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Abstract

This paper studies market clearing in matching markets. The model is non-cooperative,

fully decentralized, and in Markov strategies. Workers and firms bargain with each other

to determine who will be matched to whom and at what terms of trade. Once a worker-

firm pair reach agreement they exit the market. Alternative possible matches provide

endogenous outside options. We ask when do such markets clear efficiently and find

inefficiencies – mismatch and delay – to be pervasive. Mismatch occurs whenever an

agent is at risk of losing a binding endogenous outside option. Delay occurs, instead,

when the market evolves in favor of an agent. Delay can be extensive and structured

with vertically differentiated markets endogenously clearing form the top down.
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1 Introduction

Market clearing is at the center of economics. At one extreme we understand well how thick

markets for homogeneous goods clear and at the other we understand bilateral bargaining

well. However, many markets lie somewhere in between. In this paper we focus on thin

(finite) matching markets, particularly labor markets, featuring decentralized negotiations

that involve multiple, heterogeneous agents from both sides of the market. Such markets are

common. One dimension of heterogeneity we capture is through constraints restricting who can

match to whom. Firms might be able to employ only workers they have interviewed, workers

might not know about all vacancies, and some people may simply be unqualified for some

positions. On top of this, variability in how well suited different workers are to fill different

vacancies is the norm, rather than the exception. We take these matching constraints and

heterogeneities as given, and ask when decentralized negotiations can clear markets efficiently.

An important feature of the markets we study is that individuals have alternative matches

that affect their bargaining positions. However, these outside options are endogenous. As the

market clears people exit and the set of alternative matches evolves. This market evolution is

a common feature of decentralized matching markets and it generates frictions that prevent

markets from clearing efficiently. People delay in the hope that the market will evolve in their

favor and accept inefficient matches because of a concern that the market will evolve against

them.

We take a standard approach to the problem, extending the canonical Rubinstein (1982)

model to a setting with multiple agents on both sides of the market. In each period an agent is

selected at random to make a proposal, this proposer chooses someone to make an offer to, and

then the offer is accepted or rejected. Once an offer is accepted and a worker–firm / buyer–seller

/ man–woman pair reach agreement, they exit the market. This creates a dynamic in which

the composition of the market is ever changing. While this complicates matters, modeling

the endogenous evolution of the market is crucial to understanding bargaining frictions. It is

concerns about the market evolving unfavorably that drive inefficiencies, both mismatch and

delay. We find that these bargaining frictions are pervasive. They arise whenever the market

context and people’s alternative matches, other than their efficient partner, matter.

We study the Markov perfect equilibria (MPE) of our bargaining game, where the state

is the set of agents who have not yet been matched, and hence who remain in the market.

Our focus on Markov perfect equilibria is standard in the bargaining literature (for instance,

Rubinstein and Wolinsky (1985, 1990), Gale (1987), Polanski and Winter (2010), Abreu and

Manea (2012b)), motivated by Maskin and Tirole (2001) generally and by Sabourian (2004)

on strategic complexity grounds in the context of bargaining in markets. Nevertheless, it

should be noted that with a bargaining protocol similar to ours, but without heterogeneous
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surpluses, Abreu and Manea (2012a) show that clever punishment and reward strategies can

be constructed to guarantee the existence an efficient subgame perfect equilibrium. In our

environment, Agranov and Elliott (2015) run a horse race between MPE, efficient subgame

perfect equilibria and several other bargaining theories in a laboratory experiment. They

find that the MPE organize the data very well and substantially better than the alternative

theories, finding empirical support for several predictions we make in this paper.

In matching markets alternative possible matches provide endogenous outside options, with

their values depending on the other agreements reached. A crucial insight form our analysis is

that these endogenous outside options cannot bound payoffs in equilibrium without mismatch

occurring. An efficient MPE exists if and only if no such outside options bind. In other words,

when the market context does not matter for any of the negotiations. Think of the probability

of a player being selected to make an offer as the bargaining power of that player, and let

the surplus generated by an efficiently matched pair be split in proportion to their bargaining

powers. We refer to these payoffs as agents’ Rubinstein payoffs, as they would obtain if all

efficient pairs bargained bilaterally. Our main result establishes that an efficient MPE exists

for sufficiently patient players if and only if Rubinstein payoffs are in the core of the market

(that is, if no pair of players has a profitable joint deviation by matching to each other).

Moreover, when the condition holds, there is an efficient MPE in which all players receive

their Rubinstein payoffs in the limit.

As players reach agreements and exit the market the composition of the market evolves

and endogenous outside options are lost. Some intuition for our result is as follows: if player i

has a binding endogenous outside option, but never exercises it, then i’s efficient match could

just wait for the market to evolve and for i’s alternative match to exit. If so, bargaining would

become bilateral, and both players would just get their Rubinstein payoffs.

This intuition also identifies a limitation of the result. If i’s alternative match never exits

before i in equilibrium, then the market will not evolve against i. In this case i’s endogenous

outside option should, in effect, be exogenous. Sutton (1986) shows in a two player setting

that as agents become perfectly patient exogenous outside options can bind payoffs from below

while being exercised with probability 0. So when outside options are exogenous in this way,

we might expect there to be an MPE that is not efficient away from the limit, but exhibits

vanishingly small inefficiencies as players become patient. Investigating this possibility we

find that MPE can exhibit vanishing inefficiencies when endogenous outside options behave

as though they are exogenous. There are two and only two ways in which this can happen.

Most simply, agents proving binding outside options may never exit the market because in

equilibrium they are unmatched. In this case we can treat players who are unmatched in

the efficient match as exogenous outside options and an adjusted version of our main result
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continues to hold in the limit. There is one other possibility. It could be the case that all

players except for those in one match delay, hoping for an unlikely mismatch that improves

their bargaining position. Remarkably, endogenous delay of this form, resulting in sequential

exit from the market, is possible in an asymptotically efficient MPE. With four players and

equal bargaining powers we find necessary and sufficient conditions for such an MPE to exist.

The market must be highly vertically differentiated and clear form the top. This accords with

anecdotal evidence from high-skill labor markets. In sports and in the movie industry, markets

are often reported to be held up until a star is matched.1

Delay is possible in our model despite information being complete. As time progresses and

matched pairs exit the market the strength of people’s bargaining positions in the network

evolves. In equilibrium, people can choose to delay instead of making an offer to their efficient

match because they expect the market to evolve in their favor. Even with sequential exit,

when an agent and their efficient partner both delay, it is because there is a (vanishingly)

small probability that an inefficient match will occur that will increase their collective expected

payoffs.

1.1 Related Literature

We study decentralized bargaining in thin markets. Both features differentiate us from the

vast literatures we discuss below. The prototypical market we intend to speak to is a labor

market for high skill individuals. Such markets are inherently thin, characterized by hetero-

geneities, and matches are reached following decentralized negotiations. These markets are

also important. They are high value, and large surplus losses result from a misallocation of

resources within them. It may be more important that CEOs are allocated to the correct

companies than janitors, even though there are many more janitors than CEOs.

1.1.1 Centralized approaches

We find that inefficiencies are pervasive. One way to resolve these inefficiencies would be

to arrange matches through a centralized clearinghouse. Although most matching markets

operate without recourse to centralized clearing, our analysis provides a motivation for such

mechanisms. In many cases centralized mechanisms are motivated by the inability to make

transfers.2 However, one centralized market where transfers are possible is the market match-

ing residents to hospitals. Following a lawsuit filed in 2002, Bulow and Levin (2006) and

Niederle (2007) investigate the effect of incorporating wages. An alternative counterfactual

1See, for example, Telegraph (2012)
2In the case of the kidney donor market, for instance, transfers are prohibited by law. Likewise, transfers

cannot be used to clear public school matching markets.
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of interest is a decentralized market outcome. The bargaining frictions identified in this pa-

per provide an efficiency motivation for maintaining a centralized approach. We find that

even with wages freely able to adjust and with exogenous frictions going to zero, inefficiencies

remain ubiquitous in decentralized markets.

A sizable literature analyzes coalitional bargaining – seminal references include Gul (1989)

and Chatterjee et al (1993). Although such models are typically a better fit for political

negotiations and committee decision making, the closest paper to ours in this literature, Okada

(2011), links cooperative and non-cooperative approaches as we do.3 Like us Okada finds

conditions under which there does not exist an efficient MPE, and relates these conditions

to the core. However, in assignment economies the conditions he identifies are generically

violated when there are two or more players on each side of the market, implying that there

is no efficient equilibrium.4 In contrast, an efficient MPE exists for a positive measure subset

of the parameter space in our decentralized bargaining model.

We also view cooperative approaches as somewhat centralized. The primary cooperative

solution concept used to study assignment economies is the core following the pioneering

work of Shapley and Shubik (1971). Generalizations of Nash bargaining – Rochford (1984),

Kleinberg and Tardos (2008), Kanoria et al (2014) – have been shown to refine the core. We

connect the core to non-cooperative bargaining. While our condition for the existence of an

efficient MPE requires agents’ Rubinstein payoffs to be core payoffs, the connection is deeper.

There exist parameter values5 for which equilibrium payoffs are equal to any core payoffs. In

other words, the efficient equilibria span the core, and any core outcome can be justified as

an equilibrium of some bargaining game.

A common motivation for refining the core, which is a set-valued solution concept, is to

derive more precise predictions about agents’ payoffs. Our results show that while the non-

cooperative approach can obtain this goal, it requires taking a stance on players’ bargaining

powers (or, more accurately, offer probabilities). These probabilities are given exogenously by

the bargaining protocol. If one does not want to take a stand on what bargaining powers should

be, and instead entertains the possibility of all bargaining powers, then the set of equilibrium

payoffs is a superset of the core. The core refines the set of non-cooperative bargaining payoffs

and not vice versa.

3Nguyen (2012, 2014) and Siedlarek (2014) are close to our aims in a different way, as they model coalitional
bargaining over networks.

4Details available upon request.
5Namely, a probability distribution over players which determines how likely each player is to be called on

to make an offer.
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1.1.2 Large markets

There are many papers that consider decentralized bargaining in large markets, meaning that

they either model an infinite number of players or else they assume pairs that exit are replaced

by exact replicas.6 Seminal work includes Rubinstein and Wolinsky (1985), Gale (1987), and

Binmore and Herrero (1988). A general conclusion from this literature is that sometimes

equilibrium outcomes approximate competitive equilibria when the frictions get small and

other times they do not. Lauerman (2013) provides a nice characterization of when these two

outcomes can be expected. Most papers study steady state outcomes.7 The closest papers

to ours in this literature are Manea (2011), who studies network bargaining, and Moreno and

Wooders (2002) who study non-stationary markets. Unlike us, in their large market setting,

Moreno and Wooders (2002) find that outcomes approaching the competitive equilibrium

outcomes are obtained as frictions vanish. However, they do find that it is possible to have

delay in the limit (outcomes are nevertheless competitive in the limit as the losses due to delay

go to zero). Manea (2011) focuses on limit payoffs rather than efficiency.

The search literature also considers large markets. Our approach is complementary to

this research agenda. While we focus on bargaining frictions, the search literature typically

focuses on other frictions. Indeed, some of the search literature can be viewed as endogenizing

the constraint set on possible matches we take as given. Moreover, better understanding

of bargaining frictions can help improve our understanding of search incentives – Rogerson,

Shimer and Wright (2005).8

To place our findings in the context of the search literature we restrict heterogeneities to

assortative matching environments in Appendix IV.9 The efficient (assortative) match can be

obtained in our thin market setting, but only under strong conditions that require the market

to exhibit a high degree of symmetry. This further emphasizes the potential for incorporating

bargaining frictions into the search literature.

1.1.3 Decentralized thin markets

The most closely related work to ours also models non-cooperative bargaining with exit in

thin markets. This literature includes Rubinstein and Wolinsky (1990), Corominas-Bosch

(2004), Gale and Sabourian (2006), Polanski (2007), Polanski and Winter (2010), Kanoria et

6See Manea (2013) for how the replica assumption relates to steady state outcomes in large markets.
7Some examples, with a particular focus on network bargaining, include Atakan (2010), Manea (2011) and

Polanski and Lazarova (2014).
8Some more recent additions to this literature include Albrecht, Gautier, and Vroman (2006), Jacquet

and Tan (2007), Galenianos and Kircher (2009), Kircher (2009), Gautier, Teulings, and Van Vuuren (2010),
Eeckhout and Kircher (2010), Gautier and Holzner (2013) and Elliott (2014).

9This is the standard way heterogeneities are included in the search literature – e.g. Shimer and Smith
(2000), Smith (2006), Eeckhout and Kircher (2010).
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al (2014), Abreu and Manea (2012a, 2012b) and Polanski and Vega Redondo (2014). These

papers embed different degrees of coordination into their bargaining protocols and some could

be classified as centralized. However, like us, others are fully decentralized. Overall the

closest papers to ours are Gale and Sabourian (2006) and Abreu and Manea (2012b). Gale

and Sabourian (2006) differs from us insofar as players are simultaneously matched into pairs

before an agent in each pair is selected to be the proposer with probability 1/2. They include

heterogeneous surpluses, but assume that all sellers have identical objects to sell such that a

given buyer generates the same surplus with all sellers. Their main contribution is to provide

an example in which all MPE payoffs are non-competitive and, therefore, the market outcome

is inefficient.

Abreu and Manea (2012b) consider markets in which players cannot necessarily be par-

titioned into buyers and sellers and in which surpluses are homogeneous. These features of

the model may lead to multiplicity or non-existence of a core match. Their main contribution

is also to provide examples in which all MPE are inefficient. One such example is the line

network with eight players shown in Figure 1 below, where a link in the network implies that

the two connected players would generate a surplus of 1 if they were to reach an agreement.

a

b

c

d

e

f

g

h

1 1 1 1 1 1 1

Figure 1: The eight player line network.

