shows that the

desirable communication structure for a group is a quasi-regular network.

Corollary 1. Fix a communication network gS for the sellers. Consider the set G of all

possible communication structures gB among the nB buyers such that the total number

of links is L < nB

2
(nB − 1) and the strength of each link is in the [s, s] range, where

s, s ∈ R+. The subset of networks GB ⊂ G that gives the highest share to buyers are the

quasi-regular networks generated by regular networks in gd,s, where d =
⌊

2L
nB

⌋
. The same

statement holds reversing the roles of buyers and sellers.

For illustrative purposes it is easier to give the intuition for the case where L/nB ∈
N. First, the desirable network must have communication links of maximum strength

because they carry more information about past rounds, decreasing in this way buyers’

susceptibility to sellers’ mistakes. Second, a regular network is desirable because it is

the network where the buyers with the lowest degree have the highest possible degree

given the constraint L. Informally, (quasi)-regular networks are very steady: they have

no weak points that could be more susceptible to sellers’ mistakes.

There is a long-standing debate in the sociological literature on what constitutes a

desirable network for a group of individuals. A seminal paper by Granovetter [1973] in-

troduced the idea that weak ties play an important role in networks because they connect

individuals with few characteristics in common and that have non-overlapping neighbor-

hoods, allowing them to access non-redundant information. For instance, Granovetter

[1995] shows that individuals with many weak ties are better at finding employment

through their social networks. A rough summary of this view is that networks with a

significant fraction of weak ties and high degree variability are desirable because they

facilitate the flow of information.

On the other hand, Coleman [1988] argues that close-knit, homogeneous networks

formed by strong bonds are desirable. The rationale is that these strong connections and

their even distribution across all group members make it easier to establish an informal,

decentralized monitoring of the flow of information. Moreover, there are no peripheral

individuals who could be potential defectors. He gives the example of the network of

wholesale diamond traders in New York: strong family, religious and community ties

ensure that information about any cheating will be quickly available to all the members

leading to the exclusion of the cheater from the community. A rough summary of this

view is that networks composed exclusively by strong ties and minimal degree variability
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without peripheral individuals are desirable because they facilitate monitoring of what is

going on in the network.

In the context described by this model, corollary 1 shows that Coleman-type, quasi-

regular networks exclusively formed by strong ties are desirable because they allow the

effective sharing of information about past demands. However, it is important to un-

derstand that this is not an absolute statement about the two views, which are, in fact,

complementary. There are two key aspects of this model which determine the desirability

of a Coleman-type network in this context. First, the new information that circulates in

the network is negative: mistakes made by the other side that individuals in the group

should not respond to. Second, the final outcome is the establishment of a norm for

the whole group, so the important factor is how structural properties of the group as

a whole, not the structural position of single agents, influence the outcome. A regular

network with strong ties ensures that each agent has a lot of information about the state

of the system so that new negative information has a very low probability of affecting the

group. Moreover, the regularity of the networks ensures that there are no weak points

where negative information has a higher probability of ”entering” the group. On the other

hand, in a model where new information is positive and valuable (e.g. innovation, job

opportunities) then the desirable network would probably be closer to the Granovetter’s

type because it would facilitate the effective circulation of positive information.

4 Comparative statics

The standard tool to analyze the effects of changes in the network structure is to look at

first order stochastic dominance (FOSD) and second order stochastic dominance (SOSD)

shifts in the degree distribution, as defined in section 2.8 In the context of weighted

networks, a FOSD shift leads to a network with ”more” and/or ”stronger” links, and

a SOSD shift leads to a network with a more equal distribution of the number and/or

strength of links.

The following theorem shows how the asymmetric Nash bargaining solution (ANB)

in theorem 2 varies with changes in the degree distributions of the buyers and sellers’

networks.

Theorem 3. Let (x∗, 1 − x∗) be the ANB for sets of agents B and S that communicate

through networks gB and gS with weighted degree distributions pb(z) and ps(z). Consider

the weighted degree distributions p′b(z) and p′′b (z) of networks g′B and g′′B respectively,

and let p′b(z) FOSD pb(z) and p′′b (z) SOSD pb(z).

8See Goyal [2007] and Jackson [2008] for textbook treatments of this methodology.
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(i) Let (x
′∗, 1− x′∗) be the ANB for sets of agents B and S with degree distributions

p′b(z) and ps(z). Then x
′∗ ≥ x∗.

(ii) Let (x
′′∗, 1−x′′∗) be the ANB for sets of agents B and S with degree distributions

p′′b (z) and ps(z). Then x
′′∗ ≥ x∗.

The same statement holds reversing the roles of buyers and sellers.

The theorem states that individuals who belong to a denser social group, i.e. with

more numerous and/or stronger connections, will fare better. Similarly, individuals who

belong to a more homogeneous social group, i.e. with more equally distributed connec-

tions in terms of the number and/or strength of links, will also be better off. The intuition

is that agents in these groups will have access to more information about past deals expe-

rienced by other members in their group. Thanks to this informational advantage, they

are less likely to respond to mistakes by the other side, and they are therefore able to

maintain an advantageous bargaining position.

A more general comparative statics result than theorem 3 also holds: adding a link

to the communication network of a group weakly increases the share individuals in that

group obtain in equilibrium. There are two reasons behind the choice to formulate the

comparative statics analysis in terms of shifts in the degree distribution. First, the

statement in theorem 3 is more suitable to empirical verification. Second, the same

approach applies to the extension in section 6 where buyers and sellers belong to the

same network, while the more general statement does not hold there.

It is not straightforward to carry out an empirical test of the statement in theorem

3. It seems rather challenging to artificially engineer a shift in the degree distribution

of a network, or to isolate exogenous shocks to a social structure that would result in

these stochastic dominance shifts. However, from cross-sectional studies we know that

homophily is a powerful determinant of social structure and that networks composed

of different types of individuals often have internally different structures. Moreover,

studies that compare cross-sections of different networks are much easier to undertake

than tracking the evolution of a single network.

Only mild assumptions are required to extend the model to a context with several

groups of buyers. Assume that there is one group of sellers and that there are k separate

groups of buyers such that buyers communicate within their group but not across groups.9

The main assumption that is required is that each seller knows which group a buyer

belongs to and he only receives information from other sellers on previous transactions

with buyers from that group. Moreover, when a seller determines which offer to make

to a buyer from a certain group, he does not use information from transactions with

9An equivalent set-up is to assume that there is one group of buyers B connected by a network gB

which is composed of k components.
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buyers in other groups. Mathematically, the whole system can be represented by k

different processes that run ”in parallel,” and the dynamics/outcomes of one process are

completely independent from the ones of the other processes. Clearly, the results in this

paper apply to each one of these processes. The following corollary presents this set-up

more formally and it states its implications.

Corollary 2. Consider one group of sellers S who communicate through gS, and k groups

of buyers B1, ..., Bk who communicate through separate networks g1, . . . , gk with weighted

degree distributions p1(z), . . . , pk(z) respectively. Assume Bi ∩ Bj = ∅ and sellers know

which group a buyer b belongs to. Then sellers will reach different conventions with

different groups of buyers on the share x∗i that buyers in Bi get. Moreover:

(i) If p1(z) FOSD p2(z) FOSD . . . FOSD pk(z), then x∗1 ≥ x∗2 ≥ . . . ≥ x∗k
(ii) If p1(z) SOSD p2(z) SOSD . . . SOSD pk(z), then x∗1 ≥ x∗2 ≥ . . . ≥ x∗k

This corollary states a clear and testable prediction of the model: in a market with

different groups of buyers where communication only occurs within groups, buyers that

belong to denser and/or more homogeneous groups will fare better. The next section

explores how these predictions shed light on the observed pricing patterns in the Fulton

wholesale fish market.

