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Abstract

We consider general economies in which rational agents interact locally. The local aspect
of the interactions is designed to represent in a simple abstract way social interactions, that
is, socioeconomic environments in which markets do not mediate all of agents’ choices, which
might be in part determined, for instance, by family, peer group, or ethnic group effects. We
study static as well as dynamic infinite horizon economies; we allow for economies with in-
complete information, and we consider jointly global and local interactions, to integrate e.g.,
global externalities and markets with peer and group effects. We provide conditions under
which such economies have rational expectations equilibria. We illustrate the effects of lo-
cal interactions when agents are rational by studying in detail the equilibrium properties of
a simple economy with quadratic preferences which captures, in turn, local preferences for
conformity, habit persistence, and preferences for status or adherence to aggregate norms of
behavior.
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1 Introduction

We consider general economies with local interactions. Agents interact locally when each agent
interacts with only a finite (small) set of other agents in an otherwise large economy. The local
aspect of interactions is designed to capture in a simple abstract way a socioeconomic environ-
ment in which markets do not exist to mediate all of agents’ choices. In such an environment each
agent’s ability to interact with others might depend on the position of the agent in a predeter-
mined network of relationships, e.g., a family, a peer group, or more generally any socioeconomic
group. Local interactions represent an important aspect of several socioeconomic phenomena. For
instance, the decision of a teen to commit a criminal act or to drop out of school is often impor-
tantly influenced by the related decisions of peers, as documented by Case and Katz [17], Glaeser,
Sacerdote and Scheinkman [33] and Crane [19], respectively. Other phenomena for which relevant
peer effects have been identified include out-of-wedlock births (Crane [19]), and smoking habits
(Jones [38]). More generally, local interactions occur not only between peers but also between
family members, ethnic groups, neighbors in a geographical space. For example, neighborhood
effects are important determinants of employment search (Topa [52], Krosnick and Judd [43]), of
the pattern of bilateral trade and economic specialization (Kelly [41]), and of local technological
complementarities (Ellison and Fudenberg [23], Durlauf [20]) while ethnic group effects play a
fundamental role in explaining urban agglomeration, segregation (Benabou [4], Schelling [50]),
income inequality and stratification (Durlauf [21]).1

The documented empirical evidence of peer and neighborhood effects in socioeconomic phe-
nomena has spurred an interesting theoretical literature. This literature has generated existence
and characterization results for important but special classes of static economies: for instance
economies with additive quadratic preferences, extreme value distributed shocks, and symmetric
interaction effects, introduced by Blume [8] and Brock [12] (see also Brock and Durlauf [13]); or
economies with a finite number of agents, studied by Glaeser and Scheinkman [31]. Moreover,
when dynamic economies are studied, the analysis is only confined to the case of backward look-
ing myopic dynamics, either as a simple explicit dynamic process with random sequential choice
(Brock and Durlauf [13]), or as an equilibrium selection procedure (Glaeser and Scheinkman [31],
Blume and Durlauf [9]).2

In this paper, we contribute to this literature by extending the class of economies under study
in various dimensions. First of all, we study economies in which the distribution of information

1Finally, local interactions control the dynamics and spread of ideas and beliefs, and therefore might in particular

play an important role in the microstructure of financial markets; see Brock [12] or Horst [36] for theoretical

applications to financial markets. See Brock and Durlauf [14], Blume and Durlauf [10], Glaeser and Scheinkman

[31] and [32] for good surveys of the theory of social interactions, and its applications.
2The only exception is a simple example in Glaeser and Scheinkman [32]. Rational expectations equilibria are

instead the focus of the literature on global, or mean-field type, interactions; see Glaeser and Scheinkman [31] for

a review.
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across the agents, as well as their interactions, are local (economies of incomplete information).
Economies in which information is distributed locally allow to study environments in which, for
instance, only the agents directly interacting with each other observe each other’s private charac-
teristics.3 Most importantly, we study the rational expectations equilibria of dynamic economies.
While agents may interact locally, they are forward looking, and their choices are optimally based
on the past actions of the agents in their neighborhood, as well as on their anticipation of the
future actions of their neighbors. We see no valid reason why local interactions should be char-
acterized by myopic behavior more than standard global, e.g., market, interactions. Finally, we
also introduce economies characterized by global interactions together with local interactions to
integrate e.g., global externalities and markets with peer and group effects. This extension allows
us, for instance, to consider economies in which agents interact locally and, at the same time,
act as price takers in competitive markets, or take as given aggregate norms of behavior, such as
specific group cultures.

To pursue these extensions, we restrict in part the analysis to a specific form of local inter-
actions, one-sided interactions. This assumption is substantive as it limits the scope of strategic
interactions to those which are directed, e.g., structured hierarchically inside each social group.4

For all the distinct economies we study, static economies with complete and incomplete infor-
mation, as well as dynamic infinite horizon economies, we provide conditions under which such
economies have rational expectations equilibria which depend in a Lipschitz continuous manner
on the parameters. For each of these economies, we show that such conditions impose an ap-
propriate bound on the strength of the interactions across agents.5 They exclude in particular
economies in which strategic coordination gives rise to multiple equilibria; for instance economies
in which it is always optimal for each agent to match the action of a neighboring agent.

We also illustrate the effects of incomplete information and agents’ rationality by studying in
detail the equilibrium properties of simple economies with quadratic preferences displaying local
preferences for conformity, habit persistence and possibly preferences for status. For instance,
we compare the magnitudes of the social multiplier effects with complete and different degrees of
incomplete information. The social multiplier summarizes the equilibrium effects of the interac-
tions, and measures the amplification of individual effects in the aggregate due to the correlation

3The restriction to economies with complete information is in fact implicitly adopted by the literature only for

simplicity: it allows the direct use of mathematical techniques and results from the physics of interacting particle

systems and statistical mechanics (Blume [8], Blume and Durlauf [9], Brock [12], Brock and Durlauf [13]; see Liggett

[44] for a presentation of such techniques and results).
4One-sided interactions are a natural component, for instance, of models of local conformity, when each agent

has a preference for behaving as much as possible as some of his peers. They also appear prominently in other

forms of social interactions, as e.g., in Glaeser-Sacerdote-Scheinkman’s model of crime, [33], in Estigneev-Taksar’s

model of trade links, [26], or in Ozsoylev’s model of information flows in financial markets, [46].
5Similar conditions for related economies have appeared in the literature; Glaeser and Scheinkman [32] refers

to them as conditions of Moderate Social Influence, see also Horst and Scheinkman [37].
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across the agents’ actions induced by social interactions. We show that incomplete information
has the effect of reducing the social multiplier with respect to the complete information case and
hence to dampen the aggregate effects of the agents’ preferences for conformity. In this context
we also attempt at a comparison between the equilibrium actions when agents have rational ex-
pectations with the actions of the myopic agents previously studied in the literature. We show
that, in the context of our local conformity economy with habit persistence, the effect of rational
expectations dynamics is to spread the correlation of equilibrium actions across all agents in the
economy. Most importantly though, we show formally that when agents have rational expec-
tations, the effect of the local conformity component of their preferences on their equilibrium
actions is reduced with respect to the case in which agents are myopic. We also show then, by
means of simulations, that the extent to which rational expectations reduce the agents’ reliance
at equilibrium on local conformity effects is quite substantial.

The paper proceeds as follows. We first study static economies with local interactions with
complete and incomplete information. We then study dynamic economies with local interactions
and incomplete information (the results adapt simply to the complete information case). Finally,
we introduce global as well as local interactions in the dynamic analysis.

2 Static Economies with Local Interactions

In this section, we introduce our concept of a static economy with local interactions. We consider
economies with a countable set A of agents. To each agent a ∈ A is associated a type, the
realization of a random variable θa taking values in a set Θ ⊂ R. Types are independent and
identically distributed across agents with law ν. We assume with no loss of generality that
the random variable θ := (θa)a∈A is defined on the canonical probability space (Θ,F ,P), i.e.,
Θ := {(θa)a∈A : θa ∈ Θ}. The utility of an agent a ∈ A depends on his type θa, on an action
xa he chooses from a common compact and convex action set X ⊂ R, and on the action taken
by his neighbor, agent a + 1. In other words, we assume that each agent a ∈ A only interacts
with the agent a + 1. Such a system of local interactions has the property that interactions are
one-sided; that is, if the action or the realized type of an agent b affects the choice of agent a,
then a’s action or type does not affect b’s choice.

Remark 2.1 The one-sidedness of the interaction structure is a substantive assumption as it
excludes various forms of strategic interactions inside neighborhoods. Akerlof [1], for instance,
stresses the importance of models of social interactions encompassing a different range of forms
and intensities. In economic applications, one-sided interactions are most appropriate for envi-
ronments in which agents’ interactions are structured hierarchically inside each social group: this
is the case for instance when one subset of the agents in each social group looks at the others as
role models, as in our study of conformity in Sections 2.2, 4.3, and, in particular, in the model
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with both local and global interactions analyzed in Section 5. One-sided interactions are studied in
the literature for simplicity when local rather than global (e.g., mean field) interactions are mod-
elled; see e.g., Glaeser-Scheinkman [32], Glaeser-Sacerdote-Scheinkman [33], Estigneev-Taksar
([24], [25], [26]), and Ozsoylev [46]. We discuss in Section 2.3 how to extend our analysis to
general forms of local interactions in the case of static models as, e.g., in Horst and Scheinkman
[37]. Our focus, however, is on dynamic economies of local interactions, and we are unaware
of any method that would allow us to extend our results derived in Sections 3 and, in particular
the existence result for dynamic economies with both local and global interactions established in
Section 5, to more complex interaction patterns.

Any heterogeneity across agents can be incorporated in the probabilistic structure of the types
θa. Agents can therefore be considered identical ex-ante without loss of generality. Thus, the
preferences of each agent a ∈ A are described by a utility function u of the form

(
xa, xa+1, θa

) 7→ u
(
xa, xa+1, θa

)
.

We assume throughout that u : X2 × Θ → R is continuous and strictly concave in its first
argument. Prior to his choice, each agent a ∈ A observes the realization of his own type θa

as well as the realizations of the types θb of the agents b ∈ {a + 1, a + 2, ..., a + N}. Here
N ∈ N∗ ∪ {∞}. If N = ∞ each agent has complete information about the current configuration
of types when choosing his action. In particular, each agent a ∈ A observes the types of all the
agents b ∈ {a + 1, a + 2, . . .} with whom he is directly or indirectly linked. When instead N ∈ N,
an agent only has incomplete information about the types of the other agents. If, for instance,
N = 1, then the agents only observe the type of the agent with whom they directly interact.

Definition 2.2 A static economy with local interactions is a tuple S = (X, Θ, u, ν,N). A static
economy with local interactions is an economy with complete information if N = ∞, and with
incomplete information if N ∈ N.

In order to introduce our notion of an equilibrium for a static economy with local interactions
S = (X, Θ, u, ν, N), we need some notation. The vector of types whose realization is observed by
the agent a = 0 is denoted θN := {θ0, θ1, . . . , θN}; by analogy T aθN :=

(
θa, . . . , θa+N

)
denotes

the vector of types whose realization is observed by the agent a ∈ A.6 In case N = ∞, we let
θN = {θ0, θ1, θ2, . . .} and T aθN = {θa, θa+1, θa+2, . . .}. Finally, the set of possible configurations
of types of all agents a ≥ 0 is given by Θ0 := {(θa)a≥0 : θa ∈ Θ}. We first focus on the simpler
case of economies with complete information. Agent a ∈ A takes as given his neighbor’s policy
function ga+1 that maps T a+1θN ∈ Θ0 into an element of X. Agent a’s choice is then represented

6Formally, T a : Θ 7→ Θ (a ∈ A) is the a-fold iteration of the canonical right shift operator T ; that is,

T a((θb)b∈A) = (θb+a)b∈A; furthermore, T aθN :=
(
θ0(T aθ), . . . , θN (T aθ)

)
=

(
θa, . . . , θa+N

)
.
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by a function ga that maps any T aθN ∈ Θ0 into an element of X.7 Since the agent observes
T aθN = {θa, θa+1, . . .}, his optimization problem takes the form

max
xa∈X

u
(
xa, ga+1

(
T a+1θN

)
, θa

)
.

If S is an economy with incomplete information, by taking as given his neighbor’s policy function
ga+1, and by observing the realization only of the types T aθN :=

(
θa, . . . , θa+N

)
, agent a cannot

determine his neighbor’s optimal choice. The choice depends on the realization of the random
variable θa+N+1 and this information is not available to the agent a ∈ A. Thus, in a situation
with incomplete information, an agent’s optimization problem is given by

max
xa∈X

∫
u

(
xa, ga+1

(
θa+1, . . . , θa+N , θ

)
, θa

)
ν(dθ).

