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Abstract

We introduce language-based games, in which utility is defined over
descriptions in a given language. By choosing the right language, we can
capture psychological games [9] and reference-dependent preference [13].
Of special interest are languages that can express only coarse beliefs (e.g.,
the probability of an event is “high” or “low”, rather than “the proba-
bility is .628”): by assuming that a player’s preferences depend only on
what is true in a coarse language, we can resolve a number of well-known
paradoxes in the literature, including the Allais paradox. Despite the ex-
pressive power of this approach, we show that it can describe games in
a simple, natural way. Nash equilibrium and rationalizability are gener-
alized to this setting; Nash equilibrium is shown not to exist in general,
while the existence of rationalizable strategies is proved under mild con-
ditions on the language.

1 Introduction

In a classical, normal-form game, an outcome is a tuple of strategies, one for
each player, and players’ preferences are formalized by utility functions defined
on the set of all such outcomes. This framework thereby hard-codes a single
conception of how players represent the world insofar as their preferences are
concerned.

The motivating idea of the present work is to relax this rigidity in a systematic
way by using language as the foundation of preference. Roughly speaking,
we assume that what the players care about is captured by some underlying
language, with utility defined on descriptions in that language. Classical game
theory can be viewed as the special case where the underlying language can talk
only about outcomes. In general, however, the language can be as rich or poor
as desired.

In the colloquial sense of the word, the role of “language” in decision making
and preference formation can hardly be overstated. It is well known, for ex-
ample, that presenting alternative medical treatments in terms of survival rates
versus mortality rates can produce a marked difference in how those treatments



are evaluated, even by experienced physicians [16]. More generally, one of the
core insights of prospect theory [REF|—that subjective value depends not (only)
on facts about the world but on how those facts are presented (as gains or
losses, dominated or undominated options, etc.)—can be viewed as a kind of
language-sensitivity. We celebrate 10th and 100th anniversaries specially, and
make a big deal when the Dow Jones Industrial Average crosses a multiple of
1,000, all because we happen to work in a base 10 number system (i.e., our
language puts special emphasis on multiples of 10 that would be absent, for ex-
ample, in a hexadecimal system). Furthermore, we often assess likelihoods using
words like “probable”, “unlikely”, or “negligible”, rather than numeric repre-
sentations, and when numbers are used, we tend to round them [15]. Much of
the motivation and conceptual appeal of our approach stems from observations
like these: defining preferences in terms of language provides a direct avenue for
formalizing such intuitions about how people think.

Of special interest is the general phenomenon of coarseness or categoricity. The-
ories of rational decision making are often couched in the formalism of contin-
uous mathematics, but the world is not always a continuous place, at least as
far as preferences are concerned. Consumers tend to ignore, for example, the
difference in price between $3.98 and $3.99, but take seriously (or even exag-
gerate) the difference between $3.99 and $4.00 [REF] (cf. Example 3.1). Simi-
larly, although degrees of belief are often formalized using probability measures,
a coarser representation can be more appropriate for reasoning about human
choice and inference (see [?], [18], [15]). We show, for instance, that the Allais
paradox [1] can be resolved simply and intuitively when belief is represented
discretely, rather than on a continuum (Example 3.2).

Coarseness in the underlying language—cases where there are fewer descriptions
than there are actual differences to describe—provides a natural and powerful
way of capturing such phenomena, offering insight into a variety of puzzles and
paradoxes of human decision making. Moreover, it allows for a unified analysis of
coarseness as it pertains both to preferences and to beliefs, traditionally distinct
domains of decision making. This is accomplished using languages expressive
enough to talk about beliefs, a technique that is of interest in its own right.

Classically, beliefs are relevant to decision making insofar as they determine
expected utility. But beliefs can also themselves be considered as objects of
preference: one might wish to model players who feel guilt, wish to surprise
their opponents, or are motivated by a desire to live up to what is expected
of them. Psychological game theory, beginning with the work of Geanakoplos,
Pearce, and Stachetti [9] and expanded by Battigalli and Duwfenberg [4], is
an enrichment of the classical setting meant to capture such preferences and
motivations. In a similar vein, the notion of reference-dependent preferences
developed by Koszegi and Rabin [13], building on prospect theory, formalizes
phenomena such as loss-aversion by augmenting players’ preferences with an
additional sense of gain or loss derived by comparing the actual outcome to
what was expected.



With the appropriate choice of language, our approach subsumes these: an
underlying language that includes beliefs allows us to capture psychological
games, while a language that distinguishes expected from actual outcomes allows
us to represent reference-dependent preferences. Moreover, in each of these
frameworks, modeling coarse beliefs provides insight and opportunities lacking
in the continuous setting. Much of this paper is an elaboration and justification
of this point.

As a preliminary illustration of some of these ideas, consider the following simple
example.

Example 1.1: A surprise proposal. Alice and Bob have been dating for a
while now, and Bob has decided that the time is right to pop the big question.
Though he is not one for fancy proposals, he does want it to be a surprise. In
fact, if Alice expects the proposal, Bob would prefer to postpone it entirely until
such time as it might be a surprise. Otherwise, if Alice is not expecting it, Bob’s
preference is to take the opportunity.

We might summarize this scenario by the following table of payoffs for Bob:

pb|™p
BAp 0 1

—Bap | 1

Table 1: The surprise proposal.

In this table, we denote Bob’s two strategies, proposing and not proposing, by
p and —p, respectively, and use Byp (respectively, ~Bap) to denote that Alice
is expecting (respectively, not expecting) the proposal. Of course, whether or
not Alice expects a proposal may be more than a binary affair: she may, for
example, consider a proposal unlikely, somewhat likely, very likely, or certain.
But as we have discussed, there is good reason to think that an accurate model
of her expectations involves only a small number k of distinct “levels” of belief,
rather than a continuum. Table 1, for simplicity, assumes that k& = 2, though
this is easily generalized to larger values.

Note that although Alice does not have a choice to make (formally, her strat-
egy set is a singleton), she does have beliefs about which strategy Bob will
choose. To represent Bob’s preference for a surprise proposal, we must incorpo-
rate Alice’s beliefs about Bob’s choice of strategy into Bob’s utility function. In
psychological game theory, this is accomplished by letting a € [0, 1] be the prob-
ability that Alice assigns to Bob proposing, and defining Bob’s utility function
up in some simple way so that it is decreasing in « if Bob chooses to propose,



and increasing in a otherwise,! as for instance in the following:

l—a ifx=p
@ if x = —p.

up(z, a) = {

The function u g agrees with Table 1 at its extreme points if we identify B ap with
a =1 and =Bap with a = 0. Otherwise, for the continuum of other values that
«a may take between 0 and 1, up yields a linear combination of the corresponding
extreme points. Thus, in a sense, up is a continuous approximation to a scenario
that is essentially discrete.

By contrast, we view Table 1 as defining Bob’s utility. To coax an actual
function from this table, let the variable S denote a situation, which for the
time being we can conceptualize as a collection of statements about the game;
in this case, S includes whether or not Bob is proposing, and whether or not
Alice believes he is proposing. We then define

ifpeSand Bype S
if pe Sand "Bape S
if pe Sand Bype S
if .pe Sand -BapeS.

UB(S) =

O = = O

In other words, Bob’s utility is a function not merely of the outcome of the
game (p or —p), but of a more general object we call a “situation”; his utility in
a given situation S depends on his own actions combined with Alice’s beliefs in
exactly the manner prescribed by Table 1. As noted above, we may very well
wish to refine our representation of Alice’s state of surprise using more than
two categories of likelihood; we could even allow a representation that permits
continuous probabilities, as has been done in the literature. We spell out these
straightforward generalizations in Example 3.5.

The central concept we develop in this paper is that of a language-based game,
where utility is defined not on outcomes but on situations. As noted, a situation
can be conceptualized as a collection of statements about the game; intuitively,
each statement is a description of something that might be relevant to a player’s
preferences, such as whether or not Alice believes that Bob will play a certain
strategy. Of course, this notion crucially depends on just what counts as an
admissible description. The set of all admissible descriptions—what we refer
to as the underlying language of the game—is a key component of our model.
Since utility is defined on situations, and situations are sets of descriptions taken
from the underlying language, a player’s preferences can depend, in principle,
on anything expressible in this language, but nothing more. Succintly: players
can prefer one state of the world to another if and only if they can describe the
difference between the two in the underlying language.

!Technically, Geanakoplos et al. [9] allow Bob’s utility to be a function of only his own
beliefs; this is generalized by Battigalli and Duwfenberg [4] in the context of extensive-form
games, but their approach is applicable to normal-form games as well.



From a technical standpoint, this paper makes three major contributions. First,
we define a generalization of classical game theory and demonstrate its versa-
tility in modeling a wide variety of strategic scenarios, focusing in particular
on psychological and reference-dependent effects. Second, we provide a formal
representation of coarse beliefs in a game-theoretic context. This exposes an
important insight: a discrete representation of belief, often conceptually and
technically easier to work with than its continuous counterpart, is sufficient to
capture psychological phenomena that have heretofore been modeled only in a
continuous framework. Moreover, as we show by example, utilities defined over
coarse beliefs provide a natural way of capturing some otherwise puzzling behav-
ior. Third, we provide novel equilibrium analyses for a broad class of language-
based games that do not depend on continuity assumptions as do those of, for
example, Geanakoplos et al. [9]. In particular, our main theorem demonstrates
that if the underlying language satisfies certain natural “compactness” assump-
tions, then every game over this language admits rationalizable strategies. By
contrast, even under such compactness assumptions, not every game admits a
Nash equilibrium (see Example 3.4).

The rest of the paper is organized as follows. In Section 6.1, we develop the
basic apparatus needed to describe our approach. Section 3 presents a collection
of examples intended to guide intuition and showcase the system. In Section 4,
we show that there is a natural route by which solution concepts such as Nash
equilibrium and rationalizability can be defined in our setting, and we address
the question of existence. Section 5 is an in-depth analysis of an example studied
by Koszegi and Rabin [13], interpreted as a langugage-based game. Appendix
A collects the proofs that are omitted from the main body.

2 Foundations

2.1 Game forms and intuition

Much of the familiar apparatus of classical game theory is left untouched. A
game form is a tuple I' = (N, (¥;);en) where N is a finite set of players, which
for convenience we take to be the set {1,...,n}, and %; is the set of strategies
available to player i. Following standard notation, we set

L=[]% and Si=]]%;.
ieN j#i

Elements of X are called outcomes or strategy profiles; given o € 3, we denote
by o; the ith component of the tuple o, and by o_; the element of ¥_; consisting
of all but the ith component of o.

Note that a game form does not come equipped with utility functions specifying
the preferences of players over outcomes Y. The utility functions that we em-



ploy are defined on situations, which in turn are determined by the underlying
language, so, before defining utility, we must first formalize these notions.

Informally, a situation is an exhaustive characterization of a given state of af-
fairs using descriptions drawn from the underlying language. Assuming for the
moment that we have access to a fixed “language”, we might imagine a situ-
ation as being generated by simply listing all statements from that language
that happen to be true of the world. Even at this intuitive level, it should be
evident that the informational content of a situation is completely dependent
on the expressiveness of the language. If, for example, the underlying language
consists of exactly two descriptions, “It’s raining” and “It’s not raining”, then
there are only two situations:

{“It’s raining”} and {“It’s not raining”}.

More formally, a situation S is a set of formulas drawn from a larger pool of
well-formed formulas, the underlying language. We require that S include as
many formulas as possible without being contradictory; this is made precise
below.

The present formulation, informal though it is, is sufficient to allow us to capture
a claim made in the introduction: any classical game can be recovered in our
framework with the appropriate choice of underlying language. Specifically, let
the underlying language be X, the set of all strategy profiles. Situations, in
this case, are simply singleton subsets of ¥, as any larger set would contain
distinct and thus intuitively contradictory descriptions of the outcome of the
game. The set of situations can thus be identified with the set of outcomes, so
a utility function defined on outcomes is readily identified with one defined on
situations.

In this instance the underlying language, consisting solely of atomic, mutually
incompatible formulas, is essentially structureless; one might wonder why call
it a “language” at all, rather than merely a “set”. Although, in principle, there
are no restrictions on the kinds of objects we might consider as languages, it can
be very useful to focus on those with some internal structure. This structure
has two aspects: syntactic and semantic.

2.2 Syntax, semantics, and situations

A formal language is typically generated from a set of atomic formulas using
some rules. For example, given a set ® of primitive propositions, let L(®) denote
the language generated by starting with the formulas in ®, and then closing off
under conjunction (A) and negation (—). (We can define V and — from — and A
as usual.) £(®) is a language for reasoning about Boolean combinations of the
propositions in ®. This is easily specialized to a game-theoretic setting. Given



a game form I' = (N, (3;)ien), let
O = {playz(al) 1€ N, o; € EZ},

where we read play;(o;) as “player ¢ is playing strategy o;”. Then L(®Pr) is a
language appropriate for reasoning about the strategies chosen by the players in
I'. We sometimes write play (o) as an abbreviation for play, (o1)A- - -Aplay,, (0,).

Semantics provides a notion of truth. Recall that the semantics of classical
propositional logic is given by wvaluations v : & — {true,false}. Valuations are
extended to all formulas via the familiar truth tables for the logical connectives.
Each valuation v thereby generates a model, determining the truth values of
every formula in £(®). In the case of the language £(®r), we restrict this class
of models to those corresponding to an outcome o € ¥; that is, we consider only
valuations v, defined by

vy (play; (o)) = true iff o} = oy,

so that, intuitively, each player chooses exactly one strategy. Denote this re-
stricted class of models by M(T).

Given a language £ and a class M of models for £, a set F' of formulas in £ is
said to be satisfiable in M there is some model in M in which every formula of
F'is true. An (£, M)-situation is then defined to be a maximal set of formulas
in £ that is satisfiable in M; that is, a satisfiable set with no proper superset
that is also satisfiable. In the game-theoretic setting, as we have seen, each
model in M (T") makes exactly one of the formulas play,(c;) true for each player
i, so an (L(®r), M(T"))-situation can be identified with a strategy profile. We
denote by S(L, M) the set of (£, M)-situations. A game form I is extended to
an (£, M)-game by adding utility functions u; : S(£, M) — R, one for each
player i € N. L is called the underlying language (of the game). We omit
L and/or M when talking about situations or games whenever it is safe to do
S0.