In this example players b and c and players f and g reach agreement with positive proba-

bility in the unique MPE. This is inefficient. However, if the players were able to choose who

to make offers to they would prefer to make alternative offers and the inefficiency would dis-

appear. Abreu and Manea also provide an example in which there are multiple MPE payoffs.

However, in this example there are also multiple efficient matches and so it is not clear whether

coordination problems are driving the result such that the multiplicity would disappear in the

non-generic case where all matches do not generate exactly the same surplus. Finally, delay is

a necessary feature of their protocol whenever multiple matches are feasible and the efficient

match obtains – if an inefficient match is drawn, an agreement cannot be reached. Moreover,

from their examples it is unclear whether delay is ever possible between two players who are

matched in the unique efficient match.
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While both papers identify interesting and important features of markets, neither are able

to provide general conditions to ensure that an efficient MPE exists, or alternatively, does not

exist. This is crucial for understanding the extent of bargaining frictions in markets. Given

the possibility of inefficiency identified by Gale and Sabourian (2006) and Abreu and Manea

(2012b), we select a bargaining protocol that is most predisposed to admit an efficient MPE.

We allow players to choose who to make offers to preventing them from having to sometimes

delay to reach the efficient match and removing the pressure this crates on agents to match

inefficiently. We study only the generic case in which there is a unique efficient match. This

prevents coordination problems generating a multiplicity of equilibria. Finally, as is standard,

we allow bargaining frictions, represented by the cost of delay between offers, to get small.

Despite making these modeling choices, we find inefficiency is pervasive, and characterize when

it occurs and for what reasons.10

2 The Assignment Economy

An assignment economy consists of a set of players N = {1, ..., n} and an n by n matrix S

characterizing the surplus that can be generated by any two players in the economy. The ij

entry of S, sij ≥ 0, denotes the surplus generated when players i and j are matched. The

surplus matrix S can be interpreted as a network. The network is assumed to be undirected

(so that sij = sji for any i, j ∈ N) and bipartite (so that, for some partition (P1, P2) of the

set of players N , sij = 0 whenever i, j ∈ Pk for k ∈ {1, 2}). The two assumptions imply that

the surplus generated in a match is independent of the identity of the player who initiates the

match, and that surplus can be generated only by players of different types. By assumption,

workers generate surplus only with firms, men generate surplus only with women, and buyers

generate surplus only with sellers.

A match is a map µ : N → N such that µ(µ(i)) = i for any i ∈ N . If µ(i) = i, we say that

player i is unmatched. If µ(i) = j, then i and j generate surplus sij.
11 Let M(N) denote the

set of possible matches for a given set of players N . An efficient match η for an assignment

economy S is a match that satisfies

∑
i∈N

siη(i) = max
µ∈M(N)

{∑
i∈N

siµ(i)

}
.

10We thus take up the challenge posed in Abreu and Manea (2012b) who conclude that “Many open questions
remain, including the analysis of network structures which lead to multiplicity or inefficiency of MPEs. It is
unclear at this stage whether useful characterizations are attainable.”

11Note that by the bipartite assumption, sii = 0.
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The core of the market is a match µ and payoff profile U ⊆ RN
+ such that

[1] ui + uµ(i) = siµ(i) for any i ∈ N ,

[2] ui + uj ≥ sij for any i, j ∈ N .

Shapley and Shubik (1971) establish that any core match is an efficient match, and that

generically there is a unique efficient match.12 Our analysis restricts attention to generic

economies with a unique efficient match.

Although condition [2] ensures only that there are no profitable pairwise deviations, Shap-

ley and Shubik (1971) establish that this is sufficient for there to be no profitable coalitional

deviations. The lowest and the highest payoff that player i can receive in a core outcome will

be denoted by ui and ui. We occasionally refer to η also as the core match.

3 Matching and Bargaining

The analysis considers a non-cooperative, infinite-horizon bargaining protocol in which players

choose whom to bargain with. All players discount the future by a common factor δ ∈ (0, 1).

At the beginning of the game, all players are active, but they can become inactive as the

game unfolds. In every period, a single player i ∈ N is selected at random to be the proposer,

with probability pi > 0. If proposer i is active, he can make an offer to at most one other

active player. We adopt as a convention that a player failing to make an offer chooses to offer

to himself. An offer from player i to a player j 6= i consists of a surplus split xji ∈ [0, sij],

where xji denotes the amount of surplus generated by the new match, sij, that he intends to

leave to j. The player receiving the offer then has a binary choice, to accept (1) or reject (0)

the offer. If j rejects the offer, both players remain active, and the game moves to the next

stage. Otherwise, players i and j become inactive, and their final payoffs are determined by

the discounted value of the shares that they have agreed upon. In particular, if players expect

to reach agreement xji with certainty at stage t, their expected payoffs at the beginning of the

game satisfy

uj = δt−1xji and ui = δt−1(sij − xji).

In the next stage the proposer is selected according to the same probability distribution. If

an inactive player is selected the game moves to the subsequent period. The game ends when

the surplus generated by any pair of active players is zero. The structure of the game is

common knowledge among players. Information is complete. Thus, all players observe any

12For any assignment economy in which the surpluses are perturbed by an independent noise term (drawn
from a continuous distribution with no atoms), there is a unique efficient match with probability 1.
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offer previously made and the corresponding acceptance decision.

Histories and Strategies: There are two kinds of histories. Denote the set of histories

at date t observed by any player after the new proposer has been selected by H t = N ×
[N2 × R+ × {0, 1}]t−1

. This includes the identity of the current proposer, the identities of

past proposers, who they offered to, the offer they made and whether the offer was accepted

or rejected. Denote the set of histories of length t observed after an offer has been made by

Rt = N×R+×H t. Let R = ∪tRt and H = ∪tH t. Finally, let Hi denote the subset of histories

in H in which player i is the proposer, and let Ri denote the subset of histories in R in which

player i has to decide whether to accept or reject some offer.

We say that player i ∈ N is active at history h ∈ H if that player has never accepted an

offer and has never made an offer that was accepted. For any history h ∈ H, let A(h) ⊆ N

denote the set of active players in the game after history h. Throughout, the operator ∆(·)
will map any finite set to its simplex. The strategy of an active player i ∈ A(h) who was

selected to be the proposer consists of a pair of functions, ρi and χi, such that

ρi(h) ∈ ∆(A(h)) and χi(h) ∈ R|A(h)|
+ for h ∈ Hi.

The first map ρi(h) describes a probability distribution over players who may receive an offer

from i at any given history, while the second map χi(h) identifies the amount of surplus that

i would offer to any other active player who might receive such an offer. The strategy of an

active player i ∈ A(h) who receives an offer is instead a single function, αi, such that

αi(h) ∈ [0, 1] for h ∈ Ri.

The map αi(h) describes the probability that an offer is accepted at any possible history.

Strategy profiles are usually denoted by omitting the dependence on players, (ρ, χ, α) =

{ρi, χi, αi}i∈N .

4 Solution Concept and Preliminaries

The analysis restricts attention to Markov perfect equilibria in which strategies depend only

on the set of active players in the game.

Definition 1 A profile of strategies (ρ, χ, α) is a Markov perfect equilibrium (MPE) if strate-

gies are subgame perfect and if strategies coincide whenever active player sets coincide. That

is, for any two histories h, h′ ∈ H such that A(h) = A(h′):

[1] ρ(h) = ρ(h′) and χ(h) = χ(h′),
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[2] α(i, x|h) = α(i, x|h′) for any offer (i, x) ∈ N × R+.

Since MPE strategies depend only on the set of active players and on the offers made, we often

write such dependence explicitly, thereby omitting the dependence on histories. Notation(
ρδ, χδ, αδ

)
will occasionally be used to clarify that equilibrium strategies may also depend on

the discount factor δ. But, we omit this dependence when redundant.

Results also consider MPE behavior in the limit as the discount factor converges to 1. To

simplify the discussion we introduce a notion of limiting equilibrium.

Definition 2 A limiting Markov perfect equilibrium (LMPE) (ρ̄, χ̄, ᾱ) is the limit of a selec-

tion
{
ρδ, χδ, αδ

}1

δ=0
of the MPE correspondence as δ converges to 1.

Throughout the text the expression equilibrium will refer to an MPE, and the expression

limiting equilibrium will refer to an LMPE.

Before presenting our characterization of equilibrium behavior, we introduce two efficiency

concepts that we apply to both MPE and LMPE and the notion of delay that will be analyzed

in the following sections. Let E denote the set of unmatched players in the core of the entire

assignment economy, E = {i ∈ N |η(i) = i}, and let C(N) denote the set of possible active

player sets that can arise as core matches drop out of the game,

C(N) = {A|A = ∪i∈M{i, η(i)} ∪ E for some M ⊆ N} .

For any MPE (ρ, χ, α) and any set of players A ⊆ N , let πij(A) denote the agreement probability

between players i ∈ A and j ∈ A\i when i is selected to make an offer,

πij(A) = ρi(j|A)︸ ︷︷ ︸
Pr(i offers to j)

· αj(i, χi(j|A)|A)︸ ︷︷ ︸
Pr(j accepts)

,

and let πii(A) denote the probability that i does not reach agreement when selected to make

an offer,

πii(A) = 1−
∑

j∈A\iπij(A).

Also, let Vi(A) denote the expected payoff – or equivalently value – of an active player i at

the beginning of a subgame in which the set of active players is A, and let vi(A) denote the

MPE value of an active player i when he is chosen to be the proposer.

Consider a social planner who is able to impose terms of trade and agreement probabilities,

but is otherwise constrained by the environment of the game. For a high enough discount

factor, this constrained social planner will implement only efficient matches and will do so at

the first available opportunity. An MPE with these features is said to be strongly efficient. It
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requires that every player who is matched in the core of the assignment economy agrees on a

division of surplus with his core partner at the very first opportunity.

One way in which surplus can be lost is through delay. However, when players interact

frequently – that is, when δ is close to 1 – little surplus is dissipated because of delay. We

therefore also consider a weaker efficiency criterion that only requires players to eventually

match to their respective core partners. An MPE is thus said to be weakly efficient if every

player who is matched in the core eventually agrees on a division of surplus with his core

partner.13

Definition 3 An MPE (ρ, χ, α) is:

• strongly efficient if πiη(i)(A) = 1 for all A ∈ C(N) and all i ∈ A;

• weakly efficient if πiη(i)(A) + πii(A) = 1 and
∑

j∈A\E πjη(j)(A) > 0 for all A ∈ C(N) and

all i ∈ A.

Neither of our efficiency criteria are satisfied when an inefficient match obtains with positive

probability. As we assume δ < 1 this includes situations in which an inefficient match occurs

with vanishingly small probability as δ → 1. To address this we apply our two efficiency

criteria to LMPE. For convenience, let π̄ij(A) = limδ→1 π
δ
ij(A), for all i, j ∈ A.

Definition 4 An LMPE (ρ̄, χ̄, ᾱ) is:

• strongly efficient if π̄iη(i)(A) = 1 for all A ∈ C(N) and all i ∈ A;

• weakly efficient if π̄iη(i)(A) + π̄ii(A) = 1 and
∑

j∈A\E π̄jη(j)(A) > 0 for all A ∈ C(N) and

all i ∈ A.14

While both strongly and weakly efficient LMPE generate the same surplus in the limit, it is

instructive to separate them for the purpose of classifying limiting efficient equilibrium play.

The strong and weak efficiency taxonomy parses efficiency loss through inefficient matching

versus inefficient delay. An important difference between applying our efficiency criterion to

MPE and LMPE is that subgames outside C(N) may now be on the equilibrium path for all

δ < 1.

13In terms of utilitarian welfare strongly efficient MPE maximize the ex-ante sum of MPE values, whereas
weakly efficient MPE may not. Even in strongly efficient MPE, however, the sum of values is necessarily below
total surplus, as it takes time for the core match to form. Moreover, in a strongly efficient MPE all active
player sets in C(N) obtain with positive probability. But, this is not the case for weakly efficient MPE, as the
market may clear sequentially.

14Weakly efficient LMPE are always asymptotically efficient, as defined in Abreu and Manea (12a,12b). But
in principle, there could be asymptotically efficient LMPE in which all players delay with probability 1 in the
limit. We do not study this case and would be surprised in such equilibria exist.
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Our notion of equilibrium delay disciplines the behavior of active players. It states that

an MPE displays delay whenever a player with a positive value forgoes the option to make an

acceptable offer with positive probability.

Definition 5 An MPE (ρ, χ, α) displays delay if for some A ⊆ N and some player i ∈ A

Vi(A) > 0 and πii(A) > 0.

The definition applies only to players with a positive value, as it is immediate that players

with zero continuation value might as well refrain from reaching agreements. In Section 6, we

present two examples in which a player (with a positive continuation value) chooses to delay

on the equilibrium path.

5 MPE Existence and Characterization

The first result in the analysis provides a proof of equilibrium existence and a preliminary

characterization of equilibrium bargaining values. For convenience, let pA =
∑

j∈Apj. The

characterization allows for mixed strategy equilibria. Fix an active player set A and consider

any Markovian strategy profile (ρ, χ, α) and its associated values and agreement probabilities

(π, V ) ∈ [∆(A)× R]|A| where we omit the dependence on A for clarity. As in numerous

bargaining models, subgame perfection dictates that a proposer never offers to another player

more than that player’s present discounted value of staying in the game. As players can choose

whom to bargain with, proposers necessarily offer to those players who leave them with the

highest surplus, argmaxj∈A\i {sij − δVj}, whenever such surplus exceeds the value of remaining

unmatched, δVi. It follows that for any active player set A ⊆ N , MPE values V (A) for any

player i ∈ A must be a fixed point of the following system of value equations

vi = max{δVi,maxj∈A\i{sij − δVj}},

Vi = pivi︸︷︷︸
i proposes

+
∑

j∈A\ipj[ (πji + πjj)δVi︸ ︷︷ ︸
j proposes to i or delays

+
∑

k∈A\i,jπjkδVi(A\j, k)︸ ︷︷ ︸
j proposes to k 6=i,j

] + (1− pA)δVi︸ ︷︷ ︸
no player proposes

,

for some profile of agreement probabilities π(A) satisfying

πij = 0 if vi > sij − δVj and j 6= i,

πii = 0 if vi > δVi.
(1)

Proposition 1 An MPE exists. Moreover, {π(A), V (A)}A⊆N is a profile of MPE values and

agreement probabilities if and only if it solves system (1) at any active player set A ⊆ N .