Since the utility functions are strictly concave with respect to an agent’s own action, the maps

xa 7→ u
(
xa, ga+1

(
T a+1θN

)
, θa

)
and xa 7→

∫
u

(
xa, ga+1

(
θa+1, . . . , θa+N , θ

)
, θa

)
ν(dθ)

are strictly concave, too. Thus, the conditional choice of agent a ∈ A, given the policy function of
agent a+1 and given types of all the agents b ∈ {a+1, a+2, . . . , a+N}, is uniquely determined both
for economies with complete and with incomplete information. We are now ready to introduce
our notion of an equilibrium for static economies with locally interacting agents.

Definition 2.3 Let S = (X, Θ, u, ν, N) be a static economy with local interactions.

i. If S is an economy with complete information, then an equilibrium is a family (g∗a)a∈A of
measurable mappings g∗a : Θ0 → X such that

g∗a (T aθN ) = arg max
xa∈X

u
(
xa, g∗a+1

(
T a+1θN

)
, θa

)
P-a.s. (1)

for all a ∈ A.

ii. If S is an economy with incomplete information, then an equilibrium is a family (g∗a)a∈A
of measurable mappings g∗a : ΘN+1 → X such that

g∗a (T aθN ) = arg max
xa∈X

∫

Θ
u

(
xa, g∗a+1

(
θa+1, . . . , θa+N , θ

)
, θa

)
ν(dθ) P-a.s. (2)

for all a ∈ A.

An equilibrium (g∗a)a∈A for an economy S is symmetric if

g∗a = g∗ ◦ T a P-a.s. (3)

for some mapping g∗ and each a ∈ A.
7We therefore restrict the arguments of each of the agents’ choice to exclude any effects through the realization

of the types of the agents to their left. In other words, we exclude any extrinsic effect, that is, we exclude sunspot

and correlated equilibria.
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An equilibrium for an economy S can also be viewed as a Nash equilibrium of a game with
infinitely many players in which the agents’ common strategy set is given by the class B(Θ0, X)
of all bounded measurable functions f : Θ0 → X. Sufficient conditions for existence of correlated
equilibria in games with infinitely many players and compact strategy sets are given in, e.g., Hart
and Schmeidler [34]. These results, however, do not apply to our model, because (i) B(Θ0, X)
equipped with the usual sup-norm is not compact; and (ii) our focus is on Nash equilibria of
the game rather than on correlated equilibria. In what follows, we shall restrict our analysis to
symmetric equilibria.

Remark 2.4 i. As we will see, in our complete information setting, a symmetric equilibrium
a ∈ A, given T aθN , is uniquely determined. Thus, the equilibrium map g∗ : Θ0 → X can
be identified with the mapping G∗ : Θ×X → X defined by

G∗(θa, xa+1) = arg max
xa∈X

u
(
xa, xa+1, θa

)
.

In fact, the previous literature has only studied this case, where each agent reacts to the
actions taken by his neighbors; see, e.g. Blume [8], Blume and Durlauf [9], Brock [12],
Brock and Durlauf [13], Glaeser and Scheinkman [31], Glaeser, Sacerdote and Scheinkman
[33] or Horst and Scheinkman [37].

ii. Suppose that an agent’s utility function takes the additive form

u(xa, xa+1, θa) = v(xa) + xaxa+1 + g(xa, θa).

In such a situation, the agent may as well maximize his utility with respect to the expected
action Eax

a+1 of his neighbor. Here, Ea denotes the conditional expectation operator of the
agent a ∈ A. Thus, we may as well assume that the utility functions are given by

u(xa, xa+1, θa) = v(xa) + xaEax
a+1 + g(xa, θa).

Such preferences are analyzed in, e.g., Brock and Durlauf [13]. In this sense, our framework
can also be viewed as an extension of the model by Brock and Durlauf [13].

2.1 Existence, Uniqueness, and Lipschitz Continuity of Equilibrium

In order to guarantee the existence and uniqueness of an equilibrium for static economies with
local interactions, we need to impose a form of strong concavity on the agents’ utility functions.
To this end, we recall the notion of an α-concave function.

Definition 2.5 Let α ≥ 0. A real-valued function f : X → R is α-concave on X if the map
x 7→ f(x) + 1

2α|x|2 from X to R is concave.
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This definition is first due to Rockafellar [47], and is used for purposes related to ours by Mon-
trucchio [45].

Remark 2.6 Observe that a twice continuously differentiable map f : X → R is α-concave, if
and only if the second derivative is uniformly bounded from above by −α. For a more detailed
discussion of the properties of α-concave functions, we refer the reader to Montrucchio [45] and
references therein.

We will also require any agent’s marginal utility with respect to his own action to depend in
a Lipschitz continuous manner on the action taken by his neighbor. In this sense we impose a
qualitative bound on the strength of local interactions between different agents. More precisely,
we assume that the following condition is satisfied.

Assumption 2.7 The utility function u : X ×X ×Θ → R satisfies the following conditions:

i. The map x 7→ u(x, y, θ) is continuous and uniformly α-concave for some α > 0.

ii. The map u is differentiable with respect to its first argument, and there exists a map L :
Θ → R such that

∣∣∣∣
∂

∂x
u(x, y, θ0)− ∂

∂x
u(x, ŷ, θ0)

∣∣∣∣ ≤ L(θ0)|ŷ − y| and such that EL(θ0) < α. (4)

A simple example where our Assumption 2.7 can indeed be verified is studied in the next section.

Remark 2.8 The interpretation of the condition EL(θ0) < α is of interest. In the differentiable
case, the quantity L(θ0) defines a bound on ∂2u(x,y,θ)

∂x∂y , whereas α may be viewed as a bound on
∂2u(x,y,θ)

∂x2 . Thus, EL(θ0) < α means that, on average, the marginal effect of the neighbor’s action
on an agent’s marginal utility is smaller than the marginal effect of the agent’s own choice. It is in
this sense that (4) imposes a bound on the strength of the interactions between different agents. A
similar condition has also been employed to study uniqueness of equilibria in related environments
by Becker [2]; see also Becker and Murphy [3]. The Moderate Social Influence conditions in
Glaeser and Scheinkman [31] corresponds to the stronger contraction condition L(θ0) < α P-a.s.

We are also interested in deriving conditions which guarantee that the economy admits a Lipschitz
continuous equilibrium. Lipschitz continuity of the equilibrium map may be viewed as a minimal
robustness requirement on equilibrium analysis. In particular, it justifies comparative statics
analysis. We therefore introduce the notion of Lipschitz continuity we will use in our analysis.
For an arbitrary constant η ≥ 0, we define a metric dη on the product space Θ0 by

dη(θ, θ̂) :=
∑

a≥0

2−η|a||θa − θ̂a| (θ = (θa)a∈N, θ̂ = (θ̂a)a∈N) (5)
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and denote by Lipη(1), the class of all continuous functions f : Θ0 → X which are Lipschitz
continuous with respect to the metric dη with constant 1, i.e.,

Lipη(1) := {f : Θ0 → X : |f(θ)− f(θ̂)| ≤ dη(θ, θ̂)}

We are now ready to formulate the main result of this section. Its proof can be found in Appendix
B.

Theorem 2.9 Let S = (X,Θ, u, ν,N) be a static economy with local interactions and complete
information, that is with N = ∞.

i. If the utility function u : X2×Θ → R satisfies Assumption 2.7, then S admits a unique (up
to a set of measure zero) symmetric equilibrium g∗.

ii. If, instead of (4), the utility function u satisfies the stronger condition,
∣∣∣∣

∂

∂x
u(x, y, θ)− ∂

∂x
u(x, ŷ, θ̂)

∣∣∣∣ ≤ Lmax{|ŷ − y|, |θ̂ − θ|} with L < α, (6)

then there exists η∗ > 0 such that the equilibrium g∗ is Lipschitz continuous with respect to
the metric dη∗:

|g∗(θ)− g∗(θ̂)| ≤ L

α
dη∗(θ, θ̂).

Establishing the existence of a symmetric equilibrium is equivalent to proving the existence of a
measurable function g∗ : Θ0 → X which satisfies

g∗(θ) = arg max
x0∈X

u(x0, g∗ ◦ T (θ), θ0) P-a.s. (7)

Observe that each such map is a fixed point of the operator V : B(Θ0, X) → B(Θ0, X) which
acts on the class B(Θ0, X) of bounded measurable functions f : Θ0 → X according to

V g(θ) = arg max
x0∈X

u(x0, g ◦ T (θ), θ0). (8)

On the other hand, each fixed point of V is a symmetric equilibrium. It is therefore enough to
show that V has a unique fixed point. The existence and uniqueness of equilibrium for economies
of incomplete information, where an individual agent only observes a finite number N < ∞ of
types, requires an additional continuity assumption on the utility function. The proof is analogous
to the proof of Theorem 2.9 and is given in Appendix B.

Theorem 2.10 Let S = (X, Θ, u, ν, N) be a static economy with local interactions and incomplete
information, that is with N ∈ N.
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i. If the utility function u : X2 × Θ → R satisfies Assumption 2.7 and if it is continuously
differentiable with respect to its first argument, then S admits a unique (up to a set of
measure zero) symmetric equilibrium g∗.

ii. If u satisfies condition (6), then g∗ is Lipschitz continuous:

|g∗(θN )− g∗(θ̂N )| ≤ L

α
max{|θb − θ̂b| : b = 0, 1, . . . , N}.

2.2 Example: Local Conformity

In this section, we study in detail an economy in which agents have a local preference for confor-
mity: each agent a enjoys utility from behaving as much as possible as his close peers. In many
instances of socioeconomic relevance, from smoking to dropping out of school, preferences for
conformity act at the level of peers rather than at the level of society as a whole; see Bernheim
[6] for a study of preferences for status, where interactions are global rather than local and agents
try to match the mean behavior in the society. The economy we analyze is a special case of the
general environment studied in the previous sections, in which the agents’ equilibrium actions
can be given in closed form. We also derive interesting statistical properties of the equilibrium
action profile. In particular, we characterize the effects of local conformity on the variance and
the correlation structure of individual actions in the population as well as on the variance of the
mean action across different economies. When the variance of the mean action across economies is
larger than the variance of each action in the population, we say that social interactions generate
a social multiplier effect; see e.g., Becker [2], Glaeser and Scheinkman [31]. The social multi-
plier summarizes the equilibrium effects of the interactions, and measures the amplification of
individual effects in aggregate due to the correlation across the agents’ actions induced by social
interactions. It is interpreted to explain the large variability across time and space observed in
empirical data regarding smoking, criminal activity, dropping out of school, out-of-wedlock preg-
nancy and other socio-economic decisions in which a social interactions component is relevant;
see Glaeser and Scheinkman [32] for a survey.

We compute the social multiplier for our local conformity economy under complete and incom-
plete information, and we study the differential effects of the distribution of information about
agents’ types across the neighborhood structure. Consider the following utility function:

u(xa, xa+1, θa) := −α1(xa − θa)2 − α2(xa − xa+1)2. (9)

for α1 α2 ≥ 0. Quadratic utility functions of the form (9) describe preferences in which agents
face a trade-off between the utility they receive from matching their own idiosyncratic shocks
and the utility they receive from conforming to the action of their peers, which will in general
be different. The higher the ratio α2

α1
, the more intense is the agent’s desire for conformity. The

equilibrium action of a generic agent a ∈ A can now be solved for in closed form (we do not report
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calculations for this section).8 Let β1 := α1
α1+α2

and β2 := α2
α1+α2

. In the complete and incomplete
information cases, respectively, the map g∗ is given by

g∗ (T aθN ) = β1

∞∑

i=a

βi−a
2 θi and g∗ (T aθN ) = β1

(
a+N∑

i=a

βi−a
2 θi +

βN+1
2

1− β2
Eθa

)
.

Note that, in either case, the equilibrium action of the agent a ∈ A is given by a convex combi-
nation of all the observable types and the mean of the random variable θa. Table 1 reports the
variance of action xa and the covariance of the actions taken by agents a and b.