In an (L(®r), M(T'))-game, as observed above, the players’ utility functions are
essentially defined on X, so an (L(®r), M(T"))-game is really just a standard
normal-form game based on I'. As we saw in Section 2.1, this class of games
can also be represented with the completely structureless language . This may
well be sufficient for certain purposes, especially in cases where all we care about
are two or three formulas. However, the structure of an underlying language
L can be a powerful tool for studying the corresponding class of £-games; in
particular, a highly structured underlying language makes it easier to analyze
the much broader class of psychological games.

A psychological game is an extension of a standard normal-form game except
that players’ preferences can depend not only on what strategies are played, but
also on what beliefs are held. While £(®r) is appropriate for reasoning about
strategies, it cannot express anything about beliefs. For this, we use a standard
modal logic of belief [8].



Fix a game form I' = (N, (X;);en). Let Lp(Pr) be the language obtained by
starting with the formulas in ®, then closing off under A, =, and the unary
operators B; for i = 1,...,n, so that if ¢ is a formula, so is B;p. We read B;p

s “player i believes ¢”. We also make use of the abbreviation B; for —B;—,
and read B;p as “player i considers ¢ to be possible”. Intuitively, L5(®Pr) is a
language for reasoning about the beliefs of the players and the strategies being
played.

We give semantics to L (®Pr) using a standard modal logic construction [10]; for
many applications of interest, understanding the (completely standard, although
somewhat technical) details is not necessary. Example 1.1 was ultimately an-
alyzed as an Lp(®Pr)-game, despite the fact that we had not even defined the
syntax of this language at the time, let alone its semantics. Section 3 provides
more illustrations of this point.

A T-structure is a tuple M = (Q, (s;)ien, (PRi)ien) satisfying the following
conditions:

(P1) Q is a nonempty measurable space;
(P2) PR; : Q — A(Q) is measurable;

(P3) {w : PR;(w') = PR;(w)} is measurable and PR;(w)({w’ : PR;(w') =
PRi(w)}) = 1;

(P4) s; + Q@ — X; is such that {w’ : s;(w') = s;(w)} is measurable and

Ri(w)({w" & si(w') = si(w)}) = 1.

The set 2 is called the state space; A(f2) denotes the measurable space of all
probability measures on 2 equipped with the o-algebra generated by all sets of
the form {p : p(E) = 1}, for E C Q measurable. Conditions (P1) and (P2)
set the stage to represent player i’s beliefs at state w € £ using the probability
measure PR;(w) over the state space itself. Condition (P3) says essentially that
players are sure of their own beliefs. The functions s; are called the strategy
functions, assigning to each state a strategy that we think of as what player ¢
is playing at that state. Condition (P4) thus asserts that each player is sure of
his own strategy. These assumptions are standard when representing belief in
a game-theoretic setting [2].

The language L5 (®r) can be interpreted in any I'-structure M via the strategy
functions, which induce a valuation [-]a : Lp(®r) — 2% defined recursively by:

Iplay;, (o) = {we : si(w)=o0;}

[~elm = O\[p]lm

[ A Y] = [elm N [W]u

[Bie]m = {we: PRi(w)([¢]m) =1}

Thus, the Boolean connectives are interpreted classically, and B;p holds at state
w just in case ¢ corresponds to a probability 1 event according to the measure



PR;(w). Tt is easy to show (by induction on the structure of ¢) that each set
[#]ar is measurable, so in particular the definition of [B;¢]as makes sense.

Let Mp(T) consist of all pairs of the form (M,w), where M = (Q,5,PR) is a
I-structure and w € . Given ¢ € Lp(®r), we sometimes write (M,w) = ¢
instead of w € [¢]ar, and say that w satisfies ¢ or ¢ is true at w; we write
M = ¢ and say that ¢ is valid in M if [¢]y = Q. Given F C Lp(Pr), we
write (M,w) = F iffor all p € F, (M,w) |= .

It is not hard to see that when there is more than one player, S(Lp(®r), Mg (T))
is infinite. A utility function u; : S(Lp(®r), Mp(T")) — R can therefore be quite
complicated. We will frequently be interested in representing preferences that
are much simpler. For instance, though the surprise proposal scenario presented
in Example 1.1 can be viewed as an (Lp(®r), Mp(T"))-game, Bob’s utility up
does not depend on any situation as a whole, but rather is determined a small
set of formulas. This motivates the following general definition, identifying a
particularly easy to understand and well-behaved subclass of games.

Fix a language £ and a class of models M for £. A function u : S(£, M) = R
is called finitely specified if there is a finite? set of formulas F C £ and a
function f : F — R such that every situation S € S(£, M) contains exactly one
formula from F, and whenever ¢ € SN F, u(S) = f(¢). In other words, the
value of v depends only on the formulas in F'. Thus, u is finitely specified if and
only if it can be written in the form

a1 if(,DlGS
u(S) = : :
ag if<pk€S,
for some ay,...,ar € Rand ¢1,...,¢r € L.

A language-based game is called finitely specified if each player’s utility function
is. Many games of interest are finitely specified. In a finitely specified game, we
can think of a player’s utility as being a function of the finite set F'; indeed, we
can think of the underlying language as being the structureless “language” F
rather than L.

3 Examples

We now provide a range of examples to exhibit both the simplicity and the ex-
pressive power of the language-based approach. Since we focus on the language
L (®Pr) and the corresponding class of models M p(T"), we write S to abbreviate

S(Lp(@r), Mp(T)).

21f (L, M) is compact (see Section 4.3) then this finiteness condition on F is redundant.
In particular, this holds for (Lg(®r), Mp(T)).



For each S € S and each ¢ € N, note that there is a unique o; € ; such that
play,;(0;) € S; we can think of o; as the strategy that player ¢ is playing in
the situation S. As such, when describing the utility of a situation, it is often
useful to extract this strategy; therefore, we define p; : S — X; implicitly by
the requirement play;(p;(S)) € S. It is easy to check that p; is well-defined.

Example 3.1: Preparing for a roadtrip. Alice has two tasks to accomplish
before embarking on a cross-country roadtrip: she needs to buy a suitcase, and
she needs to buy a car.

Here we sketch a simple decision-theoretic scenario in a language-based frame-
work to illustrate the power of coarseness. In particular, we choose the un-
derlying language in such a way as to capture two well-known “irrationalities”
of consumers. First, consumers often evaluate prices in a discontinuous way,
behaving, for instance, as if the difference between $299 and $300 is more sub-
stantive than the difference between $300 and $301. Second, consumers who
are willing to put themselves out (for example, drive an extra 5 kilometers) to
save $50 on a $300 purchase are often not willing to make the same sacrifice for
the same savings on a $20,000 purchase (see [?]).

Both of the irrationalities described above can be captured by assuming a certain
kind of coarseness, specifically, that the language over which Alice forms prefer-
ences does not describe prices with infinite precision. Consider a language with
primitive propositions of the form p., roughly interpreted as “the price is about
c’, equipped with semantics mapping these propositions to certain intervals
of the real line. For instance, the language might consist of the propositions
D280, P200, and psgp, interpreted respectively as the price ranges [$280, $290),
[$290, $300), and [$300,$310). Any utility function defined over such a lan-
guage cannot distinguish prices that fall into the same interval. Thus, in the
example above, Alice would consider the prices $300 and $301 to be effectively
the same as far as her preferences are concerned. At the borderline between
intervals, however, there is the potential for a “jump”: we might reasonably
model Alice as prefering a situation described by pogg rather than by pggo—in
other words, prefering to spend “about $290” rather than “about $300”.

In this context, a smart retailer would set the price of her product to be at
the upper end of an interval; of course, this assumes that the retailer has an
understanding of the language over which their consumer base forms preferences
(and moreover that each consumer makes use of roughly the same language).
While there is some intuitive reason to think that certain cultural facts (like
the use of a base 10 number system) have an influence in this regard, clearly
these are major assumptions. Extending the language-based framework so as
to capture players who can reason about the language of their opponents is
therefore a promising direction for future research.

The second irrationality discussed above can be captured by assuming that
the underlying language is not only coarse, but is coarser at higher prices. For
example, around the $20,000 mark, we might suppose that the language contains
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only the propositions p19000, P19500, and pPagooo, interpreted respectively as the
price ranges [$19000,$19500), [$19500,$20000), and [$20000, $20500). In this
case, while Alice may prefer a price of $300 to a price of $350, she cannot
prefer a price of $20,000 to a price of $20,050, because that difference cannot
be described in the underlying language.

This kind of analysis has a certain intuitive appeal: the larger the number (or,
more generally, the further removed something is, in space or time or abstrac-
tion), the more you “ballpark” it—the less precise your language is in describing
it. Indeed, psychological experiments have demonstrated that Weber’s law3,
traditionally applied to physical stimuli, also finds purchase in the realm of nu-
merical perception: larger numbers are subjectively harder to discriminate from
one another [17; 20]. This type of example, as well as the observation that it can
be understood as an instance of Weber’s law, is due to Thaler [?]. Our choice
of underlying language represents the phenomenon simply, while exhibiting its
explanatory power.

But is it appropriate to model Alice using the coarse language described above?
Surely she has mastered the basics of the Arabic numeral system, and can per-
fectly well describe the difference between 300 and 301, or between 20,000 and
20,050. How can this be reconciled with the use of coarseness? Intuitively, we
think of Alice as using two languages: there is the (typically quite rich) lan-
guage used to describe the world in general, and the (typically much coarser)
language over which utility is defined—the underlying language. In general,
these two languages may be quite different. There may be, for example, English
words or mathematical expressions that have no correlate in Alice’s underlying
language—there is a mathematical expression for each of the infinitely-many
natural numbers, but this should not entail that every such distinction is faith-
fully rendered in the representation of the world that Alice uses when she makes
decisions.*

The underlying language provides the model of the world that Alice uses when
she has to make a decision and evaluate her preferences; it describes the features
that are salient to her in a decision-making context. Of course, which features
are salient may be context-dependent, and how one identifies the appropriate
language (and semantics) for modeling a given scenario is an interesting and
important question. In the analysis above, for example, where did the intervals
come from? This is far from an idle concern, as the choice of boundaries can
have nontrivial implications. In Alice’s case, although she cannot prefer a price
of $20,000 to a price of $20,050, she can prefer a price of $19,950 to a price
of $20,000. Some might deny that this is a reasonable assumption, arguing

3Weber’s law asserts that the minimum difference between two stimuli necessary for a
subject to discriminate between them is proportional to the magnitude of the stimuli; thus,
larger stimuli require larger differences between them to be perceived.

4Conversely, there may be descriptions in the underlying language that don’t correspond to
anything in, say, English. In a blind taste test, Bob might say that he prefers one type of ice
cream to others, without being able to express verbally what it is about the taste experience
that leads to the preference.
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perhaps that the interval corresponding to paggoo should be centered on $20,000
instead, or denying the existence of sharp boundaries altogether. But even if
sharp boundaries are accommodated, the question of their origin is critical, if
for no other reason than their obvious potential for exploitation.

One natural way of modeling the context-dependence of the underlying language
is to assume that, while the syntax is fixed, the meanings of words can depend on
context. For example, we might think of a typical consumer as reasoning about
prices with a fixed collection of categories (e.g. “free”, “cheap”, “good deal”,
“fair price”, “a bit much”, “expensive”’, and “prohibitive”), but the mapping
from these terms in the underlying language to real cost varies depending on
the shopping context. When buying a car, “cheap” might include prices of
several hundred or even several thousand dollars, but when dining out similar
prices for the entrées could well be considered “prohibitive”. Another familiar
case that seems to typify this pattern is found in the end-of-year assignment
of letter grades to students in a class. Once again the syntax is fixed (A+,
A, A— B+, etc.), but what exactly counts as an A+ is not. In many cases
this is determined on the fly, with instructors essentially eyeballing boundaries
between categories in such a way as to coincide with gaps in the raw scores,
precisely so as to avoid sharp discontinuities in grades. Cases like these are
especially interesting because they give some insight into the mechanics that
govern the determination of the mapping from language to the world. Such a
context-dependent semantics might also help explain the well-known anchoring
effect [?]: the first price an agent is exposed to might tend to be classified
as “reasonable” or “fair”, with all other categories being determined relative
to that initial calibration. Integrating this conception of a variable semantics
into the language-based framework is clearly an important direction for future
research. [

Example 3.2:  The Allais paradox [1]. Consider the two pairs of gambles
described in Table 2. The first pair is a choice between (1a) $1 million for sure,

Gamble 1a Gamble 1b
1 $1 million | .89 $1 million
.1 $5 million

.01 $0
Gamble 2a Gamble 2b
.89 $0 .9 $0

.11 $1 million | .1 $5 million

Table 2: The Allais paradox
versus (1b) a .89 chance of $1 million, a .1 chance of $5 million, and a .01 chance

of nothing. The second is a choice between (2a) a .89 chance of nothing and
a .11 chance of $1 million, versus (2b) a .9 chance of nothing and a .1 chance
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of $5 million. The “paradox” arises from the fact that most people choose (1a)
over (1b), and most people choose (2b) over (2a) [1], but these preferences are
not simultaneously compatible with expected utility maximization.

Coarseness in the language of preference offers a simple and intuitive expla-

nation of this phenomenon, and by essentially the same mechanism at play in

Example 3.1. Let us assume that probability judgements such as “there is a .11

chance of getting $1 million” are represented in a language with only finitely-

many “levels” of likelihood. In particular, suppose the language has only the
b2 113

descriptions “no chance”, “slight chance”, “unlikely”, and their respective oppo-
sites, “certain”, “near certain”, and “likely”, interpreted as in Table 3. Suppose

True likelihood | Description | Approximation
1 certain 1
[.95,1) near certain 975
[.85,.95) likely .9
(.05, .15] unlikely 1
(0,.05] slight chance .025
0 no chance 0

Table 3: Coarse likelihood approximations

further that for the purposes of utility, “expected” values are calculated using
approximations obtained by identifying each “level” of likelihood with its mid-
point; thus, a “slight chance” is approximated as a .025 chance, a “likely” event
as a .9 probability, and so on.

