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Abstract

This paper revisits a classical question in economics: how individual preferences and incomes

shape aggregate behavior. We develop a method that reduces the hard problem of aggregation

to simply computing a weighted average. The method applies to populations with homothetic

preferences. The key idea is to handle aggregation in the space of logarithmic expenditure

functions.

We demonstrate the power of this method by piq characterizing classes of preferences in-

variant with respect to aggregation, i.e., such that any population of heterogeneous consumers

with preferences from the class behaves as if it were a single aggregate consumer from the

same class; piiq characterizing classes of aggregate preferences generated by popular preference

domains such as linear or Leontief; piiiq describing indecomposable preferences, i.e., those that

do not correspond to aggregate behavior of any non-trivial population; pivq representing any

preference as an aggregation of indecomposable ones.

We discuss connections and applications of our findings to stochastic discrete choice, infor-

mation design, welfare analysis and gains from trade estimation, pseudo-market mechanisms,

and preference identification.
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1 Introduction

Although economic decisions are made by individuals, it is often the aggregate behavior which

matters. We examine the relationship between individual and population behavior in the context

of consumer choice. Whenever one makes assumptions about incomes and preferences of individual

consumers, it is important to understand the restrictions these assumptions impose on aggregate

demand. The reverse question is also relevant, especially for welfare analysis: if we know the

aggregate demand, what can be said about the individual characteristics of consumers which could

give rise to this aggregate demand? Since Sonnenschein (1973), the profession has been quite

pessimistic regarding the extent to which the above questions can be answered. The following

quote from Kreps (2020) provides an accurate summary of the “anything goes” consensus:

“So what can we say about aggregate demand based on the hypothesis that individuals

are preference/utility maximizers? Unless we are able to make strong assumptions about

the distribution of preferences or income throughout the economy (e.g., everyone has the

same preferences) there is little we can say.”

Our paper argues that there is a middle ground: a rich enough setting where aggregation ques-

tions are tractable. We develop a method for aggregate demand analysis applicable to populations

of consumers with homothetic preferences. For example, what can be said about aggregate demand

if all goods are perfect substitutes at the individual level, so that consumers have linear (but not

identical) preferences? Or, can a CES aggregate demand with complements be obtained by aggre-

gating Leontief preferences? Our method delivers precise and exhaustive answers to these questions

among many others and has immediate applications to robust welfare analysis and the algorithmic

complexity of markets.

The key idea of our method is simple: instead of looking at direct utilities of individual con-

sumers, we look at logarithms of their expenditure functions (logarithmic expenditure functions

in what follows).1 We find that the allegedly hard problem of demand aggregation boils down to

simply computing a weighted average of logarithmic expenditure functions, with weights equal to

relative incomes. This weighted average corresponds to a homothetic preference of the aggregate

consumer whose demand coincides with the demand of the original population for all prices.2

1For a given preference, the expenditure function is a function of prices equal to the minimal budget that an agent

with this preference needs to achieve a given utility level.
2In contrast to the textbook definition of a representative consumer by Gorman (1961), the preference of the

aggregate consumer is allowed to depend on income distribution. As a result, the aggregate consumer is well-defined

for all populations with homothetic preferences (Eisenberg, 1961) while Gorman’s representative fails to exist for

such populations unless all preferences are identical.
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The problem of demand aggregation reduces to the problem of preference aggregation: under-

standing how the preference of the aggregate consumer depends on preferences and incomes of

the underlying population. Our method provides insights into economics and the geometry of this

dependence:

• Aggregation-invariant classes of preferences. Consider a class of preferences, e.g., linear,

Leontief, or any other subset of homothetic preferences. We refer to such classes as domains.

Let us call a domain invariant with respect to aggregation if the aggregate preference always

belongs to this domain. For example, the domain of all homothetic preferences, a domain

containing just one preference, and the domain of Cobb-Douglas preferences are invariant.

Invariant domains are important as in such domains the aggregate behavior is as simple as

the behavior of a single agent.

We characterize all invariant domains by the convexity property of the set of associated loga-

rithmic expenditure functions. This characterization allows us to construct simple parametric

invariant domains and describe the minimal invariant domains containing popular ones.

• Characterization of feasible aggregate behavior for a given class of preferences. Suppose we

know a domain to which individual consumers’ preferences belong. What can we say about

the aggregate demand of such a population? This question boils down to understanding what

preferences can be obtained by aggregation of individual preferences from this domain. We

call the set of all such aggregate preferences the domain completion. The notion of completion

is closely related to invariance: the completion of a domain is the minimal invariant collection

of preferences containing the domain. The characterization of the invariance implies that the

completion of a domain can be found by computing the convex hull of the set of logarithmic

expenditure functions.