No Interaction Complete Info Incomplete Info
(α1 > 0, α2 = 0) (α1, α2 > 0;N = ∞) (α1, α2 > 0;N = 1)

var(xa) var(θa) β2
1

1−β2
2

var (θa) β2
1(1 + β2

2) var (θa)

cov(xa, xa+b) 0 β2
1

1−β2
2

(β2)
bvar(θa)

{
β2

1β2var(θa) for b = 1
0 for b > 1

var(x) var(θa) var(θa) β2
1 (1 + β2)

2var(θa)

Table 1: Statistical Comparison

The variance of action xa is highest when agents have no preference for conformity. In such a
situation, in fact, the whole variability of an agent’s idiosyncratic type is reflected on the action
he chooses, xa = θa. When agents do interact instead, and therefore attempt to conform to the
action of their neighbor, they choose an action which depends on a weighted average of the types
of all agents on their right. Because types are i.i.d. across agents this type average has in fact
a smaller variance than each single type, and the effect of local interaction is then to reduce the
variance of the actions chosen by each agent.9

Notice also that when information is incomplete, the variance of a generic action is lower than
when information is complete. In Table 1, we only report the case in which each agent observes

8It is easy to verify that the map xa 7→ u(xa, xa+1, θa) is α-concave if α ≤ 2(α1 + α2), and that our Moderate

Social Influence assumption holds if α1 > 0.
9This is in contrast with the results obtained e.g., by Glaeser and Scheinkman [32] for a related economy

with preferences for conformity. In their formulation of conformity, agent a’s equilibrium action (with complete

information, the only case they study, and in our notation) takes the form: xa = θa+β2x
a+1. In this case, therefore,

each agent’s attempt to conform to his neighbor adds to his action rather than simply shifting the weight away

from his own type, as in our case. Glaeser and Scheinkman’s formulation is therefore characterized by more intense

preferences for conformity, and local interactions increase the mean and the variance of each agent’s action.
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the type of the neighbor whose action he wishes to conform to, N = 1. However, it is easily shown
that the variance increases with the dissemination of information, that is, with the number of
neighbors’ types each agent observes, N , and converges to the variance of the complete information
case as N → ∞. When information is incomplete, in fact, in attempting to predict the action
of the neighbor to conform to, an agent necessarily relies on the mean of the types of the agents
he does not observe and the variance of his chosen action is reduced.10 Local interactions in
our conformity model have then the effect of reducing the variance of each agent’s action, but
introduce a correlation across the actions of the agents. In the case of complete information,
such correlations extend over all agents, while with incomplete information only the actions of
agents at most N spaces apart are correlated. The correlation of actions across agents with
preferences for conformity in turn increases the variance of the mean action across economies.11

In fact, if the mean action is defined as x := limn→∞
∑
|a|≤n

xa

2n+1 , it can then be shown that
var (x) = var(x0) + 2 limn→∞

∑n
a=1 cov(x0, xa).12 Therefore preference for conformity decreases

var(xa), but increases the covariance terms in the variance of the mean action x. It turns out (see
Table 1) that these two effects exactly compensate in our conformity model when information is
complete, and hence conformity does not generate a variance multiplier, as e.g., in Glaeser and
Scheinkman [32]. In the case of incomplete information, conformity even dampens the variance of
the mean action with respect to the case of no interactions. To better understand and summarize
the effects of incomplete information on social interactions, we study the social multiplier of our
economy with incomplete and complete information. Let the social multiplier be defined formally
as the ratio of the variance of action xa and the variance of the mean action x. From Table 1
it is clear that in the complete information case the multiplier is equal to 1−β2

2

β2
1

which is larger

than the multiplier in the incomplete information case, (1+β2)2

1+β2
2

for N = 1 (in fact it can be easily
shown that the multiplier with complete information is larger than the multiplier with incomplete
information for any N < ∞).

2.3 Extensions and Discussion

The existence and continuity results of Theorems 2.9 and 2.10 can be partly extended to economies
with more general interaction structures. While for these economies the Moderate Social Influence
assumption is not enough to guarantee existence, a stronger condition, like condition (6), in fact
suffices for existence, uniqueness, and Lipschitz continuity. This is the case for both complete

10Extending their analysis to the case of incomplete information, we can show that this effect is also present in

Glaeser and Scheinkman [32]’s specification of conformity.
11Following Glaeser and Scheinkman [32] and Glaeser, Sacerdote and Scheinkman [33], the different statistical

properties of the variance of individual actions and the variance of the mean action across economies could be

exploited to empirically identify the intensity of preferences for local conformity, that is, β2 in our formulation.
12Since the process xa, for a ∈ A, is stationary and satisfies a strong mixing condition with exponentially declining

bounds, central limit behavior results; see Rosenblatt [48].
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and incomplete information economies. We illustrate the thrust of the argument in the following
subsection. In Section 2.3.2 we characterize equilibria in static economies as stationary solutions
of stochastic difference equations.

2.3.1 Equilibria in economies with general interaction structures

In the complete information setting, each symmetric equilibrium can be viewed as a fixed point
of the operator V defined by (7). The proofs of the existence results in Theorems 2.9-(i) and
2.10-(i) are based on a mean contraction argument. This argument only applies to economies
with one-sided interactions. For instance, in the case of complete information we show that

|V g(θ)− V ĝ(θ)| ≤ L(θ0)
α

|g ◦ T (θ)− ĝ ◦ T (θ)|.

In an economy with one-sided interactions the random variables L(θ0) and T (θ) = (θ1, θ2, . . . )
are independent. Under the Moderate Social Influence assumption we show that the operator we
show that V satisfies the mean-contraction condition

E|V g(θ)− V ĝ(θ)| ≤ γE|g(θ)− ĝ(θ)| where γ :=
EL(θ0)

α
< 1,

which turns out to be the key to the existence proof. For general interaction structures, however,
best reply functions depend on the entire configuration of taste shocks, and independence of L(θ0)
and g ◦ T (θ) is typically lost. As a consequence, in this case, there is no reason to expect that
a Moderate Social Influence condition, as Assumption 2.7, translates into a mean contraction
property of the operator V .

To study existence, uniqueness and continuity in the context of economies with more general
forms of interactions, we pursue a different strategy. Under the stronger contraction condition
(6), in the proof of Theorems 2.9-(ii) and 2.10-(ii) we show that

|V g(θ)− V ĝ(θ)| ≤ L

α
|g ◦ T (θ)− ĝ ◦ T (θ)| and so ‖V g − V ĝ‖∞ ≤ L

α
‖g − ĝ‖∞,

and that V g is Lipschitz continuous whenever g is. This method therefore delivers existence,
uniqueness, and Lipschitz continuity. For a suitable modification of condition (6), it carries over
to the case of more general interaction structures. Consider the case in which agents are located
on the d-dimensional integer lattice Zd, and the preferences of the agent a ∈ Zd are described by
a utility function of the form

(
xa, {xb}b∈N(a), θ

a
)
7→ û

(
xa, {xb}b∈N(a), θ

a
)

where N(a) := {b ∈ Zd : ‖a− b‖ = 1} denotes the set of the agent’s nearest neighbors. In such a
more general model, each symmetric equilibrium is given by a fixed point of the operator

V g(θ) = arg max
x0∈X

û
(
x0, {g ◦ T a(θ)}a∈N(0), θ

0
)
.
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If utility function satisfies the contraction condition
∣∣∣∣

∂

∂xa
û

(
xa, {xb}b∈N(a), θ

)
− ∂

∂xa
û

(
xa, {x̂b}b∈N(a), θ̂

)∣∣∣∣ ≤ Lmax{|x̂b − xb|, |θ − θ̂| : b ∈ N(a)},

using straightforward modifications of the arguments given in the proof of Theorem 2.9-(ii) and
2.10-(ii), it can be shown that V satisfies the contraction condition

|V̂ g − V̂ ĝ| ≤ L

α
max{|g ◦ T b − ĝ ◦ T b| : b ∈ N(a)}.

We then obtain that V̂ is a contraction that maps a set of Lipschitz continuous functions contin-
uously into itself. Two-sided interactions are simply a special case of this general model.

2.3.2 Equilibria as stationary solutions to stochastic difference equations

It is possible and instructive, in the class of static economies we have studied, to characterize an
equilibrium as a stationary solution to a stochastic difference equation. Consider for illustration
an economy with one-sided interactions and complete information. An equilibrium can be defined
as a sequence of actions {xa}a∈A that satisfy the non-linear recursive relation

xa = G∗(θa, xa+1) (a ∈ Z) (10)

where G∗(θa, xa+1) denotes the conditional best reply of the agent a, given θa and his neighbor’s
action xa+1. Showing existence of a symmetric equilibrium is then equivalent to the existence of
a stationary solution to the stochastic difference equation (10), where the index runs over agents
a ∈ A rather than over time periods as is common in rational expectation models, e.g., Blanchard
and Kahn [7], Sargent [49], Burke [15].13 It follows, e.g. from results given in Chapter 8 of
Borovkov [11], that (10) admits a unique stationary solution if the best reply function satisfies
the mean contraction condition

E|G∗(θa, xa+1)−G∗(θa, x̂a+1)| ≤ γ|xa+1 − x̂a+1| for some γ < 1.

The proof of Theorem 2.9 shows that this is the case whenever the utility function u satisfies
Assumption 2.7 (ii). The mean contraction condition, in turn, guarantees that the difference
equation (10) has a unique stationary solution, that is it guarantees a transversality condition of
the form

lim
τ→∞

∂

∂xa+τ
G∗ (

θa, G∗ (
θa+1, . . . G∗ (

θa+τ−1, xa+τ
)
. . .

))
= 0.14

Thus, in an economy with complete information, an equilibrium may be viewed as the unique
stationary solution to the difference (10) with state space X. If the map G∗ is linear, as is the

13We thank an anonymous referee for suggesting us to make this analogy explicit.
14Of course differentiability of G∗ is not needed; we report the transversality condition only in this case for the

sake of notational simplicity.
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case in our example with quadratic utility, Example 2.2, for instance, an equilibrium can be
represented by a deterministic difference equation of the form

xa = β1θ
a + β2x

a+1,

and the transversality condition holds if its root is explosive, that is, if β2 < 1. Similar arguments
apply for economies with incomplete information and one-sided interactions. Then, a sequence
{ĝa}a∈A of measurable mappings ĝa : ΘN → X is an equilibrium if

ĝa(θa, ·) = arg max
xa∈X

E
[
u(xa, ĝa+1, θa)|Fa

]
(·) =: Ĝ(θa, ga+1) (a ∈ Z) (11)

where Fa denotes the information set of agent a, i.e., the σ-field generated by the random variables
θa+1, . . . , θa+N . Again, the best reply function Ĝ admits a unique stationary solution (on a
suitable function space) if it satisfies a mean contraction condition, which in turn we prove is
satisfied under the assumptions of Theorem 2.10 (i). If the best reply function Ĝ(θ0, ·) is linear
the analysis is again straightforward; we developed it above in Example 2.2.

Consider finally the case of economies with general interaction structures, which we discuss
previously in this section. In the special case in which information is complete and an arbitrary
agent a ∈ A interacts directly with agents a − 1 and a + 1, an equilibrium satisfies a 2nd order
difference equation of the form

xa = G∗ (
θa, xa−1, xa+1

)
(a ∈ Z).

Difference equations of this form appear in rational expectations models, see e.g., Benhabib
and Farmer [5], and Kehoe and Levine [40]. In this case a symmetric equilibrium can also be
represented by a stationary solution to the difference equation, provided appropriate transversality
conditions hold (at plus and minus infinity). Results in the literature are generally limited to
conditions for local stability; see e.g., Burke [15] and Benhabib and Farmer [5]. Finally, in the
case of economies with incomplete information, the stochastic difference equation resulting from
the best reply map of an arbitrary agent a is non-standard, as the information sets of agents
a ∈ A does not form a filtration, and so the results in the rational expectations literature do
not apply. Similarly, economies with more general local interactions, discussed previously in this
section, or dynamic economies, as we study in the next section, give rise to equilibrium conditions
that cannot be reduced to a standard form.

3 Dynamic Economies with Local Interactions

The theoretical literature on dynamic economies with local interactions has so far concentrated on
models with ad hoc myopic dynamics. One of the main reasons for the widespread use of myopic
dynamics is that the resulting equilibrium process for {xa

t }t∈N has been intensively investigated in
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the mathematical literature on interacting particle systems. Conditions for asymptotic stability
of these processes have been established under suitable weak interaction and average contraction
conditions; see e.g., Liggett [44], Kindermann and Snell [42] or Föllmer and Horst [29]. In this
paper, we instead study economies with forward looking agents and consider rational expectations
equilibrium dynamics. In our economy, therefore, an agent’s actual action typically depends on
his current type, on his past choices, on the present states of all the other agents and on the
expected future behavior of his neighbors. His expectations with respect to the future actions of
his neighbors are assumed to be rational, that is, the expectations are assumed to be consistent
with the equilibrium dynamics of the neighbors’ actions at each time in the future. In the
context of a dynamic extension of the local conformity economy of Section 2.2, with quadratic
preferences accounting for habit persistence effects, we can identify the characteristics of the
behavior of locally interacting agents. This behavior stems from rational expectations about the
future and about the behavior of neighbors, which do not exist in the standard analysis of myopic
economies; see Section 4.3.