5 An Application: The Fulton wholesale fish market

Wholesale fish markets have historically attracted the attention of economists because

they offer fertile ground for econometric tests of a competitive market.10 They also have

several characteristics that make them an ideal setting to test this model: (i) all trans-

actions are private between one buyer and one seller; (ii) bargaining is minimal and

usually consists of take-it-or-leave-it offers; (iii) they are perfectly competitive with a

large number of buyers/sellers, low entry costs, and no search costs; (iv) products are

very homogeneous; (v) prices very considerably from day to day and they depend on ex-

ogenous factors largely unknown to the market participants; (vi) there are no inventories

so separate days can be considered independently.

Here we will analyze a dataset on transaction prices in the Fulton wholesale fish

market (FFM) in New York collected by Kathy Graddy in 1992.11 The goal is to show

that the predictions of the model provide an explanation for a puzzling finding found

by Graddy [1995] in the pricing patterns observed in this market: Asian buyers pay a

significantly lower price than white buyers for the same product sold by a white seller.

10See Kirman [2001] for a review.
11I am very grateful to Kathy Graddy for allowing me to use her dataset. See Graddy [2006] for a

more detailed description of the dataset and of the FFM.
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The FFM in lower Manhattan is the largest fish market in the US with 100-200 million

pounds of fish sold per year.12 Transactions start at 3am and end at 9am; there are about

35 sellers and several hundred buyers. The FFM dataset contains all 620 sales of whiting

made by one white seller from April 13th till May 8th 1992. For each transaction the

dataset contains the following: time of sale (month, day, hour and minutes); price per

pound; quantity sold; customer information (unique identifier, ethnicity); size (small,

medium or large), type (king or normal) and quality (1-5 scale) of whiting; mode of

transaction (cash or credit; in person or by phone); geographical location (Manhattan,

Brooklyn, other) and type of establishment (store or fry shop) owned by the buyer; and

total quantity that the seller received and sold on that day.

Only a subset of 132 observations has been used for the main analysis conducted below.

Duplicate entries and sales with missing data were omitted. The few transactions carried

out on the phone were also excluded. Following Graddy [1995], only sales involving

medium sized normal whiting of medium quality were included in order to focus on a

homogeneous product. A common characteristic of fish markets is the presence of large

fluctuations in prices in the last 1-2 hours of the market depending on whether there

is excess demand or supply on a given day. In order to avoid this effect the data was

restricted to transactions carried out between 3am and 7am, which correspond to the

busiest hours of the market.13

Graddy [1995] found a puzzling result: Asian buyers pay a significantly lower price

than white buyers for the same product sold by a white seller. She investigates a number

of potential determinants of this result, but in her concluding remarks she writes that

”[...] price discrimination is present. The reason behind price discrimination is less clear”

(p. 87). It is difficult to explain why the price difference is not arbitraged away in a

market with a healthy competition, no obvious entry barriers, low search costs and a

homogeneous product.14

The model in this paper puts forward an alternative rationale for the observed price

difference. There are distinct groups of buyers in the FFM depending on their ethnicity,

12In November 2005, the FFM moved to the Bronx, see Jacobs [2005] for a short account of the move.
13The goal of this data selection was to follow Graddy [1995] as closely as possible, but it is likely

that there are very minor discrepancies between the two procedures. To be included in the subset of
data analyzed here, transactions had to have the following characteristics: (i) time of trade and ethnicity
of buyer are not missing; (ii) trade happened before 7am; (iii) trade was made in person; the fish was
(iv) normal whiting of (v) medium quality (3 on a 1-5 scale) and of (vi) medium size. Moreover, one
duplicate transaction was excluded. Steps (i)-(vi) reduced the dataset to n = 132 observations, while
Graddy’s selection procedure reduced it to n = 131.

14In a recent contribution, Graddy and Hall [2009] construct a structural model to explain the pricing
data in the FFM: their simulations match the observed prices very well. The key assumption they make
to reproduce the price differential between Asians and whites is that Asians have a higher price elasticity
of demand than whites. The approach they use is different from this paper, and the stories proposed in
Graddy and Hall [2009] and in this paper to explain the price differential complement each other.
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and buyers communicate with other members of their group to learn the current price of

fish. The group of Asians is denser and it is therefore a better channel of information

on the uncertain price of the product. As the market unfolds the density of the commu-

nication network in their group gives the Asians an informational advantage: they learn

the ongoing price more accurately and they exploit this additional knowledge to obtain

a lower price from the sellers.

The argument will consist of four steps. First, we will document the price differential

between Asians and whites by replicating the analysis in Graddy [1995]. Second, we will

show that the price differential is not present in the first two hours of the market, and it

emerges only afterwards. We interpret this as evidence of learning: the price differential

emerges only in the course of the market as the buyers learn the daily price of fish. Third,

we will provide further evidence of learning by showing that the variability of prices within

the Asians decreases over time while the same does not hold for the whites. Finally, we

will draw on a number of studies to argue that the key competitive advantage of Asian

buyers is that they belong to a denser social group than whites, in agreement with the

predictions of the model.

The objective of the first step is to reproduce the main finding in Graddy [1995]: this

ensures consistency with the original study and it confirms that the analysis carried out

here correctly picks out the price differential between Asians and whites. The first column

in table 1 reproduces the regression analysis in Graddy [1995]. The price of each of the

n = 132 trades is regressed on the following independent variables: an ASIAN dummy

equal to 1 if the buyer is Asian; a BLACK dummy equal to 1 if the buyer is black; a

CASH dummy equal to 1 if the purchase was paid in cash; a MLOC dummy equal to 1

if the buyer is from Manhattan or Brooklyn; a STORE dummy equal to 1 if the buyer’s

establishment is a store; and time and date dummies not shown in the table.15

The coefficients in column 1 support Graddy [1995]’s conclusions. The Asian dummy

is negatively correlated with price and significant at the p = 0.01 level: Asian buyers pay

a price that is approximately 5% lower than white buyers. All the other controls are not

significant, apart from the STORE and the date dummies that are strongly significant

due to the strong dependence of the price of fish on daily conditions.16 Note that the

15The time dummies TIM1, TIM2 and TIM3 are equal to 1 if the purchase was made before 5am,
in the 5am-6am and in the 6am-7am time periods respectively; the date dummy DATE X is equal to
1 if the purchase was made on day X. Two variables present in Graddy’s regression have not been
included: AVQUAN (i.e. average quantity purchased by the customer during the time period) and REG
(i.e. the number of times the customer purchased during the time period). The results of the regressions
presented here would not change if these variables were to be included.

16A difference between these regressions and Graddy’s is that here the coefficient on the STORE
dummy is positive and statistically significant in all regressions: store owners pay higher prices than
non-store owners that buy fish for fry-shops. In order to ensure that this has no effect on the Asian
dummy coefficients, all regressions were repeated further restricting the sample to store owners only, who
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variables in the regression explain essentially all the variation in prices observed in the

dataset.

TABLE 1 - Determinants of the Price of Whiting

Standard errors in brackets.

The coefficients on the date and time dummies are not reported.

*** Significant at the 0.01 level; ** 0.05 level; * 0.1 level.

Variables (1) All times (2) Before 5am (3) 5am-7am

ASIAN -.0488*** (.0150) .0085 (.0231) -.0455** (.0202)

BLACK .0115 (.0195) .0658 (.0290) .0138 (.0249)

CASH .0249 (.0147) -.0078 (.0175) .0194 (.0203)

MLOC .0061 (.0147) -.0214 (.0204) .0069 (.0175)

STORE .0465*** (.0128) .0514*** (.0187) .0537** (.0165)

R2 .990 .998 .986

N. of observations 132 38 86

N. of (Asian; white) (70;49) (22;20) (48;29)

However, the results in column 1 do not necessarily support the hypothesis that

Asian buyers gain a competitive advantage through learning as opposed to some other

mechanism. A stronger piece of evidence for a learning story would show that the price

differential emerges over the course of the trading day as learning takes place. Column 2

in the table shows the coefficients for the same regression as column 1, but considering

only early trades that happened before 5am.17 The coefficient of the Asian dummy is

now positive and insignificant: Asian buyers pay a price that is slightly higher than white

buyers, and statistically there is no difference between the two.