Revisting the gambles associated with the Allais paradox, we see that the round-
ing errors introduced by coarseness change Alice’s evaluation of the gambles
significantly (Table 4). For one thing, probabilities of .89 and .9 are not dis-

Gamble la Gamble 1b
certain  $1 million likely ~ $1 million

unlikely  $5 million
slight chance $0

Gamble 2a Gamble 2b
likely  $0 likely  $0
unlikely ~ $1 million unlikely ~ $5 million

Table 4: The Allais pardox, coarsely described

tinguished at all (nor are .1 and .11), which immediately implies that (2b) is
preferred to (2a), provided u 4 ($5 million) > u4($1 million). On the other hand,
likelihoods of 0 and .01 are not only distinguished by this language, but their
difference is effectively exaggerated. Table 5 shows the result of substituting
the approximations from Table 3 in for the descriptions of Table 4. We can
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Gamble 1a Gamble 1b
1 $1 million | .9 $1 million
.1 $5 million

.025  $0
Gamble 2a Gamble 2b
9 %0 .9 $0

.1 $1 million | .1 $5 million

Table 5: The Allais paradox, coarsely approximated

calculate the revised utility of (1b) to be
.9 - u($1 million) + .1 - u4($5 million) + .025 - u4($0),

and this quantity may well be less than u 4($1 million), depending on the utility
function u 4. For example, if

ua (31 million) = 1
uA (35 million) = 3
ua($0) = —10,

then the utility of gamble (1b) evaluates to .95. In this case, Alice prefers (2b)
to (2a) but also prefers (1a) to (1b).

Rubinstein [?] has offered a closely related analysis of the kind of reasoning that
guides decision making in Allais-type environments. He suggests that agents
may simplify some choice problems by “canceling” certain parameters that are
judged to be sufficiently similar; for instance, the similarity between 0.1 and 0.11
might lead one to view gamble 2 as essentially a choice between $1 million and
$5 million. Clearly this is very much in the same spirit as our analysis; indeed,
Rubinstein goes on to observe that the same lottery may be subject to different
similarity judgements depending on how it is presented. Thus, while he does
not explicitly or formally invoke language as the object of preference (instead he
develops a theory based on similarity relations), certainly much of the insight
inherent in the use of language for the purpose of capturing coarseness effects
is anticipated in his work.

It is worth taking a closer look at the particular type of coarseness we have
employed here. With the exception of giving 0 its own category (an assumption
that might reasonably be viewed as supported by psychological evidence [REFS]),
the other boundaries appear rather arbitrary. Why should the probabilities 0.1
and 0.11 fall into the same category? A different partition could have separated
them; indeed, it seems plausible that if Alice had instead been presented with
gambles involving the probabilities 0.1, 0.101, 0.109, 0.11, and 0.111, then she
may well have categorized 0.1 separately from 0.11. This is reminiscent of the
case of the instructor assigning letter-grades considered in Example 3.1, and once
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again brings to attention the importance of understanding how categories are
chosen—or, in our terms, how expressions in a given syntax are given semantics.

The fact that coarseness plays the pivotal role both in our analysis of the Allais
paradox and also in understanding the behaviours discussed in Example 3.1 is
notable because the domain of coarseness is quite different in these two cases. In
Example 3.1, it is prices that are subject to conflation, whereas in this example
it is degrees of belief. This example also emphasizes an important feature of
language-based games: beliefs and preferences need not be as independent as
they are in the standard framework. Classically, beliefs are relevant to decision-
making only insofar as they determine expected utility; by contrast, in any
language-based game where the underlying language can express beliefs, players
can have preferences about their own beliefs (e.g., Alice can prefer to believe that
her winning $1 million is guaranteed, rather than merely likely, even if in the
second case she also believes there is a chance she will win $5 million). Thus,
coarseness in the underlying language can manifest itself both in traditional
objects of preference, like prices, but also in other areas relevant to decision-
making, like beliefs. The use of language allows us to analyze such disparate
examples as instances of the same general phenomenon. I

Example 3.3: Playing the lottery. Alice buys a lottery ticket, despite the fact
that the purchase is, technically, an expected loss. Moreover, she buys only 1
ticket, not two, and not as many as she can afford.

One possible explanation for why people buy lottery tickets is that they are just
wrong about the odds—they think the chance of winning such a large sum of
money overcomes the cost of the ticket, rendering the transaction an expected
gain. While it is reasonable that with such large and small numbers involved
mistakes might be made, this is on the whole not a convincing account of the
rationale behind playing the lottery. The flaw is very basic: if buying one ticket
were evaluated as an expected gain, then buying two or ten thousand tickets
should be viewed as even better.

In Example 3.2, we saw that coarseness in the underlying language can result
in some differences of likelihood being collapsed, and others exaggerated. These
types of rounding errors can also be employed to explain the allure of playing
the lottery.

Consider a simple lottery in which each ticket costs $1 and provides a 0.00005%
chance to win $1 million, so each ticket in fact yields an expected loss of 50¢. But
suppose also that the lowest non-zero level of likelihood expressible in Alice’s
language of preference, the “slight chance” description, subsumes anything up
to a 0.01% probability, and is evaluated for the purposes of utility calculations
as a 0.005% probability. In this case, the expected value of purchasing a lottery
ticket, which costs $1 and provides a “slight chance” of winning $1 million, jumps
up to a gain of $49. Perhaps more striking, the expected value of purchasing
two lottery tickets, which costs $2 but still provides, as far as the language is
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concerned, a “slight chance” of winning $1 million, is only a gain of $48! Thus,
Alice prefers to buy one ticket rather than none—and rather than two.

Note that this analysis assumes that Alice conceptualizes purchases of more
than one lottery ticket as a single transaction; that is, she considers buying two
tickets to be an act of paying $2 for a 0.0001% chance to win, which, as noted, is
still just a “slight chance” as far as her language of preference is concerned. One
argument for making this assumption is that it allows us to explain with a simple
mechanism widely attested behaviour. But in identifying it as an assumption,
we can also ask when it does not hold.

The answer to this question has economic implications. If Alice buys a lottery
ticket every weekend, we might reasonably assume that she does not lump these
purchases together into one cumulative chance of winning. Rather, she considers
her purchase of a lottery ticket one week to be distinct from her purchase the
previous week. If this conceptual separation of the two purchases were induced
by other means, without the time delay, it could be exploited to get people to
buy more than one lottery ticket at once. Indeed, this tactic is arguably already
in widespread use; for example, the Canadian lottery “Lotto 6/49” offers an
option called “Encore” which, for a small additional fee, allow the purchaser to
essentially play a second, smaller lottery.

Example 3.4: Indignant altruism. Alice and Bob sit down to play a classic
game of prisoner’s dilemma, with one twist: neither wishes to live up to low
expectations. Specifically, if Bob expects the worst of Alice (i.e. expects her
to defect), then Alice, indignant at Bob’s opinion of her, prefers to cooperate.
Likewise for Bob. On the other hand, in the absense of such low expectations
from their opponent, each will revert to their classical preferences.

The standard prisoner’s dilemma is summarized in Table 6:

c d
c| (3,3) | (0,5)
d | (50) | (1,1)

Table 6: The classical prisoner’s dilemma.

Let ua, up denote the two players’ utility functions according to this table,
and let I' denote the game form obtained by throwing away these functions:
I'=({A,B},X4,Xp), where ¥4 = X5 = {c,d}. We wish to define an Lg(®Pr)-
game that captures the given scenario; to do so we must define new utility
functions on S. Informally, if Bob is sure that Alice will defect, then Alice’s
utility for defecting is —1, regardless of what Bob does, and likewise reversing
the roles of Alice and Bob; otherwise, utility is determined exactly as it is
classically.
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Formally, we simply define v/y : S — R by

-1 if play 4(d) € S and
uy(S) = Bp play 4(d) € S
ua(pa(S),ps(S)) otherwise,

and similarly for u/g.

Intuitively, cooperating is rational for Alice if she thinks that Bob is sure she
will defect, since cooperating in this case would yield a minimum utility of 0,
whereas defecting would result in a utility of —1. On the other hand, if Alice
thinks that Bob is not sure that she will defect, then since her utility in this
case is determined classically, it is rational for her to defect, as usual.

This game has much in common with the surprise proposal of Example 1.1:
in both games, the essential element is the desire to surprise another player.
Perhaps unsurprisingly, when players wish to surprise their opponents, Nash
equilibria fail to exist—even mixed strategy equilibria. Although we have not
yet defined Nash equilibrium in our setting, the classical intuition is wholly ap-
plicable: a Nash equilibrium is a state of play where players are happy with their
choice of strategies given accurate beliefs about what their opponents will choose.
But there is a fundamental tension between a state of play where everyone has
accurate beliefs, and one where some player successfully surprises another.

We show formally in Section 4.2 that this game has no Nash equilibrium (Propo-
sition 4.2). On the other hand, players can certainly best-respond to their be-
liefs. In Section 4.3 we provide a natural definition of rationalizability in our
framework, and show that every strategy for the indignant altruist is rational-
izable (Proposition 4.4). I

Example 3.5: The trust game. Alice is handed $2 and given a choice: either
split the money with Bob, or hand him all of it. If she splits the money, the
game is over and they each walk away with $1. If she hands the money to Bob,
it is doubled to $4, and Bob is offered a choice: either share the money equally
with Alice, or keep it all for himself. However, if Bob chooses to keep the money
for himself, then he suffers from guilt to the extent that he let Alice down.

This is a paraphrasing of the “psychological trust game” [4]; we consider it here
as a normal-form game. The monetary payoffs are summarized in Figure 1:
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2,2)

(1,1) (0,4)

Figure 1: Monetary payoffs in the trust game.

Let m 4 and mp denote the monetary utility functions corresponding to Figure 1,
and let I' = ({A, B}, {split, hand}, {keep, share}). To capture Bob’s guilt aversion
using £p(®r)-situations, let

-1 if play(hand, keep) € S
up(S) = and By play g(share) € S
mp(pa(5), pp(S)) otherwise;

Alice’s preferences are simply given by

ua(S) =ma(pa(S),ps(S)).

In other words, Bob feels guilty in those situations where Alice hands him the
money and is sure he will share it, but he doesn’t.> On the other hand, even if
Alice chooses to hand the money over, upg tells us that Bob does not feel guilty
betraying her provided she had some bit of doubt about his action. We show in
Section 4.2 that the only Nash equilibrium in which Alice places any weight at
all on her strategy hand is the pure equilibrium where she plays hand and Bob
plays share (Proposition 4.3).

5A subtle issue arises here regarding the sense in which utility is actually “felt”. Of course,
in a situation where Alice expects Bob to share and he doesn’t, he might not, in fact, feel
guilty, because he might not realize that Alice expected him to share. In general, if Bob’s
utility in a given situation is conceptualized as how happy he actually feels in that situation,
then defining it in terms of something he doesn’t have epistemic access to (like Alice’s beliefs)
is problematic. In fact, this issue arises even in the classical setting: a player may never
actually observe the strategy his opponent plays.

One natural reformulation runs as follows: the utility of an outcome for Bob is how happy
Bob would feel if he knew that was indeed the outcome. While this story seems to do the
job in the classical case, it encounters difficulty in the more general context of language-based
games because there are situations that Bob can never know he is in. For example, any
situation S such that p A =“Bgp € S is, by construction, not a situation Bob can know he is
in. Nonetheless, it makes perfect sense for Bob to prefer such a situation S to some other
one S’ with, say, -p A Bg—p € S (perhaps he prefers to live in world where unicorns in
fact exist though he doesn’t believe it, rather than discover definitive evidence that they are
make-believe).

As is standard, we view utility as a numeric representation of preference, and thinking in
terms of preference rather than happiness helps to clarify this issue. It seems to us perfectly
reasonable that an agent can contemplate different conceivable situations, which are just
descriptions of the world in the language he considers relevant, and assign to them utility
values that reflect his preferences among them.
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A more satisfying account of this game might involve a finer-grained represen-
tation of Alice’s expectations. To model this, we must enrich the underlying
language. Given a subset © C [0,1], let £E(®r) be the language obtained by
starting with the formulas play,(o;) € ®r and closing off under A, -, and B?,
where 6 € ©. We think of the elements of © as indicating “thresholds” or “lev-
els” of belief; the higher the number, the stronger the belief. Semantics for this
language are given by augmenting the valuation function as follows:

[Bi¢] = {w € Q : PRi(w)([¥]) > 6}.

Thus, the formula Bf © is interpreted as saying “player ¢ considers the likelihood

of ¢ to be at least 6”. The language L5 (®Pr) can be viewed as the special case
where © = {1}.

Consider, for example, the language corresponding to the set of thresholds © =
{1/5,2/5,3/5,4/5,1}. A graded version of Bob’s guilt aversion can then be
captured in an £9(®r)-game by defining u/y : S(LS(®r)) — R by

4 — K if play(hand, keep) € S
u(S) = and Bil/5 play 5 (share) € S
m5(pa(S), p(S)) otherwise,

where
k' = max{k : Bz/s play g (share) € S}.

As before, Bob feels guilty if he keeps the money that Alice handed to him pro-
vided she expected him to share it, but in this case “expected” means “thought
there was at least a 20% chance of”, and moreover, how guilty Bob feels increases
in several discrete increments as Alice’s expectations grow stronger.

When © = [0, 1], we can define a utility function to capture what might be
thought of as “continuous” guilt; that is, guilt that depends in a continuous

way on Alice’s beliefs: define u/s : S(ngl] (®r)) — R by

Wh(S) = 4 — 50 if play(hand, keep) € S
B mp(pa(S),ps(S)) otherwise,
where
0" = sup{# : BY playy(share) € S}.

In psychological game theory, utility functions depend on beliefs as represented
in this continuous manner. We have seen, however, that there are conceptual
and theoretical advantages to modeling categorical beliefs, where © is finite.
While it is certainly possible to define a utility function in a psychological game
that mimics such categoricity (a step function, for example), such a function
is not continuous and therefore not subsumed by the equilibrium analyses that
are provided in that literature. Language-based games offer new tools for equi-
librium analyses that are able to handle such discontinuities naturally. I
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Example 3.6: Pay raise. Bob has been voted employee of the month at his
summer job, an honour that comes with a slight increase (up to $1) in his per-
hour salary, at the discretion of his boss, Alice. Bob’s happiness is determined
in part by the raw value of the bump he receives in his wages, and in part by
the sense of gain or loss he feels by comparing the increase Alice grants him
with the minimum increase he expected to get. Alice, for her part, wants Bob
to be happy, but this desire is balanced by a desire to save company money.