We are now going to introduce our notion of a dynamic economy with locally interacting
agents as well as our equilibrium concept. As in the case of static economies, we consider a
countable set A of agents. Each agent is infinitely lived, and is of type θa

t ∈ Θ at time t ∈ N.
Types are assumed to be distributed independently and identically across agents and time.15 The
law of the random variables θa

t is denoted by ν. The instantaneous utility of agent a ∈ A at time
t ∈ N depends on his current type θa

t , on the action xa
t he chooses from a common compact and

convex action set X ⊂ R, and on his action xa
t−1 in the previous period t − 1. We maintain

the simple interaction structure introduced in the previous section, and assume that the agents’
momentary utility also depends on the current action xa+1

t of his neighbor, agent a + 1. His
instantaneous preferences at time t are described by a continuous utility function

(
xa

t , x
a
t−1, x

a+1
t , θa

t

) 7→ u
(
xa

t , x
a
t−1, x

a+1
t , θa

t

)
(12)

where the map xa
t 7→ u

(
xa

t , x
a
t−1, x

a+1
t , θa

t

)
is assumed to be strictly concave. An agent’s overall

utility is the expected sum of future utilities, discounted at a rate β < 1. Prior to his choice at
time t, the agent a ∈ A observes the realization only of his own type θa

t . In this sense, we focus
on economies with incomplete information, in which agents do not observe the type of any other
agent except their own. This is just for notational and analytical convenience. We allow agents
to observe the entire action profile xτ = (xa

τ )a∈A of previous periods τ = t− 1, t− 2, . . ..

Definition 3.1 A dynamic economy with local interactions is a tuple S = (X, Θ, u, ν, β).

In order to describe an individual agent’s optimization problem, we need to introduce some
notation. We denote by X := {x = (xa)a∈A : xa ∈ X} the space of all configurations of individual

15Independence over time simplifies the analysis substantially; see Stokey and Lucas with Prescott [51] for

standard dynamic programming techniques to deal with correlated shocks over time.
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actions and let X0 := {x = (xa)a≥0}. We equip the configuration spaces X and X0 with the
product topologies, and so compactness of the individual action spaces implies compactness of the
configuration spaces X and X0. At each time t, the agent a ∈ A observes the entire action profile
xt−1 ∈ X, in particular, he observes the past actions xb

t−1 of all the agents b > a with whom
he interacts either directly or indirectly. Even though his instantaneous utility only depends on
present and expected future actions of his neighbor, the information contained in all the choices
(xa+c

t−1 )c≥1 is used to predict his neighbor’s future actions, and is therefore relevant for the solution
to his decision problem. In fact, the choice xa+c

t−1 of the agent a+ c at time t− 1 affects the action
of agent a + c− 1 in period t; this has an impact on the action of agent a + c− 2 in period t + 1,
and so on. A rational agent a ∈ A anticipates these effects, and so he bases his current decision
on all the states (xb

t−1)b≥a. In principle, agent a could base his decision at t on the action profiles
at time t− 2, t− 3 etc., which he observes. In fact though, we study Markov perfect equilibria,
in which the policy function of any agent at t will only depend on period t− 1 actions. Of course
actions at t − 2 also affect future actions, but at a Markov perfect equilibrium, they only affect
future actions through the actions at t− 1. As a consequence, an agent observing actions at t− 1
finds the information contained in actions at t− 2 irrelevant to compute the expectations about
future actions that he cares about for optimizing at time t.16 As in the static case, we shall focus
on symmetric equilibria.17 Thus, we may assume that the optimal action of an economic agent
a ∈ A is determined by a choice function g : X0 ×Θ → X in the sense that

xa
t = g(T axt−1, θ

a
t ) where T axt−1 = {xb

t−1}b≥a.

In a symmetric situation, it is thus enough to analyze the optimization problem of a single
reference agent, say of the agent 0 ∈ A. Given a continuous choice function g : X0×Θ → X, the
agent a ≥ 0 takes as given his neighbor’s current choice g(T axt−1, θ

a
t ). We denote by πg(T axt−1; ·)

the conditional law of the action xa
t , given the previous configuration xt−1, and so the choice

function g : X0 ×Θ → X induces the Feller kernel

Πg(x; ·) :=
∞∏

a=1

πg(T ax; ·). (13)

16Our economy is formally equivalent to a dynamic game. See Fudenberg and Tirole [30], ch. 13, for the standard

justifications for Markov perfect equilibria in dynamic games. Restricting the analysis to the class of Markov perfect

equilibria is substantial; trigger strategies and other dynamic punishment strategies, for instance, are excluded.

The analysis of these strategies requires different mathematical techniques as in the study of repeated games; see

Ellison [22] for a study of repeated games in a local interaction environment where punishment strategies spread

by contagion across the economy.
17We will also, as in the static case, restrict the arguments of each agent’s choice to exclude the actions of agents

‘on the left’, that is, non payoff-relevant state variables and extrinsic effects. For instance, in our formulation of

equilibrium, agent a’s action at time t cannot affect agent a + 1’s action at time t + 1, even though this action

affects agent a’s utility at time t + 1. This assumption also precludes the analysis of complex dynamic punishment

strategies as, e.g., in Ellison [22], and of other forms of strategic interactions.
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If the agent 0 ∈ A believes that the agents a > 0 choose their actions according to g, the kernel
Πg describes the stochastic evolution of the process of individual states {(xa

t )a>0}t∈N. In this
case, for any initial configuration of individual states x ∈ X0 and for each initial type θ0

1, the
optimization problem of the agent 0 is given by

max
{x0

t }





∫
u(x0

1, x
0, x1

1, θ
0
1)πg(Tx; dx1) +

∑

t≥2

βt−1

∫
u(x0

t , x
0
t−1, x

1
t , θ

0
t )Π

t
g(Tx; dxt)ν(dθ0

t )



 . (14)

The value function associated with this dynamic choice problem is defined by the fixed point of
the functional equation

Vg(xt−1, θ
0
t ) = Vg(x0

t−1, Txt−1, θ
0
t ) = max

x0
t∈X

{∫
u

(
x0

t−1, x
0
t , y

1
t , θ

0
t

)
πg(Txt−1; dy1

t ) (15)

+β

∫

X0×Θ
Vg(x0

t , x̂t, θ
1)Πg(Txt−1; dx̂t)ν(dθ1)

}
.

The following is a well known result from the theory of dynamic programming, see e.g., Stokey,
Lucas, and Prescott [51].

Lemma 3.2 Assume that the choice map g is continuous. Under our assumptions on the utility
function u, the functional fixed point equation (15) has a unique bounded and continuous solution
Vg on X0 × Θ. Moreover, the map Vg(·, Txt−1, θ

0
t ) is strictly concave on X and there exists a

unique continuous policy function ĝg : X0 ×Θ → X that satisfies

ĝg

(
xt−1, θ

0
t

)
= arg max

x0
t∈X

{∫
u

(
x0

t−1, x
0
t , y

1
t , θ

0
t

)
πg(Txt−1; dy1

t )

+β

∫
Vg(x0

t , x̂t, θ
1)Πg(Txt−1; dx̂t)ν(dθ1)

}
. (16)

We can now define a symmetric Markov perfect equilibrium in a dynamic random economy with
forward looking interacting agents.

Definition 3.3 A symmetric Markov perfect equilibrium of a dynamic economy with forward
looking and locally interacting agents S = (X, Θ, u, ν, β), is a map g∗ : X0 ×Θ → X such that

g∗
(
xt−1, θ

0
t

)
= arg max

x0
t∈X

{∫
u

(
x0

t−1, x
0
t , y

1
t , θ

0
t

)
πg∗(Txt−1; dy1

t ) (17)

+β

∫
Vg∗(x0

t , x̂t, θ
1)Πg∗(Txt−1; dx̂t)ν(dθ1)

}
.

By analogy to the static case, a symmetric equilibrium might be viewed as a fixed point of a
certain operator. Indeed, every fixed point of the operator V̂ that acts on the class of bounded
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measurable functions g : X0 ×Θ → X by

V̂ g(x, θ0) = arg max
x̂0∈X

{∫
u

(
x̂0, x0, y1, θ0

)
πg(Tx; dy1) (18)

+β

∫
Vg(x̂0, x̂, θ1)Πg(Tx; dx̂)ν(dθ1)

}
,

defines a symmetric equilibrium; and every symmetric equilibrium g∗ satisfies the fixed point
relation

V̂ g∗(x, θ0) = g∗(x, θ0).

We proceed by establishing a series of general results, on the existence and the convergence of the
equilibrium process. Such results require conditions on the policy function ĝg, and hence are not
directly formulated as conditions on the fundamentals of the economy. In the next section, we
will then introduce an example economy with quadratic preferences which we are able to study
in detail. For this economy, we can show that our general conditions are satisfied, and hence they
are not vacuous.

3.1 Existence and Lipschitz Continuity of Equilibrium

In order to state a general existence result for equilibria in dynamic random economies with
forward looking interacting agents, we need to introduce the notion of a correlation pattern.

Definition 3.4 For some finite C > 0, let

LC
+ :=



c = (ca)a≥0 : ca ≥ 0,

∑

a≥0

ca ≤ C





denote the class of all non-negative sequences whose sum is bounded from above by C. A sequence
c ∈ LC

+ will be called a correlation pattern with total impact C.

Each strictly positive correlation pattern c ∈ LC
+ gives rise to a metric

dc(x, y) :=
∑

a∈N
ca|xa − ya|

that induces the product topology on X0. Thus, (dc,X0) is a compact metric space. In particular,
the class

LipC
c := {f : X0 → R : |f(x)− f(y)| ≤ dc(x, y)}

of all functions f : X0 → R which are Lipschitz continuous with constant 1 with respect to the
metric dc is compact in the topology of uniform convergence.
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Remark 3.5 For a fixed θ0 ∈ Θ, let g(·, θ0) ∈ LipC
c be the policy function of the agent 0 ∈ A.

The constant ca may be viewed as a measure for the total impact the current action xa of the
agent a ≥ 0 has on the optimal action of agent 0 ∈ A. Since C < ∞, we have lima→∞ ca = 0.
Thus, the impact of an agent a ∈ A on the agent 0 ∈ A tends to zero as a → ∞. In this sense,
we consider economies with weak social interactions. The quantity C provides an upper bound for
the total impact of the configuration x = (xa)a≥0 on the current choice of the agent 0 ∈ A.

We are now going to formulate a general existence result for symmetric Markov perfect equilibria
in dynamic economies with local interactions.

Theorem 3.6 Assume that there exists C < ∞ such that the following holds:

i. For any c ∈ LC
+, for all θ0 ∈ Θ and for each choice function g(·, θ0) ∈ LipC

c , there exists
F (c) ∈ LC

+ such that the unique policy function ĝg(·, θ0) which solves (16), is Lipschitz
continuous with respect to the metric dF (c) uniformly in θ0 ∈ Θ.

ii. The map F : LC
+ → LC

+ is continuous.

iii. We have limn→∞ ‖ĝgn(·, θ0)− ĝg(·, θ0)‖∞ = 0 if limn→∞ ‖gn − g‖∞ = 0.

Then the dynamic economy with local interactions has a symmetric Markov perfect equilibrium
g∗ and the function g∗(·, θ0) is Lipschitz continuous uniformly in θ0.

Proof: For any C < ∞, the convex set LC
+ may be viewed as a closed, and hence compact (with

respect to the product topology) subset of the compact set [0, C]N. Thus, by (ii) the continuous
map F has a fixed point c∗. Due to (i) and (iii), the operator V̂ defined by (18) maps the compact
and convex set LipC∗

+ continuously into itself where C∗ :=
∑

a≥0 c∗a. This shows that V̂ has a
fixed point g∗. 2

3.2 Convergence to a Steady State

In the previous section, we have formulated conditions on a dynamic economy with local interac-
tions S = (X,u, β,Θ, ν) which guarantee the existence of a symmetric Markov perfect equilibrium
g∗. In this section, we study the asymptotic behavior of the process {xt}t∈N in equilibrium. To
this end, we denote by

Πg∗(x; ·) =
∏

a∈A
πg∗(T ax; ·)

the stochastic kernel on X induced by the policy function g∗ and by Πt
g∗ , its t-fold iteration. Given

an initial configuration x ∈ X, the measure Πt(x; ·) describes the distribution of the configuration
of individual states at time t. Let us introduce the vector r∗ = (r∗a)a∈A with components

r∗a := sup{‖πg∗(x; ·)− πg∗(y; ·)‖ : x = y off a}. (19)
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Here, ‖πg∗(x; ·)− πg∗(y; ·)‖ denotes the total variation of the signed measure πg∗(x; ·)− πg∗(y; ·),
and x = y off a means that xb = yb for all b 6= a. The next theorem gives sufficient conditions for
convergence of the equilibrium process to a steady state. Its proof follows from a fundamental
convergence theorem by Vaserstein [53].

Theorem 3.7 If
∑

a∈A ra
g∗ < 1, then there exists a unique probability measure µ∗ on the infinite

configuration space X such that, for any initial configuration x ∈ X, the sequence Πt
g∗(x; ·)

converges to µ∗ in the topology of weak convergence for probability measures.