The price differential in favour of Asian buyers emerges later in the trading day.

Column 3 in the table shows the same regression as column 1, but considering only

trades that happened between 5am and 7am.18 The coefficient of the Asian dummy is

negative and statistically significant at the p = 0.05 level: after the first two hours of the

market, the price differential emerges and the Asian buyers trade at significantly lower

prices compared to white buyers. This is strong evidence in favour of the hypothesis that

different rates of social learning within the two groups drive the emergence of the price

constitute the large majority of buyers. The results do not change.
17The coefficients of column 2 do not change substantially if ”early” trading is defined as transactions

that happened between 4am and 5am, excluding in this way the first hour of the market.
18As in Graddy [1995], trades after 7am are excluded from the analysis because of large fluctuations

in prices in the last 1-2 hours of the market due to excess demand or supply.
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Figure 3: Standard deviation in prices paid by Asian and white buyers for the 4-5am
(dark gray bar) and 6-7am (light gray bar) time periods.

differential: any alternative story based on individuals’ and/or groups’ characteristics

would face the difficult task of explaining why these characteristics emerge only in the

course of the trading day.

If buyers within the same group are learning the daily price of fish then the variability

of prices paid by members of the same group should decrease over time. At the beginning

of the market only a few transactions have taken place and therefore the scarce infor-

mation on previous sellers’ demands is of little guide to buyers: the prices that buyers

pay should therefore vary a lot across buyers reflecting the lower accuracy of the small

samples of information at their disposal. On the other hand, after some time buyers re-

ceive abundant information about sellers’ past demands: the variation in prices paid by

buyers should decrease reflecting the higher accuracy of buyers’ demands which are now

based on the large samples of information at their disposal. The hypothesis is therefore

that the variability of prices decreases faster for Asians than for whites, given that social

learning is faster within the Asian group,

Figure 3 compares the standard deviation in prices for transactions between 4am and

5am (in dark gray) to the standard deviation for transactions between 6am and 7am (in

light gray) for Asians and whites. They both decrease over time, but the decrease for

Asian buyers is visibly larger. A two-sample variance comparison test rejects at the 99%

confidence level the null hypothesis that for Asian buyers the two standard deviations are

the same. The same test for whites cannot reject the same null hypothesis at the 90%

confidence level. Moreover, the result does not hinge on the difference in initial standard

deviations: the test cannot reject at the 90% confidence level the null hypothesis that

the standard deviation of prices at 4-5am is the same for Asian and white buyers.19

19The same results hold if we consider transactions before 5am instead of in the range 4-5am (this
adds 6 additional observations). The results are the same if we use the robust equal variance test, which
does not assume that the underlying distribution of prices is normal.
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The final step is to show that social learning within the Asian buyers is faster than

within the white buyers because the Asian buyers’ group has a higher density of social

connections. Unfortunately, there is no data available on the interactions among different

buyers in the FFM, and therefore we will have to resort to findings from other studies

to provide corroborating evidence in support of this hypothesis. First of all, Graddy’s

personal field observations of the FFM support the assumption that buyers are split in

different groups along ethnic dimensions. She remarks that ”[v]ery little social contact

appears to take place between groups of Asian buyers and groups of white buyers” (p. 84)

and ”[b]uyers do not realize they are receiving better or worse prices than other buyers”

(p. 83-84). This is in agreement with a large amount of empirical evidence reviewed in

McPherson et al. [2001] that shows that ”[h]omophily in race and ethnicity creates the

strongest divides in our personal environments” (p. 415).

Social connections play an especially important role in business transactions in the

overseas Asian community. Redding [1995]’s extensive study of overseas Chinese networks

stresses that ”co-operativeness [...] converts an otherwise disparate group of entrepreneurs

into a significant economy” (p. 62) and ”[p]ersonalism does in Asia what law does in the

West [...] [w]ithout [what is termed guanxi or connections] nothing can be made to

happen [...] the instinct of the Overseas Chinese to trust friends but no-one else is very

deep-rooted” (p. 63). Redding [1995] explicitly states that the main purpose of social

connections is to ”seek the opportunities by trading rare information [and] share that

information to build allegiances” (p. 65).

The importance of social connections for Asians in the US is not limited to the Chi-

nese community. Xie and Goyette [2004] stress that ”[m]ost Asian Americans are recent

immigrants and as such maintain a strong identity with their home culture [...] Ethnic

communities offer many practical resources to immigrants, including [...] information

in native languages, and entrepreneurial opportunities” (p. 66). Rauch [2001] reviews

further evidence of the high density of Asian social networks. The Asian buyers in the

FFM seem to be no exception: in her fieldwork Kathy Graddy observed that ”Asian

buyers certainly spoke to one another and congregated much more frequently than white

buyers.”20 Even though all these studies do not provide conclusive empirical evidence,

they at least give broad support to the hypothesis that the group of Asian buyers is part

of a denser social network than the group of white buyers.

Summing up, this analysis provides corroborating evidence in support of a differential

social learning story as a driver of the price differential between Asian and white buyers.

In the first hours of the market, there is scarce information on the daily price of fish

because very few transactions have taken place and therefore buyers cannot rely on their

20This quote is taken from a personal communication with Kathy Graddy.
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contacts to learn what the daily price is. After a good number of transactions have taken

place, information on prices asked by sellers circulates among buyers who start learning

the daily price of fish. The learning process occurs faster among Asian buyers, who

are tightly connected with one another, and over time they cumulate an informational

advantage that is reflected in the lower prices of their trades compared to white buyers.

It is not easy to find an alternative story that fits this analysis as well. For instance,

an alternative rationale for the price differential could be that Asian buyers have better

bargaining skills. Besides the fact that haggling is non-existant or minimal in this market,

this story would have to explain why Asian buyers only employ their bargaining skills

after 5am. Any other story based on individuals’ and/or groups’ characteristics that

the analysis may not control for would have to explain why these characteristics become

effective only after 5am.

Finally, there are several other contexts where the predictions of this model are rele-

vant. A prominent example is international trade markets. James Rauch and others have

shown that the density of ethnic immigrants’ networks is an important determinant of in-

ternational trade patterns.21 Moreover, Rauch and Trindade [2002] explore two potential

mechanisms driving this competitive advantage. The first one, proposed by Greif [1993],

is a contract enforceability story: if a member of the social network has been cheated

by a trader then every member of the network punishes the cheater by stopping future

business with that trader. The second one, proposed by this paper, is that the social

network gives an informational advantage: being part of the social network gives access

to more accurate information about the price of a product.

Rauch and Trindade [2002] are able to distinguish between the two mechanisms by

comparing trade volumes in products with ”reference prices,” whose price is well-known,

to trade in products without ”reference prices,” whose price is uncertain. They find

that ethnic Chinese social networks have a much larger effect on trade of products with

uncertain price and they conclude that the main function of social networks is to provide

an informational advantage. Similar research by Kumagai [2007] confirms that the same

effect is present for Japanese ethnic networks. Furthermore, Kumagai [2007] shows that

the effect is increasing with the density of the network, in agreement with the results

presented in section 4.

6 A unique network of buyers and sellers

The previous example had the feature that buyers and sellers belonged to separate groups.

However, there are many contexts in which this is not the case and both buyers and sellers

21See Rauch [2001] for a comprehensive review.
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are part of the same community. Would the results of the model continue to hold in these

contexts? This section investigates how the results in sections 3 and 4 change if buyers

and sellers belong to the same communication network. Section 6.1 illustrates the changes

to the model and derives the bargaining solution, section 6.2 discusses the implications

for the desirable communication structure for the members of a group, and section 6.3

carries out the comparative statics analysis.