As usual, we first fix a game form that captures the players and their available
strategies. Let I' = ({A, B}, ¥4, {-}), where ¥4 = {so, $1,-.., 8100} and s rep-
resents an increase of k cents to Bob’s per-hour salary (Bob has no choice to
make, so his strategy set is a singleton). Notice that in this game Bob’s prefer-
ences depend on his own beliefs rather than the beliefs of his opponent. Broadly
speaking, this is an example of reference-dependent preferences: Bob’s utility
is determined in part by comparing the actual outcome of the game to some
“reference level”—in this case, the minimum expected raise. This game also has
much in common with a scenario described by Battigalli and Duwfenberg [4], in
which a player Abi wishes to tip her taxi driver exactly as much as he expects
to be tipped, but no more.

Define up : S — R by setting
up(S) = ks + (ks — rs),
where kg is the unique integer such that play 4(sx) € S, and
rg = min{r’ : Bp play 4(s,) € S}.

Observe that rg is completely determined by Bob’s beliefs: it is the lowest raise
he considers it possible that Alice will grant him. We think of the first summand
ks as representing Bob’s happiness on account of receiving a raise of kg cents
per hour, while the second summand kg — rg represents his sense of gain or loss
depending on how reality compares to his lowest expectations.

Note that the value of rg (and kg) is encoded in S via a finite formula; in other
words, we could have written the definition of ug in a fully expanded form where
each utility value is specified by the presence of a formula in S. For instance,
the combination kg = 5, rg = 2 corresponds to the formula

play 4(s5) A B play 4(s3) A ~(Bp play 4(s0) V Bp play 4 (s1))
being in S; this combination leads to S having a utility of 8.

Of course, it is just as easy to replace the minimum with the maximum in the
above definition (perhaps Bob feels entitled to the most he considers it possible
he might get), or even to define the reference level as some more complicated
function of Bob’s beliefs. The quantity kg — rg representing Bob’s sense of gain
or loss is also easy to manipulate. For instance, given «, 8 € R, we might define
a function f: R — R by

ar ifz>0
f<$)_{ Br ifx <0,
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and set
up(S) = ks + f(ks —rs).

Choosing, say, @ = 1 and § > 1 results in Bob’s utility v/ incorporating loss
aversion: Bob is more upset by a relative loss than he is elated by a same-sized
relative gain. These kinds of issues are discussed by Koszegi and Rabin [13]; in
Section 5 we analyze a central example from this paper in detail.

Turning now to Alice’s preferences, we are faced with a host of modeling choices.
Perhaps Alice wishes to grant Bob the smallest salary increase he expects but
nothing more. We can capture this by defining u4 : S — R by setting

UA(S) = 7|k5 - Ts|.

Or perhaps we wish to represent Alice as feeling some fixed sense of guilt if
she undershoots, while her disutility for overshooting depends on whether she
merely exceeded Bob’s lowest expectations, or in fact exceeded even his highest
expectations:

—25 if ks <Trg
UIA(S): rs — ks ifrg <ks <R
rs — Rs +2(Rs — ks) if ks > Rg,

where ~
Rg :=max{R' : Bpplay,(sr') € S}.

Or perhaps Alice’s model of Bob’s happiness is sophisticated enough to include
his sensations of gain and loss, so that, for example,

w4 (S) = up(S) — dks,

where ¢ is some scaling factor. The framework is rich enough to represent many
possibilities. 1

Example 3.7: A deeply surprising proposal. Bob hopes to propose to Alice,
but she wants it to be a surprise. He knows that she would be upset if it were
not a surprise, so he would prefer not to propose if Alice so much as suspects it.
Worse (for Bob), even if Alice does not suspect a proposal, if she suspects that
Bob thinks she does, then she will also be upset, since in this case a proposal
would indicate Bob’s willingness to disappoint her. Of course, like the giant
tortoise on whose back the world rests, this reasoning continues “all the way
down” ...

This example is adapted from a similar example given by Geanakoplos et al. [9];
in their story, the man is considering giving a gift of flowers, but rather than
hoping to surprise the recipient, his goal is the exact opposite: to get her flowers
just in case she is expecting them. Of course, the notion of “expectation”
employed, both in their example and ours, is quite a bit more complicated than
the usual sense of the word, involving arbitrarily deeply nested beliefs.
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Nonetheless, it is relatively painless to represent Bob’s preferences in the lan-
guage Lp(®r), where I' = ({A, B},{-}, {p,q}) and p and ¢ stand for Bob’s
strategies of proposing and not proposing, respectively (Alice has no decision to
make, so her strategy set is a singleton). We use B Ap as our gloss for Alice “so
much as suspecting” a proposal. Define ug : S — R by

1 if playg(p) € S and

~

(¥k € N)[Ba(BpBa)*play5(p) ¢ 5]
up(S) =4 1 if playg(q) € S and

(3k € N)[Ba(BpBa)*play 5 (p) € S]
0 otherwise,

where (EBEA)’“ is an abbreviation for EBEA . --EBEA (k times). In other
words, proposing yields a higher utility for Bob in the situation S if and only
if none of the formulas in the infinite family {B(BpBa)*playg(p) : k € N}
occur in S.

As in Examples 1.1 and 3.4, and in general when a player desires to surprise
an opponent, it is not difficult to convince oneself informally that this game
admits no Nash equilibrium. But in this case the infinitary nature of Bob’s
desire to “surprise” Alice has an even stronger effect: as we show in Section 4.3,
no strategy for Bob is even rationalizable (Proposition 4.6). Il

Example 3.8: Returning a library book. Alice has learned that a book she
borrowed from the library is due back tomorrow. As long as she returns it by
tomorrow, she’ll avoid a late fee; returning it today, however, is mildly inconve-
nient.

Here we make use of an extremely simple example to illustrate how to model
an ostensibly dynamic scenario in a static framework by employing a suitable
underlying language. The idea is straightforward: Alice has a choice to make
today, but how she feels about it depends on what she might do tomorrow.
Specifically, if she returns the library book tomorrow, then she has no reason to
feel bad about not returning it today. Since the future has yet to be determined,
we model Alice’s preferences as depending on what action she takes in the
present together with what she expects to do in the future.

Let T' = (A, {return,wait}) be a game form representing Alice’s two current
options, and set ® = ®p U {tomorrow}; thus @ is the usual set of primi-
tive propositions (representing strategies) together with a single new addition,
tomorrow, read “Alice will return the book tomorrow”.

An Lp(®1)-game allows us to specify Alice’s utility in a manner consistent with
the intuition given above. In particular, we can define v : S(Lp(®1)) — R by

—1 if play 4(return) € S
ua(S)=4¢ 1 if play 4(wait) A Batomorrow € S
—5 otherwise,
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so Alice prefers to wait if she expects to return the book tomorrow, and to
return the book today otherwise.

In this example, Alice’s utility depends on her beliefs, as it does in psychological
game theory. Unlike psychological game theory, however, her utility depends
on her beliefs about features of the world aside from which strategies are being
played. This is a natural extension of the psychological framework in a language-
based setting.

We might want to expand the set of actions by providing Alice with ways to
influence her beliefs about tomorrow. For example, perhaps a third strategy is
available to her, remind, describing a state of affairs where she keeps the book
but places it on top of her keys, thus decreasing the likelihood that she will
forget to take it when she leaves the next day. More generally, this simple
framework allows us to model commitment devices [7]: we can represent play-
ers who rationally choose to perform certain actions (like buying a year-long
gym membership, or throwing away their “fat jeans”) not because these actions
benefit them immediately, but because they make it subjectively more likely
that the player will perform certain other desirable actions in the future (like
going to the gym regularly, or sticking with a diet) that might otherwise be
neglected. In a similar manner, we can succinctly capture procrastination: if,
for example, you believe that you will quit smoking tomorrow, then the health
benefits of quitting today instead might seem negligible—so negligible, in fact,
that quitting immediately may seem pointless, even foolish. Of course, believing
you will do something tomorrow is not the same thing as actually doing it when
tomorrow comes, thus certain tasks may be delayed repeatedly. Il

4 Solution Concepts

A number of important concepts from classical game theory, such as Nash
equilibrium and rationalizability, have been characterized epistemically, using
I-structures. In Lp(®Pr)-games (or, more generally, in language-based games
where the language includes belief), we can use these epistemic characterizations
to define the corresponding solution concepts. This yields natural definitions
that generalize those of classical game theory.

4.1 Rationality

A player i is called rational if he is best-responding to his beliefs: the strategy
o; he is using must yield an expected utility that is at least as high as any
other strategy o) he could play. In classical game theory, the meaning of this
statement is quite clear: player ¢ has beliefs about the strategies his opponents
are using in the form of a probability distribution 7 on ¥_;, and the expected
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utility of o} is defined to be

Z wi(ol,0-;) - m(o_;).

o_;E€EX

This definition encodes an important assumption. In order to determine the
strategy that maximizes expected utility, players must consider what their ex-
pected utility would be if they were to play a different strategy. This, in turn,
requires them to have beliefs about what other players would do if they were
to play a different strategy. The standard assumption is that a player’s beliefs
about what other players are doing do not change, regardless of which strat-
egy he is considering. This assumption is easy to overlook, and has received
relatively little attention in the literature (but see [11; 21]); however, it is far
from innocuous. It rules out, for example, the possibility that players can read
each others’ body language and thereby glean some information about their
opponents’ intended strategies.

These issues become much more significant in the context of language-based
games. Even if we assume that a player’s beliefs about other players’ strategies
do not change when she contemplates switching to a different strategy, what
about her other beliefs? For instance, in Example 3.8, if S is a situation where
Alice plays return, what would happen to her beliefs regarding tomorrow if she
were to play wait? Should they stay the same? That is far from clear. It seems
reasonable to expect that Alice’s choice of action should affect her beliefs about
when she will return the library book. But answering this question is critical in
order to decide if playing wait has higher expected utility than playing return.

In general, it seems that determining what a player’s expected utility would be
if she were to switch strategies requires more information regarding counterfac-
tuals than is given by a I'-structure. However, when we restrict our attention
to the language Lp(Pr), we can make precise the intuition that a player’s be-
liefs about other players’ beliefs and strategies remains constant when she con-
templates switching strategies. This gives us a general procedure for defining
rationality in £p(®r)-games.

A formula ¢ € Lp(®Pr) is i-independent if every occurrence of a subformula
of the form play;(o;) in ¢ falls within the scope of some B;, j # i. Intuitively,
an i-independent formula describes a proposition that is independent of player
1’s choice of strategy, such as another player’s strategy, another player’s beliefs,
or even player i’s beliefs about the other players. Given S € S, set

p—i(S) ={p €S : ¢is i-independent}.6

Let S_; denote the image of S under p_;. Elements of S_; are called i-
situations; intuitively, they are complete descriptions of states of affairs that

6 As (quite correctly) pointed out by an anonymous reviewer, this notation is not standard,
since p_; is not a profile of functions of the type p;. Nonetheless, we feel it is appropriate in
the sense that, while p; extracts from a given situation player i’s strategy, p_; extracts “all
the rest” (cf. Proposition 4.1), the crucial difference here being that this includes far more
than just the strategies of the other players.
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are out of player i’s control. Informally, an i-situation S_; € S_; determines
everything about the world (expressible in the language) except what strategy
player i is employing. This is made precise in Proposition 4.1. Recall that p;(S)
denotes the (unique) strategy that i plays in S, so play,(p;(S)) € S.

Proposition 4.1: For each i € N, the map p; : S — X; X S_; defined by
5(S) = (p:(5), p_4(8)) is a bijection.

This identification of S with the set of pairs ¥; x S_; provides a well-defined
notion of what it means to alter player i’s strategy in a situation S “without
changing anything else”. By an abuse of notation, we write u;(c;, S_;) to denote
u;(S) where S is the unique situation satisfying p;(S) = (0;,S—;). Observe that
for each state w €  and each ¢ € N, there is a unique set S_; € S_; such
that w = S_;. We denote this set by S_;(M,w), or just S_;(w) when the I'-
structure is clear from context. Then the utility functions u; induce functions
Ui : 25 X £ — R defined by

ﬁi(di,w) = Ui(O'i, S_Z(w))

As in the classical case, we can view the quantity @;(o;,w) as the utility that
player ¢ would have if he were to play o; at state w. It is easy to see that this
generalizes the classical approach in the sense that it agrees with the classical
definition when the utility functions u; depend only on the outcome.

For each i € N and o; € %;, provided that 4;(o;, - ) is measurable, we can define
the expected utility of playing o; at w by
EUZ'(UZ',OJ) = / ﬂi(ai,w') d’PRi(L‘J),

Q

when € is finite, this reduces to
EUi(oi,w) =Y _ idi(0,0) - PR;(w) ().
w'eN
We can then define BR; : Q1 — 2% by
BRZ(LU) = {O’i IS (VU; S Ez)[EUZ(U“w) > EUAO’;,W)]},

thus BR;(w) is the set of best-reponses of player i to his beliefs at w, that is,
the set of strategies that maximize his expected utility.

With this apparatus in place, we expand the underlying language to incorporate
rationality as a formal primitive. Note that we are not replacing L5(®r) as the
underlying language of the game over which the utility functions are defined,
but simply defining a richer language that will be useful for analyzing the game.
Let

O .= &p U{RAT; : i € N},
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where we read RAT; as “player i is rational”. We also employ the syntactic
abbreviation RAT = RAT, A --- A RAT,,. Intuitively, £5(®}*") allows us to
reason about whether or not players are being rational with respect to their
beliefs and preferences, in the sense of expected utility maximization. Formally,
we extend the valuation function [-Jas to Lp(®F*) by setting

[RATJpr = {weQ : si(w) € BRi(w)}.

Thus RAT; holds at state w just in case the strategy that player ¢ is playing at
that state, s;(w), is a best-response to his beliefs.”

4.2 Nash equilibrium

Having formalized rationality, we are in a position to draw on work that char-
acterizes solutions concepts in terms of RAT.

Let I' = (N, (X;)ien) be a game form in which each set ¥; is finite, and let
A(X;) denote the set of all probability measures on ¥;. Elements of A(X;) are
the mixed strategies of player i. Given a mized strategy profile

= (:u’la"'nu’n) GA(El) X XA(En)v

we define a I'-structure M, that, in a sense made precise below, captures “equi-
librium play” of p and can be used to determine whether or not p constitutes a
Nash equilibrium.

Set
Q= supp(p1) X -+ X supp(pn) € B X -+ X B

For each 0,0’ € Q,,, let

PRﬂ’i(J)(UI) = { H];ﬁz /‘l‘j(o—]) if o; = O"E

0 otherwise.