12



Existence is proved by applying Kakutani’s fixed point theorem. The result extends Propo-

sition 1 and Lemma 1 in Abreu and Manea (2012b) to environments in which players are

allowed to choose whom to offer to and in which the surplus generated in a match depends on

the identity of the players. MPE are not unique. MPE are not unique, but values are unique

for given agreement probabilities.15

The result implies that no player i ∈ A can delay in equilibrium if there exists a player j ∈ A
such that δVi + δVj < sij. Thus, in any MPE displaying delay it must be that δVi + δVj ≥ sij

at some subgame.

6 Examples

Before proceeding to the main analysis, we consider a few examples to illustrate the model,

the solution concepts, the efficiency definitions and the main messages. The first example

establishes that equilibrium mismatch can occur, the second shows how mismatch inefficiencies

can be small in a strongly efficient limiting equilibrium, the third demonstrates equilibrium

delay, and the forth shows that mismatch inefficiencies can be small even in a weakly efficient

limiting equilibrium when all players endogenously choose to exit the market sequentially, one

core pair at a time. This section can be skipped.

Example 1: Consider an assignment economy populated by four players who propose with

equal probabilities. Surpluses in the market are as depicted in Panel I of Figure 2.
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d
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(I)
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(III)
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b

c
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Figure 2: In Panel I the assignment economy; in Panel II MPE agreement probabilities for
y ∈ [0, 100]; in Panel III equilibrium probabilities for y ∈ (100, 143]; in Panel IV equilibrium
probabilities for y ∈ [144, 200], in Panel V equilibrium probabilities for y ∈ (200,∞). An
arrow between two players represents a positive agreement probability. A self-arrow instead
represents a positive disagreement probability.

The unique efficient assignment matches player a to b and player c to d whenever y < 200,

while it matches only player a to d when y > 200. Multiple core assignments exist at y = 200.

Proposition 1 can then be used to derive MPE payoffs and strategies in this game for any

discount factor. To make the discussion more transparent, suppose that the discount factor

15Thus if (π, V ) is MPE at an active player set A, (π, V̄ ) is not for all V̄ 6= V .
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is close to unity. When y is sufficiently small (y ≤ 100), the characterization establishes

that players necessarily bargain only with their core matches. If so, payoffs are pinned down

as in a bilateral Rubinstein bargaining game (without outside options), and no player is

ever tempted to offer to players other than their core match (Panel II of Figure 2). In this

scenario, all players achieve an LMPE payoff of 50. When y > 100, however, endogenous

outside options become binding. If everyone only offered to their efficient match players a

and d would both have a profitable deviation to offer to each other. In equilibrium, when

y ∈ (100, 1000/7), players a and d randomize between offering to their respective core matches

and bargaining with each other (Panel III of Figure 2). By offering to each other with positive

probability, a and d reduce the continuation values of their efficient partners and randomizing

is optimal. The alternative of matching with each other now affects the payoffs a and d agree

with their efficient matches, but only because their endogenous outside options are exercised

with positive probability. Mismatch therefore occurs with positive probability once endogenous

outside options bind. As δ converges to 1, a and d offer to their respective efficient matches

with probability q ∈ (0, 1), and offer to each other with the complementary probability.

When y grows further, to y ∈ [1000/7, 200), players a and d stop making offers to their

core matches, as they strictly prefer offering to each other (Panel IV of Figure 2). However,

they still accept offers made by their respective core matches. There is now mismatch with

probability 1/2. Despite this inefficiency, the unique equilibrium is in pure strategies. Thus,

the existence of a pure strategy equilibrium is necessary for a strongly efficient MPE, by

definition, but not sufficient. The final case is the one in which y > 200, and in which

the efficient match changes. Players a and d become core partners and continue offering to

each other with probability 1. However, b and c stop making offers to players a and d, as any

accepted offer would have to be worth more than the entire surplus in the relevant relationship

(Panel V of Figure 2). This change affects limiting payoffs discontinuously. When y < 200,

player b always makes an acceptable offer to a, leaving c to bargaining bilaterally with d with

probability 1/4. Thus, c gets a limiting payoff of 50 with probability 1/4. For y > 200,

however, b stops making acceptable offers to a, and so c receives a payoff of 0 with certainty.

Note that this discontinuity occurs precisely at the value of y for which the core match is not

unique. Figure 3 depicts LMPE values and surplus as a function of y.

Example 2: The second example is closely related to classical models of bargaining with

exogenous outside options. The message from the first example, which holds in general, is

that endogenous outside options must be exercised with positive probability to affect payoffs

and so mismatch occurs with positive probability whenever endogenous outside options bind.

Although outside options are generally endogenous in our framework, players who never exit

the market provide outside options that are effectively exogenous. In any efficient equilibrium

14



Figure 3: The plot depicts payoffs and surplus as a function of sbc = y. The payoff of players
a and d is denoted by Va, whereas Vb denotes the payoff of b and c.

they remain available until the game ends. As such, we refer to them as exogenous outside

options. These outside options can affect payoffs while being exercised with probability 0 in

the limit.

Consider the stylized three-player market depicted in Panel I of Figure 4. The unique core

match of the market matches players e and f , while leaving c unmatched. Let the three players

propose with equal probability, and assume again that their discount factors are sufficiently

close to unity. If so, then players e and f offer to each other with probability 1 in the

unique MPE, whereas player c offers to player e with probability q ∈ (0, 1). Such probability

converges to 0 as the discount factor converges to unity. However, the mere presence of player

c, significantly affects bargaining outcomes. Players e and f would share the 10 units of

surplus evenly were they to bargain in solitude. However, because c never exits the market, he

acts as an exogenous outside option for f , which is why player f can extract the same limiting

surplus that he would get were he to bargain in solitude with player e while having access to

an exogenous outside option with value 8. The limiting payoffs converge to 8 for player f , to

2 for player e, and to 0 for player c. Even though player c does not make an acceptable offer,

the equilibrium does not display delay by our definition, because the payoff of player c equals

exactly 0 for all δ sufficiently close to 1. While the equilibrium described is not strongly or

weakly efficient for δ < 1 because there is positive probability of mismatch, in the limit that

probability converges zero, and so the limiting equilibrium is strongly efficient.

Example 3: We saw in example 1 that mismatch occurs because players with endogenous

outside options fear the market will evolve against them and they will loose this alternative.

In contrast, when the market does not evolve against a player with a binding outside option

we saw that the probability of mismatch could become vanishingly small in example 2. We

now reinforce the message that the market evolution drives inefficiencies by showing that delay

15
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Figure 4: In Panel I the assignment economy; in Panel II agreement probabilities. The limiting
equilibrium shown is strongly efficient as limδ→1 q

δ = 0.

can occur because players expect the market to evolve in their favor.

Consider the six-player assignment economy depicted in Panel I of Figure 5, in which agents

are selected to propose with equal probability p. We show an equilibrium exists in which f

delays making offers with probability 1 when selected to propose if all other players are still

active in the market. Panel II of Figure 5 shows the agreement probabilities in this MPE. To

solve this game, we use backward induction. Under the proposed equilibrium, if the protocol

selects agent e as the first proposer, agent e makes an offer to agent f that will be accepted.

If so, the remaining subgame coincides precisely with the game discussed in Example 1, so we

know the MPE payoffs for all the remaining players in the subgame. If agent c is selected as

the first proposer and agrees with d, then in the following subgame agents e and f bargain

bilaterally, as do agents a and b. If agent a or d is selected as the first proposers instead, then

agent b must remain unmatched, while agents c, e, and f are left in precisely the subgame we

considered in Example 2. Finally, if agent b is the first proposer, he agrees with a, and players

c, d, e, and f are left in a subgame. While we have not solved this subgame yet, in the unique

MPE all players offer to their efficient partner and doing so the outside options c and f have

of matching with each other is non-binding. Limit payoffs for c, d, e and f and then 50, 50, 5

and 5. With these subgames in mind, it is easy to write down the value equations for the six

agents and solve them. For instance, the value equation for agent c simply amounts to

Vc(N) = p[ 2δVc(E2)︸ ︷︷ ︸
a or d propose

+ δVc(c, d)︸ ︷︷ ︸
b proposes

+ (100− δVd)︸ ︷︷ ︸
c proposes

+ δVc(E1)︸ ︷︷ ︸
e proposes

+ δVc︸︷︷︸
f delays

],

where Vc(Ei) denotes the value of player c in Example i ∈ {1, 2}. Solving the value functions

establishes that no player has a profitable deviation from the proposed strategies and that

player f must delay for all sufficiently high values of δ. Taking limits as δ → 1 the payoffs of

16



the six players converge to

V (N) = (55/3, 230/3, 230/3, 55/3, 13/2, 7/2).

Agents a through d achieve the same limiting values as in Example 1. The additional option

available to c (of matching with f) does not improve c’s terms of trade as it never binds.

Nevertheless, the option of matching to c incentivizes f to delay. There is positive probability

that a and d will reach agreement first, and in this case f ’s bargaining position with e improves.

While such threats are factored into the limiting payoffs of e, and f ends up indifferent between

delaying and making an offer to e when selected to propose first, f must delay with certainty

to extract the maximum possible value out of his potential future outside option.

Delay in our setting relies only on the endogenous evolution of bargaining positions. This

is the case because players can choose whom to bargain with (which implies that no player has

to delay to be matched to his equilibrium partner) and because the efficient match is unique

(which shuts down possible coordination problems among players). We show in Appendix

III that when multiple efficient matches exist, delay can arise just because players fail to

coordinate on one of the efficient matches.
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Figure 5: In Panel I the assignment economy; in Panel II agreement probabilities. Player f
delays.

Example 4: There is one final way in which outside options can, in principle, be effectively

exogenous and bound limiting values without being exercised. There could be sequential

exit. Consider a limiting equilibrium in which all players in the market delay with probability

1 except for a single core pair—so that others agree only upon seeing this core pair reach

agreement. If so, those who delay may act as exogenous outside options for the pair who

end up agreeing. We show in Theorem 8 that this is the only way in which the probability

of mismatch can be vanishingly small when alternative matches who are eventually matched

themselves provide binding outside options. Remarkably, sequential exit as just described can

happen in limiting equilibria.

Consider the market depicted in Panel I of Figure 6. This market is vertically differentiated.
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Both b and d generate a higher surplus with a than c while both a and c generate more surplus

with b than d. Indeed the market is highly vertically differentiated in so far as the match

between a and b generates ten times more surplus than the match between c and d. The

efficient match is also assortative. It is efficient for a to match to b and for c to match to d.

There is no strongly or weakly efficient MPE for δ < 1 and no strongly efficient LMPE.

There is, however, a weakly efficient LMPE. For high enough δ < 1 there is an MPE in which

player c delays with probability 1, player d agrees with a with probability qδ > 0 and delays

with probability 1 − qδ while a and b always agree with each other. Moreover, limδ→1 q
δ = 0

so in the limit c and d both delay with probability 1 and wait for a and b to reach agreement

before bargaining with each other. The market therefore clears from the top. The limit payoffs

of c and d are 5, a receives 80 and b gets 20.

It is surprising that both c and d can delay with probability 1 until a and b exit, despite

ending up matched with each other with probability 1. For δ < 1, c receives a higher limiting

payoff when bargaining bilaterally with b than when bargaining bilaterally with d. While these

benefits of delaying vanish in the limit because limδ→1 q
δ = 0, so do the costs of delaying. These

costs and benefits vanish at the same rate so whether delay by c and d can be sustained in a

limiting equilibrium depends on the values of the surpluses. In this example the benefits of

delay outweigh the costs. We solve the general four player equal proposer probability problem

in section 7.1. The key features of this example are necessary and sufficient for sequential exit.

Heterogeneous surpluses are necessary, and sequential exit is not possible in the non-generic

case in which all surpluses are zero or one. Moreover, the market must be highly vertically

differentiated with an assortative efficient match for sequential exit to occur in equilibrium.
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Figure 6: In Panel I the assignment economy; in Panel II MPE agreement probabilities. The
MPE features sequential exit. As limδ→1 q

δ = 0, in the limit c and d wait for a and b to reach
an agreement before reaching an agreement themselves.
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7 MPE Efficiency and Frictions

We now present the main conclusions on equilibrium welfare. The analysis begins by char-

acterizing payoffs in any efficient MPE and by deriving necessary and sufficient conditions

for the existence of such MPE for δ close to 1. The main conclusion here establishes how

these conditions relate the primitives of the bargaining model to the core of the assignment

economy. Results also provide a characterization of inefficient MPE. The second part of the

section derives similar conclusions for limiting equilibria, and shows when players can act as

outside options affecting bargaining outcomes without distorting trade. Broadly, the anal-

ysis establishes that mismatch and delay arise in decentralized bargaining models whenever

someone uses an alternative match to improve their terms of trade and that alternative match

might exit the market before them. Whenever the market can evolve, on path, in ways that

change players’ bargaining positions inefficiencies are a necessary feature of any MPE.

To state results, it is useful to introduce three relevant payoff profiles. The first of these

identifies the LMPE values that players would achieve while bargaining bilaterally with their

core match. For any player i ∈ N , let σi denote the Rubinstein payoff 16 of player i,

σi =
pi

pi + pη(i)

siη(i).

The second profile identifies the highest payoff that players could achieve while offering to

players that are unmatched in the core of the assignment economy. For any player i ∈ N , let

ωi denote the outside payoff of player i,

ωi = maxj∈E∪i sij.