6.1 Set-up and bargaining solution

There are two main changes to the set-up of the model that are required to describe a

context where buyers and sellers are part of the same communication network. First,

consider the information arrival process. Assume agent b ∈ B is picked to play the game

at time t+ 1: in the ∆t = 1 time period she receives information from other buyers in B

and other sellers in S about past bargaining rounds. As before, the expected total amount

of information b receives before each bargaining round is equal to
∑

j∈Lb(g)
E[P (sbj)] =

E[P (sb)] =
∑

j∈Lb(g)
gbj = zb(g). The only difference is that here zb(g) =

∑
j∈B,S gbj:

b’s sample comes from both buyers and sellers. The expected realizations of the Poisson

processes define a weighted, undirected network of buyers and sellers, which is represented

by a symmetric matrix [gij]
n×n.

Second, consider the elements s of the state space S of the Markov process. Here,

s = {v1, ...,v2n}, i.e. for each agent i there are two vectors vi and v2i of size m. If

i = 1, ..., n then vi = {yik−m+1, ..., y
i
k}, i.e. if i ∈ B then the entries of vi are the last m

demands made by sellers in bargaining rounds involving i, and if i ∈ S then the entries

of vi are i’s last m demands. Similarly, if i = n + 1, ..., 2n then vi = {xik−m+1, ..., x
i
k}.

Assume that when a buyer b ∈ B is picked to play the game, she receives a sample

of information from her neighborhood about past demands made by sellers, i.e. the

demands in the sample come from v1, ...,vn. Similarly, when a seller s ∈ S is picked to

play the game, the demands in the sample come from vn+1, ...,v2n.

The unique stable division is unchanged from the case of separate communication

networks of buyers and sellers.

Theorem 4. There exists a unique stable division (x∗, 1−x∗). It is the one that maximizes

the following product:

uz
min
b (x)vz

min
s (1− x)

In other words, it is the asymmetric Nash bargaining solution with weights zminb (g) and

zmins (g).

Lemma 2 is unchanged and therefore the proof of theorem 4 follows the same argument

as the proof of theorem 2, and it is therefore omitted. The size of the information sample
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of the least informed member(s) of a group is the key determinant of the deal the group

obtains in equilibrium. Whether this information comes from members of the same

group or of the other group is inconsequential for the split of the pie. As in theorem 2,

the buyers with the minimum weighted degree will be the least informed and therefore

they will be more susceptible to respond to mistakes from the sellers. Over time, this

susceptibility weakens the bargaining position of the whole group of buyers, leading to

the establishment of the conventional split that maximizes the product in (5).

6.2 Core-periphery networks

The introduction of communication across groups does not change the ANB solution.

However, the desirable architecture for the group of buyers in this setting is not the

same as in section 3.3 because here the sellers are part of the network. The corollary

below shows that the desirable communication structures for the buyers are core-periphery

networks where the buyers are at the core and the sellers at the periphery. For expository

purposes this section restricts the analysis to unweighted networks. However, the proof of

the statement of corollary 3 in the appendix is for the general case of weighted networks.

First of all, we need to give a formal definition of core-periphery networks.

Definition 9. A semi-bipartite network g(H) is a network with a subset of agents H ⊂ N ,

with |H| ≤ |N |/2, such that di(g) = 1 for all i ∈ H and if i, j ∈ H then gij = 0.

Definition 10. Consider the set G of undirected, unweighted networks with n nodes. A

core-periphery network is a connected and semi-bipartite network g(H). The agents in

N\H form the core, which is a quasi-regular network gd,s, and the agents in H form the

periphery.

The key characteristic of core-periphery networks is that they divide a society into

two classes of individuals: on the one hand an elite of core individuals who are well-

connected with each other, and on the other hand a group of peripheral individuals

that are dependent on the elite and poorly connected with each other. It is intuitively

clear why it would be desirable for the buyers to be at the core, the following corollary

formalizes this intuition.

Corollary 3. Consider the set G of all possible communication structures for a group

of n agents comprising nB buyers and nS < nB sellers, and where the total number of

links is L ≤ nB

2
(nB − 1). Let d =

⌊
2L+ns−1

nB

⌋
and let s ∈ R+ be the strength of each link.

The networks which maximize the share buyers obtain in equilibrium are core-periphery

networks where buyers form a quasi-regular network gd,s at the core and sellers are at the

periphery. The same statement holds with the roles of buyers and sellers reversed.
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At the periphery sellers have the lowest number of links needed for the network to

be connected and at the same time they take the least number of links away from the

buyers. The sellers’ information sample is as small as possible: it is equal to the strength

s of one link. On the other hand, at the core buyers maximize the number of links of

the least connected buyer(s) given the available budget L. By forming a quasi-regular

network at the core, the buyers’ information sample is as large as possible, as shown in

corollary 1.

The proof in appendix A is more general than the statement above and it characterizes

the subset of weighted networks that maximize the share of a group. There are three

main steps in the proof. First, for the sellers to get the smallest possible share there must

be at least one seller s0 with only one weak link. Second, the sellers s ∈ S\s0 should

have at least the lowest number of links needed for the network to be connected while

at the same time take the least number of links away from the buyers. Thus each seller,

apart from s0, is connected by one strong link to a buyer. Third, following the argument

of corollary 1, the buyers should form a regular network with strong links to maximize

the smallest weighted degree among all the buyers. The remaining links can be assigned

at random (as long as none of them links to s0) so the core is a quasi-regular network of

buyers and each seller has only one or a few links.

The key for a group to obtain a high share is to form a close-knit elite and leave

the individuals of the other group at the periphery. Gellner [1983] argues that this is

the prevailing social structure in agrarian societies.22 A small minority of the population

forms the literate elite, which is composed of members of specialized professions such

as warriors, priests and administrators. These specialized elites form very close-knit

communities that are bound together by shared norms within their profession, and that

maintain minimal contacts with the rest of the population. At the other end of the

spectrum the large majority of the population consists of ”[s]mall peasant communities

[that] generally live inward-turned lives, tied to the locality by economic need if not by

political prescription” (p. 10). These small communities of peasants do not communicate

with each other and they are linked to the elite only through weak connections necessary

for the extraction of rent.

A further clue that underlines the crucial role of communication in carving out the

social structure of agrarian societies comes from looking at the languages that are usually

spoken in each group. The elite is mainly composed by literate individuals and ”the

tendency of liturgical languages to become distinct from the vernacular is very strong:

it is as if literacy alone did not create enough of a barrier [...] as if the chasm between

22Thanks to Sam Bowles for pointing me to Gellner’s work and for suggesting the interpretation that
follows.
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them had to be deepened, by making the language not merely recorded in an inaccessible

script, but also incomprehensible when articulated” (p. 11). Everyone in the elite shares

a common oral and written language, which individuals outside of the elite are not able

to comprehend. On the other hand, small peasant communities suffer ”a kind of culture

drift [that] soon engenders dialectal and other differences. No-one [...] has an interest in

promoting cultural homogeneity at this social level. The state is interested in extracting

taxes [...] and has no interest in promoting lateral communication between its subject

communities” (p. 10). In agreement with the predictions of the model, a close-knit elite is

able to share information effectively and extract a high rent from the peripheral, isolated

communities of peasants who are unable to communicate with each other.

6.3 Comparative statics and the 50-50 split

When buyers and sellers share the same communication network, any change in the

social network structure affects both buyers and sellers, and therefore the comparative

statics will differ from the case of separate networks. The following is the equivalent

statement to theorem 4 in the modified set-up where buyers and sellers belong to the

same communication network.

Theorem 5. Let (x∗, 1 − x∗) be the ANB for sets of agents B and S that communicate

through a network g with degree distribution p(z).

(i) If p′(z) is a variance-preserving FOSD shift of p(z) then x′∗ = x∗.