We describe the completion explicitly for the domains of linear and Leontief preferences.3

A viable conjecture would be that the completion of linear preferences gives all preferences

exhibiting substitutability among goods. We show that this guess is correct in the case of

two goods only. For Leontief preferences, the completion turns out to be a proper subset of

preferences with complementarity even for two goods.

• Decomposition of preferences. Consider the inverse to the problem of aggregation: given

a preference from a particular domain, represent it as an aggregation of preferences from

the same domain. There is always a trivial representation since we can take a population

3Surprisingly, this problem happens to be connected to several branches of economics and mathematics such as

additive random utility models (ARUM), completely monotone functions, the Stieltjes transform, and even complex

analysis.
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where each agent has the same given preference. We call those preferences that can only be

represented by themselves, indecomposable.

Geometrically, indecomposable preferences correspond to extreme points in the space of log-

arithmic expenditure functions. As any point of a convex set can be represented as a convex

combination of extreme points, indecomposable preferences play the role of elementary build-

ing blocks: any preference can be represented as an aggregation of indecomposable ones.

For example, linear and Leontief preferences are indecomposable in the domain of all ho-

mothetic preferences. We show that the set of indecomposable preferences is much bigger

and contains all Leontief preferences on linear composite goods. In particular, aggregation

of linear and Leontief preferences together does not give the whole domain of homothetic

preferences. We also explore indecomposable preferences in the domains with substitutability

or complementarity.

We illustrate how our approach to aggregation can be applied in several economic environments:

• Preference identification. Given a domain of individual preferences, we ask whether observing

the price dependence of market demand is enough to identify the distribution of preferences

and income over the population. We relate the possibility of identification with the geometric

simplex property of the domain meaning that there is a unique way to represent each prefer-

ence as an aggregation of indecomposable ones. Examples of domains where identification is

possible include Leontief and linear preferences over two goods.

• Robust welfare analysis. An analyst observing aggregate behavior aims to estimate the popu-

lation’s welfare, which depends on individual preferences and incomes. As the same aggregate

behavior can be compatible with different populations it can also be compatible with a range

of values for the welfare functional. We show that this range can be computed by solving

an auxiliary Bayesian persuasion problem. As a corollary, we obtain that the welfare of the

aggregate consumer can be used as a proxy for the population’s welfare only for a narrow

class of welfare functionals. This conclusion suggests a possible explanation for unexpectedly

low gains from trade as measured in recent quantitative literature relying on a representative

consumer as a proxy (Arkolakis et al., 2012, 2019).

• Domain complexity, Fisher markets, and bidding languages for pseudo-market mechanisms.

For invariant domains, the aggregate behavior is as simple as that of a single agent. Since the

completion of a domain is the minimal invariant domain containing it, the completion reflects

the complexity of aggregate behavior.

We formalize this intuition in application to Fisher markets: simple exchange economies where

consumers with fixed incomes face a fixed supply of goods. Such markets are essential for
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the pseudo-market (or competitive) approach to fair allocation of resources (Moulin, 2019;

Pycia, 2022) and serve as a benchmark model for equilibrium computation in algorithmic

economics (Nisan et al., 2007). Computing an equilibrium of a Fisher market turns out to

be a challenging problem even in a seemingly innocent case of linear preferences thus limiting

the applicability of pseudo-market mechanisms. We explore the origin of the complexity and

demonstrate that computing equilibria can be hard even in small parametric domains if their

completion is large. We show how to construct domains with small completion and describe

an algorithm making use of this smallness. The choice of a domain is interpreted as bidding

language design.

The methodological importance of the link between aggregation and weighted averages is that it

brings new tools — the most important of which are convexification and extreme-point techniques

of Choquet theory — to consumer demand literature. These tools are increasingly popular in other

branches of economic theory such as information economics and mechanism design (Kleiner et al.,

2021); our paper demonstrates their power for the analysis of aggregate demand. We also uncover a

connection between aggregation and modern literature in convex geometry on the geometric mean

of convex sets (Milman and Rotem, 2017; Böröczky et al., 2012). This connection not only enables

geometric tools in our economic problem but also leads to new insights about the geometric mean

of convex sets suggested by the economic interpretation.