4 Example: Local Conformity and Habit Persistence

This section studies a dynamic extension of the local conformity economy introduced in Section
2.2 where the assumptions of Theorem 3.6 and of Theorem 3.7 can indeed be verified. As in the
static model analyzed in Section 2.2, agents have a preference for conformity, and each agent a

receives utility from conforming his own action to his neighbor’s. In the dynamic economy we
study in this section, however, agents also face habit persistence: each agent faces a disutility from
changing his action over time. Habits and addictions are often associated with social interactions
and preferences for conformity: for instance, the consumption of addictive substances, like smoke
and several chemical drugs, is often initiated by the desire to conform with peers; the decision
to commit criminal acts, partly determined by social interactions and preferences for conformity
(see Glaeser and Scheinkman [31]), is difficult to reverse over time. We consider an economy
where the preferences of a generic agent a are represented by the utility function

u
(
xa

t−1, x
a
t , x

a+1
t , θa

t

)
= −α1

(
xa

t−1 − xa
t

)2 − α2 (θa
t − xa

t )
2 − α3

(
xa+1

t − xa
t

)2 (20)

where α1, α2 and α3 are positive constants. The agent’s utility can be decomposed into three
components. The first term of the utility function u

(
xa

t−1, x
a
t , x

a+1
t , θa

t

)
in (20) represents habit

persistence, the second the effect of the agent’s own type, and the third the local conformity
component, that is, social interactions.

4.1 Existence of Equilibria

Our first aim is to prove existence of a Markov perfect equilibrium for this economy.

Theorem 4.1 Let X = Θ = [−1, 1]. Assume that Eθ0
t = 0, and that an agent a ∈ A only

observes his own type θa. If the instantaneous utility function takes the quadratic form in (20),
the economy has a symmetric Markov perfect equilibrium g∗. The policy function g∗ can be chosen
to be of the linear form

g∗(x, θ0) = c∗0x
0 + γθ0 +

∑

b≥1

c∗bx
b

for some positive sequence c∗ = (c∗a)a≥0 and some constant γ > 0.
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The proof of Theorem 4.1 will be carried out in several steps. In a first step, we prove the existence
of an interior solution to an agent’s optimization problem in an economy with quadratic utility
functions.

Lemma 4.2 Let g : X0 × Θ → X be a continuous choice function for the agents a > 0. Under
the assumptions of Theorem 4.1, the induced policy function, ĝg, of the agent 0 ∈ A is uniquely
determined and

P
(
ĝg(xt−1, θ

0
t ) ∈ {−1, 1} for some t ∈ N)

= 0. (21)

Thus, we have almost surely an interior solution.

Proof: The existence of a unique policy function follows from continuity of g along with the
quadratic form of the utility functions, using standard arguments from the theory of discounted
dynamic programming. In order to prove (21), we let

τ := inf
{
t > 0 : ĝg(xt−1, θ

0
t ) = 1

}
and yt := ĝg(xt−1, θ

0
t ).

It suffices to show that P[τ < ∞] = 0. Let us assume to the contrary that P[τ < ∞] > 0. In such
a situation, yτ = 1 is optimal and this means that

−α1(1− yτ−1)2 − α2(1− x1
τ )

2 − α3(1− θ0
τ )

2 − βα1(1− yτ+1)2

≥ −α1(y − yτ−1)2 − α2(y − x1
τ )

2 − α3(y − θ0
τ )

2 − βα1(y − yτ+1)2

for all y ∈ X. Otherwise yτ < 1 would lead to a higher payoff. This, however, requires θ0
τ =

yτ−1 = yτ+1 = 1. This shows that yt = 1 = θ0
t for all t ∈ N. This, of course, contradicts Eθ0

t = 0.
Thus, P[τ < ∞] = 0. 2

Let us now establish a representation of the agents’ policy function in terms of the expected
behavior of his neighbor. To this end, we denote by M(X0) the class of all probability measures
on X0 equipped with the topology of weak convergence. The utility of the agent 0 ∈ A at time
t ∈ N depends on the actions xa

t taken by the agents a > 0 only through his neighbor’s expected
action

zt :=
∫

y1Πg(Txt; dy) and through
∫

(y1)2Πg(Txt; dy).

We may thus view the agent’s dynamic problem as an optimization problem depending only on
the stochastic sequence {θ0

t }t∈N, and on the deterministic sequence
{
Πt

g(Tx; ·)}
t∈N. In fact, in

our present setting, we can let µ(·) := Πg(Tx; ·), for any initial configuration x ∈ X0, and rewrite
his optimization (14) as

max
{x0

t }t∈N



U(x0

1, x
0
0, θ

0
1, µ) +

∑

t≥2

βt−1

∫
U(x0

t , x
0
t−1, θ

0
t , µΠt

g)ν(dθ0
t )



 (22)
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where
U(x0

1, x
0
0, θ

0, µ) := −α1(x0
1 − x0

0)
2 − α1(x0

1 − θ0)2 − α3

∫
(x0

1 − y1)2µ(dy).

This allows us to show that the agent’s optimal action is given as a weighted sum of his present
type, of his action taken in the previous period and of the expected future actions of his neighbor.

Lemma 4.3 Let the assumptions of Theorem 4.1 be satisfied. Given an action profile x ∈ X0

and a choice function g : X0 × Θ → X for the agents a > 0, the policy function of agent 0 ∈ A
is of the linear form

ĝg(x, θ) = γ1x
0 + γ2θ

0 +
∑

t≥1

δt−1

∫
y1Πt

g(Tx; dy). (23)

With λ := α1 + α2 + α3 + α1β, the constants γ1, γ2, δ0, δ1, . . . are given by

γ1 :=
λ−

√
λ2 − 4α2

1β

2α1β
, and γ2 :=

α2

λ− γ1α1β
, (24)

and by

δ0 :=
α3

λ− γ1α1β
and δt+1 =

α1β

λ− γ1α1β
δt for t ≥ 1. (25)

The constants in (24) and (25) do not depend on g and satisfy γ1 + γ2 +
∑

t≥0 δt ≤ 1.

Proof: Fix an initial configuration x = (xa)a≥0 and let µ := Πg(Tx; ·). The value function
associated with the optimization problem (22) solves the functional fixed point equation

Vg(x0
0, θ

0
1, µ) = max

x0
1∈X

{
−α1(x0

0 − x0
1)

2 − α2(θ0
1 − x0

1)
2 − α3

∫
(y1 − x0

1)
2µ(dy)

+β

∫
Vg(x0

1, θ
0
2, µΠg)ν(dθ0

2)
}

. (26)

In view of Lemma 4.2, the fixed point equation (26) has a unique solution V ∗
g : X×Θ×M(X0) →

R, the agent’s policy function ĝg : X ×Θ×M(X0) → X is uniquely determined and the optimal
solution is almost surely interior. Thus, the first order condition takes the form

−2α1(x0
0 − x0

1)− 2α2(θ0
1 − x0

1)
2 − 2α3

∫
(y1 − x0

1)µ(dy) + β

∫
∂

∂x0
1

V ∗
g (x0

1, θ
0
2, µΠg)ν(dθ0

2) = 0,

and the envelope theorem gives us

∂

∂x0
1

V (x0
1, θ

0
2, µΠg) = −2α1(x0

1 − x0
2) = −2α1

(
x0

1 − ĝg

(
x0

1, θ
0
2, µΠg

))
. (27)

This yields

x0
1 =

1
α1 + α2 + α3 + βα1

(
α1x

0
0 + α2θ

0
1 + α3

∫
y1µ(dy) + α1β ĝg

(
x0

1, θ
0
2, µΠg

))
. (28)
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Let us now assume that we have the following alternative representation for the optimal path
{x0

t }t∈N:

x0
t = γ1x

0
t−1 + γ2θ

0
t +

∞∑

i=0

δizt+i ∈ (0, 1) (29)

where zt denotes the expected action of the agent a = 1 at time t. Using Eθ0
t = 0, it does then

follow from the first order condition, from (27) and from (28) that

x0
1 =

1
α1 + α2 + α3 + β1α1

(
α1x

0
0 + α2θ

0
1 + α3

∫
y1Πg(x; dy) + α1βγ1x

0
1 + α1β

∞∑

i=0

z2+i

)
. (30)

Now we need to find coefficients γ1, γ2, δ0, δ1, . . . such that the representations in (29) and in
(30) coincide. This can be accomplished recursively and yields the constants in (24) and (25).
In order to prove that the sum of the coefficients is bounded from above by 1, we consider the
situation in which the agents maximize the discounted sum of their expected utilities over the
periods t ∈ {0, 1, . . . , τ} and denote by gτ (x, θ0) the optimal action of the agent 0 ∈ A. Using a
cumbersome, but rather straightforward induction argument along with an argument similar to
the one given in the proof of Lemma 4.2, one can easily show that

gτ (x, θ0) = γτ
1x0 + γτ

2 θ0 +
τ∑

i=1

δτ
i−1zi.

Here, the coefficients satisfy the recursive relations

γτ
i =

αi

λτ
(i = 1, 2), δτ

0 =
α3

λτ+1
, δτ

i =
α1β

λτ
δτ−1
i−1 (i = 1, 2, . . .) and λτ+1 = λ− α2

1β

λτ

with λ0 = α1 + α2 + α3. This shows that γτ
i → γi and δτ

i → δi for all i = 0, 1, 2, . . . as τ → ∞.
Thus,

γ1 + γ2 +
∑

i≥0

δi ≤ 1 because γτ
1 + γτ

2 +
∑

i≥0

δτ
i ≤ 1 for all τ.

2

Our representation (23) of the policy function does not yet allow us to apply Theorem 3.6. For
this, we need a representation of ĝg in terms of the sequence (xa)a≥0. This, however, can be
accomplished as follows: Let us fix a correlation pattern c = (ca)a≥1 ∈ L1−γ2

+ and assume for the
moment that the choice function of the agents a > 0 takes the linear form

g̃(T ax, θa) = c0x
a + γ2θ

a +
∑

b≥1

cbx
a+b. (31)

In view of (23), we have c0 = γ1 and the continuous choice function g̃ induces a Feller kernel Πg̃

on X0. Thus, it follows from (31) and from Eθ0
t = 0 that

∫
y1Πg̃(x; dy) =

∑

a≥0

cax
a+1.
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Hence the expected action of the agent a = 1 in the second period is given by
∫

y1Π2
g̃(x; dy) =

∑

a1≥0

ca1

∫
ya+1Πg̃(x; dy) =

∑

a1≥0

ca1

∑

a2≥0

ca2x
a1+a2+1.

By induction we obtain

∫
y1Πt

g̃(x; dy) =
∑

a1≥0


ca1

∑

a2≥0


ca2 · · · cat−1

∑

at≥0

catx
a1+···+at+1


 · · ·


 (32)

for all t ∈ N. Thus, we have the alternative representation of our policy function:

ĝg̃(x, θ) = γ1x
0 + γ2θ +

∑

b≥1

lbx
b

where the positive sequence (lb)b≥1 is given by

lb = Fb(c0, c1, . . . , cb−1) :=
∑

t≥1

δt−1

(
b−1∑

a1=0

(
ca1

b−1∑

a2=0

ca2 · · ·
)

b−1∑

at=0

cat

)
1{∑t

i=1 ai=b−1}. (33)

This representation allows us to prove the main result of this section.

Proof of Theorem 4.1: Since ĝg̃(x, θ0) ∈ X, we have
∑

b≥1 lb ≤ 1 − γ1 − γ2. Thus, the map
F defined by

F (c) := (Fb(γ1, c1, . . . cb−1))b≥1 (34)

maps the set L1−γ1−γ2
+ into itself. Since F is continuous in the product topology, it has a fixed

point c∗ = (c∗a)a≥1 and

lb = Fb(γ1, c
∗
1, . . . , c

∗
b−1) = c∗b for all b ≥ 1.

Finally, let c∗0 = γ1 and γ = γ2, as defined in (24). Then the assumptions of Theorem 3.6 are
satisfied. This proves the assertion. 2

4.2 Convergence to a Steady State

We turn now to study the convergence to a unique steady state for the example economy with
quadratic preferences. To this end, we consider the representation

g∗(x; θ0) = c∗0x
0 + γ2θ

0 +
∑

a≥1

c∗ax
a.

of the policy function g∗. For any two configurations x, y ∈ X0 which differ only at site a ∈ A,

|g∗(x, θ0)− g∗(y, θ0)| ≤ c∗a|xa − ya|,
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Assuming that the taste shocks are uniformly distributed on [−1, 1], we obtain

|πg∗(x; A)− πg∗(y; A)| ≤ 2c∗a

for all A ∈ B([−1, 1]), and so
∑

a≥0 ra
g∗ < 1 if

∑
a≥0 c∗a < 1

2 . This yields convergence to a steady
state if α1 is big enough and if α3 is small enough, i.e., if the interaction between different agents
is not too strong.

4.3 Rational Expectations, Local Conformity, and Habit Persistence

As already noticed, the literature has only studied the myopic dynamics of economies with local
interactions. In particular, the specific form of myopic expectations assumed in the literature
contains two components:

i. an agent a ∈ A, when choosing xa
t at time t, is assumed not to consider that he or his

neighbors will choose again at time t + 1;

ii. an agent a ∈ A, when choosing xa
t at time t, is assumed to expect his neighbors, agents

b > a, not to change their previous actions.