(ii) Assume that the least weighted degree for the sellers is (weakly) larger than the

mean degree, i.e. zmins (g) ≥ µ[p(z)]. If p′′(z) is a mean-preserving SOSD shift of p(z)

then x′′∗ ≥ x∗.

The same statement holds reversing the roles of buyers and sellers.

A shift to a denser communication network, without any changes in the variance of

the distribution, leaves the equilibrium ANB unchanged. This is because the weighted

degrees of the least connected buyers and sellers will change in absolute value, but not

in relative value to each other. On the other hand, a shift to a more homogeneous

communication network, holding constant the mean of the degree distribution, changes

the equilibrium because it affects the relative values of the least connected buyers and

sellers. Specifically, as the network becomes more homogeneous the difference between

the shares of the two groups narrows down.

Theorem 5 further highlights how the introduction of a network to model information

flows leads to new insights that are not accessible in a model without the network. As

the statements of theorems 2 and 4 make clear, the fact that buyers and sellers belong to

separate or the same communication network has no impact on the long-term equilibrium
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division making these two cases indistinguishable. However, the introduction of the

network allows a comparative statics analysis that highlights how changes in the network

affect the equilibrium division. The comparative statics clearly differs if buyers and sellers

belong to the same network, and this leads to the insight of theorem 5 that a shift in the

distribution of connections that decreases the variability in number of connections across

agents narrows down the difference in the shares that buyers and sellers obtain.

The model predicts that societies with more homogeneous social groups would have

more equitable divisions. The limit network after a sufficient number of SOSD shifts is

a regular weighted network: if all the agents have the same utility function, then the

equilibrium division in a regular weighted network is the 50-50 split.

Corollary 4. Let g be a regular weighted network and let all agents have the same utility

function, then 50-50 is the unique stable division.

In the extreme case of a regular weighted communication network the equilibrium divi-

sion is 50-50, which suggests that this well-observed phenomenon may be more prevalent

in societies with a very flat and non-hierarchical social structure. The mechanism that

leads to the emergence of the 50-50 division in this model differs from other mechanisms

previously advanced in the literature. Schelling [1960] advanced the idea that 50-50 is a

prominent focal point, whose salience is exploited by two bargainers to coordinate on an

efficient division. In Young [1993a]’s framework the 50-50 division emerges in societies

where there are some individuals that exchange roles and, at different times, can be both

buyers and sellers. On the other hand, in this model the driving force leading to the

emergence of the 50-50 division is the homogeneity of the social structure of the society

that buyers and sellers are embedded in.

7 Conclusion

This paper has investigated the informational advantage an individual derives from being

part of a group in a large, decentralized market where there is incomplete information

about past transactions. The communication patterns within the group determine the

information the individual has before a private bilateral transaction, and the outcome of

the bargaining hinges on the accuracy of this information. In the long-run equilibrium

every member of the group obtains the same share of the good in each transaction,

and the group communication network critically determines the market outcome. More

specifically, the equilibrium division depends on the number and the strength of the

connections of the least connected individuals in each group. An immediate consequence

of this result is that individuals belonging to a group with a high density and a low
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variability of connections across individuals fare better. Empirical evidence shows that

this prediction is consistent with the price differential between Asian and white buyers

in the New York fish market. Finally, a modified setting analyzes the case where buyers

and sellers are embedded in the same communication network: the peripheral individuals

are again pivotal, and the more equally distributed the connections are across agents the

more similar are the shares of buyers and sellers.

At the empirical level the analysis of the Fulton fish market is just a preliminary

step in the testing of the predictions of this model because it provides only illustrative

evidence that the model sheds light on the observed market outcome. The identification

of network effects in markets is a notoriously difficult task, and methodological advances

in the econometric literature are necessary to tackle it properly. The option of conducting

lab experiments to overcome the identification issue inherent in field data is usually not

viable for network models, where it is difficult to reproduce social relations in the lab.

However, the model in this paper may be quite suitable to an experimental investigation

because the network here is simply a communication channel. It is relatively easy to

construct protocols to constrain communication among subjects in the lab, and therefore

it should be feasible to create an artificial market where there are groups of traders with

different internal communication structures.

Network theorists have only recently started to examine models that investigate the

role of network structure in determining market outcomes in markets with a large num-

ber of agents. In these models the mechanisms through which network structure affects

market outcomes vary widely, reflecting the multiplicity of possible types of social in-

teractions. This paper focused on the role of network structure as a carrier of market

information. Hopefully this model may serve as a starting point for future work both

theoretically and empirically in order to identify the role of network structure using real

market data and in laboratory settings.
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A Appendix: Proofs

This appendix contains all the proofs omitted in the main body of the paper. Hereafter

let δ = 10−p (p ∈ Z+) be the precision of the demands, and assume xt, yt ∈ D, where D

is the set of all p-place decimal fractions that are feasible demands.

Proof of Lemma 1. Suppose the process is in state x at time t, and pick any two agents

b ∈ B and s ∈ S to play the Nash demand game at time t+ 1. For any sample b receives

from her neighborhood, the cumulative distribution G(y) of previous demands by sellers

is a probability mass function with value 1 at 1 − x. Thus, b’s best reply is always to

demand x. Following a similar argument, the seller s’ best reply is always 1 − x. It

follows that the state of the system at t+ 1 is the same as it was at t, and therefore x is

an absorbing state of P .

Proof of Theorem 1. The goal is to show that from any initial state s there is a positive

probability p independent of t of reaching a convention within a finite number of steps.

Select individuals b, b′, b0 such that b ∈ Lb′∩Lb0 and gb′b0 = 0. Similarly, select individuals

s, s′, s0 such that s′ ∈ Ls∩Ls0 and gss0 = 0. Note that such individuals must exist because

by assumption the networks are connected and they are not complete networks. Figure

1 in section 3 illustrates two networks of buyers and sellers with individuals b, b′, b0 and

s, s′, s0. Note that in figure 1 agents b0 and s0 are labeled b′′ and s′′ respectively. Consider

the following steps from t onwards.

(i) [t, t+m]: There is a positive probability that b and s (or agents like them23) will

play the game in every period t ∈ [t, t + m]. Also, there is a positive probability that b

and s will draw samples σ and σ′ respectively. Let x and y be the best replies of b and s

to these samples respectively. Then there is a positive probability of obtaining a run of

(x, y) for m periods in succession such that vb = (y, ..., y) and vs = (x, ..., x).24

(ii) [t + m + 1, t + 2m]: There is a positive probability that b′ and s′ (or agents like

them25) will play the game in every period t ∈ [t + m + 1, t + 2m]. There is a positive

23An agent bi ∈ B that is ”like” b is such that bi ∈ Lb′ ∩ Lb0 . This condition allows bi to potentially
collect the same sample of information σ as b. Similarly, an agent si that is ”like” s is such that
si ∈ Ls′\s0 , where Ls′\s0 = {j ∈ N | j ∈ Ls′ , j /∈ Ls0}.

24The argument here has been simplified on a number of dimensions for expository purposes: 1) it is
not necessary that the same pair of agents plays in each of the m rounds, it is sufficient that they are
”like” b or s (see footnote above); 2) it is not necessary that the m rounds are consecutive, as long as
there is a finite time between them and they are still in the state s at the end of the third step below;
3) if different agents are involved in these rounds, then the state s of the system at the end of this step
will not be such that there are two vectors vb = (y, ..., y) and vs = (x, ..., x), but such that there are m
entries of vectors vi ∈ s equal to y and m entries of vectors vj ∈ s equal to x, with i ∈ B and j ∈ S.
The same observations apply to the second step below.

25an agent bi ∈ B that is ”like” b′ is such that bi ∈ Lb\b0 . This condition allows bi to potentially collect
the same sample of information ρ as b′. Similarly, an agent si that is ”like” s′ is such that si ∈ Ls ∩Ls0 .
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probability that they will sample from vb = (y, ..., y) and vs = (x, ..., x) respectively.