Let M, = (Qu,idQ“,P_’l’Q,L). It is easy to check that M, is a I'-structure; call
it the characteristic I'-structure for ;. At each state in M,,, each player
1 is sure of his own strategy and has uncertainty about the strategies of his
opponents; however, this uncertainty takes the form of a probability distribution

"There is a subtlety here. Normally, we define the valuation function [¢]as (or, equivalently,
=) by induction on the structure of ¢. But here it is important that we define [RAT ;] as after
we have defined [¢] ps for all formulas in £5(®r). The semantics of RAT; implicitly assumes
this, since it depends on the function 4;, which in turn depends on the £p(®r)-formulas that
are satisfied at each state. Moreover, had we added the formulas RAT; to the underlying
language there would have been circularity in the semantics: to define rationality, we would
need to define best response, while to define best response, we would need to define the utility
function on situations that included formulas that talk about rationality. Nevertheless, it
does not seem so unreasonable to have preferences that depend on rationality. For example,
a player might prefer to have others believe that he is irrational, and therefore might play an
arguably incredible threat. We defer a discussion of these issues to future work.
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weighted according to u_;, so in effect each player i correctly ascribes the mixed
strategy p; to each of his opponents j # i. It is well known (and easy to
show) that a mixed strategy profile p is a Nash equilibrium in the classical
sense if and only if each player is rational (i.e. maximizing expected utility)
at every state in the characteristic I'-structure for p. Accordingly, we define a
Nash equilibrium (in an £5(®r)-game) to be a mixed strategy profile p such
that M, = RAT. It is immediate that this definition generalizes the classical
definition of Nash equilibrium.

We note that there are other epistemic characterizations of Nash equilibrium
besides the one presented here (see, e.g., [3], which focuses on the role of a
common prior and common knowledge of “conjectures”). While in the classical
setting they all generate equivalent solution concepts, this may not be the case
in our more general model. We believe that investigating the solution concepts
that arise by teasing apart such classically equivalent notions is an interesting
and promising direction for future research.

In contrast to the classical setting, Nash equilibria are not guaranteed to exist
in general; indeed, this is the case for the indignant altruism game of Example
3.4.

Proposition 4.2: There is no Nash equilibrium in the indignant altruism game.

Proof: We must show that for every mixed strategy profile

p=(pa,pp) € A({c,d}) x A({c,d}),

the corresponding characteristic I'-structure M,, = RAT.

Suppose first that pza(c) > 0. Then M,, = =Bp play 4(d), which implies that Al-
ice’s utility at every state in M, coincides with the classical prisoner’s dilemma,
so she is not rational at any state where she cooperates. Since, by definition,
M,, contains a state where Alice cooperates, we conclude that M, = RATy, so
w1 cannot be a Nash equilibrium.

Suppose instead that pa(c) = 0. Then M, = Bp play 4(d), and so Alice, being
sure of this, is not rational at any state where she defects, since by definition
she is guaranteed a utility of —1 in that case. By definition, M, contains a state
where Alice defects (in fact, Alice defects in every state), so we can conclude as
above that M, = RAT 4, which means that p cannot be a Nash equilibrium. Il

Why does Nash equilibrium not exist in this example? Roughly speaking, the
utility functions in this game exhibit a kind of “discontinuity”: the utility of
defecting is —1 precisely when your opponent is 100% certain that you will
defect. However, as soon as this probability dips below 100%, no matter how
small the drop, the utility of defecting jumps up to at least 1.

Broadly speaking, this issue arises in L£-games whenever L expresses a coarse-
grained notion of belief, such as the underlying language in this example, which
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only contains belief modalities representing 100% certainty. However, since
coarseness is a central feature we wish to model, the lack of existence of Nash
equilibria in general might be viewed as a problem with the notion of Nash
equilibrium itself, rather than a defect of the underlying language. Indeed, the
requirements that a mixed strategy profile must satisfy in order to qualify as a
Nash equilibrium are quite stringent: essentially, each player must evaluate his
choice of strategy subject to the condition that his choice is common knowledge!
As we have seen, this condition is not compatible with rationality when a player’s
preference is to do something unexpected.

More generally, this tension arises with any solution concept that requires play-
ers to have common knowledge of the mixed strategies being played (the “conjec-
tures”, in the terminology of Aumann and Brandenburger [3]). In fact, Proposi-
tion 4.2 relies only on second-order knowledge of the strategies: whenever Alice
knows that Bob knows her play, she is unhappy. In particular, any alternative
epistemic characterization of Nash equilibrium that requires such knowledge is
subject to the same non-existence result. Furthermore, we can use the same
ideas to show that there is no correlated equilibrium [2] in the indignant altru-
ism game either (once we extend correlated equilibrium to our setting); this
follows from the fact that in a correlated equilibrium players must still have
correct beliefs about the strategies their opponents might play, and these beliefs
are common knowledge.

All this is not to say that Nash equilibrium is a useless concept in this setting, but
merely that we should not expect a general existence theorem in the context of
belief-dependent preferences with coarse beliefs. For an example of an Lp(®r)-
game in which Nash equilibria exist and are informative, we examine again the
“trust game” of Example 3.5.

Proposition 4.3: In the trust game, the only Nash equilibrium in which Alice
places positive weight on hand is the pure equilibrium (hand, share).

Proof: Suppose that

w=(pa,up) € A({split,hand}) x A({keep, share})

is a Nash equilibrium with p4(hand) > 0. Then there is some state w € M,
at which Alice is rationally playing hand. Since Alice can rationally play hand
only if she believes with sufficient probability that Bob is playing share, there
must be some state w’ € M, at which Bob is playing share. Moreover, since by
assumption M, = RAT, we know that at w’ Bob is rationally playing share. But
Bob can rationally play share only if he believes with sufficient probability that
B play g(share) holds. However, by definition of M,,, if B4 play g(share) holds
at any state, then it must hold at every state because in this case pp(share) = 1,
on account of the fact that in a Nash equilibrium players’ beliefs about the
strategies of their opponents are always correct.
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It is easy to see that when pp(share) = 1, the only rational play for Alice in M,
is hand, and that when 4 (hand) = pp(share) = 1, we have M, = RAT. This
establishes the desired result. I

4.3 Rationalizability

In this section, we define rationalizability in language-based games in the same
spirit as we defined Nash equilibrium in Section 4.2: epistemically. As shown by
Tan and Werlang [22] and Brandenburger and Dekel [6], common belief of ratio-
nality characterizes rationalizable strategies. Thus, we define rationalizability
that way here.

Let Lop(P[™) be the language generated by starting with the formulas in ®r
and closing off under A, —, the unary operators B;, i = 1,...,n, and CB. We
read CBy as “there is common belief of ¢”. Extend []ar to Lop(Pf) by
setting

[CBelm ﬂ [EB* o],

where

EBy
EBFy

BipA--- A By, and
EB(EB*1yp).

For convenience, we stipulate that EB% = . We read EBp as “everyone
believes ¢”. Thus, intuitively, C'Bp holds precisely when everyone believes ¢,
everyone believes that everyone believes ¢, and so on. We define a strategy
0; € ¥; to be rationalizable (in an £g(®r)-game) if the formula play;(o;) A
CB(RAT) is satisfiable in some I'-structure.

Although there are no Nash equilibria in the indignant altruism game, as we
now show, every strategy is rationalizable.

Proposition 4.4: FEvery strategy in the indignant altruism game is rationaliz-

able.

Proof: Consider the I'-structure in Figure 2.
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(c,d) —B) (d,d)
A
A A
Y
B

(c,c) [ €&—— (d,c)

Figure 2: A I'-structure for indignant altruism.

The valuations of the primitive propositions at each of the four states are labeled
in the obvious way. Arrows labeled i based at state w should be interpreted as
pointing to all and only those states w’ such that PR;(w)(w’) > 0 (in particular,
in this example, every probability measure assigns probability 1 to some single
state).

As discussed in Example 3.4, it is rational to cooperate in this game if you believe
that your opponent believes that you will defect, and it is rational to defect if
you believe that your opponent believes you will cooperate. Given this, it is not
difficult to check that RAT holds at each state of this I'-structure; therefore, so
does CB(RAT). Thus, by definition, every strategy is rationalizable. il

Does every language-based game admit a rationalizable strategy? Every classi-
cal game does. This follows from the fact that every strategy in a Nash equi-
librium is rationalizable, together with Nash’s theorem that every (finite) game
has a Nash equilibrium (cf. [19]). In the language-based setting, while it is im-
mediate that every strategy in a Nash equilibrium is rationalizable, since Nash
equilibria do not always exist, we cannot appeal to this argument.

In the classical setting, the existence of rationalizable strategies can also be
proved by defining a certain iterative deletion procedure and showing that it
always terminates in a nonempty set of strategy profiles, and that these pro-
files are precisely the rationalizable ones. We provide a natural condition that
guarantees that this type of approach also works for language-based games.
Moreover, we show by example that when this condition does not hold, the
existence of rationalizable strategies is not guaranteed.

Perhaps the most straightforward kind of deletion procedure one might propose
in our setting works roughly as follows: consider the set of all states in all
I-structures. Mark those states that fail to satisfy RAT. Next, mark those
states w that include an already-marked state in the support of one of the
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player’s probability measures PR;(w). These are the states that fail to satisfy
EB(RAT). Tterating this process, it is not difficult to see that the states marked
at the kth step are those that fail to satisfy EB*(RAT). Thus, the only states
that are never marked are those that satisfy CB(RAT). Moreover, the following
lemma (which will play an important role later) implies that at each finite stage
of this procedure, we are left with a nonempty set of unmarked states.

Lemma 4.5: EB*(RAT) is satisfiable for all k € N.

Unfortunately, it is not true in general that this procedure always terminates
after a finite number of iterations, nor is it clear how to go about showing
that any states remain unmarked in the limit, without already knowing that
CB(RAT) is satisfiable. The problem here seems to be the unwieldy nature
of “the set of all states in all I'-structures”. We therefore work with what is
essentially a projection of this set: the set of all situations.

Given any language £, we can topologize S(£) by taking as basic open sets
the collection {U, : ¢ € L}, where U, := {S € S(L) : ¢ € S}. Thus, two
situations are in the same open set Uy, just in case they both contain the formula
(; intuitively, two situations are “close” if they have many formulas in common.

Given a set of formulas F' and a formula ¢, we write F' | ¢, and say that
F entails ¢, if every state that satisfies F' also satisfies ; in other words, F'
entails ¢ when F'U {—p} is not satisfiable. A logic is said to be compact if,
whenever F' = ¢, there is some finite subset F/ C F such that F' |= ¢.8

It is straightforward to check that S(L) is compact (as a topological space)
just in case L is compact (as a logic). Furthermore, it is well-known that the
KD45 belief logic is compact [5]. Unfortunately, compactness is not necessarily
preserved when we augment the logic with primitive propositions RAT; as in
Section 4.1—a player may fail to be rational for an “infinitary” reason. Take,
for instance, the deeply surprising proposal of Example 3.7. It is not hard to
see that

{play 5(q)} U{Bs—Ba(BsBa)"play5(p) : k € N} £ ~RAT.

However, no finite subset of this collection is sufficient to entail Bob’s irrational-
ity: there will always be some k so high that, should Alice “expect” a proposal
at this kth order of “expectation”, Bob is indeed rational not to propose. Games
with this type of infinitary structure can fail to have rationalizable strategies.

Proposition 4.6: The deeply surprising proposal game has no rationalizable
strategies.

Proof: Fix a I'-structure M = (€, (s;)ien, (PR:)ien) and suppose for con-
tradiction that w € Q is such that w = CB(RAT). Let “expect®” denote the

8Equivalently, for every set of formulas F', F is satisfiable if and only if every finite subset
of F' is satisfiable.
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infinitary notion of expectation at play in this example, and consider first the
case where Alice does not expect” a proposal at state w: that is, for all k£ € N,
w = ~Ba(BpBa)*playz(p). Then, for all k € N, w |= Ba(BpBa)*—play 5 (p);
taking k = 0, it follows that PR4(w)([-playz(p)]a) = 1. Moreover, since
CB(RAT) holds at w, we know in fact that PR a(w)([-playg(p) ARAT g]m) =
1. But if Bob is rationally not proposing at a state w’, then he must at least
consider it possible that Alice expects® a proposal. That is, for each W' e
[=playz(p) A RAT 5] as, there is a k such that ' = Bg(Ba(BpBa)*playz(p)).
Thus, PRA(w)(Uz":O[[(EBBA)kH]]M) = 1. Since PR 4(w) is countably additive,
it follows that there is a k such that PR (w)([(BgBa)* ™ playg(p)]ar) > 0.
Hence, w EA(EBEA)"“‘*‘1playB(p)7 contradicting our original assumption.
Thus we have shown that any state where CB(RAT) holds is a state where
Alice expects* a proposal.

So suppose now that Alice expects* a proposal at w. It follows that there exists
some w’ €  with o’ = playg(p) A CB(RAT). But if Bob is rationally playing
p at w’, he must consider it possible that Alice doesn’t expect* it; from this it
follows that there exists a state w” € Q with w” = CB(RAT) but where Alice
doesn’t expect™ a proposal, which we have seen is impossible.

This completes the argument: CB(RAT) is not satisfiable. It is worth noting
that this argument fails if we replace “expects™” with /‘\‘expectSSK ” where this
latter term is interpreted to mean (Vk < K)[~Ba(BgBa)*playg(p)].

We now provide a condition that guarantees the existence of rationalizable
strategies:

(CR) For all S € S, if S |= ~RAT then there is a
finite subset F' C S such that F' = -RAT.

Theorem 4.7: (CR) implies that rationalizable strategies exist.

We think of S = —RAT as saying that the situation S is not compatible with
rationality: there is no state satisfying S at which RAT; holds for each player
i. Property (CR) then guarantees that there is some “finite witness” F C S to
this fact. In other words, given any situation not compatible with rationality,
there is a finite description of that situation that ensures this incompatibility.
Note that the deeply surprising proposal game fails to satisfy (CR).

How stringent of a requirement is the condition (CR)? A partial answer to this
question is given by the following proposition.

Proposition 4.8: Every finitely-specified Lp(®Pr)-game satisfies (CR).