In the bargaining game, players that are unmatched in the core act as exogenous outside

options in efficient equilibria, as they never exit the market. The third and final profile

identifies the LMPE payoffs that players would achieve while bargaining bilaterally with their

core match when facing exogenous outside options equal to ω (Shaked and Sutton (1984),

Sutton (1986), Binmore and Herrero (1988)). For any player i ∈ N , let σ̄i denote the shifted

Rubinstein payoff,

σ̄i =


ωi if ωi ≥ σi

siη(i) − ωη(i) if ωη(i) ≥ ση(i)

σi otherwise

.

The first proposition characterizes equilibrium payoffs in any strongly efficient MPE.

16This name was chosen because the seminal reference is Rubinstein (1982).
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Proposition 2 In any strongly efficient MPE, the payoff of any player i ∈ A in any subgame

A ∈ C(N) amounts to

Vi(A) =

(
pi

(1− δ) + δ(pi + pη(i))

)
siη(i).

Strongly efficient MPE payoffs are stationary and independent of the set of active players along

the equilibrium path, and converge to Rubinstein payoffs. Bargaining is strongly efficient only

when outside options, exogenous or endogenous, have no effect on outcomes, and players

achieve the same payoff they would get by bargaining with their efficient match in solitude.

The result follows by simple manipulation and the observation that behavior in subgames that

are off the equilibrium path cannot affect the terms of trade in any equilibrium path subgame,

as players would reach such subgames only by exiting the game.

While we will identify necessary and sufficient conditions for bargaining to be efficient, it

will be helpful to highlight two potentially separate sources of distortions, namely, inefficient

matching and delay in reaching agreements. Both distortions are driven by the endogenous

evolution of bargaining power that results from the random order of play. Whereas mismatch

is necessarily a hard friction, as it permanently destroys surplus, delay can be a soft friction,

in that its effects on welfare are negligible when discount factors are sufficiently close to unity.

Next, we establish that delay cannot be the sole source of frictions in the model, as mismatch

is necessary for delay. Pinning down weakly efficient equilibria thus amounts to identifying

strongly efficient equilibria.

Theorem 3 Any weakly efficient MPE is strongly efficient.

The proof shows that players never delay in any weakly efficient equilibrium, as delay necessar-

ily weakens their bargaining position relative to their core match. As strongly efficient MPE

coincide with weakly efficient MPE, henceforth we simply refer to them as efficient equilibria.

The next result shows why bargaining outcomes are necessarily inefficient whenever the

outside options affect the terms of trade. The result focuses on high frequency of interaction,

and provides necessary and sufficient conditions for the existence of efficient MPE.17 We say

that an efficient MPE exists for all values of δ close to x if it exists for any δ ∈ (0, 1) such

that |x− δ| ≤ ε for some ε > 0.

Theorem 4 An efficient MPE exists for all δ close to 1:

(a) if Rubinstein payoffs are in the interior of the core,

σi + σj > sij for all i, j ∈ N such that j 6= η(i). (2)

17We defer the discussion of low frequency of interaction to Appendix I.
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(b) only if Rubinstein payoffs are in the core,

σi + σj ≥ sij for all i, j ∈ N . (3)

The proof establishes that players must occasionally agree with players other than their core

partner whenever Rubinstein payoffs do not belong to the core. Intuitively, when players

consider agreeing with their respective core matches, other partners act as endogenous outside

options. However, because outside options vanish as matched players exit the market on the

equilibrium path, players must sometimes choose such options for these to affect the outcome.18

Such behavior necessarily leads to mismatch, surplus dissipation, and possibly delay, as players

sometimes match with inefficient partners. Consequently, only when Rubinstein payoffs live

in the core of the assignment economy is there no profitable deviation away from an efficient

MPE.19

The sufficient condition for the existence of an efficient MPE is intuitive. Such a condition,

however, does not guarantee that every equilibrium is efficient. Indeed, Appendix II presents

an example in which condition (2) holds, but in which multiple MPE exist for all δ close to 1.

Coordination problems implicit in the partner selection stage are the source of the multiplicity.

The economic content of Theorem 4 is that bargaining inefficiencies are pervasive when

negotiations are decentralized. Bargaining often occurs in a market context. For example,

workers’ possible alternative matches may affect the wages they are able to negotiate. Theorem

4 establishes that whenever this market context matters, bargaining is inefficient. Markets

are able to clear efficiently only when all players can optimally bargain bilaterally with their

efficient partners, ignoring all alternatives. Moreover, these inefficiencies persist even when

the discount factor is high, and so the exogenous frictions imposed by time preferences and

the sequential nature of offers become small. In Appendix IV, we explore the consequences

of Theorem 4 in classical labor market settings, and show that vertical differentiation and

increasing differences are not sufficient for the existence of an efficient MPE. In Appendix II

we show that the existence of an efficient equilibrium does not guarantee uniqueness and that

inefficient MPE may also exist.

To further explore the key conditions in Theorem 4 we apply the definition of Rubinstein

18Consider again Example 1, and in particular panel III of Figure 1, so that y ∈ (100, 143]. Suppose an
efficient equilibrium is played, and so, by Theorem 3, q = 1. An alternative strategy available to a is to reject
all offers from b and to delay when selected to be the proposer until c exits the market. Doing so will result in
a bargaining bilaterally with b in the resulting subgame, and in the limit, b will obtain a payoff of 50. Thus,
for a to receive a limiting payoff greater than 50, a must exercise his endogenous outside option and match to
b with positive probability in equilibrium. Thus there is no efficient equilibrium.

19Our theorem does not speak to the non-generic case in which Rubinstein payoffs are on the boundary of
the core. In such cases a discount factor equal to 1 may be required to guarantee the existence of an efficient
MPE.
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payoffs. The existence of an efficient MPE then requires that for all i and j(
pi

pi + pη(i)

)
siη(i) +

(
pj

pj + pη(j)

)
sjη(j) ≥ sij.

An interesting special case is when all agents on one side of the market propose with the same

probability p1, and all agents on the other side of the market propose with the same probability

p2. For example, there might be a social norm that determines the relative bargaining power

of firms to workers in labor markets. In this case we can the condition simplifies to:(
p1

p1 + p2

)
siη(i) +

(
p2

p1 + p2

)
sjη(j) ≥ sij,

for all i ∈ P1 and j ∈ P2 (on the other side of the market). So there is an efficient MPE only

if for each worker-firm pair in the economy, a weighted average of the worker’s efficient match

and the firm’s efficient match is weakly greater than the surplus that pair could generate

together. Moreover, the weights capture the bargaining power of workers relative to firms and

both surpluses are weighted equally when p1 = p2.

The efficiency results have several immediate implications, which are summarized in the

next result. These imply that (a) any core payoff profile can be implemented as an LMPE by

appropriately selecting the vector of proposal probabilities; (b) for any pair {i, η(i)}, propor-

tional changes in their proposal probabilities do not affect limiting bargaining outcomes; (c)

efficiency is easier to achieve in economies which have a large core. For convenience, say that

surplus S supports more core payoffs than S ′ in the strong set order if any core payoff profile

in S ′ is also a core payoff profile in S.20

Proposition 5 The following are immediate consequences of Theorem 4 as δ → 1.

(a) Any interior core payoff u ∈ U is an LMPE payoff for some probabilities p ∈ ∆(N).

(b) If an efficient MPE exists with probabilities p ∈ ∆(N), then an efficient MPE (with the

same limiting payoffs) exists for any probabilities p′ such that pi/pη(i) = p′i/p
′
η(i) for all i ∈ N .

(c) Fix probabilities p ∈ ∆(N). If surplus S supports more core payoffs than S ′and if an

efficient MPE exists for S ′, then an efficient limiting MPE also exists for S.

The first part of the result establishes that the core of the assignment economy can be spanned

by varying proposal probabilities. An immediate implication, as the interior of the core is

non-empty,21 is that for any surplus matrix it is possible to find proposer probabilities that

guarantee the existence of an efficient MPE. By interpreting players’ proposal probability as

20A sufficient condition is that, for all i ∈ N , sij = s′ij whenever j = η(i), and sij ≤ s′ij whenever j 6= η(i).
21This follows from our genericity assumption and because we are considering bipartite surplus networks.
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their bargaining power, the second part shows that at a high frequency of interaction in an

efficient MPE a player’s bargaining power matters only relative to that of his efficient match.

The last part of the result implies that economies with larger cores are more likely to result

in efficient bargaining outcomes.

Next, we establish that any MPE without delay must lead to agreement on the core match

with positive probability. As we saw that delay can occur in equilibrium in Examples 3 and

4, the no-delay condition is non-trivial.22

Proposition 6 The core match obtains with strictly positive probability in any MPE that does

not display delay. However, MPE that display delay exist in some markets.

The result obtains because in any MPE without delay it is impossible to find a subset of

players who prefer to exchange their respective core matches, and thus some players must

optimally agree their efficient match.

7.1 Limiting Equilibria and Efficiency

Efficient LMPE can differ considerably from efficient MPE. Theorem 4 considers only δ < 1

and so categorizes equilibria in which mismatch occurs with a vanishingly small probability

as δ converges to 1 as inefficient. Moreover, Examples 2 and 4 establish that mismatch can

occur in equilibrium with vanishingly small probability. This section studies this possibility

asking when inefficiencies can be small in this sense.

The first result of this section extends Proposition 2 showing that strongly efficient LMPE

converge to shifted Rubinstein payoffs. Whenever these payoffs differ from Rubinstein pay-

offs and delay is costless, unmatched players in E act as exogenous outside options without

distorting the limiting equilibrium match. In Example 2, for instance, player c had an effect

on player f ’s terms of trade in the limit without ever matching to f . The result also extends

the negative efficiency conclusions of Theorem 4 to markets in which delay costs vanish. In

the limit, equilibria cannot be efficient if shifted Rubinstein payoffs are outside the core of the

assignment economy.

Theorem 7 In any strongly efficient LMPE, the payoff of any player i ∈ A in any equilibrium-

path subgame A ∈ C(N) converges to

limδ→1 Vi(A) = σ̄i.

22We stress again that Example 2 does not fit our definition of equilibrium delay, as in the unique LMPE
the only player who delays has a continuation value equal to zero.
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Moreover, a strongly efficient LMPE exists only if shifted Rubinstein payoffs are in the core,

σ̄i + σ̄j ≥ sij for all i, j ∈ N . (4)

Core unmatched players can affect the limiting terms of trade without ever agreeing, because

they belong to every equilibrium path subgame. Core matched players, instead, cannot play

such a role in a strongly efficient LMPE as they exit the game at the first available instance

by agreeing with their core match.

In addition to demonstrating the robustness of the conclusions previously reached, Theorem

7 uncovers a crucial difference between alternative matches that can be lost as the market

evolves and alternative matches that cannot be lost as the market evolves. We term the

former endogenous outside options and the later exogenous outside options. Furthermore,

it clarifies that bargaining frictions arise endogenously and simply as a strategic response to

possible changes in market composition. It is because a player is worried that an alternative

match currently available to him will exit the market, thereby weakening his market position,

that he makes an offer to an inefficient partner even as δ converges to 1. As we have seen

in Example 3, similar considerations regarding the evolution of the market can also lead to

equilibrium delay.

When shifted Rubinstein payoffs are in the interior of the core they coincide, by construc-

tion, with Rubinstein payoffs. If so, by Theorem 4 an efficient equilibrium exists for any

sufficiently high value of δ. The same argument establishes that a strongly efficient LMPE

exists in this case. Also, strongly efficient LMPE may exist even when shifted Rubinstein

payoffs are on the boundary of the core, as was the case in Example 2. But if so, distortions

vanish only when the discount factor approaches unity.

Next, we consider weakly efficient LMPE and their properties.23 The main result estab-

lishes that, whereas only core unmatched players can act as outside options in strongly efficient

LMPE, all players can potentially act as outside options in a weakly efficient LMPE. However,

for this to be the case, the market must clear sequentially, one core match at a time. If so, even

players who are ultimately matched can provide exogenous outside options by only matching

after some other players have matched.

To formalize the discussion it is convenient to introduce a notion of sequential agreement.

Definition 6 A weakly efficient LMPE is a sequential LMPE, if for some A ∈ C(N) such

that |A\E| ≥ 4 and for some i ∈ A\E

limδ→1 πjj(A) = 1 for any j ∈ A\{i, η(i)}. (5)

23We thank Mihai Manea for encouraging us to consider this notion of efficiency, termed asymptotic efficiency
in Abreu and Manea 2012a.
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Sequential LMPE display sequential agreement in that all players in the market, except for

one pair, delay reaching an agreement until that pair of players has exited the market. So,

two players who will eventually be matched with probability 1 may both prefer to delay with

certainty than to reach an agreement when selected to propose. None of the examples in either

Abreu and Manea (2012b) or Gale and Sabourian (2006) feature sequential agreement. The

next result establishes that any weakly efficient LMPE whose limiting payoffs do not converge

to shifted Rubinstein payoffs must be sequential.

Theorem 8 Any weakly efficient LMPE that is not payoff equivalent to a strongly efficient

LMPE is sequential.24 Moreover, sequential LMPE exist in some markets.

An important and immediate implication of Theorem 8 is that when shifted Rubinstein payoffs

are outside of the core either there is no weakly efficient LMPE or else all weakly efficient LMPE

are sequential.25 Theorem 8 therefore helps pin down when weakly efficient LMPE exist.

When exit is sequential, all players remain in the market until a given core match exits, creating

effectively exogenous outside options for this match. Theorem 8 further reinforces our central

message that inefficiencies are ubiquitous. Even in a weakly efficient LMPE outside options

cannot affect bargained outcomes without being exercised with strictly positive probability if

they can be lost on the equilibrium path. Nevertheless, people who are efficiently matched

can provide effectively exogenous outside options through sequential exit. It is intriguing that

sequential exit can occur in equilibrium. The observation conforms with empirical regularities

in some matching markets which can clear from the top down. However, delay is a knife-edge

phenomenon in most bargaining models without asymmetric information. It might be thought

that sequential LMPE will require very specific parameter values of the bargaining problem.