Thus, there is a positive probability of obtaining a run of (1− y, 1− x) for m periods in

succession such that vb′ = (1− x, ..., 1− x) and vs′ = (1− y, ..., 1− y).

(iii) [t+ 2m+ 1, t+ 3m]: There is a positive probability that b0 and s0 will play the

game in every period t ∈ [t+ 2m+ 1, t+ 3m]. There is a positive probability that b0 will

sample from vb = (y, ..., y) and that s0 will sample from vs′ = (1 − y, ..., 1 − y). Their

best reply will then be (1− y, y), so there is a positive probability of obtaining a run of

(1− y, y) for m periods in succession such that vb0 = (y, ..., y) and vs0 = (1−y, ..., 1−y).

(iv) [t + 3m + 1, t + 4m]: There is a positive probability that agents b1 ∈ Lb0 and

s1 ∈ Ls0 play the game for the next m periods. There is a positive probability that their

samples come from vb0 and vs0 respectively. Their best reply will then be (1 − y, y), so

there is a positive probability of obtaining a run of (1− y, y) for m periods in succession

such that vb1 = (y, ..., y) and vs1 = (1− y, ..., 1− y).

(v) [t + 4m + 1, t + 5m]: There is a positive probability that agents b2 ∈
⋃k=1
k=0 Lbk

and s2 ∈
⋃k=1
k=0 Lsk , with b2 6= b0, b1 and s2 6= s0, s1 play the game for the next m periods.

There is a positive probability that their samples come from (vb0 ,vb1) and (vs0 ,vs1)

respectively. Their best reply will then be (1− y, y), so there is a positive probability of

obtaining a run of (1 − y, y) for m periods in succession such that vb2 = (y, ..., y) and

vs2 = (1− y, ..., 1− y).

(vi) Now iterate the following step for p = 3, ..., nmax−1, where nmax = max{nB, nS}.
[t+(p+2)m+1, t+(p+3)m]: There is a positive probability that agents bp ∈

⋃k=p−1
k=0 Lbk

and sp ∈
⋃k=p−1
k=0 Lsk , with bp 6= b0, ..., bp−1 and sp 6= s0, ..., sp−1 play the game for the next

m periods. There is a positive probability that their samples come from (vb0 , ...,vbp−1)

and (vs0 , ...,vsp−1) respectively. Their best reply will then be (1 − y, y), so there is a

positive probability of obtaining a run of (1− y, y) for m periods in succession such that

vbp = (y, ..., y) and vsp = (1− y, ..., 1− y).

At time t+ (nmax+ 2)m the state of the system is such that vi = (y, ..., y) ∀i ∈ B and

vj = (1− y, ..., 1− y) ∀j ∈ S, i.e. the system has reached a convention. Thus, from any

initial state s there is a positive probability of reaching a convention within [nmax + 2]m

periods. Given that the number of states is finite, there is a positive probability p of

reaching a convention within [nmax + 2]m periods, which concludes the proof.

Proof of Lemma 2. Suppose that the process is at the convention x = (x, 1−x), where

x ∈ D0 = {x ∈ D : δ ≤ x ≤ 1 − δ}. Obviously, to move from x to another convention

x′ = (x′, 1 − x′) the agents need to make mistakes. Without loss of generality, assume

that the sellers make the mistakes. Let π be a path of least resistance from x to x′, and

let s be the first state on this path. In order to get to s, a buyer b0 must have received

a sample σ where by mistake some sellers have demanded a quantity that differs from

37



1 − x, such that b0’s best reply to σ is to demand a quantity x′ 6= x. The buyers who

require the minimum number of mistakes to switch best reply are the ones receiving the

smallest sample. Recall that Bmin = {j ∈ B | dzje ≤ dzbe,∀b ∈ B} is the subset of buyers

with the least weighted degree. Let zminb ≡ zj for j ∈ Bmin and let b0 ∈ Bmin. Denote by

p the number of mistakes by sellers in σ.

Consider the sample σ and construct a different sample σ′ such that every entry of σ

that differs from 1− x is replaced by 1− x′, and every entry of σ equal to 1− x stays the

same. Note that if b0’s best reply to σ was x′, then her best reply to σ′ must also be x′.

By the mean-field assumption, σ′ is composed by a total of zminb demands: p demands

are equal to 1− x′ and zminb − p are equal to 1− x.

Now, let us construct an alternative path π′ from x to x′ such that π′ is also a path

of least resistance with p mistakes. Start with the system at the convention x at time t.

Consider the time t1 when the mdb0 bargaining rounds played by buyers b ∈ Lb0 happened

after t. Let p of these mdb0 bargaining rounds be such that the seller involved made a

mistake and demanded 1 − x′. There is a positive probability that b0 plays with seller

s0 ∈ S at time t1 and receives a sample σ′, and therefore she plays the best-reply demand

x. Moreover, there is a positive probability that in the next m−1 rounds that b0 and s0 are

picked to play, they again play with each other. Moreover, there is a positive probability

that in each of these rounds b0 receives the sample σ′, which could still be available, and

plays the best-reply demand x′. Thus, at some time t2 > t1, vs0 = {x′, ..., x′}.
There is a positive probability that at time t3 > t2 agents b0 and s1 ∈ Ls0 are picked to

play, and that b0 receives the sample σ′ and s1 receives his sample exclusively from vs0 .
26

Thus, b0 will play the best-reply demand x′ and s1 will play the best-reply demand 1−x′.
Moreover, there is a positive probability that in the next m− 1 rounds that b0 and s1 are

picked to play, they again play with each other. Moreover, there is a positive probability

that in each of these rounds they receive the same samples they got at t3, which could

still be available, and they play the best-reply demands x′ and 1− x′ respectively. Thus,

at some time t4 > t3, vs1 = {x′, ..., x′} and vb0 = {1− x′, ..., 1− x′}.
Following the same argument as the proof of theorem 1 above, it is clear that the

process can now converge to the new convention x′ without any further mistakes. Clearly,

the same argument can be used to construct an alternative least-resistant path which

starts with the buyers making q mistakes. In order to determine which least-resistant

path requires the lowest number of mistakes, one has to compute these two numbers and

choose the smallest. This leads us to consider four possible cases: two depending on

26Note that s1 can receive his sample exclusively from vs0 only if the size m of this vector is larger
than zs0 . This is guaranteed by the assumption made in section 3.2 that the individual memory m ≥
max{zb, zs}, where b ∈ B and s ∈ S. Note that a lower bound would also be sufficient, what is necessary
is that m is large enough.
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whether the buyers or sellers make mistakes, and two depending on whether they ask a

quantity higher or lower than what they get under the convention x.

(i) Sellers make a mistaken demand 1− x′ < 1− x
Suppose sellers make p mistaken demands. Clearly, p ≤ zminb , which is the sample size

for the buyers with the smallest sample. As above, let b0 ∈ Bmin. Buyer b0 therefore

receives a sample of p mistaken demands 1−x′ and zminb −p conventional demands 1−x.

If b0 demands x′ > x then she expects to obtain utility u(x′) with probability (p/zminb ).