Corollary 4.9: Every finitely-specified Lg(Pr)-game has a rationalizable strat-
eqy.
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Since we expect to encounter finitely-specified games most often in practice, this
suggests that the games we are likely to encounter will indeed have rationalizable
strategies.

5 Case Study: Shopping for Shoes

In this section we take an in-depth look at an example that Koészegi and Rabin
[13] (henceforth KR) analyze in detail: shopping for shoes. KR apply their
theory of reference-dependent preferences to study a typical consumer’s decision-
making process, illustrating several insights and predictions of their formalism
along the way. We do the same, modeling the interaction as an £p(®r)-game
and comparing this approach to that of KR. The development in this section
can easily be generalized to more a refined language such as £ (®r); however,
we choose to work with a minimal language in order to make clear the surprising
richness that even the coarsest representation of belief can exhibit.

5.1 Setup

The game form I' = ({C, R}, X¢,XR) consists of two players: a consumer C
and a retailer R. As we are interested only in the consumer’s decisions and
motivations, we model the retailer’s preferences with a constant utility function;
in essence, R plays the role of “the environment”.

Let X be a set of non-negative real numbers, the prices; p € X r represents the
retailer setting the price of a pair shoes to be p units. The consumer’s choice
is essentially whether or not to buy the given pair of shoes. However, since we
model play as simultaneous, and whether or not C' decides to buy might depend
on what R sets the price at, the strategies available to C should reflect this. Let
Yc be a set of real numbers, the thresholds; t € ¢ represents the threshold
cost at which C is no longer willing to buy the shoes. An outcome of this game
is therefore a threshold-price pair (¢,p) € 3; intuitively, the shoes are purchased
for price p if and only if ¢t > p.

The consumer’s utility depends on the outcome of the game together with a
“reference level”. A reference level is like an imaginary outcome that the actual
outcome of the game is compared to, thereby generating sensations of gain or
loss. Roughly speaking, KR interpret the reference level as being determined
by a player’s expectations, that is, her (probabilistic) beliefs about outcomes.
Formally, they allow for stochastic reference levels given by probability measures
on the set of outcomes; sensations of gain or loss with respect to stochastic
reference levels are calculated by integrating with respect to these probability
measures. By contrast, in our framework, beliefs can affect utility only insofar
as they can be expressed in the underlying language. The coarseness of the
language L5(Pr) is therefore a departure from KR’s approach; nonetheless, we
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will see that many of their insights also arise in our framework in a coarse setting
(and, of course, we can reproduce their results with a richer language).

To clarify our definition of utility as well as to conform to the exposition given
by KR as closely as possible, we begin by defining some auxiliary functions.
Following KR, we think of the outcome of the game as far as utility is concerned
as being divided into two dimensions, the first tracking the money spent, and
the second tracking the product obtained. As a separate matter, we also think
of utility itself as coming in two components: consumption utility, which is akin
to the usual notion in classical game theory depending solely on the outcome,
and gain-loss utility, the component that depends on the reference level.

The two dimensions of consumption utility are given by functions m; : ¥ — R
defined by

—p ifp<t
ml(t’p):{ 0 ifp>t

and ¢
1 ifp<t
mz(t’p):{ 0 ifp>t.

As KR do, we assume additive separability of consumption utility, so the function
m = mq + mo gives C’s total consumption utility. This function captures the
intuition that, when the price of the shoes is below the threshold for purchase,
C buys the shoes and therefore gets a total consumption utility of 1 — p: a sum
of the “intrinsic” value of the shoes to her (normalized to 1), and the loss of
the money she paid for them (—p). Otherwise, C' neither spends any money nor
gets any shoes, so her utility is 0.

Next we define functions representing the two corresponding dimensions of gain-
loss utility, n; : 2 — R, by

ni(t,pls,q) = p(mi(t,p) —mi(s,q)),

where ¢ : R — R is a fixed function that we discuss shortly. The value
n;(t,p|s,q) should be thought of as the gain-loss utility (in dimension ) of
the outcome (¢, p) given the reference level (s,q). Furthermore, as KR do, we
assume that gain-loss utility is a function of the difference between the con-
sumption utility of the actual outcome, m;(t, p), and the consumption utility of
the reference level, m;(s, q). Following KR, for the purposes of this example we

let ;
oz x>0
M(I){)\nac ifx <0,

where 7 < 0 and A > 1. Thus, A implements loss-aversion by ensuring that
any sense of loss is A-times greater than the positive feeling associated with a
corresponding gain.

As with consumption utility, we assume that gain-loss utility is additively sep-
arable, so the function n = nj + ny gives the total gain-loss utility. Finally, C’s
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total utility v : £2 — R is given by

u(t,pls,q) =m(t,p) +n(t plsq),
the sum of her total consumption utility and her total gain-loss utility.

As mentioned, KR interpret the reference level as being determined by beliefs;
indeed, this is the foundation of one of the main contributions of their paper.
We might therefore model C’s reference level as being entirely determined by her
first-order beliefs about outcomes; for the time being, we adopt this modeling
assumption, although we explore a different option in Section 5.3. Note that
under this assumption, in our framework a reference level (s,q) must satisfy
s = t, where t is the actual threshold chosen by C'; this follows from the fact
that players are always sure of their own strategies. Thus, C’s reference level is
completely captured by the value ¢, namely, what she thinks the price will be
set at.

Having formalized a notion of utility comparing an outcome to a single reference
level, we must extend this to account for uncertainty on the part of the consumer.
In other words, if a reference level is conceptualized as an expected outcome, we
must specify C’s utility when she considers more than one outcome possible.

Let ref o : S(Lp(®r)) — 257 be defined by

refc(S) = {g € Sr : Be playp(q) € S}.

This function extracts from a given Lp(®r)-situation S the set of all prices
q € X g such that C considers it possible that R might play ¢. This set plays
the same role for us that a stochastic reference level G plays for KR; in a sense,
ref »(S) is the support of a distribution like G.

To incorporate the uncertainty expressed by the stochastic beliefs G into a
measure of utility, KR integrate u against G, yielding in essence a weighted
average. We can bypass the calculus and just take the average, defining uc :
S(Lp(Pr)) — R by

wc(S) =lrefeS)I S ultplta)
qgeref o (S)

where t = po(S) and p = pr(S) are the strategies actually played by C and R
in the situation S, respectively.

Of course, this is far from the only way in which we might massage the set
ref o(S) into a utility function for C; for instance, analogously to the “pay
raise” of Example 3.6, we might stipulate that C’s reference level is given by
her highest price expectation:

ue(S) = ult, p|t, max(ref o (9))).

In order to parellel the definitions of KR as closely as possible, however, we
focus on utility as given by averaging reference levels.
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5.2 Predictions

The game form T', equipped with the utility function uc (as well as a con-
stant utility function ug), forms an L5 (®Pr)-game. We now demonstrate that,
despite the coarseness of the underlying language, important predictions from
KR’s framework persist. Notably, we accomplish this without making use of
the solution concepts that they define, but instead with a basic assumption of
rationality on the part of the consumer (as in Section 4.1). In Section 5.3, we
explore KR’s solution concepts of personal equilibrium and preferred personal
equilibrium in some detail.

We begin by considering the consumer’s behaviour under price certainty. KR
show that, in this case, the consumer’s preferred personal equilibrium is to buy
the shoes if the cost is below their intrisic value, p < 1, and not to buy the shoes
when p > 1.

Fix a I-structure M and suppose that w is a state at which C is certain that
the shoes will be offered for price p:

PRe(w)([playr(p)]a) = 1.

A rational consumer, by definition, seeks to maximize expected utility; in this
case, as she has no doubt about the price of the shoes, her expected utility on
playing ¢ € T is simply u(t,p|t,p). This is because in every state she considers
possible both the actual price and the expected price are p. More formally, for
every w' € PR¢|w] we know that ref »(S(w’)) = {p}, and therefore

N 1-— ifp<t
uC(tvw/) :U(t7p‘t,p) = { 0 P lf];> t.

It follows that in the absence of price uncertainty, a rational consumer chooses
a threshold ¢ > p (that is, chooses to buy the shoes at the expected price)
whenever p < 1, and chooses a threshold ¢ < p whenever p > 1; for instance,
choosing ¢t = 1 accomodates both of these restrictions at once. Thus, in this
model, when a rational consumer is certain of the price, sensations of gain or
loss do not enter into the picture.

Next we consider a case of price uncertainty. Fix a I'-structure M and suppose
that w is a state at which C is considers it possible that the shoes will be offered
at one of two prices: pr and pys, where pr, < pps. In other words, ref ~(S(w)) =
{pL,pm}. Suppose also that T' = {tp,ty}, where p;, < t;, < py < tyg. Thus,
the two strategies available to C constitute a choice between buying at price
pas or not, while buying at price py, is a foregone conclusion. As we saw, if the
consumer were certain that the price would be pyy, she could rationally play
ty just in case pps < 1. Under uncertainty, however, the rational threshold for
buying can change.

By definition, C’s expected utility is some convex combination of her utility in
case R plays pjs and her utility in case R plays pr,. We analyze each case in
turn.
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First consider the case where R plays pp;. Then C’s utility for playing ¢, is
equal to

1
m(tn,par) + §[n(tL,pM |tr,pr) +n(te,pa | tn, par)l,

her consumption utility m plus the average gain-loss utility for the two reference
levels she considers possible. This evaluates to

_npL = A

0-+ 5110~ (=pu)) + (0 — 1) +0] = P2

2
Similarly, C’s utility for playing tg is

1
m(ta,py) + 5[”(75H7PM |ta,pr) +n(tg,pv | ta, pa)l,

which evaluates to

—A —
1~ pas + Tl(pz\24 pr)

It follows that playing ¢tz yields a higher payoff than playing t; precisely when

n(A—1)

<1 . .
PMm +pL 2+

In the case where R plays py,, analogous calculations show that ¢y is preferred
to ty, precisely when
PMm > 1 —pL()\ — 1).

Since, as noted above, C’s expected utility at w is some convex combination of
her utility in the two cases just analysed, we can see that whenever

n(A—1)

24+’ (1)

L—=pr(A=1)<pu <1l+pr-
expected utility is maximized by choosing tz. In particular, buying the shoes
for a price pp;s > 1 can be rational; moreover, the extra amount py; — 1 that
it is always rational to pay is determined by the upper bound of the inequality
(1), which is increasing in py,. Intuitively, the higher the price p;, the consumer
was willing to buy the shoes at no matter what, the less of a loss it feels like to
pay a little bit extra. Equivalently, the lower the price pr, the more of a loss
it feels like by comparison to pay the higher price pp;. This is the “comparison
effect” found by KR.

5.3 Intention

As we have seen, under price certainty, the consumer cannot rationally purchase
the shoes if they are being offered at a price p > 1. This corresponds to a
prediction of KR: in their terminology, buying if p < 1 and only if p < 1 is
the unique preferred personal equilibrium under price certainty. However, the
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weaker of the two solution concepts they propose tells a different story. Still
assuming price certainty, KR show that both buying for sure and not buying
for sure (provided the price is not too high or low) are personal equilibria for
the consumer.

The idea has a certain appeal: if the consumer is somehow set on a purchase,
then a failure to follow through might generate a sense of loss that can overcome
a certain amount of overcharging. In essence, people will pay extra to avoid
disappointment. Similarly, according to KR, people will pass up a good deal if
they had their mind set in advance on saving their money.

KR work in a dynamic setting where this intuition can be cashed out temporally.
First, the consumer forms an expectation that she will buy the shoes before she
even gets to the store. Upon arrival, she realizes (say) that they are more
expensive than she had thought, and updates her beliefs accordingly. However,
crucially, she does not update her reference level vis-a-vis her intention to buy.
Intuitively, as far as being disappointed goes, her reference level is determined
by her old expectation to buy. Indeed, when unexpected calamity or fortune
befalls someone, they typically do not update their expectations immediately
and proceed as if the status quo has merely been maintained.

In what follows, we sketch a formalism within which we can tell this type of
story; in keeping with the theme of this work, the idea boils down to the right
choice of underlying language. Notably, however, the language we employ is not
fundamentally temporal in nature. This suggests, we feel, that the correspond-
ing notion at play in KR’s work, although presented in a dynamic setting, is
better viewed as an instance of a more general construction. We call it intention.

Let ,
O = & U {inti(0y) : i€ N,0; € B;},

and consider the language L5 (). We read int;(0;) as “player i intends to
play o;”. An intentional T'-structure is a I'-structure M equipped with addi-
tional functions ¢; : Q — ¥; called the intention functions such that whenever
w’' € PR;[w], we have t;(w’) = ¢;(w). This condition ensures that each player is
sure of his own intentions. A valuation function [-]as is defined recursively on
Lp(P) as before, with the additional clause

[int;(o)]m ={w e Q : i(w) =0y}

This is a modest extension of the langauge L£g(®r); all we have done is add a
second batch of primitive propositions behaving very much the same way that
the original formulas play,(o;) behave. One important difference between the
two lies in how players consider them counterfactually, namely, in comparing
expected utilities. Informally, players can evaluate what their utility would be
if they were to play a different strategy, but not what their utility would be if
they were to intend to play a different strategy.

In Section 5.2, we noted that our interpretation of gain-loss utility n(t,p| s, q)
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entailed that ¢ = s. Here we alter this interpretation: we assume instead that
the reference level s is determined at a state w by the player’s intention at
that state, rather than the actual strategy being played (which determines t).
Accordingly, we define uc : S(Lp(®E")) — R by

uc(S) = lrefe(S)I7 Y ult.pls,a),

qeref o(S)

where t = po(S), p = pr(S), and s is the unique element of ¢ satisfying
intc(s) € S.

We now consider a scenario where there is price certainty. Fix an intentional
I'-structure M and suppose that w is a state at which C' is certain that the shoes
will be offered for price p. Suppose also that tc(w) = s and s > p. In other
words, at state w, C intends to buy the shoes.

A rational consumer, as always, seeks to maximize expected utility. Since she
is uncertain about neither the price of the shoes nor her intention to buy them,
her expected utility on playing t € T is given by u(t,p|s,p). Let tr,tg € T be
such that t;, < p < tgy. It is easy to calculate

u(tp,pls,p) =np— M
and
u(ty,p|s,p)=1-p;

therefore, a rational consumer will choose ty rather than ¢, just in case

14+ An
1+n"

Thus, intending to buy makes it rational to buy even for some prices p > 1. In
a situation where s < p, on the other hand, a similar calculation shows that a
rational consumer will choose ¢z over t; only when

< 141
P 14+ Ay’

so intending not to buy makes is rational not to buy even for some prices p < 1.
These findings duplicate those of KR.