In this case, the dynamics describe a backward looking behavior of the agents since the config-
uration (xa

t )a∈A only depends on the current configuration of types and on the previous action
profile (xa

t−1)a∈A. In this section, we study a simple 2 period version of the local conformity and
habit persistence introduced in the previous section and solve it for both myopic and rational
expectations, to illustrate the effects of rationality of expectations on the dynamics of actions.
Each agent a ∈ A chooses at time t and t+1, respectively, actions xa

t , xa
t+1. The initial condition

of the dynamic economy, that is, the configuration of actions at time t− 1, is {xa}a∈A. Consider
first, as a benchmark, the case in which a generic agent a ∈ A chooses xa

t at time t in a fully
myopic manner: he does not expect to choose at t + 1, that is, he expects xa

t+1 = xa
t ; and he

expects his neighbors’ actions to remain xb both at t and at t + 1. In this case it is easy to show
(we do not report the calculations for this section) that his choice will satisfy:

xa
t =

α2

c0
θa
t + β

α2

c0
E(θa

t ) +
α1

c0
xa + (1 + β)

α3

c0
xa+1 (35)

where c0 = α1 + α2 + α3 + β α2+α3
α1+α2+α3

. Note that action xa
t is chosen as a convex combination of

the arguments (θa
t ,E(θa

t ), xa, xa+1). That is, the weights on the arguments sum to unity. Consider
now the case in which agent a still expects his neighbors’ actions to remain xb at both t and at
t + 1, but he now realizes that he will choose again at time t + 1 and that his choice will be
optimal (conditionally on xb

t = xb
t+1 = xb, for all agents b > a). In this case, his choice at time t

will satisfy:

xa
t =

α2

c1
θa
t + β

α2

c1

α1

α1 + α2 + α3
E(θa

t ) +
α1

c1
xa +

(
1 + β

α1

α1 + α2 + α3

)
α3

c1
xa+1 (36)
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where c1 := α1 + α2 + α3 + α1β
α2+α3

α1+α2+α3
. Thus, an agent’s choice is given in terms of a convex

combination of his type, his expected type and in terms of his own and his neighbor’s action in
the previous period. Because c1 < c0, though, agent a’s own type θa

t and his past choice xa have
now a larger weight in his choice, while the mean action and the action of the neighbor he wishes
to conform to have a smaller weight. This effect is due to the fact that the agent now rationally
anticipates that he can re-optimize at time t + 1, and hence at time t, he will attempt matching
more directly those arguments which change at time t + 1 (remember he myopically expects his
neighbor not to change actions at t nor at t + 1). Rational expectations of the agent’s own
dynamic choice therefore reduce the dependence of the agents’ actions on the local conformity
effect, but on the other hand strengthen the effect of habits. Consider now the case in which the
expectations of the agents in the local conformity and habits economy are fully rational. Agent
a in this case, when choosing at time t, not only anticipates rationally his own choices at time
t+1, but also the choices of his neighbor, agent a+1, at time t and t+1. In this case, his choice
will satisfy:

xa
t =

α2

c1
θa
t +

(
β

α2

c1

α1

α1 + α2 + α3
+ A

)
E(θa

t ) +
α1

c1
xa +

∞∑

b=a+1

fbx
b (37)

where A and fb (b ≥ a+1) are positive constants, and xa
t is given in terms of a convex combination

of the arguments
(
θa
t ,E(θa

t ), xa, {xb}b≥a+1

)
. Taking into account the rational expectations of

agent a regarding the behavior of his neighbors has the effect that his choice at t depends on
the past actions of all the agents to his right, and not only on the choice of his immediate
neighbor, as in the previous case. This introduces long spatial correlation terms in the resulting
configuration of actions. But most importantly, comparing (36) and (37), it is apparent that
the fully rational choice of agent a is more weighted on the mean shock E(θa

t ) and less on the
past action of the neighbors. This property of the equilibrium actions is the consequence of the
rational expectations of agent a regarding the persistence of the actions of the agents b > a:
even though all agents face habits, they still will, in general, change their actions at time t,
and hence agent a’s action will depend less on the past actions of his neighbors; this further
limits the component of local conformity in the choice of agents in this economy. Closed form
solutions for the policy function (37), that is, solutions for A and {fb}b≥a+1, are hard to derive.
We have therefore run some simulations to better illustrate the properties of the policy function;
Figure 1 reports the shape of {fb}b≥a+1 in two representative simulations.18 First of all, notice
that when local conformity is not the predominant component of the agent’s preferences (that
is, when α1 = α2 = α3 = 1 in the simulations), the number of neighbors that significantly affect
each agent’s action is relatively limited, of the order of 7 or 8. On the contrary, when local

18The code for the simulations, available from the authors, uses a recursive algorithm to compute the weights

associated to xb, for any arbitrary b > a, in agent a’s policy function. The code does not perform any truncation

or approximation, but rather computes the exact weights.
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Figure 1: Weights of the Neighbors’ Past Actions in the Policy Function

conformity is predominant (that is, when α1 = α2 = 1, and α3 = 10 in the simulations) the
number of neighbors that affect each agent’s action increases substantially, about three times
in our parametrization of preferences. As we noted, the policy function of myopic agents (35)
overestimates, with respect to the policy function of fully rational agents (37), the dependence of
equilibrium actions on the agents’ neighbors, that is, it overestimates the local conformity effect.
In our simulations such overestimation is quite substantial. When local conformity is predominant
in preferences the weight on xa+1 in (35) is .8382, while the sum of the weights on xb, b ≥ a + 1,
in (37) is only .2928. When local conformity is not predominant, instead, the respective weights
are .3611 and .1278. We conclude therefore that our analysis of the local conformity and habits
economy shows that the effect of rational expectations dynamics is to spread the correlation of
equilibrium actions across several agents in the economy, but to substantially reduce the effects
of the local interactions, that is of the agents’ preferences for local conformity.
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5 Dynamic Economies with Local and Global Interactions

This section extends the analysis of dynamic economies with local interactions to economies in
which interactions have an additional global component. In particular, we study economies in
which each agent’s preferences depend on the average action of all agents. Such dependence might
occur, for instance, if agents have preferences for social status. Similarly, preferences to adhere
to aggregate norms of behavior, such as specific group cultures like piercing or rap music, also
give rise to the form of global interactions we study in this section. More generally, the analysis
of global interactions could capture other externality effects as well as price effects. Formally, we
study a dynamic economy with quadratic preferences, as in our analysis of local conformity and
habit persistence in Section 4.3, in which the preferences of each agent a ∈ A also depend on the
average action of the agents in the economy,

%(x) := lim
n→∞

1
2n + 1

n∑
a=−n

xa,

when the limit exists. We denote by Xe the set of all configurations such that the associated
average action exists:

Xe :=

{
x ∈ X : ∃ %(x) := lim

n→∞
1

2n + 1

n∑
a=−n

xa

}
.

The preferences of the agent a ∈ A in period t are described by the instantaneous utility function
u : Xe ×Θ → R of the quadratic form

u
(
xa

t−1, x
a
t , x

a+1
t , θa

t , %(xt)
)

= −α1

(
xa

t−1 − xa
t

)2 − α2 (θa
t − xa

t )
2 − α3

(
xa+1

t − xa
t

)2 − α4 (%(xt)− xa
t )

2 (38)

for some positive constants α1, . . . , α4. The first term in (38) represents habit persistence, the
second the own effect of the agent’s type, the third the local conformity component, and the last
the global conformity component. As before, we assume that X = Θ = [−1, 1] and that Eθ0 = 0.
We also assume that information is incomplete so that an agent a ∈ A at time t only observes his
own type θa

t , and all agents’ past actions. Following the analysis of Section 4.3, we can define a
symmetric Markov perfect equilibrium of this economy.

Definition 5.1 Let x ∈ Xe be the initial configuration of actions. A symmetric Markov perfect
equilibrium of a dynamic economy with local and global interactions is a map g∗ : X0×Θ×X → X

and a map F ∗ : X → X such that:

g∗
(
xt−1, θ

0
t , %t

)
= arg maxx0

t∈X

{∫
u

(
x0

t−1, x
0
t , y

1
t , θ

0
t , %t

)
πg∗(Txt−1; dy1

t )

+β
∫

Vg∗
(
x0

t , x̂t, θ
1, %t+1

)
Πg∗(Txt−1; dx̂t)ν(dθ1)

}
.

(39)
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and
%t+1 = F ∗ (%t) ,

and
%1 = %(x) and %t = % (xt) almost surely.

At a symmetric Markov perfect equilibrium the policy function g∗ determines the optimal action
of each agent under the rational expectations condition that all agents choose their own action by
the policy function g∗. Moreover, each agent rationally expects the sequence of average actions
{%(xt)}t∈N to be determined recursively via the map F ∗. In studying existence of an equilibrium
of a dynamic model with local and global interactions several mathematical difficulties arise. First
of all, the endogenous sequence of average actions {%(xt)}t∈N might not be well-defined for all t

(that is, xt might not lie in Xe for some t). Moreover, even when xt ∈ Xe, an agent’s utility
function depends on the action profile xt in a global manner through the average action %(xt),
and hence will typically not be continuous in the product topology. Thus, standard results from
the theory of discounted dynamic programming cannot be applied to solve the agent’s dynamic
optimization problem in (39). We are going to show though that, when preferences are quadratic
and interactions are one-sided, i) the endogenous sequence of average actions {%(xt)}t∈N exists
almost surely if the exogenous initial configuration x belongs to Xe, and that ii) it follows a
deterministic recursive relation. This allows us to view dynamic models with local and global
interactions as purely local interaction models to which a deterministic time-varying component
is added.19 More specifically, in order to establish the existence of an equilibrium for an economy
with locally and globally interacting agents, we proceed in three steps. We first consider an
economy where the agents’ utility depends on some exogenous quantity %, constant over time.
We then extend the analysis to the case in which the agents’ utility depends on some exogenous

but time-varying quantity {%t}t∈N described in terms of a possibly non-linear recursive relation.
Finally, we show that the recursive structure of {%t}t∈N is preserved if we require each element of
the sequence to be endogenously determined as the average equilibrium action: %t = % (xt), for
any t, at the equilibrium configuration xt. Consider then, first of all, an economy in which the
agents’ utility depends on some exogenous constant quantity %.

Lemma 5.2 Assume that the agents’ instantaneous utility functions take the quadratic form

u
(
xa

t−1, x
a
t , x

a+1
t , θa

t , %
)

= −α1

(
xa

t−1 − xa
t

)2 − α2 (θa
t − xa

t )
2−α3

(
xa+1

t − xa
t

)2−α4 (%− xa
t )

2 (40)

19Such separation arguments originally appeared in Föllmer and Horst [29] and Horst [35] where the long run

dynamics of locally and globally interacting Markov chains are analyzed. Similar separation arguments have also

been successfully applied in the context of a static equilibrium model with locally and globally interacting agents

in Horst and Scheinkman [37], and in the context of microstructure models for financial markets in Horst [36].
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with % ∈ X and positive constants α1, . . . , α4, then there exists a policy function g∗ : X0×Θ×X →
X such that

g∗
(
xt−1, θ

0
t , %

)
= arg maxx0

t∈X

{∫
u

(
x0

t−1, x
0
t , y

1
t , θ

0
t , %

)
πg∗(Txt−1; dy1

t )

+β
∫

Vg∗
(
x0

t , x̂t, θ
1, %

)
Πg∗(Txt−1; dx̂t)ν(dθ1)

}
.

The policy function g∗ can be chosen of the linear form

g∗(x, θ0, %) = e∗0x
0 + εθ0 +

∑

b≥1

e∗bx
b + A(%) (41)

where the correlation pattern e∗ = (e∗a)a≥0, and the constant ε > 0 are independent of %.

Proof: Fix a continuous policy function g for the agents a 6= 0. Continuity of g together with
our special interaction structure guarantees that the optimization problem of the agent 0 ∈ A can
be solved by standard methods from the theory of discounted dynamic programming. In fact,
using the same arguments as in the proof of Lemma 4.3, we see that the optimal action of the
agent 0 is given in terms of a weighted average of his neighbor’s future action and of %:

ĝg(x, θ0, %) = ε1x
0 + ε2θ

0 +
∑

t≥1

{
δt−1

∫
y1Πt

%(Tx; dy) + ηt−1%

}
(42)

where ε1, ε2 and (ηt, δt) (t ∈ N) are strictly positive constants satisfying ε1+ε2+
∑

t≥1 (δt + ηt) ≤ 1.
Suppose now that the agent a = 0 assumes that the other players’ policy function is given by

g(T ax, θa, %) = ε1x
0 + ε2θ

0 +
∑

b≥1

ebx
a+b + B(%) ∈ [−1, 1] (43)

where the non-negative correlation pattern {ea}a≥1 is independent of the states {xa}a≥1 and
where the constant B(%) depends only on %. It is then straightforward to show agent 0’s policy
function ĝg defined by (42), takes the form

ĝg(x, θ0, %) = ε1x
0 + ε2θ

0 +
∑

a≥1

lax
a + B(%)

∑

t≥1

δt−1C
t + %

∑

t≥1

ηt−1

where the constants la = Fa(ε1, e1, . . . , ea−1) are given by (33), and C := ε1 +
∑

a≥1 ea. In order
to prove our assertion it is thus enough to find a correlation pattern e∗ = (e∗a)a≥1 and some B(%)
such that

e∗a = Fa(ε1, e∗1, . . . , e
∗
a−1) for all a ≥ 1 (44)

and such that

B(%)
∑

t≥1

δt−1C
t + %

∑

t≥1

ηt−1 = B(%) where C := ε1 +
∑

a≥1

e∗a. (45)

30



To this end, we first consider the case B(%) = 1− C. Condition (45) translates then into

(1− C)
∑

t≥1

δt−1C
t + %

∑

t≥1

ηt−1 = 1− C.