To address this issue systematically, we characterize the set of sequential LMPE in the context

of a 4 player market with equal proposer probabilities.

Let N = {a, b, c, d} and pi = p for i ∈ N . To avoid redundancies when stating results we

adopt the following labelling conventions:

• ab and cd are the core matches, sab + scd > sad + sbc;

• ab is the most valuable core match, sab ≥ scd;

• ad is the most valuable non-core match, sad ≥ sbc.

24Two LMPE are payoff equivalent if ex-ante limiting values in the two equilibria coincide for all players.
25By Theorem 7, if a LMPE generates the same payoffs as a strongly efficient LMPE it must generate shifted

Rubinstein payoffs. And if these payoffs are outside of the core, some player will have a profitable deviation
when making an acceptable offer to an inefficient partner.
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We also omit the dependence on N when obvious. The final result on efficient LMPE charac-

terizes payoffs in a sequential LMPE, and delivers necessary and sufficient conditions for the

existence of such an LMPE.

Proposition 9 Given the labelling convention, if a sequential LMPE exists, then for all

δ close to 1

πab = πba = πcc = πda + πdd = 1, πda > 0, limδ→1 πdd = 1.

Moreover, in any such LMPE

limδ→1 Va = sad − σd limδ→1 Vc = σc

limδ→1 Vb = sab − sad + σd limδ→1 Vd = σd

Finally, a sequential LMPE exists if and only if

sab > sad >
sab + scd

2
> sbc > scd and

sbc − scd
2(sab − sad)

≥ sbc + scd
sab + scd

. (6)

The proposition pins down agreement probabilities at a high frequency of interaction in any

sequential LMPE. In such equilibria, players a and d reach agreement first and then players

c and d. As c and d end up bargaining bilaterally with each other they have limit payoffs

equal to their Rubinstein payoffs. Thus, when players a and d are bargaining it is as if a has

an exogenous outside options of value sad − σd. As sad − σd > σa this outside options binds

and a gets a limit payoff of sad − σd,26 leaving b with the residual surplus sab − (sad − σd).27

This equilibrium conforms to previous intuitions. Alternatives within the market can affect

the terms of trade only if they remain in the market indefinitely.

Conditions (6) have natural interpretations. Given our labeling convention, the require-

ment that sab > sad > sbc > scd implies that the market must be vertically differentiated.

These surpluses are not possible in either Abreu and Manea (2012b) or Gale and Sabourian

(2006). Moreover, the first match to reach agreement is the most valuable core match. We

therefore rationalize top-down sequential exit as an limiting efficient market outcome in a

complete information decentralized bargaining game. Delay in bargaining is hard to get, but

real world experience suggests that matching markets can occasionally be held up while clear-

ing from the top. Our model delivers such behavior as an equilibrium phenomenon in thin

markets without any asymmetric information.

The second condition is that sad > (sab + scd)/2. Note that σa = sab/2 and σd = scd/2.

This condition therefore requires that shifted Rubinstein payoffs are outside of the core. So,

26In effect b also has an exogenous outside option, worth sbc − σc, but this outside option does not bind.
27These chains are similar to the outside option chains identified as characterizing certain core payoff in

Elliott (15).
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(I) (II)

Figure 7: Panel I plots the lower bound for ζ for different combinations of scd and sbc. As
ζ < 1, regions of the parameter space where lower bound is greater than 1 are regions in which
no sequential LMPE exists. Panel II shows the lower bound only when ζ < 1.

by Theorem 7, there is no strongly efficient LMPE, and by Theorem 8 any weakly efficient

LMPE must be sequential.

The final condition in (6) is the hardest to interpret. We will argue that, in combination

with the other conditions, it stipulates that the market must be highly vertically differentiated.

To better understand this condition it is instructive to consider the amount of mismatch

inefficiency that weakly efficient LMPE are able to eliminate. For convenience normalize

sab = 1 and define the fraction of surplus that can be lost because of mismatch to be ζ =

(sad + sbc) / (1 + scd) ∈ (0, 1). The final and key restriction to the parameter space identified

in Proposition 9 can then be restated in terms of this parameter as requiring

ζ ≥ 2(1 + sbc)(sbc + scd)− (1 + scd)(sbc − scd)
2(sbc + scd)(1 + scd)

.

We plot this lower bound on the relative efficiency of the wrong matches in Figure 7.

As ζ < 1 for a sequential LMPE to exist, the plot shows that when scd is relatively large there

is no sequential LMPE. More precisely there is a sequential LMPE only if scd < 1−2sbc. Since

by Proposition 9 sbc > scd, it must be that scd/sab < 1/3. So, the less productive core match

must be at least three times less productive than the most productive core match. This upper

bound on the relative value of scd becomes much tighter when the potential loss associated with

mismatch ζ is at least 5%. Indeed, for ζ ≤ 0.95 a similar calculation establishes that scd/sab <

0.133; so scd can be at most 13.3% as productive as sab.
28 We conclude that sequential LMPE

only exist in sufficiently vertically differentiated markets and only in extremely differentiated

markets when mismatch generates a considerable amount of inefficiency.

28Example 4 in Section 6 provides some specific parameter values for which sequential exit occurs. In this
example scd/sab = 0.1 and ζ = 0.955.
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8 Conclusions

We study the Markov perfect equilibria of an extended Rubinstein bargaining game with

many buyers and many sellers. Efficient equilibria are closely tied to the core. If all agents

bargaining bilaterally with their efficient (core) partner results in an outcome that is in the

core, then there exists an efficient Markov perfect equilibrium. If not, then no Markov perfect

equilibrium is efficient. There are two types of inefficiency: mismatch and delay. In the limit,

inefficiencies due to delay go to 0, but mismatch is a necessary condition for delay, so frictions

cannot be driven purely by delay. This builds on the most closely related literature by taking

the analysis beyond examples that document inefficiencies to results identifying when efficient

equilibria exist and when they do not.29

The intuition for the inefficiencies we find is the following. The network of potential

matches provides endogenous outside options to the agents. However, for an agent to benefit

from an outside option that might otherwise disappear (as happens when the alternative match

providing the outside option exits the market), the agent must exercise his outside option with

positive probability otherwise his eventual match can simply wait for the outside option to be

lost. This leads to mismatch. While mismatch is driven by the potential for the market to

evolve adversely, delay occurs because agents expect the market to evolve in their favor. Delay

can be extensive and highly structured. We find that vertically differentiated markets can be

held up while everyone waits for the highest quality worker and firm to reach an agreement.

Endogenous outside options provided by alternative matches are not equivalent to a sce-

nario in which all players have exogenous outside options of the same value. In equilibrium,

exogenous outside options can bound payoffs from below without ever being exercised (Sutton

1986). Our analysis shows that this logic relies crucially on the outside options remaining

available forever, and fails to hold when agents exit the market.

While we study a specific bargaining protocol, our protocol is standard and chosen to give

the best chance to efficient outcomes while remaining decentralized. To this end, we allow the

proposer to choose whom to offer to, study the generic case in which the efficient match is

unique, and look at equilibria in the limit as bargaining frictions imposed by the cost of delay

get small. Another concern might be that we only consider the Markov Perfect equilibria, while

an efficient perfect equilibrium may always exist – as proven by Abreu and Manea (2012a) for

networks with homogeneous surpluses. Ultimately, whether the focus on MPE is reasonable or

not is an empirical question. While identifying mismatch empirically is hard because counter-

factual productivities are not directly observed, Elliott and Agranov (2015) run a laboratory

experiment to circumvent this issue. They document extensive inefficiencies and show that the

29While we do not provide a full characterization of the MPE, such a characterization should be possible
for four player networks.
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Markov perfect equilibrium outcomes correctly predict which markets exhibit mismatch more

frequently, although inefficient matches occur more often than predicted. Across the three

networks considered, the MPE predict inefficient matches to occur with probabilities 0%, 28%

and 50% respectively. In the experimental data there is mismatch with probabilities 0%, 49%

and 70% respectively across the networks. The additional inefficiency in the data is driven by

players in weak bargaining positions rejecting offers that would leave them with a lower share

of the surplus, while the MPE predict these offers should be accepted. Nevertheless, the MPE

predictions fit the data well in a variety of other ways.30

We interpret our results as saying that the conditions for efficiency are unlikely to be

satisfied, especially in markets where alternative matches matter. However, we also show that

there always exist offer probabilities that generate efficient outcomes. An interesting extension

we leave to future work would be to consider whether there is a natural way to endogenize

the offer probabilities and restore or improve efficiency. While norms might evolve to generate

offer probabilities that are more efficient, they are unlikely to be tailored to the intricacies

of a given market. One possible extensions would be to randomize surpluses but allow offer

probabilities to be chosen efficiently by a social planner (before surpluses are realized). This

might be most appropriate when agents on the same side of the market are constrained to be

the proposer with the same probability so that the norm reflects the relative bargaining power

of one side of the market compared to the other.31
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9 Appendix I: Low Frequency

This short section provides conditions for MPE efficiency at low frequency of interaction.

These conditions require that a player’s preferred bargaining partner coincide with his core

partner. At low frequency of interaction, players necessarily offer a negligible amount to any

partner when proposing due high cost of rejecting offers. Thus, players will negotiate with

their core match only when the surplus generated with such a player exceeds the surplus that

could be generated in any other match. The next result formalizes such observations.

Theorem 10 A strongly efficient MPE exists:

(a) for all δ close to 0 if any player strictly prefers his core match,

siη(i) > sij for all i, j ∈ N .

(b) for all δ close to 0 only if any player weakly prefers his core match,

siη(i) ≥ sij for all i, j ∈ N .

It would be compelling to conclude by arguing that if an efficient MPE exists for arbitrarily

high and low values of δ, then it also exists for any intermediate value. However, the conclusion

does not hold in general, as the incentive constraints characterizing the existence of efficient

MPE are quadratic.

10 Appendix II: Multiplicity

This short section presents an economy in which condition (2) holds, but in which multiple

MPE exist for all δ close to 1. Consider the following 4 player economy: N = {a, b, c, d};

pa = pb = 4/10, pc = pd = 1/10;

sab = scd = 36, sad = sbc = 35.

Clearly it satisfies condition (2) as

σa + σd = σb + σc = 36 > 35.

Thus, an efficient MPE always exits for all δ close to 1; and consequently a strongly efficient

LMPE exists. However, for all δ close to 1 there also exists an inefficient MPE with the
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following proposal probabilities

πad = πbc = πcd = πdc = 1.

In such an equilibrium (setting Va = Vb and Vd = Vc) value equations in (1) reduce to

Va =
4

10
(35− δVc) +

2

10
δVa(ab) +

4

10
δVa(ad)

Vd =
1

10
(36− δVd) +

1

2
δVd +

4

10
δVd(ad).

Solving for subgame values, establishes that

Va =
2(350− 69δ − 25δ2)

5(5− δ)(2− δ)
and Vd =

36− 4δ

(5− δ)(2− δ)
.

Taking limits then implies that limδ→1 Va = 128/5 = 25.6 and limδ→1 Vd = 8. Limit values

then satisfy all the equilibrium incentive constraints as

2Va > 36, 2Vd < 36,

Va + Vd < 35, 36− Vd > 35− Va.

Thus, as incentive constraints are strict and value functions continuous, players strictly prefer

to comply with the strategy for all δ close to 1. This establishes that the proposed strategy is

an MPE all δ close to 1, and thus an LMPE. Hence, multiple equilibria may exist even when

condition (2) holds and the core match is unique. The multiplicity arises here as directed

search and partner selection bring about coordination problems. More abstractly, the incentive

constrained

11 Appendix III: Coordination Problems and Delay

Example 5: Consider the six-player assignment economy depicted in Panel I of Figure 8, in

which agents a and f propose with probability 1/4, whereas all other players propose with

probability 1/8. In such an example, the efficient match is fully pinned down by the value of

parameter y. We consider values of y ∈ [2, 3]. Panel II of Figure 8 shows the equilibrium offer

probabilities of the players.

Agents b and e have binding outside options. We consider whether there can be an equi-

librium in which a and f delay making an offer. Agents c and d will make offers to each

other, so if agent a delays, and agent c or d is selected before either agent b or agent e, then

agent a will end up bargaining bilaterally with agent b. As a will end up in a strong position
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vis-a-vis b in this scenario, it could in principle be possible that a optimally delays. To explore

this possibility, we assume that agents a and f delay with probability 1− q, and we look for

conditions on q and y under which there is an equilibrium with the offer pattern shown in

Panel II of Figure 8. Finding agents’ expected payoffs in the relevant subgames and taking

the limit, we find that as δ → 1,

Va(N) = Vf (N)→ 16 + q(17− 3y)

24 + 12q
,

Vb(N) = Ve(N)→ 7 + 3y

12
,

Vc(N) = Vd(N)→ 1.

Note that these expected payoffs are all strictly positive for all y ∈ [2, 3] and all q ∈ [0, 1]. It

can be verified that ∂Va/∂q > 0 for y < 3, but ∂Va/∂q = 0 for y = 3. In this example, there

can be no equilibrium delay for y < 3, as we must have q = 1 for agents a and f to be playing

best responses. However, there might be equilibrium delay for y = 3. In fact, it can be shown

that there is an equilibrium with q = 0 and y = 3. The reason for this discontinuity is that

there are multiple efficient matches when y = 3. Although agent a delays, there is an efficient

match in which he is left alone. With heterogeneities, instances of multiple efficient matches

are non-generic. When the core match is unique, delay occurs only because of fundamental

strategic reasons, as we saw in the previous example.

a

b

c

d

e

f

2 y 2 2y

I

ca

b d

e

f

q

q

II

Figure 8: In Panel I the assignment economy; in Panel II agreement probabilities.