6 DBayesian games

A Bayesian game is a model of strategic interaction among players whose pref-
erences can depend on factors beyond the strategies they choose to play. These
factors are often taken to be characteristics of the players themselves, such as
whether they are industrious or lazy, how strong they are, or how they value
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certain objects. Such characteristics can be relevant in a variety of contexts: a
job interview, a fight, an auction, etc.

To capture the factors beyond strategies, in a Bayesian game, we associate with
each player a set of possible types of that player. These types can be thought
of as encoding private information about the players. At a high level, we might
imagine translating an L£p(®r)-game into a Bayesian game by specifying, for
each player ¢ and situation S, player i’s type in S to be the collection ¢;(S) = {¢ :
B,y € S}; in other words, player i’s type is identified with the set of descriptions
she is sure of. In a Bayesian game, utility depends on type, and in principle
this kind of translation might allow one to transform situation-dependence into
type-dependence, thereby capturing £5(®r)-games in the Bayesian framework.
Are situations just a logical rendering of types?®

The sitauation is not quite so simple. There are standard notions of (Bayes-
)Nash equilibrium in Bayesian games. There are standard conditions that guar-
antee the existence of a Bayesian-Nash equilibrium for a general class of Byaesian
games. By of contrast, Proposition 4.2 shows that some quite simple language-
based games do not have a Nash equilibrium. So, however we translate these
language-based games to Bayseian games, the resulting Bayesian game must
violate the conditions that guarantee the existence of an equilibrium.

This raises the obvious question of where exactly the intuition above goes wrong
(or, at least, why it results in a Bayesian game that does not satisfy the condi-
tions guaranteed to satisfy the existence of an equilibrium). It turns out that
the real issue is whether or not types encode strategies. If they do not, we
find the Bayesian formalism is simply not rich enough to accomodate language-
based games, at least, not if the language can talk about strategies. On the
other hand, if they do, then the standard arguments proving the existence of an
equilibrium break down. Roughly speaking, the strategy that a player ¢ should
play at a type 7 in equilibrium might not be the one that he actually does play,
according to type 7.

These considerations lead us to associate two strategies with each player, an
“intended” and an “actual” strategy. We can think of the intended strategy of
player ¢ at type 7 as being the one encoded in his type, while the actual strategy
is the one that he plays say in a given situation. As we show by example, this
distinction between actual and intended types is quite useful.

In this section, we formalize some of the intuitions above, and do a preliminary
investigation into these issues.

6.1 Definitions

A Bayesian game is a tuple B = (N, (3;, T;, pi, u;)ien ) Where

9We are indebted to Aviad Heifetz for suggesting this line of inquiry.
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N ={1,...,n} is the set of players;
e Y, is the set of strategies available to player i;
e T, is the measurable space of types of player i;

e p;, : T, — A(T-;) associates with each type ¢; of player i a probability
measure p;(t;) on T_; representing player i’s beliefs about the types of her
opponents;

o u; : X xT — Ris player i’s utility function.

As we said, types can be thought of as encoding private information about the
players.!® This information is payoff-relevant in the sense that the utility func-
tions depend on it as well as the actual strategies that are played. For example,
the resolution of a battle between two armies may depend not only on what
maneuvers they each perform (i.e. the strategies they employ), but also on how
large or well-trained they were to begin with (i.e. their types). For a different
kind of example: how happy one is with the results of an auction depends not
only on who got what (determined by the bids that were placed, i.e. the strate-
gies), but also on how the objects up for auction are valued (participants may
value the same objects differently, which can be encoded by their types).

It is sometimes helpful to view a type t; € T; as determining the function
wi(+,t;,) + X x T_; — R, representing player i’s preferences over the outcomes
and types of her opponents. In other words, although ¢; affects player i’s util-
ity, instead of thinking of player ¢ as preferring to be one type rather than
another, we think of her type as determining her preferences. However, this is
a conceptual difference that plays little role in the formal developement.

Another key feature of the types formalism is that types encode beliefs via the
functions p;. It is often assumed that for all t; € T;, the measure p;(t;) is
obtained from some fixed probability measure m; € A(T") by conditioning on
t;; in other words, each player’s beliefs are obtained by conditioning her “prior
beliefs” m; on her own private information. When m; = 7y = --- = m,, we say
that the players have a common prior; this condition is also frequently assumed
in the literature.

Of course, a player’s beliefs may not depend on her type in any essential way;
for example, there is no reason why a commander’s beliefs about the size of
her opponent’s army should depend on the size of her own army. But such
a dependency can be encoded if desired: perhaps the commander of a very
well-trained army tends to overestimate the discipline of her opponent’s forces.
Modeling beliefs about types is crucial for the analysis of many games. Consider
once again an auction: several players place bids on several items, and a strategy
for player i is identified with the collection of bids she places. As noted, different

100ne can also introduce an extra player, “nature”, whose type encodes information about
“the world”.
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players may value the items up for auction differently; classically, we could
simply encode this in the utility functions of the players. However, this leaves
out an important aspect of the auction: the players may be uncertain about how
their opponents value the items, and this information may be quite relevant to
their own bidding strategies. Such a scenario, where the players are uncertain
about the utility functions of their opponents, is a canonical example of the kind
of strategic interaction that Bayesian games are designed to model. The types
formalism captures this aspect of an auction simply and cleanly by encoding
the players’ valuations of the items in their types.

Of special interest for our purposes, the expressive power of the types formal-
ism extends even further than this: because types encode beliefs, and utility
depends on types, in principle Bayesian games can capture “psychological” ef-
fects in preferences, namely, preferences that depend on beliefs. For instance,
one can define a Bayesian game in which a player’s preferred strategy depends on
whether or not her opponent is certain of her type. Given these considerations,
it is natural to wonder to what extent language-based games are subsumed by
the Bayesian framework.

6.2 Equilibrium and surprise

Part of the value of Bayesian games lies in the fact that a generalized notion
of Nash equilibrium can be defined in this framework. A Bayesian Nash
equilibrium of the Bayesian game B is a profile of behaviour rules p; : T; —
A(X;) such that for each player i and each type ¢;, the mixed strategy (;(¢;)
maximizes player ’s expected utility given the beliefs p;(¢;) and the behaviour
rules S_; of the other players. Note that the beliefs p;(¢;) that player ¢ has about
the types of her opponents yield beliefs about the strategies of her opponents via
the behaviour rules 8_;. If we think of mixed strategies as representing conscious
randomizations, we can think of this analogously to a classical Nash equilibrium,
except here players choose mixtures that depend on their types, and rather than
everyone knowing the mixture their opponents will use, everyone knows the
mixtures that each type of their opponents will use. On the other hand, if we
view a mixed strategy of player i as representing the common conjecture of her
opponents about which (pure) strategy she will choose, then in a Bayesian Nash
equilibrium, although the players may not have a common conjecture about their
opponents’ strategies, they do have a common conjecture about their opponents’
strategies given their types (about which their beliefs may differ).

Every Bayesian game with finite strategy and type spaces admits a Bayesian
Nash equilibrium [?]. By contrast, not every language-based game has a Nash
equilibrium (Proposition 4.2). What explains this discrepancy?

The key impediment to the existence of a Nash equilibrium in the indignant
altrusim game is the players’ desire to surprise their opponents. Consider an
arbitrary two-player game between Alice and Bob in which Bob prefers to play
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a strategy that Alice does not believe he will play (the exact interpretation of
“does not believe” here—that is, whether it means “assigns low probability to”,
“assigns 0 probability to”, or something else—is not important at the moment).
Can a Bayesian game capture such a preference?

Speaking at a high level, Bob’s utility function must be defined so that it assigns
higher values to precisely those strategy-type profile pairs in which Bob’s own
strategy is unexpected with respect to the beliefs encoded by Alice’s type. But
this is easier said than done: types encodes beliefs about types, not about strate-
gies, so Alice’s type does not inherently specify her degree of belief about any of
Bob’s particular strategies. Though it is true that in the context of a Bayesian
Nash equilibrium types induce beliefs about strategies (via the behaviour rules),
this is far from sufficient for our purposes: we should be able to represent Bob’s
preference for surprise independently of any equilibrium constraints.

Thus, the discrepancy between equilibrium existence results in language-based
versus Bayesian games is simply due to the fact that the latter is not expressive
enough to represent the kinds of preferences that block equilibria in the former.
Of course, this immediately begs the question: can we correct this deficiency?
Types, in virtue of their abstract nature, are often conceived of as “catch-all”
objects capable of encoding essentially anything that might be relevant to player
preferences. However, while faith in the expressive power of the types formalism
itself is not necessarily misplaced, in a Bayesian game enriching the type space
can change the analysis in a fundamental way.

A natural enrichment is to encode strategies in types, so that each type t;
determines not only the preferences and beliefs of player ¢ but also the strategy
s;(t;) that she is employing. In this case, of course, beliefs about types yield
beliefs about strategies, circumventing the obstacle raised above and allowing us
to model players who wish to surprise their opponents. But now the definition
of Bayesian Nash equilibrium is muddied, since a behaviour rule also associates
a strategy with a type. What is the relationship between s;(t;) and 3;(¢;)?

6.3 Intended strategies

A Bayesian game with intentions 7 is a Bayesian game B equipped with
additional functions s; : T; — 3; associating with each type t; of player ¢ an
intended strategy s;(t;). Intuitively, we might think of s;(¢;) as the strategy that
a player of type t; is planning to play (though may ultimately decide not to), or
perhaps as the “default” strategy for that type. Regardless, as observed above,
the functions s; allow us to derive beliefs about strategies from beliefs about
types, even out of equilibrium. In particular, we can represent Bob’s preference
to surprise Alice by defining Bob’s utility function as follows:

1 ifpa(ta)(sz'(op)) =0
up(o,t) = { 0 otherwise.
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In other words, Bob is happiest when the strategy op that he is actually playing
is such that Alice’s type t4 considers it to be probability zero (remember that
pa(ta) is a measure on types, which is why we apply it to 351(03), i.e. the set
of types for Bob whose intended strategy is o).

A Nash equilibrium of Z is a profile of behaviour rules §; : T; — A(%;) that
is a Bayesian Nash equilibrium of B and such that, for each i € N and t; € Tj,
si(t;) € supp(Bi(t;)), where supp denotes the support of the measure (i.e. the
set of all strategies of positive probability). Said differently, a Nash equilibrium
of 7 is just a Bayesian Nash equilibrium in which the common conjecture about
what strategy a given type t; is playing assigns positive probability to that
type’s intended strategy s;(t;).

Not every Bayesian game with intentions admits a Nash equilibrium. For
instance, let Z be such that ¥4 = {x}, ¥ = {op,05}, Ta = {ta,t))},
Tp = {tp,t)z}, pa(ta) is the point-mass measure concentrated on tg, pa(t/y)
is the point-mass measure concentrated on %, pp(tp) is the point-mass mea-
sure concentrated on t4, pp(ts) is the point-mass measure concentrated on t/y,
sp(tg) = op, sp(tly) = 0z, and up is defined as above. Then we have

uB(*ao—BatAth) =0<1= uB(*70JB7tAatB)7

and it follows that if Sp is part of a Bayesian Nash equilibrium, then Sgp(tg)
must be the pure strategy o’z (or else Bob’s type tp is not maximizing expected
utility). On the other hand, since sp(tp) = o, such a behaviour rule S5 cannot
be part of a Nash equilibrium for Z. Thus, Z has no Nash equilibrium.

It should not be terribly surprising that Bayesian games with intentions do
not always have Nash equilibria: such a framework can capture the desire to
surprise, and we have seen (Example 3.4 and Section 4.2) that this kind of
preference is intuitively at odds with the notion of Nash equilibrium. But aside
from modeling the desire to surprise, incorporating “intention” into games is of
interest in its own right. In some cases a player may have a “default” course
of action, a strategy that is distinguised from the others—perhaps deviating
from it incurs a small cost [REF?]. We also saw in Section 5.3 that a notion
of intention is useful for capturing KR’s personal equilibrium solution concept.
More generally, representing intention can be important in contexts where the
distinction between present plans and future actions is of import. Example 3.8,
for instance, might be viewed as analyzing certain kinds of procrastination as the
overvaluing of intended actions. Further research in this area seems promising.

7 Conclusion

Language-based games generalize classical games by replacing outcomes with
situations as the objects of preference. The underlying language determines the
extent of this generalization. We saw, for example, that situations correspond
exactly to outcomes with the right choice of underlying language.
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Language-based games also generalize psychological games. Broadly speaking,
psychological game theory is concerned with cases where the beliefs of the play-
ers are relevant to their preferences; in this informal sense, any language-based
game where the underlying language expresses the beliefs of the players in some
way is an instance of a psychological game. More formally, however, psychologi-
cal games allow the players’ utility functions to depend on beliefs in a continuous
way, so to fully subsume this theory requires an underlying language rich enough
to do the same, such as the language ﬁ[g’l](q)r‘) defined in Example 3.5.

In this paper, we have focussed primarily on the language L5(®r), with occa-
sional forays into richer representations of belief (Example 3.5) and notions of
“intention” (Example 3.8 and Section 5.3). Further investigation into the role of
intention in decision making, and particularly its connection to procrastination,
seems promising. Moreover, there are several other natural extensions of the
underlying language worthy of study. Temporal logics [14], for example, offer
an appealing avenue for extending language-based games to a dynamic setting.
Logics of awareness [12], on the other hand, offer a potential route by which
to incorporate uncertainty about the underlying language into the game. By a
slight generalization of the current framework, we can assign different players
distinct underlying languages at each state, which allows each player 7 to be
uncertain about what language his opponents’ preferences are defined over. In-
deed, reasoning about how opponents conceptualize the world insofar as their
preferences are concerned is quite relevant to a variety of strategic interactions;
it is, for instance, presumably what is at play when retailers set prices like
$2.99 rather than $3, exploiting the “rounding error” consumers typically make
(Example 3.1).