1.1 Related literature

As suggested by the quote from (Kreps, 2020), the existing results on demand aggregation have

fallen into one of the two extremes. One extreme stems from the classical general equilibrium

literature dealing with economies where agents have general convex preferences and earn money

by trading their endowments. This literature concludes that the aggregate demand inherits no

properties of individual behavior (Sonnenschein, 1973; Mantel, 1974; Debreu, 1974; Chiappori and

Ekeland, 1999). The opposite extreme is given by the representative-agent literature aiming to

replace the population with a single rational agent whose preferences are independent of the income

distribution (Gorman, 1953, 1961); see also earlier results by Antonelli and Nataf discussed by

(Shafer and Sonnenschein, 1982). The independence requirement is so restrictive that it is fair to

say that the representative agent almost never exists. Exceptions are very special cases, e.g., when

the whole population having identical homothetic preferences. The profession has been divided on

how seriously the non-existence should be taken. Applied researchers often postulate the existence

of a representative consumer (e.g., Chamley, 1986; Rogoff, 1990) but this approach is criticized as

lacking microfoundations (e.g., Kirman, 1992; Carroll, 2000).
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As demonstrated by Jackson and Yariv (2019), tweaking Gorman’s notion of the representa-

tive consumer while maintaining an analog of income independence does not substantially alter

the non-existence conclusion. We escape this conclusion by allowing the aggregate consumer to

depend on the income distribution. The existence of such an aggregate consumer was pointed out

by Eisenberg and Gale (1959) for populations with linear preferences and, by Eisenberg (1961) and

Chipman and Moore (1979), in the whole domain of homothetic preferences (see a survey by Shafer

and Sonnenschein (1982)).4 In the modern theoretical literature, this insight has gone largely unno-

ticed with the exception of algorithmic economics and fair allocation mechanisms; see Section 6.3.

The converse statement to Eisenberg’s result was obtained by Jerison (1984) who showed that

homotheticity is necessary for the existence provided that incomes are fixed.

Demand aggregation has been studied in the context of household behavior, where heteroge-

neous agents redistribute their incomes so that the resulting individual consumption maximizes the

household’s welfare. Under mild assumptions, such households behave like a single representative

agent (Samuelson, 1956; Varian, 1984; Jerison, 1994) confirming the common wisdom that the un-

restricted endogeneity of incomes is more important for the negative Sonnenschein-Mantel-Debreu

results than the generality of preferences (Mantel, 1976; Hildenbrand, 2014). An active empirical

literature aims to link household consumption with individual characteristics of its members; see

(Browning and Chiappori, 1998; Lewbel and Pendakur, 2009; Browning et al., 2013) and references

therein.

The relation between individual preferences and the representative preference of a welfare-

maximizing household has been studied by (Chambers and Hayashi, 2018) for egalitarian welfare

functionals. Their analysis suggests that the role played by the geometric mean of convex sets in

our setting with independent consumers (Section 3.1) is played by the Minkowski sum in egalitarian

households.

Our results on identification of preference distributions contribute to broad econometric lit-

erature on non-parametric identification of stochastic choice models; see surveys (Matzkin, 2007,

2013). This literature has mostly focused on identifying an unknown deterministic part of decision

maker’s utility whereas our problem can be interpreted as identifying the noise distribution when

the deterministic component is known; see Section 4.1 for a formal relation between additive random

utility models and market demand for populations with linear preferences. Preference identification

has also been studied in the literature on household behavior and identification has been obtained

either for small populations, e.g., two-agent households (Chiappori, 1988) or under the assumption

of preferences “orthogonality” (Chiappori and Ekeland, 2009). Our results do not restrict the size

4Eisenberg and Gale (1959) were motivated by the question of probabilistic forecast aggregation and introduced

an auxiliary exchange economy of bets, a “prediction market” in modern terms. A closely related idea for belief

aggregation is known in the financial-market literature as the Negishi approach (Jouini and Napp, 2007).

6



of populations and allow agents to have closely aligned preferences.

The robust welfare analysis developed in our paper is close in spirit to that of Kang and Vasser-

man (2022). The two approaches address different aspects of robustness and are complementary.

Kang and Vasserman (2022) assume that aggregate demand itself is a sufficient statistic for welfare

and derive robust predictions when the number of distinct observations of the demand is not enough

to pin it down. By contrast, our robust approach captures situations where aggregate demand is

compatible with a range of welfare levels corresponding to different populations generating the

same observed behavior. Curiously, both papers rely on auxiliary Bayesian persuasion problems of

different forms and origins.

2 Preliminaries

This section is about notation and basic concepts from consumer demand theory.

Notation. We use R for the set of all real numbers, R` and R´ for non-negative/non-positive

ones, and R`` and R´´ for strictly positive/negative ones. Ratios of the form t{0 with t ě 0 are

assumed to be equal to `8.

Bold font is used for vectors, e.g., x “ px1, . . . , xnq P Rn. For a pair of vectors of the same

dimension, we write x ě y if the inequality holds component-wise, i.e., xi ě yi for all i. The scalar

product of x,y P Rn is denoted by xx,yy “
řn
j“1 xi ¨ yj .

For subsets of Rn, multiplication by a scalar and summation are defined element-wise: α ¨X “

tα ¨ x : x P Xu and X ` Y “ tx ` y : x P X, y P Y u (the Minkowski sum of sets). The standard

pn´ 1q-dimensional simplex is denoted by ∆n´1 “ tx P Rn` : x1 ` . . .` xn “ 1u.