12 Appendix IV: Assortative Matching

For this section it will be helpful to partition the set of agents into workers and firms. While

only a limited exploration of heterogeneities has been reported in the labor market search liter-

ature, one form of heterogeneity that has been extensively analyzed is vertically differentiated

markets with assortative matching (see, for example, Shimer and Smith (2000), Smith (2006),
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Eeckhout and Kircher (2010)). More specifically, let W and F denote the sets of worker types

and firm types, respectively, and suppose that W = {1, ..., w} and F = {1, ..., f}, and that the

surplus generated by a worker i and firm j is given by a function S : W × F → R+ satisfying

the following conditions:

[C1] S(i, j) > S(i′, j) if and only if i < i′;

[C2] S(i, j) > S(i, j′) if and only if j < j′;

[C3] S(i, j)− S(i, j′) > S(i′, j)− S(i′, j′) if and only if i < i′ and j < j′.

Condition C1 requires workers to be vertically differentiated, C2 requires firms to be vertically

differentiated, and C3 requires increasing differences in the surpluses that worker–firm pairs

can generate. As before maintain that surplus is generated only in matches between workers

and firms. In contrast to our previous notation, however, there can now be a worker-type i

and a firm-type i. Thus typically S(i, i) 6= 0 and S(i, j) 6= S(j, i) unless the productivity of

the ith ranked worker and jth ranked firm is the same as the productivity of the jth ranked

worker and ith ranked firm. Let the set of functions satisfying these conditions be denoted by

S̄. It is well known that in such markets the unique surplus-maximizing – or core – match is

the assortative match in which worker k is matched to firm k if k ≤ min{w, f}, while all the

remaining agents are unmatched.

We can use our previous results to find conditions under which decentralized bargaining

would result in an efficient and thus assortative match. We say an MPE is assortative – or

efficient – if worker k is always matched to firm k for all k ≤ min{w, f}. For convenience,

let pk denote the proposal probability of firm k, and let qk denote the proposal probability of

worker k.

Proposition 11 If w = f , pk = qk = p for all k ≤ max{w, f}, and S(i, j) = S(j, i) for all

i, j ≤ min{w, f}, then for all δ sufficiently close to 1 there is an assortative MPE. However,

if any of these conditions fails, there exists a map S ∈ S̄ such that for all δ sufficiently close

to 1 there is no assortative MPE .

Proposition 11 shows that, although there are conditions under which the assortative match

obtains in decentralized markets, these conditions are fairly restrictive and require the market

to be highly symmetric. There must be the same number of workers as firms, the kth ranked

worker and firm must have the same proposal probabilities, and the productivity of the ith

ranked worker and jth ranked firm must be the same as the jth ranked worker and ith ranked

firm. In fact, conditions C1, C2, and C3 alone do not guarantee that decentralized bargaining

is efficient, as uncertainty about future market evolution can still distort trade. Even un-

der conditions that guarantee that the assortative matching is efficient, focusing on efficient

bargaining outcomes can thus be highly restrictive.
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13 Appendix V: Proofs

Proof of Proposition 1. We first establish the characterization for MPE values, and then

proceed to establish existence. Fix a discount factor δ ∈ (0, 1). Consider an MPE strategy

profile (ρ, χ, α) and its corresponding MPE payoffs V (A) ∈ R|A| for any active player set

A ⊆ N . Fix any subset A ⊆ N . By subgame perfection, we know that the acceptance

decision by a player j ∈ A faced with an offer x must be such that he accepts an offer if

x > δVj(A), and rejects it if x < δVj(A). Clearly, this implies that it cannot be optimal to

offer x > δVj(A) to player j, as the proposer could profitably deviate to an offer in (δVj(A), x).

Thus, in any MPE every player would offer at most δVj(A) to player j, and the only offers

player j may accept with positive probability are offers of δVj(A) with positive probability.

Therefore, a proposer i ∈ A would make offers with positive probability only to a player j

that maximizes his residual payoff sij−δVj(A). Recall that πij(A) is the joint probability that

player i offers δVj(A) to player j and that the offer is accepted, and that πii(A) is the joint

probability that i does not agree when proposing. We frequently abuse notation by dropping

the dependence of πij on A where it should not cause confusion. The payoff of any player

k ∈ A\i, j at the beginning of the following period is given by Vk(A\i, j) if an agreement was

reached, and by Vk(A) otherwise. Therefore, at a history in which the set of active players is

A and in which i is the proposer, the expected payoff of a player k ∈ A\i must be given by

∑
j∈A\i,kπijδVk(A\i, j) + (1−

∑
j∈A\i,kπij)δVk(A).

When i is chosen to propose, if δ[Vi(A) + Vj(A)] < sij for some j ∈ A\i, then i offers with

certainty to players j who maximize sij − δVj(A), and agreement obtains with certainty. The

latter observation obtains from the following argument. If πii > 0, then the expected payoff

conditional on offering δVj(A) to players j who maximize sij − δVj(A) is

∑
j∈A\iπij(sij − δVj(A)) +

(
1−

∑
j∈A\iπij

)
δVi(A) < sij − δVj(A).

The payoff conditional on i offering δVj(A) + ε to j, for ε > 0 is sij − δVj(A)− ε, as j accepts

with probability 1 any offer exceeding δVj(A). Hence, it cannot be optimal to offer more than

δVj(A). It also cannot be optimal to offer less than δVj(A) since all such offers are rejected and

since δVi(A) < sij− δVj(A). Thus, if πii > 0 and δ[Vi(A) +Vj(A)] < sij, a profitable deviation

always exists. Therefore, δ[Vi(A) + Vj(A)] < sij for some j ∈ A\i implies πii = 0. Similarly,

δ[Vi(A)+Vj(A)] > sij for any j ∈ A\i implies πii = 1. If maxj∈A\i {sij − δ[Vi(A) + Vj(A)]} = 0,
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then πii ∈ [0, 1]. Next consider the correspondence fi(V |A) : R|A| ⇒ R|A|, where

fi(V |A) =



∑j∈A\i,kπijδVk(A\i, j) + πikδVk︸ ︷︷ ︸,
kth Entry for k∈A\i

(1− πii) max j∈A\i {sij − δVj}︸ ︷︷ ︸
ith Entry

+ πiiδV

∣∣∣∣∣∣∣
πii = 0 if max j∈A\i {sij − δVj(A)} > δVi(A)

πik = 0 if sik − δVk(A) < max{δVi(A),maxj∈A\i {sij − δVj(A)}}


;

where the expressions in the square brackets give the components of a |A| × 1 vector. Let

fik(V |A) denote the kth entry of fi(V |A). The correspondence fik(·|A) identifies the set of

expected payoffs compatible with our partial equilibrium analysis for a player k ∈ A and for

any history in which A is the set of active players and i is the proposer. Next, define the

correspondence

F (V |A) =
∑

i∈Apifi(V |A) +
(
1−

∑
i∈Api

)
δV . (7)

The kth entry of such a correspondence, Fk(·|A), identifies the set of possible expected payoffs

for a player k ∈ A for any history in which A is the set of active players. Thus, the argument

establishes that V is an MPE payoff only if it is a fixed point of the correspondence in (7),

V ∈ F (V |A).

Next, we establish that the converse must hold too. In particular, we argue that if V (A) ∈
F (V (A)|A) for any subset A ⊆ N , then V (A) is an MPE payoff profile for any subgame

in which A is the set of active players. At any subgame in which A are the active players,

consider a strategy in which any player i ∈ A chooses ρi(A) = πi, χi(j, A) = δVj(A), and

αi(j, x, A) =

{
1 if x ≥ δVi(A)

0 if x < δVi(A)
.

For any finite set of players N , the proposed strategy clearly constitutes an MPE in any

subgame in which no more than one player is active, as any such subgame is eventless. By

induction, suppose that the proposed strategy is an MPE for any subset of active players of

size k ≤ n− 1, in order to show that it is an MPE for any subgame in which the set of active

players has size k+ 1. Consider a subgame in which the set of active players A has cardinality

k + 1. Fix an MPE payoff profile V (A′) for all subgames in which the cardinality of the set

of active players A′ does not exceed k. Furthermore, given such values, suppose that we can

find a payoff profile V (A) such that V (A) ∈ F (V (A)|A) (we establish below that such a fixed

point exists). If so, no player receiving an offer can profitably deviate from strategy α, as no

change in the acceptance rule can strictly increase his payoff. Similarly, given the acceptance

rule, the proposer’s strategy (ρ, χ) is optimal given that offers are made only to those players
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who leave the highest residual surplus to the proposer (provided that such surplus exceeds

the value of being unmatched). Thus, V (A) is an MPE payoff in any subgame with a set of

active players A. Consequently, if V (A) ∈ f(V (A)|A) for any subset A ⊆ N , then V (A) is an

MPE payoff profile.

To establish existence, also proceed by induction. Existence follows, in any subgame in

which no more than one player is active, as such subgames are eventless. Assume by induction

that an MPE exists for any subset of active players of size k ≤ n− 1, in order to show that it

exists for any subgame in which the set of active players A has size k+ 1. If so, consider MPE

strategies for all subgames of size k and derive MPE payoffs for all such subgames. Given

such values, construct the correspondence F (·|A) as in (7). Observe that the correspondence

fi(·|A) is upper-hemicontinuous with non-empty convex images. Similarly, the correspondence

F (·|A) is upper-hemicontinuous with non-empty convex images, as it is a convex combination

of the correspondences fi(·|A) for i ∈ A. By Kakutani’s fixed point Theorem F (·|A) has a

fixed point. Moreover, such a fixed point is an MPE payoff of this subgame, and can be used

to construct consistent MPE strategies in every subgame, as argued above.

Proof of Proposition 2. Consider any MPE strategy prescribing that any player i ∈ N

offers to his core match η(i) with probability 1 at any active player set A ∈ C(N). If players

follow the prescribed strategies, only core matches are ever consummated. Thus, if all players

comply with the proposed strategy, only subgames A ∈ C(N) occur on the equilibrium path.

As the core match maximizes the total surplus in an assignment economy, the core match of a

player cannot change when other core pairs exit the market. Thus, the core match of a player

coincides with that at any subgame A ∈ C(N). By Proposition 1, we know that any proposer

i ∈ A necessarily offers an amount equal to δVη(i)(A) and that any receiver i ∈ A accepts any

offer exceeding δVi(A). As players negotiate with only core partners on the equilibrium path,

at any A ∈ C(N) we guess that

Vi(A) = Vi(A\j, η(j)) whenever i 6∈ {j, η(j)}. (8)

Thus, at any A ∈ C(N), equilibrium payoffs for every player i ∈ A satisfy

Vi(A) = pi(siη(i) − δVη(i)(A)) + (1− pi)δVi(A).

Solving the latter equation for player i with the one for player η(i) implies that

Vi(A) =
pi

1− δ + δpi

(
siη(i) − δ

pη(i)

1− δ + δpη(i)

(siη(i) − δVi(A))

)
,
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which after some manipulation yields

Vi(A) =
pi

1− δ + δpi + δpη(i)

siη(i). (9)

It can be (trivially) verified that Vi(A) satisfies (8). Taking limits as the discount factor

approaches unity, we obtain

limδ→1 Vi(A) =
pi

pi + pη(i)

siη(i) = σi. (10)

Proof Theorem 3. Suppose, by contradiction, that there exists a weakly efficient MPE

that is not strongly efficient. If so, along any equilibrium path, players either match to

their core partner or defer reaching an agreement, which implies that any equilibrium-path

subgame has a set of active players A which belongs to C(N). Formally, such a requirement

amounts to finding a fixed point of the MPE characterization in Proposition 1 which satisfies

πii(A) + πiη(i)(A) = 1 for any i ∈ A and any A ∈ C(N). If such an equilibrium were to exist,

an argument equivalent to the proof of Proposition 2 would imply that for any i ∈ A and any

A ∈ C(N),

Vi(A) =
piπiη(i)(A)

1− δ + δpiπiη(i)(A) + δpη(i)πη(i)i(A)
siη(i).

This would lead to a contradiction, as Vi(A) strictly increases in πiη(i)(A), which implies that

any player i would always strictly prefer offering immediately to his core match rather than

deferring to future rounds.

Proof of Theorem 4. First, we establish part (a). Payoffs in any subgame A ∈ C(N) of

a strongly efficient MPE are pinned down by Proposition 2 for any δ ∈ (0, 1). We show that

complying with efficient strategies yields an equilibrium for any sufficiently high value of δ.

Recall that any player j ∈ A accepts any offer that is worth at least δVj(A). Suppose, by

contradiction, that some player i ∈ A at some subgame A ∈ C(N) has a profitable deviation

which entails offering to j 6= η(i) when all players comply with strongly efficient strategies.

For such an offer to be profitable for i, at any sufficiently high δ it must be that

sij − δVj(A) > siη(i) − δVη(i)(A). (11)

However, by taking limits, as δ converges to 1, on both sides of this inequality, we obtain

sij − σj ≥ siη(i) − ση(i) = σi.
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This obviously contradicts the assumption that Rubinstein payoffs are in the interior of the

core: σi + σj > sij for all i, j ∈ A such that j 6= η(i). Thus, any player i ∈ A at any subgame

A ∈ C(N) cannot have a profitable deviation when making offers if the discount factor is

sufficiently high, which implies the existence of a strongly efficient MPE for any δ close to 1.

Next, we establish part (b). By contradiction, assume that a strongly efficient MPE exists

for any δ close to 1, but that σi + σj < sij for some pair i, j ∈ N . Recall that player i has a

strictly profitable deviation from a strongly efficient equilibrium if condition (11) holds. Since

δVi → σi and δVj → σj, condition (11) must hold for sufficiently high values of δ and player i

must have a profitable deviation for any sufficiently high value of δ.

Proof of Proposition 5. To establish the first implication, let u be a vector of core payoffs

associated to the core match η. Consider two players i, j ∈ N such that η(i) = j, and set

pi
pj

=
ui

sij − ui
.

This condition ensures that i and j receive their core payoffs, ui and uj, if everyone plays

the strategies characterized in the proof of Proposition 2. This removes at most N/2 degrees

of freedom from the vector p. Thus, it is straightforward to find a probability vector p that

satisfies the above condition for all i ∈ N .