By continuity, this equation has a solution C(%) ∈ [0, 1], and C(1) ≤ C(%). Choose a sequence
c = (ca)a≥0 with c0 = ε1 such that

∑
a≥0 ca ≤ C(%). The correlation pattern l = (la)a≥0 in

(43) satisfies then
∑

a≥0 la ≤ C(%), because an agent’s optimal action is almost surely interior,
and because the quantities la are increasing in c0, . . . , ca−1. Hence the same arguments as in the
proof of Theorem 4.1 show that, for any % ∈ [−1, 1], the map F has a fixed point, i.e., there
exists a sequence (e∗a)a≥1 such that (44) is satisfied. For a given %, we have a fixed point in the
set of sequences such that

∑
a≥0 ca ≤ C(%). In fact, we can look for a fixed point such that∑

a≥0 ca ≤ C(1) ≤ C(%). An equilibrium for an arbitrary external condition % ∈ [−1, 1] is then
given by

g∗(x, θ0, %) = e∗0x
0 + εθ0 +

∑

b≥1

e∗bx
b + A∗(%)

where ε = ε2, e∗0 = ε1 and A∗(%) is given by

A∗(%) := %

∑
t≥1 ηt−1

1−∑
t≥1 δt−1(C∗)t

.

2

Note that the policy function (41) has the property that a change in % has a direct effect on
the chosen action but does not affect the dependency of the action on the realized agent’s type
nor on the neighbors’ actions. In other words, both ε and the correlation structure {e∗b}b≥0 are
independent of %. It is this property that allows us to proceed to the second step of our analysis,
that is, to study the case in which the agents’ preferences at time t are described by a quadratic
utility function

u
(
xa

t−1, x
a
t , x

a+1
t , θa

t , %t

)

= −α1

(
xa

t−1 − xa
t

)2 − α2 (θa
t − xa

t )
2 − α3

(
xa+1

t − xa
t

)2 − α4 (%t − xa
t )

2 , (46)

and the dynamics of the process {%t}t∈N is described by a possibly non-linear recursive relation
of the form

%t+1 = F (%t) for some continuous function F : X → X. (47)

Since F is continuous, an agent’s optimization problem can again be solved using standard results
from the theory of discounted dynamic programming. In fact, we can apply the same arguments
as in the proof of the previous Lemma in order to show that for given a continuous policy function
g for the agents a 6= 0, the optimal action of the agent a = 0 is given in terms of a weighted
average of his neighbors future actions and of future external conditions. In order to make this
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more precise, we fix a continuous policy function g : X0 × Θ × X → X for the agents a 6= 0
and denote by π(T ax, %; ·) the conditional distribution of the agent a’s optimal choice, given the
states (xb)b≥a and given %. Since preferences now depend on %t, which is no longer constant but
evolves according to a deterministic dynamics, the expected action of the agent 1 ∈ A in period
t, given some continuous policy function g : X0 ×Θ×X → X is of the form

∫
y1Π%1 · · ·Π%t(Tx; dy) where Π%t(Tx; ·) :=

∏

a≥1

π(T ax, %t; ·)

and π(x, %t; ·) denotes the distribution of the random variable g(x, ·, %t). Let δ%(·) be the Dirac
measure concentrated on %, and assume that the policy function g is continuous. The kernel

Π̂(x, %; ·) := Π%(x; ·)⊗ δF (%)(·).

which describes the joint evolution of the sequences {xa
t }t∈N (a ≥ 1) and {%t}t∈N has the Feller

property because F is continuous. Hence, an agent’s optimization problem can again be solved
using methods from discounted dynamic programming and arguments as in the previous section
show that the optimal choice of our reference agent a = 0 is of the form

ĝg(x, θ0, %1) = ε1x
0 + ε2θ

0 +
∑

t≥1

{
δt−1

∫
y1Π%1 · · ·Π%t(Tx; dy) + ηt−1%t

}
. (48)

If agent 0 expects all the other agents’ policy functions to take the linear form

g∗(T ax, θa, %) = e∗0x
a + εθa +

∑

b≥a+1

e∗bx
b +

∑

t≥1

ht%t

with the correlation pattern e∗ = (e∗a)a≥0 derived in Lemma 5.2 and with a suitable sequence
h = (ht)t≥1, then (48), using tedious but straightforward calculations, can be written as

ĝg(x, θ0, %1) = e∗0x
0 + εθ0 +

∑

b≥1

e∗bx
b +

∑

t≥1

Gt(h)%t

for suitable constants Gt(h). By analogy to the proof of Lemma 5.2 one can now show that there
exists a sequence h∗ = (h∗t )t∈N which does not depend on the specific sequence {%t}t∈N such that

Gt(h∗) = h∗t .

Thus, we have the following result.

Lemma 5.3 Assume that the agents’ instantaneous utility functions take the quadratic form (46)
and that the sequence {%t}t∈N follows the deterministic recursive dynamics (47). Then there exists
a policy function g∗ : X0 ×Θ×X → X such that

g∗
(
xt−1, θ

0
t , %t

)
= arg max

x0
t∈X

{∫
u

(
x0

t−1, x
0
t , y

1
t , θ

0
t , %t

)
πg∗(Txt−1; dy1

t )

+β

∫
Vg∗

(
x0

t , x̂t, θ
1, F (%t)

)
Πg∗(Txt−1; dx̂t)ν(dθ1)

}
.
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The policy function can be chosen of the linear form

g(x, θ0, %1) = e∗0x
0 + εθ0 +

∑

b≥1

e∗bx
b +

∑

t≥1

h∗t %t

for some correlation pattern e∗ = (e∗a)a≥0 and a positive sequence h∗ = (h∗t )t≥1. These sequences
can be chosen independently of F and satisfy

∑

a≥0

e∗a +
∑

t≥1

h∗t ≤ 1.

We are now ready to prove the existence of a symmetric Markov perfect equilibrium of our
economy. Let a continuous function F : X → X determine recursively the sequence {%t}t∈N by
(47). Assume that the exogenous initial configuration x has a well defined average % := %(x),
that is, assume that x ∈ Xe. Let F (t) denote the t-fold iteration of F so that %t = F (t)(%). Since
the agents’ types are independent and identically distributed, it follows from the law of large
numbers that the average equilibrium action in the following period is almost surely given by

lim
n→∞

1
2n + 1

n∑
a=−n

g(T ax, θa, %) = C∗% +
∑

t≥1

h∗t F
(t)(%) =: G(F )(%).

Thus, the average action in period t = 2 exists almost surely if the average action in period t = 1
exists, and an induction argument shows that the average action exists almost surely for all t ∈ N.
In order to establish the existence of an equilibrium, we first show that there exists a continuous
function F ∗ such that, with %1 := %(x) we have

%2 := F ∗(%1) = G(F ∗)(%1).

Lemma 5.4 Let C(X) be the class of all continuous functions F on X equipped with the usual
sup-norm ‖ · ‖∞. The map F 7→ G(F ) on C(X) has a fixed point F ∗.

Proof: Let Lip ⊂ C(X) be the class of Lipschitz continuous function F on X with constant 1.
Due to the theorem by Ascoli and Arzela, the set Lip is compact with respect to the topology
induced by the norm ‖ · ‖∞. Thus, the assertion follows from Brouwer’s fixed point theorem if
we can show that the map F 7→ G(F ) maps the compact convex set Lip continuously into itself.
Continuous dependence of G(F, %) on F is obvious. Since F is Lipschitz with constant 1, the
iterates F (t) are Lipschitz with constant 1 for all t. Hence G(F ) is Lipschitz with constant 1
because C∗ +

∑
t≥1 h∗t ≤ 1; see Lemma 5.3. 2

We are now in a position to prove the main result of this section.

Theorem 5.5 Let X = Θ = [−1, 1]. Assume that Eθ0 = 0 and, that the initial configuration
of actions x belongs to Xe, that an agent a ∈ A only observes his own type θa, and that the
instantaneous utility function takes the quadratic form in (38). Then the following hold:
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i. The economy has a symmetric Markov perfect equilibrium (g∗, F ∗) where g∗ : X0×Θ×X →
X and F ∗ : X → X.

ii. In equilibrium, the sequence of average actions {%(xt)}t∈N exists almost surely.

iii. The policy function g∗ can be chosen of the linear form

g∗(x, θ0) = e∗0x
0 + εθ0 +

∑

b≥1

e∗bx
b + B∗(%(x)) (49)

for some positive sequence e∗ = (e∗a)a≥0, a constant ε > 0, some constant B∗(%(x)) that
depends only on the initial average action.

Proof: Let e∗ = (e∗a)a≥0 and h∗ = (h∗t )t≥1 be the sequences derived in Lemma 5.2 and 5.3,
respectively, and let F ∗ be a fixed point of the operator G studied in Lemma 5.4. If, for a given
initial configuration x ∈ Xe, the agent 0 ∈ A expects the policy functions of all the agents a ∈ A
to take the form

g(T ax, θa, %(x)) = e∗0x
a + εθa +

∑

b≥1

e∗bx
a+b +

∑

t≥1

h∗t F
∗(t)(%(x)), (50)

then his own policy function is given by

g(x, θ0, %(x)) = e∗0x
0 + εθ0 +

∑

b≥1

e∗bx
b +

∑

t≥1

h∗t F
∗(t)(%(x)),

and the average action in period t is almost surely given by

%(xt) = %t = F ∗(t)(%(x)).

2

It is important to re-iterate that, for our analysis in this section, it is essential that the agents’
utility function is quadratic (and hence policy functions are linear). Only in this case, in fact,
can the dynamics of average actions {%(xt)}t∈N can be described in terms of a recursive relation.
In models with more general local interactions, such a recursive relation typically fails to hold, as
shown e.g., by Föllmer and Horst [29]. In such more general cases, the average action typically
is not an appropriate state variable, i.e., a sufficient statistic, for the aggregate behavior of the
configuration x; and the analysis must be pursued in terms of empirical fields, which require a
probabilistic framework that is beyond the scope of the present paper, along the lines of Föllmer
and Horst [29].
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6 Conclusions

In this paper, we study existence and continuity of rational expectations equilibria of static
and dynamic economies in which an infinite number of agents interact locally. Some of our
results should be strengthened. For instance, several other examples for which the assumption of
Theorems 3.6 and 3.7 can indeed be verified, should be studied. Also, the class of economies we
study is restricted in that we impose several simplifying assumptions on preferences, on the agents’
choice space, and on the stochastic structure of preference shocks. While these assumptions can
be relaxed using standard methods, this is not the case for the restrictions we have imposed on
the structure of local interactions of dynamic economies. In particular, we have restricted the
analysis to the case of ‘one-sided’ interactions, which greatly limits the strategic aspect of the
interactions between agents. Allowing for more general forms of local interactions in dynamic
economies (when agents are rational) will certainly require a non-trivial and independent analysis.
No doubt the first steps introduced in this paper will be of use for such extensions, which we
plan for future work. In the analysis of the dynamic model of local interactions in this paper, we
have only considered Markov perfect equilibria. While the restriction to Markovian strategies is
common to most analyses of dynamic games, for technical as well as substantive reasons, we have
noted that it possibly misses an important class of equilibria supported by trigger strategies and
other complex dynamic punishment strategies, in analogy to the case of repeated games. This is
also content for future work. Finally, we have studied the mathematical properties of existence,
continuity, and, in the dynamic models, of ergodicity of the equilibrium of our economies with local
interactions. A detailed study of the welfare properties of equilibrium would also be exceptionally
interesting. While such a study is outside the scope of this paper, we can show in the special
context of our static local conformity example that equilibria will in general (almost surely) be
Pareto inefficient.

A Maximizing α-Concave Functions

The following theorem plays a central role in our analysis. Even though its proof follows primarily from
straightforward modifications of arguments given in the proof of Theorem 3.1 in Montrucchio [45], we
prove it to keep the paper self contained.