On the other hand, b0 demands x < x′ then she expects to obtain utility u(x) for sure

(because if the seller makes a mistake and demands 1− x′ then 1− x′ + x < 1 and each

agent gets their demand). Thus, b0 switches to x′ if p ≥ zminb
u(x)
u(x′)

. The minimum p occurs

with the largest possible u(x′), i.e. with x′ = 1− δ, which is the largest possible mistake

the sellers can make, so:

p = zminb

u(x)

u(1− δ)
(A.1)

(ii) Sellers make a mistaken demand 1− x′ > 1− x
Now suppose sellers make p mistaken demands, but they demand more than the conven-

tional demand. Now, if b0 demands x′ < x then she expects to obtain utility u(x′) for

sure. On the other hand, if b0 demands x > x′ then she expects to obtain utility u(x)

with probability (zminb − p)/zminb . Thus, b0 switches to x′ if p ≥ zminb

(
1− u(x′)

u(x)

)
. The

minimum p occurs with the largest possible u(x′), i.e. with x′ = x−δ, which is the largest

possible mistake x′ < x the sellers can make, so:

p = zminb

(
1− u(x− δ)

u(x)

)
(A.2)

(iii) Buyers make a mistaken demand x′ < x

Following an argument similar to case (i), the minimum number q of mistaken demands

by buyers needed for the seller with the smallest sample to switch is equal to:

q = zmins

v(1− x)

v(1− δ)
(A.3)

(iv) Buyers make a mistaken demand x′ > x

Following an argument similar to case (ii), the minimum number q of mistaken demands

by buyers needed for the seller with the smallest sample to switch is equal to:

q = zmins

(
1− v(1− x− δ)

v(1− x)

)
(A.4)

Combining equations (A.1), (A.2), (A.3), and (A.4) it follows that the least number of
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mistakes necessary to move out of the convention x is dR(x)e, where R(x) is equal to:

R(x) = min

{
zminb

u(x)

u(1− δ)
, zminb

(
1− u(x− δ)

u(x)

)
, zmins

v(1− x)

v(1− δ)
, zmins

(
1− v(1− x− δ)

v(1− x)

)}
It is straightforward to show that the first term is at least as large as the last one for

all x ∈ D0, so it can be ignored. Thus, the minimum resistance to move out of the x

convention is dR(x)e, where R(x) is given by (4).

Proof of Theorem 2. Lemma 2 in Young [1993a] shows that a division (x, 1 − x) is

generically stable if and only if x maximizes the function R(x) in (4). Lemma 3 in Young

[1993a] shows that as δ → 0, the maxima of the function R(x) converge to the asymmetric

Nash bargaining solution in (5). The proofs of the equivalent statements to lemmas 2

and 3 for this model are essentially the same as in Young [1993a], and they are therefore

omitted here.

Proof of Corollary 1. Denote by GQ the quasi-regular networks generated by regular

networks in gd,a. The proof is by contradiction. Suppose there exists a network g ∈ G
such that g ∈ GB and g /∈ GQ. There are two possible cases:

(i) g ∈ GB and GQ∩GB = ∅: If this is the case then minb∈B zb(g) > minb∈B zb(gd,a) =

sd, i.e. minb∈B zb(g) ≥ sd + ε. Given that the maximum link strength is s, this implies

that minb∈B db(g) = b 2L
nB
c + 1 and the degree of all other buyers must be at least equal

to this. But then the total minimum number of links is nB

2
minb∈B db(g) > L, which is a

contradiction.

(ii) g ∈ GB andGQ ⊂ GB: If this is the case then either minb∈B zb(g) > minb∈B zb(gd,a)

or minb∈B zb(g) = minb∈B zb(gd,a). The argument above shows that the former leads to a

contradiction, so suppose that minb∈B zb(g) = minb∈B zb(gd,a) = sd. Thus, minb∈B db(g) =

d and the degree of all other buyers must be at least equal to this. The minimum total

number of links for this to hold is d·nB/2, which leaves a maximum of L−d·nB/2 = L−bLc
links to assign. But this means that g is a quasi-regular network, no matter how the

remaining links are assigned and we have a contradiction.

Proof of Theorem 3. Let us look at (i) and (ii) separately.

(i) First, consider the case i = B. The goal is to compare the (x∗, 1 − x∗) ANB

solution for agents that communicate through networks gB and gS, and the (x′∗, 1− x′∗)
ANB solution for agents that communicate through networks g′B and gS, where p′b(z)
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FOSD pb(z). The claim is that x′∗ ≥ x∗. From equation (4) we have:

R(x) = min

{
zminb (gB)

(
1− u(x− δ)

u(x)

)
, zmins (gS)

v(1− x)

v(1− δ)
, zmins (gS)

(
1− v(1− x− δ)

v(1− x)

)}
≤

≤ min

{
zminb (g′B)

(
1− u(x− δ)

u(x)

)
, zmins (gS)

v(1− x)

v(1− δ)
, zmins (gS)

(
1− v(1− x− δ)

v(1− x)

)}
= R′(x)

because, by definition of FOSD, zminb (gB) ≤ zminb (g′B). Thus, the unique division (x′∗, 1−
x′∗) that maximizes R′(x) is such that x′∗ ≥ x∗, where (x∗, 1− x∗) is the unique division

that maximizes R(x). The case i = S is similar, and it is therefore omitted.

(ii) Note that by definition of SOSD, zminb (gB) ≤ zminb (g′′B). Replacing zminb (g′B) by

zminb (g′′B), the proof of this statement is the same as the proof of (i) above.

Proof of Corollary 3. Let us prove a more general statement by characterizing the

subset of networks GB ⊂ G that maximize buyers’ share, where G is the set of all

possible networks g such that the total number of links is L and the strength of each link

is in the [s, s] range.

Assume that ns ≤ nb. First, in order to minimize sellers’ share, there must be a seller

s0 such that ds0 = 1 and gs0b0 = s, i.e. s0 has only one weak link with one buyer b0.

Second, for the network to be connected each seller s ∈ S\s0 must have one link gsi, and,

to maximize the number of links of buyers, let i ∈ B, gsi = s and assign the links so that

there is no buyer who is connected to more than one seller. Third, by corollary 1, the

networks that maximize the buyers’ share are quasi-regular networks generated by gd,s,

where d =
⌊
2L+nS−1

2

⌋
. Here, the addition of the nS−1 term takes into account the strong

links buyers have with the sellers s ∈ S\s0. The only restriction on the construction

of the quasi-regular network is that the links assigned at random are first assigned so

that b0 and each buyer who is not linked to any seller is assigned one link, and then the

remaining links are assigned at random as long as none of them links with s0.

A similar argument to the proof of corollary 1 shows that the existence of a network

g which gives a weakly higher share to buyers and which is not in GB would lead to

a contradiction. Clearly the unweighted, core-periphery networks in the statement of

corollary 3 belong to GB.

Proof of Theorem 5. Let us look at (i) and (ii) separately.

(i) The goal is to compare the (x∗, 1−x∗) ANB solution for agents that communicate

through network g, and the (x′∗, 1 − x′∗) ANB solution for agents that communicate

through network g′, where p′(z) FOSD p(z) and V ar[p(z)] = V ar[p′(z)]. The claim is that

x′∗ = x∗. By definition of a variance-preserving FOSD shift, we have that zi(g) = ςzi(g
′)

for each i ∈ N , where ς > 1 and ς ∈ R+. The variance-preserving FOSD shift is therefore
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only a rescaling of R(x) by a ς factor. Thus, the unique division (x∗, 1−x∗) that maximizes

R(x) is also the unique division that maximizes R′(x) = ςR(x), i.e. x∗ = x′∗.

(ii) First, assume that zmins (g) > µ[p(z)]. By definition of a mean-preserving SOSD

shift we have that zminb (g
′′
) > zminb (g). Moreover, zmins (g

′′
) < zmins (g) because of the

definition of SOSD shift and the assumption that zmins (g) > µ[p(z)]. Substituting these

inequalities into the expression (4) for R(x) it is straightforward to see that the unique

division (x′′∗, 1−x′′∗) that maximizes R′′(x) must be such that x′′∗ ≥ x∗, where (x∗, 1−x∗)
is the unique division that maximizes R(x). The case zminb (g) > µ[p(z)] is similar and it

is therefore omitted.

Proof of Corollary 4. Let all agents have the same utility u(.). If g is a regular

weighted network then β ≡ zminb (g) = zmins (g) ≡ σ. Substituting this into (5) one obtains

that the unique stable division (x∗, 1−x∗) is the one that maximizes u(x)u(1−x), which

is clearly x∗ = 0.5.
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B Indirect communication

This appendix presents an extension of the basic model which allows for indirect commu-

nication, i.e. information traveling more than one step in the network. It shows that all

the results are robust to the introduction of indirect communication and that they gener-

alize in a straightforward way by replacing degree with the concept of decay r-centrality.