The second part of the result is a trivial consequence of the Rubinstein payoffs not being

affected by proportional changes in probabilities. The third part is also straightforward. Let

U(S) denote the core when the surplus matrix is S. Observe that if the surplus changes from

S to S ′, it must be that siη(i) = s′iη(i) for any i ∈ N . This is because the core match cannot

change when S changes to S ′, and because siη(i) 6= s′iη(i) implies that any core payoff in S

would not belong to S ′ (since ui + uη(i) = siη(i) for any u ∈ U(S)). Thus, Rubinstein payoffs

in the two markets must coincide,

σ = (σ1, ..., σn) = (σ′1, ..., σ
′
n) = σ′.

The conclusion then follows immediately from these observations, since σ ∈ U(S) ⊆ U(S ′).

Proof of Proposition 6. To prove this result, it is useful to introduce the notions of an

offer graph and a cyclical offer graph. For any subgame with active player set A ⊆ N and any

MPE, the offer graph (A,G) consists of a directed graph with vertices in A and with edges

satisfying

ij ∈ G ⇔ i ∈ A and j ∈ {k | πik(A) > 0} ∪ η(i).

We say that an offer graph is cyclical whenever there exists a subset of active players choosing

to make offers so as to exchange their respective core partners with one another. Formally, an
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offer graph is cyclical if there exists a map ϕ : N → N\i and a set of players F ⊆ Pk ∩ A for

k ∈ {1, 2} such that

(1) ϕ(i) = j ⇒ ji ∈ G,

(2) ϕ(i) 6= η(i) for some i ∈ F ,

(3) {ϕ(i)|i ∈ F} = {η(i)|i ∈ F} .

Next, we establishes that MPE offer graphs are never cyclical. If offers were cyclical, a subset

of players who prefer offering to one another’s core matches instead of their own core match

would exist. These players would have to achieve a higher aggregate surplus by matching with

non-core partners, thereby violating the efficiency properties of the core. Formally, suppose

the offer graph is cyclical. By revealed preferences for any player i ∈ F and ϕ(i) such that

πiϕ(i)(A) > 0, subgame perfection requires that

siϕ(i) − δVϕ(i) ≥ siη(i) − δVη(i).

Furthermore, because of cyclicality, by summing over all players in F we would have that

∑
i∈F (siϕ(i) − δVϕ(i)) ≥

∑
i∈F (siη(i) − δVη(i)) ⇔

∑
i∈F siϕ(i) ≥

∑
i∈F siη(i).

However, this would contradict the efficiency of the core match, as a unique core match was

assumed to exist.

Next, we establish that the core match always obtains with positive probability in an MPE

without delay. The uniqueness of the core match and the non-negativity of surpluses imply

that all players on one side of the market are matched at the unique core allocation.32 Fix

an MPE without delay. No delay implies that at any subgame any player with a positive

value who is selected to be the proposer makes offers that result in agreement with probability

1. Without loss of generality, suppose that P1 ∩ A ≥ P2 ∩ A. If for any A there exists

i ∈ P1 ∩ A such that πiη(i)(A) > 0, the conclusion obviously holds. Thus assume that this is

not the case. Then πiη(i)(A) = 0 for some A and any i ∈ P1 ∩ A. Next, we show that this

leads to a contradiction, as the offer graph would necessarily be cyclical. Pick any match ϕ

satisfying ϕ(i) = j for πij(A) > 0, and ϕ(i) 6= η(i) for any i ∈ P1 ∩ A. Such a match exists

because players in P1 ∩ A do not delay, and because πiη(i)(A) = 0. Observe that, since the

core match is unique, P2 = {η(i)|i ∈ P1 ∩ A} ∩ P2. Furthermore, by construction it must be

that P2 ⊇ {ϕ(i)|i ∈ P1 ∩ A} ∩ P2. Since η(i) 6= η(k) for any i, k ∈ P1 ∩ A, there must exist a

32This is the only result in which the assumption on non-negativity of the surplus is substantive.
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set F ⊆ P2 such that

{ϕ(i)|i ∈ F} = {η(i)|i ∈ F} ,

as otherwise a player i ∈ P1 ∩ A would exist such that ϕ(i) = η(i). This in turn implies the

desired contradiction to the first part of the proposition, as the offer graph would necessarily

be cyclical.

The existence of MPE and of LMPE with delay is follows by examples 3 and 4.

Proof of Theorem 7. To pin down LMPE values, for any player i ∈ N , define the outside

option partner for player i as follows

λ(i) =

{
arg maxj∈E sij if ωi > 0

i if ωi = 0

Therefore, ωi = siλ(i). An LMPE is strongly efficient if at any active player set A ∈ C(N),

all players i 6∈ E make acceptable offers to their core matches η(i) with a probability that

converges to 1 (that is, limδ→1 πiη(i)(A) = 1), and all players i ∈ E delay with a probability that

converges to 1 (that is, limδ→1 πii(A) = 1). In the limit, if all players follow a strongly efficient

strategy, only core matches are consummated with probability 1, and only subgames A ∈ C(N)

occur on the equilibrium path with positive probability. As the core match maximizes the

total surplus in an assignment economy, the core match of a player coincides in any subgame

A ∈ C(N). Further, if players that are unmatched in the core never exit the market, outside

options coincide in any subgame A ∈ C(N) (that is, E ⊆ A). As before, we occasionally omit

the dependence on δ and on the active player set A, whenever it is superfluous.

To establish that any strongly efficient strategy compatible with equilibrium necessarily

yields shifted Rubinstein payoffs as limiting payoffs, we proceed by induction on the size of

the active player set within C(N), and show that for any A ∈ C(N), any strongly efficient

LMPE necessarily satisfies

lim
δ→1

Vj(A) = σ̄j for any j ∈ A. (12)

First, consider the smallest active player set in C(N), namely, A = E, when such a set is

not empty. If so, sij = 0 for any i, j ∈ E. Obviously, Vj(E) = σ̄j = 0 for any j ∈ E. Next,

consider any active player set A = E ∪ {i, η(i)} for some i ∈ N\E. Clearly, not both players

in {i, η(i)} can have binding outside options. If they did, then

siλ(i) + sη(i)λ(η(i)) ≥ siη(i),

and an alternative match that generates a weakly higher surplus would be feasible (since both
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λ(i) and λ(η(i)) would be unmatched in the core), thereby contradicting the optimality of

the core match or its uniqueness. Without loss of generality, if a player has a binding outside

option, let that player be i, so that σ̄i = max{ωi, σi} and σ̄η(i) = siη(i) − σ̄i. Observe that

if a player j ∈ E plays a strategy converging to efficiency, then for sufficiently high δ he

must weakly prefer delaying to offering to a player {i, η(i)}, as limδ→1 πjj(A) = 1. If so, then

vj(A) = δVj(A) and the valuation of such a player necessarily satisfies

lim
δ→1

Vj(A) = (1− pi − pη(i)) lim
δ→1

Vj(A) = 0

by the characterization in Proposition 1, the definition of strongly efficient LMPE, and the

linearity of the limit operator. Therefore, condition (12) holds for any player j ∈ E. Next,

consider player j ∈ {i, η(i)}. If complying with a strongly efficient strategy is a limit-

ing equilibrium, then for sufficiently high δ it must be that vj(A) = sjη(j) − δVη(j)(A), as

limδ→1 πjη(j)(A) = 1. If so, then for any player k ∈ E,

sjη(j) − δVη(j)(A) ≥ sjk − δVk(A),

which in turn implies that

lim
δ→1

Vj(A) = pj

(
sjη(j) − lim

δ→1
Vη(j)(A)

)
+ (1− pj) lim

δ→1
Vj(A) ≥ sjk,

which establishes that limδ→1 Vj(A) ≥ ωj. First, suppose that limδ→1 Vj(A) > ωj for any

player j ∈ {i, η(i)}. If so, then for any player k ∈ E and any δ close to 1, it must be that

δVk(A) + δVj(A) > sjk, and thus no player k can ever agree with j. If so, the strategy must

be strictly efficient and the result follows by the first part of the proof, as

lim
δ→1

Vj(A) = lim
δ→1

pj
1− δ + δpj + δpη(j)

sjη(j) = σj > ωj.

Otherwise, suppose that limδ→1 Vj(A) = ωj. If so, the characterization in Proposition 1 implies

that

lim
δ→1

Vη(j)(A) = pη(j)

(
sjη(j) − lim

δ→1
Vj(A)

)
+ (1− pη(j)) lim

δ→1
Vη(j)(A) = sjη(j) − ωj.

The previous observations together imply that limδ→1 Vk(A) = σ̄k for any k ∈ A, as limδ→1 Vi(A) =

σ̄i = max{ωi, σi} and limδ→1 Vη(i)(A) = siη(i) − σ̄i.

Next, assume by induction that the same conclusion holds for any active player set A ∈
C(N) with cardinality |A| = |E| + 2k, to show that it holds for any set A ∈ C(N) with

cardinality |A| = |E| + 2(k + 1). Consider such a set A. If a player j ∈ E complies with a
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strongly efficient strategy, then vj(A) = δVj(A) for δ close to 1, and the valuation necessarily

satisfies

lim
δ→1

Vj(A) = (1− pA\E) lim
δ→1

Vj(A) +
∑

k∈A\Epk lim
δ→1

Vj(A\k, η(k))

= (1− pA\E) lim
δ→1

Vj(A) = 0,

where the first equality follows from the characterization in Proposition 1 and the definition

of strongly efficient strategy, while the second equality follows from the induction hypothesis.

If a player j ∈ A\E complies with a strongly efficient strategy, then vj(A) = sjη(j)− δVη(j)(A)

for δ close to 1. Thus, for B = A\[E ∪ {j, η(j)}], the valuation necessarily satisfies

lim
δ→1

Vj(A) = (1− pB − pj) lim
δ→1

Vj(A) + pj(sjη(j) − lim
δ→1

Vη(j)(A)) +
∑

k∈Bpk lim
δ→1

Vj(A\k, η(k))

= (1− pB − pj) lim
δ→1

Vj(A) + pj(sjη(j) − lim
δ→1

Vη(j)(A)) + pBσ̄j,

where equalities hold for the reasons stated above. In this case, the limiting value equations

for players j and η(j) admit a unique solution at

lim
δ→1

Vj(A) = σ̄j and lim
δ→1

Vη(j)(A) = σ̄η(j).

To prove the second part of the result observe that limiting efficiency mandates play

according to the strategies characterized above and payoffs converging to shifted Rubinstein

payoffs,

limδ→1 Vi(A) = σ̄i for any i ∈ A and any A ∈ C(N).

Towards a contradiction, suppose that agents comply with these strategies and that σ̄i + σ̄j <

sij for some pair i, j ∈ N . If so, the definition of shifted Rubinstein payoffs implies that

j /∈ {η(i), λ(i)}. It is then straightforward to see that i has a profitable deviation when

selected to make the first offer in the game. Subgame perfection ensures that j would accept

any offer greater than δVj(A). Now if the player complies with the prescribed strategy by

offering to his core partner, his limiting payoff amounts to

limδ→1 vi(A) = σ̄i.

However, by deviating and offering to j exactly δVj(A), his payoff increases to

limδ→1 sij − δVj(δ) = sij − σ̄j > σ̄i.

Thus, for any value of δ sufficiently close to 1, player i has a strict incentive to deviate and
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make an acceptable offer to j.

Proof Theorem 8. In a weakly efficient LMPE, limδ→1

[
πiη(i)(A) + πii(A)

]
= 1 for any

player i ∈ A for every A ∈ C(N). Thus, all players i ∈ E delay with a probability converging

to 1 (that is, limδ→1 πii(A) = 1). In the limit, if all players comply with such strategies,

only core matches are consummated with probability 1, and only subgames A ∈ C(N) occur

on the equilibrium path with positive probability. As before, we omit the dependence on δ

throughout as every endogenous variable depends on it.

For convenience, define the limiting agreement probability for any player j ∈ A\E as

βj(A) = limδ→1 pjπjη(j)(A), and let βB(A) =
∑

k∈Bβk(A) for any B ⊆ A. Observe that for

any active player set A ∈ C(N) such that A\E 6= ∅, there exists a player i ∈ A\E such that

βi(A) > 0. This is the case since weak efficiency and βi(A) = 0 for all player i ∈ A\E, imply

limδ→1 πii(A) = 1 for all players i ∈ A\E. But, if so, for δ close to 1, any player i must prefer

delaying to offering to η(i) which implies that

δVi(A) + δVη(i)(A) ≥ siη(i). (13)

As before, this is cannot be the case since it would imply that

∑
i∈AVi(A) ≥

∑
i∈A\EVi(A) ≥ (1/δ)

∑
i∈A∩P1

siη(i) > TS(A),

where the first and third inequalities are trivial while the second holds by adding the inequal-

ities in (13) and observing that siη(i) = 0 if i ∈ E. The observation also implies βη(i)(A) > 0.

Thus, in any weakly efficient LMPE subgame there exists a core match with positive agreement

probabilities in the limit.

To establish that any weakly efficient LMPE that is not strongly efficient must be sequen-

tial, we proceed by induction on the size of the active player set within C(N), and show that

for there exists A ∈ C(N) such that only one core match agrees. That is for some i ∈ A\E
such that (5) holds. First, consider the smallest active player set in C(N), namely, A = E,

when such set is not empty. If so, any weakly efficient LMPE is strongly efficient as the two

definitions coincide. Next, consider any active player set A = E ∪ {i, η(i)} for some i ∈ N\E.

Clearly, there must be agreement on the core match, that is πiη(i)(A) = πη(i)i(A) = 1, as

δVi(A) + δVη(i)(A) < siη(i) by feasibility. This implies that again any weakly efficient LMPE

is strongly efficient.