Theorem A.1 Let X ⊂ R be a closed and convex set and let (Y, ‖ · ‖Y ) be a normed space. Let F :
X × Y → R be a continuous function which satisfies the following conditions:

i. For each y ∈ Y , the map x 7→ F (x, y) is α-concave on X.

ii. F is differentiable with respect to x and the derivative F1(·) := ∂
∂xF (·) satisfies

|F1(x, y1)− F1(x, y2)| ≤ G(y1, y2)

for some function G : Y × Y → R.
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Then there exists a unique map f : Y → X such that supx∈X F (x, y) = f(y). Moreover, f satisfies

|f(y1)− f(y2)| ≤ 1
α

G(y1, y2).

In particular, |f(y1)− f(y2)| ≤ L
α‖y1 − y2‖Y if G(y1, y2) = L‖y1 − y2‖Y .

Proof: Our proof uses modifications of arguments given in Montrucchio [45]. It follows from Lemmas
A1 - A3 in Montrucchio [45] that, for any y1 ∈ Y , the α-concave function x 7→ F (x, y1) has a unique
maximizer f(y1) which satisfies

α|x− f(y1)|2 ≤ F1(x, y1)(f(y1)− x). (51)

Thus, choosing x = f(y2) in (51) for some y2 ∈ Y , we obtain

α|f(y1)− f(y2)|2 ≤ F1(f(y2), y1)[f(y1)− f(y2)]. (52)

Since f(y2) maximizes the differentiable function x 7→ F (x, y2), we obtain F1(f(y2), y2)[f(y1)−f(y2)] ≤ 0.
Indeed in case of an interior solution F1(f(y2), y2) = 0. If we have a boundary solution, strict concavity
of F (·, y2) implies F1(f(y2), y2)) > 0 and f(y2) > f(y1). Hence

α|f(y1)− f(y2)|2 ≤ (F1(f(y2), y1)− F1(f(y2), y2)) [f(y1)− f(y2)],

and so
α|f(y1)− f(y2)| ≤ |F1(f(y2), y2)| ≤ G(y1, y2).

This yields the assertion. 2

B Proof of Theorems 2.9 and 2.10

This section gives the proofs of Theorems 2.9 and 2.10. While related, both proofs are reported for the
sake of completeness.

B.1 Proof of Theorem 2.9

In this section we are going to prove Theorem 2.9. For this, it is enough to prove the existence of an almost
surely uniquely defined fixed point of the operator V : B(Θ0, X) → B(Θ0, X) defined by (8). In a first
step, we establish the following result.

Lemma B.1 If the utility function u is uniformly α-concave in its first argument and if the contraction
condition (6) holds, then the operator V satisfies the following conditions:

i. There exists η∗ > 0 such that V maps the set Lipη∗(1) continuously into itself.

ii. The operator V has a unique fixed point g∗, and g∗ ∈ Lipη∗(1).
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Proof: Let us denote by
g(y, θ0) = arg max

x
u(x, y, θ0) (53)

the conditional optimal action of the agent 0 ∈ A, given his type θ0 and given the action y ∈ X of his
neighbor. We equip the product space Θ ×X with the maximum norm, and so it follows from Theorem
A.1, from Assumption 2.7 (i) and from (6) that

|g(y, θ0)− g(ŷ, θ̂0)| ≤ γ max{|y − ŷ|, |θ0 − θ̂0|} (54)

where γ := L
α < 1.

i. Let us first show that V is a continuous operator on the Banach space (B(Θ0, X), ‖ · ‖∞). Indeed,
due to (54) we have

|V g(θ)− V ĝ(θ)| ≤ γ|g ◦ T (θ)− ĝ ◦ T (θ)| ≤ γ‖g − ĝ‖∞ (55)

for all g, ĝ ∈ B(Θ0, X). Thus,
‖V g − V ĝ‖∞ ≤ γ‖g − ĝ‖∞.

Since L < α, the operator V is not only continuous, but also a contraction. In particular, it has a
unique fixed point.

ii. Let us now choose η > 0 such that 2ηγ < 1 and fix g ∈ Lipη(1). It follows from (54) that

|V g(θ)− V g(θ̂)| ≤ γ max
{
|θ0 − θ̂0|, |g ◦ T (θ)− g ◦ T (θ̂)|

}

≤ γ max



|θ

0 − θ̂0|,
∑

a≥1

2−η(a−1)|θa − θ̂a|




≤ 2ηγ



|θ

0 − θ̂0|+
∑

a≥1

2−ηa|θa − θ̂a|




≤ dη(θ, θ̂).

This shows that V maps Lipη(1) into itself. Since Lipη(1) is a closed subset of B(Θ0, X) with
respect to the topology of uniform convergence,

(
Lipη(1), ‖ · ‖∞

)
is a Banach space. Thus, V may

also be viewed as a contraction on the Banach space
(
Lipη(1), ‖ · ‖∞

)
, and so the unique fixed point

g∗ of V belongs to Lipη(1).

This proves the lemma. 2

Proof of Theorem 2.9:

i. Due to Theorem A.1 and Assumption 2.7, we have

|g(y, θ0)− g(ŷ, θ0)| ≤ L(θ0)
α

|y − ŷ|

where the map g is defined by (53). This shows that the operator V satisfies

|V g(θ)− V ĝ(θ)| ≤ L(θ0)
α

|g ◦ T (θ)− ĝ ◦ T (θ)|
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for all g, ĝ ∈ B(Θ0, X). Since the types are distributed independently across agents, the random
variables L(θ0) and |g ◦ T (θ)− ĝ ◦ T (θ)| are independent, and so

E|V g(θ)− V ĝ(θ)| ≤ EL(θ0)
α

E|g ◦ T (θ)− ĝ ◦ T (θ)| ≤ γE|g ◦ T (θ)− ĝ ◦ T (θ)|.

Here γ := EL(θ0)
α < 1. As the types are also identically distributed, we obtain

E|V g(θ)− V ĝ(θ)| ≤ γE|g(θ)− ĝ(θ)|.

Thus, denoting by V n the n-fold iteration of the operator V , we see that

lim
n→∞

E|V ng(θ)− V nĝ(θ)| = 0. (56)

In particular, the sequence (V ng)n∈N satisfies

E|V n+mg(θ)− V ng(θ)| = E|V n(V mg)(θ)− V ng(θ)|
≤ γnE|V mg − g|
≤ Cγn

for some C < ∞. This shows that (V ng)n∈N is a Cauchy sequence in L1(P). Since L1(P) is a
complete space, there exists an almost surely uniquely determined random variable G∗[g] such that

V ng
L1

−→ G∗[g].

Due to (56), the L1-limit G∗[g] does almost surely not depend on g. In other words, there exists an
almost surely uniquely defined random variable g∗ such that

V ng
L1

−→ g∗ for all g ∈ B(Θ0, X).

In view of Chebyschev’s inequality this yields

P[|V ng∗ − g∗| > ε] ≤ ε−1E|V ng∗ − g∗| → 0 as n →∞

Let us now fix ε̂ > 0. There exists a sequence of measurable sets (An)n∈N that satisfies P[An] → 1
as n →∞ and N ∈ N such that

|V ng∗ − g∗| < ε̂ and |V n+1g∗ − g∗| < ε̂ on An for all n ≥ N .

Since the best reply functions are continuous, we can choose ε̂ so that |V g∗ − g∗| < ε on An, and so

V g∗ = g∗ P-a.s.

Recall now that L1-convergence implies almost sure convergence along a subsequence. Since any
symmetric equilibrium ĝ satisfies P[V ĝ = ĝ] = 1, it follows that

ĝ = lim
k→∞

V nkg = g∗ P-a.s.

alon some subsequence (nk)k∈N. This shows uniqueness (up to a set of measure zero) of the symmetric
equilibrium.

ii. The assertion follows from Lemma B.1.

2
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B.2 Proof of Theorem 2.10

We proceed by analogy with the proof of Theorem 2.9. For analytical convenience, we restrict our attention
to the case N = 1. The more general case N ∈ N can easily be established using similar arguments. In the
present setting, it is enough to show that there exists a measurable function g∗ : Θ2 → X which satisfies

g∗(θ0, θ1) = arg max
xa∈X

∫
u(xa, g∗(θ1, θ2), θ0)ν(dθ2). (57)

Each such function is a fixed point of the operator Ṽ : B(Θ2, X) → B(Θ2, X) which acts on the class
B(Θ2, X) of bounded measurable functions from θ2 to X according to

Ṽ g(θ0, θ1) = arg max
x0∈X

∫
u(xa, g(θ1, θ2), θ0)ν(dθ2). (58)

In order to prove that this operator has a Lipschitz continuous fixed point if the utility function satisfies
(6), we introduce the class

Lip :=
{

g : Θ2 → R : |g(θ0, θ1)− g(θ̃0, θ̃1)| ≤ max{|θ0 − θ̃0|, |θ1 − θ̃1|}
}

of all Lipschitz continuous functions on Θ2 with Lipschitz constant 1. The following lemma establishes
some basic properties of the operator Ṽ .

Lemma B.2 If the utility function u is Lipschitz continuous in the sense of (6), then the operator Ṽ

defined by (58) satisfies the following conditions:

i. Ṽ maps the set Lip continuously into itself.

ii. Ṽ has a unique fixed point g∗ and g∗ ∈ Lip.

Proof: We introduce the continuous mapping U : Lip×X ×Θ2 → R by

U(g, x, θ0, θ1) :=
∫

u(x, g(θ1, θ2), θ0)ν(dθ2). (59)

Under the assumptions of Theorem 2.10, the map x 7→ u(x, y, θ0) is uniformly α-concave, and so the
mapping x 7→ U(g, x, θ0, θ1) is α-concave.

i. Let us first prove that Ṽ maps the class Lip into itself. To this end, we fix g ∈ Lip. Since the map
(x0, θ0, θ1, θ2) 7→ ∂

∂xu(x0, g(θ1, θ2), θ0) is uniformly continuous, it follows from Assumption 2.7 (ii)
that

∣∣∣∣
∂

∂x
U(g, x0, θ0, θ1)− ∂

∂x
U(g, x0, θ̂0, θ̂1)

∣∣∣∣

≤ sup
θ2

∣∣∣∣
∂

∂x
u(x, g(θ1, θ2), θ0)− ∂

∂x
u(x, g(θ̂1, θ2), θ̂0)

∣∣∣∣

≤ sup
θ2

L
{
|g(θ1, θ2)− g(θ̂1, θ2)|+ |θ0 − θ̂0|

}
(60)

≤ L max
{
|θ1 − θ̂1|, |θ0 − θ̂0|

}
.

Here, the last inequality follows from Lipschitz continuity of g. This shows that, for any fixed
g ∈ Lip, the map (x, θ0, θ1) 7→ U(g, x, θ0, θ1) satisfies the assumption of Theorem A.1 with Y := Θ2
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equipped with the maximum norm. Thus, Theorem A.1 concludes that Ṽ g ∈ Lip because L < α.
Let us now show continuity of Ṽ with respect to the sup-norm. To this end, we fix θ0, θ1 ∈ Θ. For
any two functions g, ĝ ∈ B(Θ2, X) we have

∣∣∣∣
∂

∂x
U(g, x, θ0, θ1)− ∂

∂x
U(ĝ, x, θ0, θ1)

∣∣∣∣ ≤ L‖g − ĝ‖∞,

due to (60). Thus, for each pair (θ0, θ1), the mapping (g, x) 7→ U(g, x, θ0, θ1) satisfies the assumptions
of Theorem A.1 with Y := B(Θ2, X). Hence,

‖Ṽ g − Ṽ ĝ‖∞ = sup
θ0,θ1

∣∣∣∣arg max
x∈X

U(g, x, θ0, θ1)− arg max
x∈X

U(ĝ, x, θ0, θ1)
∣∣∣∣ ≤

L

α
‖g − ĝ‖∞.

This proves continuity of the operator Ṽ in the topology of uniform convergence.

ii. Since L < α, it follows from (i) that Ṽ is a contraction on the Banach space B(Θ2, X). Thus, Ṽ has
a unique fixed point g∗. Since Ṽ maps the closed set Lip into itself, g∗ ∈ Lip.

2

Proof of Theorem 2.10:

i. Using similar arguments to the ones provided in the proof of Theorem 2.9 and applying Theorem
A.1 to the function U defined by (59), we obtain

E
∣∣∣Ṽ g(θ0, θ1)− Ṽ ĝ(θ0, θ1)

∣∣∣ ≤ EL(θ0)
α

∫ ∫ ∣∣g(θ1, θ2)− ĝ(θ1, θ2)
∣∣ ν(dθ2)ν(dθ1) ≤ γE|g − ĝ|.

Since γ := EL(θ0)
α < 1, it follows by an argument sufficiently close to the one spelled out in detail in

the proof of Theorem 2.9 that the operator has a fixed point g∗ which is uniquely defined up to a
set of measure 0.

ii. The assertion follows from Lemma B.2.

2
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