The proofs are omitted given that only minor changes are required to adapt the proofs

in appendix A.

It is necessary to first introduce some new notation. A path p(i, j; g) between i and

j in a graph g is a sequence of links p(i, j; g) = {gii1 , gi1i2 , ..., gipj} such that gkl > 0 for

all gkl ∈ p(i, j; g). The length of a path is |p(i, j; g)|, and if there is no path between i

and j then the length is infinite. The geodesic distance D(i, j; g) between i and j in g is

the minimum number of links that need to be used along some network path to connect

i and j. If there is no such path, then D(i, j; g) =∞.

Define by grij = min{gkl | gkl ∈ p(i, j; g), |p(i, j; g)| = D(i, j; g) = r} the information

bottleneck between i and j, and note that this is equal to gij if i and j are directly

connected. The r-neighborhood of i in g is Lri (g) = {j ∈ N |D(i, j; g) ≤ r}, where r ∈ N+

and clearly the case of r = 1 is simply the neighborhood. Let δ ∈ (0, 1) be a discount

factor that captures how much information decays as it travels through the network. Now

an important definition:

Definition B.1. The decay r-centrality of i in g is Ci(r, g) ≡
∑

j∈Lr
i (g)

grijδ
D(i,j;g)−1

This centrality metric captures how much information an agent i receives from other

agents who are at a distance less than or equal to r in the network.

The definition of the decay r-centrality distribution is similar to the definition of

the weighted degree distribution: it captures the relative frequencies of agents that have

different extended neighborhood sizes from which they draw information. Let p(C) denote

the decay r-centrality distribution in network g. A difference with the basic framework

is in the process of information arrival because now agents receive information from their

extended neighborhood up to a distance r. Formally, in the ∆t = 1 time interval, the

probability P (sbj(∆t = 1) = k) that b receives a sample sbj(∆t = 1) of k past bargains

from agent j is equal to:

P (sbj(∆t = 1) = k) =
e−g

r
bjδ

D(i,j;g)−1

(grbjδ
D(i,j;g)−1)k

k!

where grbjδ
D(i,j;g)−1 is the rate of arrival of information to b from j. By standard prop-

erties of Poisson processes, the expected amount of information b receives from j before

each bargaining round is E[P (sbj)] = grbjδ
D(i,j;g)−1. It is straightforward to see that the
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expected total amount of information b receives before each bargaining round is equal to

b’s decay r-centrality:∑
j∈Lr

b(g)

E[P (sbj)] = E[P (sb)] =
∑

j∈Lr
b(g)

grbjδ
D(i,j;g)−1 = Cb(r, g)

The definition of the Markov process and the other components of the set-up of the model

are unchanged.

Now consider the unperturbed process, as in section 3.1. The following theorem is the

equivalent version of theorem 1 in the more general set-up: it shows that if information

about the history of play is sufficiently incomplete then the unperturbed process converges

to a convention, i.e. a (x, 1− x) split as defined in Definition 5.

Theorem B.1. Let r be the maximum distance at which information travels in a group.

Assume both gB and gS are connected and there is at least one pair of agents {i, j} in

each network such that Dij(g
B) > r and Dij(g

S) > r. The bargaining process converges

almost surely to a convention.

First of all, note that if r = 1 then the statement above reduces to the statement

of theorem 1 as expected. Second, the intuition for the statement of the theorem is

very similar to the special case of r = 1. As already mentioned, theorem 1 in Young

[1993b] proves that adaptive play converges almost surely to a convention in any weakly

acyclic game with n agents as long as information is sufficiently incomplete. Here the

incompleteness of information is given by the network structure: if the network is such

that there are at least two agents who are at a distance larger than r then there will be

agents who cannot sample some past rounds because they were played by agents in their

group with whom they do not communicate.

Third, note that the subset of networks on which the process converges shrinks as r

increases. If r = 1 then there will be convergence in any network that is not the complete

network because it is sufficient that two agents are not connected to ensure that they

have incomplete information about the past history. At the other extreme if r →∞ then

the statement of the theorem has almost no bite because information about past plays is

available to anyone in the network as long as the network is connected. This illustrates

the importance of the network structure to deliver the incompleteness of information that

is crucial to prove convergence to a convention.

As in the case of r = 1 analyzed in section 3, it is necessary to introduce perturbations

in the system in order to obtain sharper equilibrium predictions that select one out

of the large number of possible conventions. Define Br
min = {j ∈ B | dCj(r, gB)e ≤

dCb(r, gB)e,∀b ∈ B} to be the subset of buyers with the least decay r-centrality. Let
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Cmin
b (r, gB) = dCj(r, gB)e for j ∈ Br

min. Equivalent definitions apply to the sellers. The

following theorem is the general version of theorem 2 for the case of an arbitrary r.

Theorem B.2. There exists a unique stable division (x∗, 1 − x∗). It is the one that

maximizes the following product:

uC
min
b (x)vC

min
s (1− x) (B.1)

In other words, it is the asymmetric Nash bargaining solution with weights Cmin
b (r, gB)

and Cmin
s (r, gS).

Note that if r = 1 then decay r-centrality is the same as degree and therefore the

statement of the theorem reduces to the one presented in section 3.2. The intuition is

also very similar to the case of r = 1. The share a group obtains in equilibrium crucially

depends on the communication network connecting the members of the group. Specif-

ically, it hinges on the agents in the group with the smallest extended neighborhoods,

in terms of the number and/or strength of the links connecting them to other agents up

to the information radius r. The agents with the smallest extended neighborhoods will

be the least informed when they have to bargain, and therefore they will be the most

susceptible to respond to mistakes from the other side. In the long-run this susceptibility

weakens the bargaining position of the whole group.

The extension of the comparative results in theorem 4 is also rather intuitive: it suffices

to replace the degree distribution with the decay r-centrality distribution to generalize

the theorem as the following statement shows.

Theorem B.3. Let (x∗, 1 − x∗) be the ANB for sets of agents B and S that communi-

cate through networks gB and gS with decay r-centrality distributions pb(C) and ps(C).

Consider the decay r-centrality distributions p′b(C) and p′′b (C) of networks g′B and g′′B

respectively, and let p′b(C) FOSD pb(C) and p′′b (C) SOSD pb(C).

(i) Let (x
′∗, 1 − x

′∗) be the ANB for sets of agents B and S with decay r-centrality

distributions p′b(C) and ps(C). Then x
′∗ ≥ x∗.

ii) Let (x
′′∗, 1 − x′′∗) be the ANB for sets of agents B and S with decay r-centrality

distributions p′′b (C) and ps(C). Then x
′′∗ ≥ x∗.

The same statement holds reversing the roles of buyers and sellers.

The interpretation of first and second order shifts of the decay r-centrality distribution

are similar to the correspondent shifts of the degree distribution, which is the special case

of r = 1. A first order shifts of the decay r-centrality distribution is approximately an

increase in the density of the network, i.e. an increase in the number and/or strength
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of the connections among individuals in the group. A second order shift of the decay r-

centrality distribution is approximately a decrease in the variability of the number and/or

strength of connections across agents.

The theorem therefore states that an increase in the density of connections (and/or

a decrease in their variability across individuals) within a group leads to members of

that group obtaining a higher share of the pie in equilibrium. The intuition is that

members of this group will have access to better information about the history of past

deals experienced by other members of their group. This informational advantage makes

them less likely to respond to mistakes by the other side, and they are therefore able to

maintain an advantageous bargaining position.

It is also possible to extend the results of the version of the model in section 6, where

buyers and sellers belong to the same network, to allow for indirect communication among

agents. The generalization of the results follows along the same lines as the generalization

of the theorems for the version of the model with separate networks, and it is therefore

left to the reader to explore it.
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