Next, assume by induction that, in the market considered, any weakly efficient LMPE is

strongly efficient for any active player set A ∈ C(N) with cardinality |A| = |E|+2k. Consider

any set A ∈ C(N) with cardinality |A| = |E| + 2(k + 1). If a player j ∈ E complies with a

weakly efficient strategy, then vj(A) = δVj(A) for δ close to 1. If so, the valuation necessarily
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of j satisfies

lim
δ→1

Vj(A) = (1− βA\E(A)) lim
δ→1

Vj(A) +
∑

k∈A\E
βk(A) lim

δ→1
Vj(A\k, η(k))

= (1− βA\E(A)) lim
δ→1

Vj(A) = 0,

where the first equality follows by taking limits of value equations and the definition of weakly

efficient strategy, where the second equality follows by the induction hypothesis, and where

the third equality trivially obtains as βA\E(A) > 0 given that at least 1 core match agrees

with positive probability in the limit.

If a player j ∈ A\E complies with a weakly efficient strategy, then for δ close to 1 it must

be that vj(A) = max{δVj(A), sjη(j) − δVη(j)(A)} by weak efficiency. Taking limits of value

equations for any j ∈ A\E while defining A(j) = A\[E ∪ {j, η(j)}] establishes that

lim
δ→1

Vj(A) = (1− βA(j) − pj) lim
δ→1

Vj(A) + pj lim
δ→1

vj(A) +
∑

k∈A(j)

βk lim
δ→1

Vj(A\k, η(k))

= (1− βA(j) − βj) lim
δ→1

Vj(A) + βj

[
sjη(j) − lim

δ→1
Vη(j)(A)

]
+ βA(j)σ̄j, (14)

where the second equality follows by weak efficiency and induction. First suppose that βj(A) =

0 for all players j ∈ A\[E∪{i, η(i)}]. If so, the equilibrium must be sequential by definition.33

Next consider a weakly efficient LMPE in which least 2 core matches in A reach agreements

with positive probability. If so, βi(A) > 0 and βj(A) > 0 for i 6= η(j), and thus βA(j) > 0

for any j ∈ A\E. But, if so, the limiting value equations (14) for players j and η(j) admit a

unique solution at

lim
δ→1

Vj(A) = σ̄j and lim
δ→1

Vη(j)(A) = σ̄η(j).

The weakly efficient LMPE must be payoff equivalent to a strongly efficient LMPE at A

thereby fulfilling the induction hypothesis. This establishes that any weakly efficient LMPE

that is not strongly efficient must be sequential.

The existence of sequential LMPE immediately follows by Example 4.

Proof Proposition 9. For convenience, when A = N , value functions and proposal proba-

bilities omit the dependence on the active player set A. First observe that players on one of

the two core matches never delay in any weakly efficient LMPE for all δ close to 1. Delay on

both core matches would require

δVa + δVb ≥ sab and δVc + δVd ≥ scd, (15)

33If so, by induction limδ→1 Vj(A) = σ̄j for all j ∈ A\{i, η(i)} as A(j) 6= ∅ and limδ→1 Vj(A\k, η(k)) = σ̄j .
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which violates feasibility as
∑

i∈NVi > TS. Thus, in any weakly efficient LMPE there exists

a core match in which no player delays. Call such a match iη(i) so that πii + πη(i)η(i) = 0.

Next observe that players agree on at most one of the two non-core with positive probability

in any weakly efficient LMPE for all δ close to 1. Agreement on both non-core matches would

require

δVa + δVd = sad and δVb + δVc = sbc.

But this would violate the weak efficiency of the limiting equilibrium as

lim
δ→1

∑
k∈NVk = sad + sbc < TS.

Thus, in any weakly efficient LMPE there exists a non-core match with disagreement. As this

link must involve either i or η(i) it is without loss of generality to call such a match ij, so

that πij = 0. This establishes that πiη(i) = 1 and that πjj = 1. Furthermore, there must be

agreement in match η(i)η(j). If instead we had that πη(i)η(j) + πη(j)η(i) = 0, value equation for

a player k ∈ {j, η(j)} would simplify to

Vk = (1− 2p)δVk + 2pδVk(jη(j)) = (1− 2p)δVk + 2pδσk.

Thus, δVj + δVη(j) < siη(j) and the equilibrium would be strongly efficient and not sequential.

Thus, πη(i)η(j) + πη(j)η(i) > 0. Finally, observe that πη(i)η(j) = 0. Otherwise,

siη(i) − δVi = sη(j)η(i) − δVη(j) = δVη(i),

where the first equality would hold by player η(i)’s indifference, while the latter by player

η(j)’s indifference. This implies that δVi + δVη(i) ≥ siη(i). But, as j and η(j) delay, the

condition (15) would be satisfied and the values would be infeasible. Thus, we must have that

πη(i)i = 1 for all δ close to 1. This completely pins down the acceptance probabilities up to

relabelling, and consequently, for πη(j)η(i) = q, value equations (1) reduce to

sη(i)η(j) = δVη(i) + δVη(j)

Vη(i) = (1− p)δVη(i) + p(siη(i) − δVi)

Vη(j) = (1− 2p)δVη(j) + 2pδVη(j)(jη(j)) (16)

Vi = (1− p− pq)δVi + pqδVi(ij) + p(siη(i) − δVη(i))

Vj = (1− 2p− pq)δVj + pqδVj(ij) + 2pδVj(jη(j))
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where obviously for any k, l ∈ N , we have that

Vk(kl) =
p

1− δ + 2pδ
skl.

First observe that η(j)’s value equation trivially implies that Vη(j) ≤ Vη(j)(jη(j)) for all δ ≤ 1.

As j delays when A = N , sjη(j) − δVj ≤ δVη(j). Thus sjη(j) ≤ δVj + δVη(j)(jη(j)). Towards

a contradiction, suppose that δVj < δVj(jη(j)). Then sjη(j) < δVj(jη(j)) + δVη(j)(jη(j)) and

η(j) would have a profitable deviation delaying instead of offering to j in the subgame where

only j and η(j) are active. We therefore conclude that δVj ≥ δVj(jη(j)). From j’s value

function, this implies that Vj(ij) ≥ Vj(jη(j)). Moreover, with equal proposal probabilities,

this is equivalent to sij ≥ sjη(j). By adding this inequality to the inequality defining the core

match, siη(i) + sjη(j) > sη(i)η(j) + sij, we further obtain that siη(i) > sη(i)η(j).

In any sequential LMPE limδ→1 q = 0. Taking limits of value equations (16) as δ → 1,

immediately delivers that

limδ→1 Vη(i) = sη(i)η(j) − ση(j) limδ→1 Vη(j) = ση(j)

limδ→1 Vi = siη(i) − sη(i)η(j) + ση(j) limδ→1 Vj = σj

Now observe that player η(i) always possesses a deviation that sets q = 0 (namely rejecting

any offer from η(j) when A = N). If so, i’s and η(i)’s value functions reduce to

V̂i = (1− p)δV̂i + p(siη(i) − δV̂η(i))

V̂η(i) = (1− p)δV̂η(i) + p(siη(i) − δV̂i)

and η(i) secures a payoff V̂η(i) = p
1−δ+2pδ

siη(i) → ση(i). For q > 0 to be an equilibrium for all

close to 1 such a deviation cannot be profitable. Thus, Vη(i) ≥ V̂η(i) for all δ close to 1 and

lim
δ→1

Vη(i) = sη(i)η(j) − ση(j) = sη(i)η(j) − (sjη(j)/2) ≥ siη(i)/2 = ση(i) = lim
δ→1

V̂η(i).

This implies that 2sη(i)η(j) ≥ sjη(j) + siη(i), which by efficiency and uniqueness of the core

immediately implies that sη(i)η(j) > sij. We thus conclude that

siη(i) > sη(i)η(j) > sij ≥ sjη(j),

and, invoking our labelling conventions, that η(i) = a, i = b, j = c, and η(j) = d.

To establish the final part of the result, we first find necessary conditions for the existence

of a sequential LMPE, and then show that these conditions are also sufficient. Recall that the
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previous part of the proof establishes that a sequential LMPE exists only if

sab > sad > sbc ≥ scd. (17)

For the proposed strategy profile to be an equilibrium c and d weakly prefer to delay instead

of offering to each other and so δVc + δVd ≥ scd for all δ sufficiently close to 1. Moreover,

limδ→1 δ(Vc + Vd) = scd. Thus the strategy is consistent with equilibrium behavior only if

δ(Vc + Vd) to converges to scd from above. By solving value equations (16) it is possible to

show that

lim
δ→1

δ(Vc + Vd)− scd
1− δ

=
scd(sbc − scd) + 2sad(sbc + scd)− sab(sbc + 3scd)

2p[2(sab − sad)− (sbc − scd)]
(18)

If sbc = scd then the right hand side of equation (18) reduces to −scd/p < 0 which is not

consistent with equilibrium behavior. Thus, sbc > scd. Next observe that the denominator in

equation (18) must be positive since sab − sad > 0 by (17) and since sab − sad > sbc − scd by

definition of the core. Thus, as the denominator is always positive, equation (18) is satisfied

if and only if the numerator is also positive. This requires that

sbc − scd
sab − sad

≥ 2
sbc + scd
sab + scd

. (19)

The first part of the proof also establishes that a strategy is consistent with weak efficiency

only if 2sad ≥ sab + scd. However, if sad = (sab + scd)/2, by substituting sad in (19) one obtains

sbc − scd
sab − scd

≥ 4
sbc + scd
sab + scd

,

which with some rearrangement in turn implies that

0 ≥ 3 (sab − scd) (sbc + scd) + 2scd (sab − sbc) ,

which cannot be by (17). Thus, 2sad > sab + scd. Combining the above inequalities establishes

that

sab > sad > (sab + scd)/2 > sbc > scd.

This establishes why condition (6) is necessary for the existence of a sequential LMPE.

To show that condition (6) is sufficient we verify that no player can have a profitable

deviation given the agreement probabilities pinned down in the first part of the proof. First
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observe that c and b prefer delaying to offering to each other as

lim
δ→1

δ(Vb + Vc) = sab − sad + σd + σc = sab + scd − sad > sbc,

where the last inequality holds by the uniqueness of the efficient match. By construction, d is

indifferent about offering to a or delaying. Given (6), players c and d weakly prefer delaying

to offering to each other as argued in the earlier part of the proof. Given (6), players a and b

weakly prefer offering to each other than delaying as

lim
δ→1

δ(Va + Vb)− sab
1− δ

=
scd − 2sad

2p
< 0,

which implies that δVa + δVb ≤ sab for all δ close to 1. Thus, for sufficiently high δ, a and

b prefer offering to each other than delaying. As we have already established that b prefers

delaying to offering to c, b’s optimal offer strategy is to offer to a with probability 1 for all δ

close to 1. Given (6), player a prefers offering to b than offering to d as

lim
δ→1

sab − δVb − sad − δVd
1− δ

=
2sad − scd

2p
> 0.

Thus, it is optimal for a to offer to d with probability 1. Finally, mixing probabilities are

consistent with a weakly efficient LMPE as the probability that d and a agree converges to

zero from above by

lim
δ→1

q

1− δ
=

2(2sad − sab − scd)
p(2sab − 2sad − sbc + scd)

> 0,

where the inequality holds as the numerator is positive by 2sad > sab + scd, while the denomi-

nator is positive by sab− sad > 0 and sab− sad > sbc− scd. All players thus best respond for δ

close to 1, and condition (6) is indeed sufficient for the existence of a sequential LMPE.

Proof of Proposition 11. By Theorem 4, a sufficient condition for the existence of an

efficient and thus assortative MPE is that there exist no worker i and firm j having a weakly

profitable pairwise deviation when receiving their Rubinstein payoffs. As the efficient match

is assortative, the core match of worker i is firm i. Thus, there is an assortative MPE if for

all i 6= j
qi

pi + qi
S(i, i) +

pj
pj + qj

S(j, j) > S(i, j).

If w = f , no agent is unmatched in the efficient match. Along with the condition that

pi = qi = p, the above expression simplifies to

S(i, i) + S(j, j) > 2S(i, j) = S(i, j) + S(j, i), (20)
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where the equality follows from the condition that S(i, j) = S(j, i). The existence of an assor-

tative MPE then follows, as condition (20) is necessarily satisfied by the increasing differences

assumption C3.

By Theorem 4, a necessary condition for the existence of an assortative MPE is that there

exists no i 6= j such that

qi
pi + qi

S(i, i) +
pj

pj + qj
S(j, j) < S(i, j). (21)

To establish necessity, we will a continuous map S for which this condition holds for some i 6= j,

thereby proving that there is no assortative MPE. First, suppose without loss of generality

that w < f . Setting i = w and j = w + 1, and using the fact that S(w + 1, w + 1) = 0,

condition (21) simplifies to

qw
pw + qw

S(w,w) < S(w,w + 1).

However, this condition fails whenever S is such that S(w,w)− S(w,w + 1) < pw
pw+qw

S(w,w),

which is possible while satisfying C1, C2, and C3. Next, suppose that w = f . Without loss

of generality, let i < j and

α =
qi

pi + qi
<

qj
pj + qj

= 1− β.

By condition (21) there is then no assortative MPE if

αS(i, i) + βS(j, j) < S(i, j), which implies

α[S(i, i)− S(i, j)] + β[S(j, j)− S(i, j)] < [1− α− β]S(i, j).

This condition is met whenever S is such that S(i, i) = S(i, j) + 2ε = S(j, j) + 3ε, since

α2ε+ βε < [1− α− β]S(i, j)

for all ε close to 0, as 1− α− β > 0. To conclude, suppose that w = f , and that pk = qk = p

for all k ≤ max{w, f}. Without loss of generality, assume also that that S(j, i) < S(i, j) and

that i < j. Equation (21) then simplifies to

S(i, i) + S(j, j) < 2S(i, j), which implies

[S(i, i)− S(i, j)]− [S(j, i)− S(j, j)] < S(i, j)− S(j, i).

This condition is met whenever S(k, i)− S(k, j) ≤ ε, as the LHS is necessarily bounded by ε

by assumption, while the RHS can be bounded away from zero.
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