Finally, as we have emphasized (Examples 3.1, 3.2, and 3.3), coarseness can be
a powerful tool in the resolution of apparent paradoxes of human decision mak-
ing. Coarseness in this sense can be viewed as an implementation of bounded
rationality: players do not represent the world in all its gory detail, but rather,
they systematically collapse certain distinctions by subsuming them under the
same description. While the notion of bounded rationality is certainly not new,
studying it through the lens of language provides an intuitive and simple mecha-
nism with which a wide variety of decision problems can be analyzed. Moreover,
the technical advantages of this implementation are apparent in, for example,
equilibrium analyses that do not depend on continuity of the utility functions,
such as Corollary 4.9.

A Proofs

Proposition 4.1: For each i € N, the map p; : § — ¥; x S_; defined by
pi(S) = (pi(S), p—i(S5)) is a bijection.
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Proof:

Fix i € N. To show that p; is surjective, it suffices to show that given a situation
S and a strategy o; € X;, there exists a situation S’ such that p_;(S") = p_;(9),
and p;(S’) = ;. Let M be a I'-structure with a state w such that (M,w) = S;
we will find the desired S’ by constructing a new I'-structure M’ in which,
intuitively, there is a state that is just like w except that player ¢ is playing o;.

Define 2 = Q x {1,2}. For each w' € Q, set §;(w’,2) = oy; for (j, k) # (i,2),
define 3;(w’,k) = s;(w’). Similarly, for each w’ € Q, let PR;(w’,2) be the
measure on {2 x {2} induced by PR;(w’) by the natural correspondence; for
(4, k) # (4,2), let PR;(w’, k) be the measure on Q x {1} induced by PR;(w’)
by the natural correspondence.

It is not hard to check that M = (€0, (3;)ien, (PRi)ien) is a D-structure. Intu-
itively, it contains a “copy” of M in the component corresponding to  x {1},
while the component corresponding to € x {2} is just like M except that player
1 is playing o; at all states. It is now easy to show by induction on the structure
of formulas that if ¢ is i-independent, then (M,w’) k= ¢ iff (M, (W', 2)) = ¢ and
that, for all formulas ¢, (M,w’) | ¢ iff (M, (W', 1)) | ¢. Taking S = S(w,2)
therefore yields the desired result.

Now we show that p; is injective; for this it suffices to show that if S,5" € S
are distinct situations with p_;(S) = p_;(S’), then p;(S) # p;(S’). This follows
easily from the following claim, which we prove by structural induction: for all
formulas ¢, if ¢ is not i-independent, then the subsets X,,Y,, C ¥; defined by

X, = {oi: ¢l play(o:)}
Yo = {oi: ~p E -play;(0:)}

are disjoint. In other words, whenever ¢ is not i-independent, the set of strate-
gies for player ¢ compatible with ¢ is disjoint from the set of strategies compat-
ible with —p. Now if S and S’ are distinct situations with p_;(S) = p_;(5’),
then they must differ on some formula ¢ that is not i-independent. Therefore,
by the above, we can conclude that p;(S) # p;(S’), proving injectivity.

For the base case, suppose ¢ = play;(o;). If j # i then this formula is i-
independent and we are done; otherwise, it is easy to see that X4y (0,) = {oi}
and Y4y, (s;) = 2i \ {0}, which are certainly disjoint. The inductive step for
negation follows easily from the observation that X, =Y, and Y., = X,. If
the result holds for ¢ and ), then since

X¢Aw - Xq, N X¢,

and
Yory = Xopvop = Xop UXy =Y, UYy,

it follows that X, and Y, sy are disjoint, which establishes the inductive step
for conjunction. The inductive step for B;, j # 1, is trivial since the resulting
formula is i-independent. Finally, note that whenever ¢ |= —play,(o;), we also
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have B,y = B;—play,(0;), and so B;p |= —play;(o;). It follows that Xp,, € X,
and similarly Yp,, C Y, from which disjointness follows. Il

Lemma 4.5: EB*(RAT) is satisfiable for all k € N.

Proof: The idea is to construct a I'-structure that is particularly well-behaved
with respect to alterations of its strategy function; this will allow us to modify a
given strategy function in such a way as to ensure that the players are rational
at certain states.

Let T be the set of all finite words on the alphabet N (the set of players),
excluding those words in which any letter appears consecutively:

T={weN": (Vi <|w|—1)w()#w(+1)]}

Thus T can be viewed as a tree whose root node A (the empty word) has n = |N|
children, while every other node has n — 1 children (one for each letter in N
aside from the last letter of the current node). This will be our state space.

Given any nonempty word w, let ¢(w) = w(Jw| — 1), the last letter in w.
Define PR;(w) = Osuce; (w), the point-mass probability measure concentrated
on succ;(w) € T, where (taking w - i to be the result of appending ¢ the end of
w)

i ifw=A
succi(w) =< w-i if l(w) #i
w otherwise.

It is easy to see that the frame (i.e., I'-structure without the strategy function
s = (8i)ien) F = (T,PR1,...,PR,) satisfies conditions (P1) through (P3); in
particular, (P3) follows from the observation that succ; is idempotent.

Note that, given strategy functions s, (F,s) is a I-structure. Our goal is to
define strategy functions s on T in such a way as to ensure that ((F,s),\)
EBF(RAT). Note that ((F,s),\) = EB*(RAT) just in case ((F,s),w) = RAT
for every word w with |w| < k. We prove that this can be arranged by induction
on k. More precisely, we prove the following statement by induction on k:

For allk € N and s : T — %, there exists an s’ : T — X such that
(i) for all w with |lw| >k + 1, §'(w) = s(w);
(it) for all w with |w| =k +1 and all i # {(w), si(w) = s;(w);

(iii) for all w with |w| <k, ((F,s"),w) = RAT.

The additional assumptions (i) and (ii) in this statement allow us to apply the
inductive hypothesis without fear of causing RAT to fail at nodes where we
previously established that it held.
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For the base case k = 0, let s be a given strategy function. For each i € N,
let o; € BR;()) (recall that the best response function depends on the state).
Define s'(A\) == (01,...,0,). In order to satisfy (P4), we must also insist that
for each j € N, s(A-j) = 0;. Otherwise, let s” agree with s. Then it is easy to
see that ((F,s’),\) E RAT, since we have altered each player’s strategy at A so
as to ensure its rationality. It is also clear from construction that condition (i) is
satisfied, and moreover for each j € N and each ¢ # j we have s;(A-j) = s;(A-7),
so condition (ii) is satisfied as well. This completes the proof for the base case.

For the inductive step, assume the statement holds for &k, and let s be a given
strategy function. Roughly speaking, we first modify s so that RAT holds at
all words of length k+ 1, and then appeal to the inductive hypothesis to further
modify the strategy function so that RAT holds at all words of length < k. For
each word w of length &k 4 1, and for each i # ¢(w), choose o; € BR;(w) and
redefine s so that player ¢ is playing o; at w and at w - 4. Call the resulting
strategy function s’. Similarly to the base case, it is easy to see that for each w
of length k + 1 and 7 # ¢(w), we have ((F,s’),w) = RAT;.

Applying the inductive hypothesis to s’, we obtain a new strategy function
s" such that for all w with |w| < k, ((F,s"),w) &= RAT. It follows that for
each word w of length k and each i € N, ((F,s"”), succ;(w)) = RAT;, since
PR;(w) = PR;(succ;(w)). Moreover, from conditions (i) and (ii) we can de-
duce that the property we arranged above for words w of length k£ + 1, namely
that ((F,s'),w) &= RAT; for each i # {(w), is preserved when we switch to
the strategy function s”. Moreover, if w has length k + 1 and i = £(w), so that
w = w1, then ((F,s"),w) E RAT; since ((F,s"),w") E RAT; by the inductive
hypothesis. Putting these facts together, we see that for each word w of length
k+ 1, we have ((F,s"”),w) = RAT. Thus for all w with |w| < k + 1 we have
((F,s"),w) E RAT; conditions (i) and (ii) are straightforward to verify. This
completes the induction. il

Theorem 4.7 (CR) implies that rationalizable strategies exist.

Proof: Assuming (CR), we define an iterative deletion procedure on situations.
First, let
R={SeS : SKE-RAT}.

Thus, S € R precisely when S is compatible with rationality; that is, when
S U{RAT} is satisfiable. Condition (CR) has a particularly nice topological
formulation in terms of R.

Lemma A.1: (CR) holds if and only if R is closed in S.

Proof: Suppose S ¢ R. Then, by definition, S = -RAT, so (CR) guarantees
that there is some finite subset F' C S such that F' = -RAT. In fact, since S
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is maximal, it easy to see that the formula

ps = /\ ¢

YeF

is itself an element of S, so without loss of generality we can replace the set F'
with the single formula ¢g. U, is open, by definition. Moreover, U, NR = 0,
since any set S” € U, contains ¢g, and therefore entails ~RAT. Since S € U,
this establishes that R is closed.

Conversely, suppose that R is closed in S, and let S € S be such that S =
—RAT. Then S ¢ R, so there is some basic open set U, such that S € U, and
U,NR = 0. Thus ¢ € S, and any situation that contains ¢ must entail ~RAT,
from which it follows that ¢ = -RAT. 1

Having defined those situations not compatible with rationality, we next define
the iterative portion of the deletion procedure, designed to yield all and only
those situations compatible with common belief of rationality.

By Lemma A.1, R is closed, so we can express its complement as a union of
basic open sets: let I C Lp(®Pr) be such that

R=S5-JU,.
pel

Note that, by definition, S is not compatible with rationality just in case .S con-
tains some formula in I. Roughly speaking, we can think of I as an exhaustive
list of the ways in which rationality might fail. We therefore define

R ={SeR : (Vie N)(Vp € I)[Bi—yp € S]}.

Intuitively, R(1) is the set of situations that are not only compatible with ratio-
nality, but in which each player believes that the situation is compatible with
rationality (remember that “rationality” is being used here as a shorthand for
“everyone is rational”). If we set

IW ={Bjp : i€ Nand ¢ € I},
then we can express R(!) more succintly as

RU=R- ] Uy
el

This also makes it clear that R(Y) is closed in S. More generally, let I(0) = |
and R(®) = R; for each k > 1, set

I® ={Byp : ie N and p € I*~D},

and define
RW =RE-D — | ] Uy
peIk)
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It is straightforward to check that this definition agrees with our original defi-
nition of R™M and IM). Moreover, observe that

ROSROORD 5 ...

is a nested, decreasing sequence of closed subsets of S. Since S is compact, a
collection of closed sets with the finite intersection property'! has nonempty
intersection.

Lemma A.2: Forallk € Nand S € S, if SU{EB*(RAT)} is satisfiable, then
SeRrRM.

Proof: The proof proceeds by induction on k. For the base case k = 0, we
must show that if S U{RAT} is satisfiable, then S € R, which is precisely the
definition of R.

Now suppose inductively that the statement holds for £ — 1, and let S €

S(Lp(®r)) be such that SU{EB¥(RAT)} is satisfiable. Then SU{EB*~1(RAT)}
is also satisfiable, so by the inductive hypothesis we know that S € R*—1.

Therefore, by definition of R®*) | the only way we could have S ¢ R®*) is if

Byp € S for some i € N and o € I*~1. Suppose for contradiction that this is

SO.

By assumption, there is some I-structure M = (Q, (s;)ien, (PR:)ien) and some
w € Q such that w = S U {EB*(RAT)}. Furthermore, since Bip € 8, we
must have PR;(w)([¢]ar) > 0. However, for a state w’ € [¢]ar, by definition,
S(w') ¢ R¥E=1 (since ¢ € I*=1). By the inductive hypothesis, it follows that
S(w') U {EB*"1RAT} is not satisfiable, so in particular w’ & EB* 1RAT.
We have therefore shown that [o]as N [EB*1RAT]y = 0, from which we
can conclude that PR;(w)([EB*'RAT]y) < 1, contradicting the fact that
w = EB*RAT. 1

In light of Lemma 4.5, Lemma A.2 implies that for each k € N, R(*) £ (.
Therefore the collection {R*) : k € N} does indeed have the finite intersection
property, hence

k=0

The following lemma therefore clinches the main result.
Lemma A.3: S € R*® if and only if SU{CB(RAT)} is satisfiable.

Proof: One direction is easy: if SU{CB(RAT)} is satisfiable, then for every
k € N we know that SU{EB*(RAT)} is satisfiable. Lemma A.2 then guarantees

11Recall that a collection of sets has the finite intersection property just in case every finite
subcollection has nonempty intersection.

50



that
Se [ R® =R,
keN
as desired.

Now we prove the converse. Suppose that R # (J; for each S € R, let M*° =
(Q%, (s9)ien, (PR%)ien) be a I structure with a distinguished state w® € Q°
such that w® = SU{RAT?}. This is always possible because S € R™ C R. Let

0= || @ xnN),
SeER>

and equip this set with the o-algebra of measurable sets generated by all sets

of the form
|_| ES,i7
SeER>,ieN

where Eg; is a measurable subset of Q% x {i}. For i € N and (w,k) € Q% x N,
set §;(w, k) = s5(w) and define

; PR (W) 1 Q5 x {i} ifi#kand S = S(MS5,w) e R®
1 7k - 2 i } 9
PRi(w, k) { PR (w) | Q% x {i} otherwise,

where the symbol [ in the above is simply used to indicate that the probability
measure given on the left is to be interpreted in the set given on the right via the
natural correspondence (so, for example, though PR (w) is technically defined
over %, we can interpret it instead as being defined over Q% x {i} since this
space is isomorphic to Q).

It is straightforward (if tedious) to show that M = (Q, (3;)icn, (PRi)ien) is a
I'-structure, and moreover that it has the following property: for all formulas
¢ € Lp(®r) and every (w, k) € Q% x N,

(M, (w,k)) = @ iff (M®,w) [ o.

In particular, for all k € N and S € R*®, (M, (w®,k)) = S. Thus, if we show
that (M, (w®,k)) = CB(RAT) we will be done. For this it suffices to prove
that (M, (w%,k)) = EB™(RAT) for all m € N, which follows by induction,
employing the following crucial fact about M: for every S € R, k € N, and
1 €N,
PR (W, B){(W, k) € Q : S(M, (W, k)) € R®)}) =1.

This, in turn, is a consequence of the fact that S(M, (w%,k)) € R, and there-
fore PR;(w®, k) assigns probability 0 to each of the (countably many) formulas
in 1°° := [JI™) which witness a situation not being in R>. Il

Since R*° is nonempty, by Lemma A.3 there is some situation S € S such that
SU{CB(RAT)} is satisfiable. Thus, the strategy profile (p1(S),...,pn(S)) € Z
is rationalizable, as desired. i
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