The gradient of a function f “ fpxq is the vector of its partial derivatives ∇f “
´

Bf
Bx1

, . . . , Bf
Bxn

¯

.

Preferences and demand. Consider a consumer who is endowed with a budget b P R`` and

has a preference Á over vectors x P Rn` interpreted as bundles of n ě 1 divisible goods. We assume

that preferences satisfy the following standard requirements:

• homotheticity: x1 Á x implies α ¨ x1 Á α ¨ x for any α ě 0

• convexity: for any x,x1 P Rn` between which the consumer is indifferent, λx`p1´λqx1 Á x

for any λ P r0, 1s

• monotonicity: if x,x1 P Rn` and x1 ě x, then x1 Á x

• continuity: for any x,x1 P Rn` and a convergent sequence zplq, l “ 1, 2, 3, . . ., such that

x1 Á zplq Á x, we have x1 Á limlÑ8 zplq Á x
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• non-degeneracy: there exist x,x1 P Rn`` such that the consumer is not indifferent between

them.

For brevity, we will refer to all preferences satisfying these assumptions as homothetic preferences.

Given a vector of prices p P Rn``, the budget set of the consumer is the set of affordable bundles

tx P Rn` : xp,xy ď bu. The demand of the consumer consists of her most preferred bundles from

the budget set

Dpp, bq “ argmax
xPRn

`
: xp,xyďb

Á .

The demand is a non-empty closed convex subset of the budget set. The demand correspondence

satisfies homogeneity with respect to budgets: Dpp, bq “ b ¨Dpp, 1q. It is a singleton (one-element

set) for almost all p, which allows us to think of the demand as a single-valued function of p defined

almost everywhere; see Appendix A.

Representations of preferences. We will use several ways to represent homothetic preferences.

Any homothetic preference Á can be represented by a utility function u “ uÁpxq so that upxq ě

upx1q if and only if x Á x1. This utility function can be selected to be continuous, non-decreasing,

concave, homogeneous (upα ¨ xq “ α ¨ upxq for all bundles x and α ě 0), non-negative, and not

identically zero. Utility functions satisfying all these requirements are called homogeneous in what

follows. Any homogeneous utility function defines a homothetic preference and each homothetic

preference pins down a unique homogeneous utility function up to a multiplicative factor.

A homothetic preference is determined by its upper contour set tx P Rn` : upxq ě 1u. A set

X Ă Rn is called upward-closed if x P X implies that all vectors x1 P Rn such that x1 ě x also

belong to X. The upper contour set is a closed convex subset of Rn` that does not contain 0, and is

upward-closed. Any set with these properties corresponds to a homothetic preference. Hence, we

can use such sets as another representation for homothetic preferences keeping in mind that, for a

given preference, the set is defined up to a homothetic transformation inheriting the freedom in the

choice of the multiplicative factor in the utility function.

A dual representation of preferences through expenditure functions will be the most convenient

for our analysis. For a consumer with a preference Á, the expenditure function E “ EÁppq is

defined by

Eppq “ min
xPRn

`
: upxqě1

xp,xy, (1)

i.e., the expenditure function is the minimal budget that the consumer needs to achieve the uni-

tary utility level.5 An expenditure function E : Rn` Ñ R is continuous, non-decreasing, concave,

5Usually, the expenditure function is considered to be a function of two variables: prices and the utility level. For

homothetic preferences, the dependence on the utility level is redundant and we normalize the level to be equal to

one.
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homogeneous, non-negative, and not identically equal to zero. Conversely, any function with these

properties is an expenditure function for some homothetic preference. We get yet another way of

representing homothetic preferences. Similarly to utility functions, the expenditure function for a

given preference is defined up to a multiplicative factor.

For homothetic preferences, Shephard’s lemma implies the following identity:6

Dpp, bq “ b ¨∇ ln pEppqq , (2)

i.e., the demand is proportional to the gradient of the logarithm of the expenditure function (the

logarithmic expenditure function in what follows). The identity holds for all prices p P Rn`` where E

is differentiable. This set of prices has full measure; see Appendix A.

Consider the individual expenditure share function s “ sÁppq whose i-th component sippq is

the fraction of the budget that the consumer spends on good i “ 1, . . . , n given the prices, i.e.,

sippq “ pi ¨
Dipp, bq

b
“ pi ¨Dipp, 1q. (3)

We treat s as a single-valued vector function taking values in the standard simplex ∆n´1 and defined

on the set of p P Rn`` of full measure where the demand is a singleton. By (2), expenditure shares

can be computed as the elasticities of the expenditure function with respect to prices

sippq “ pi ¨
B ln pEppqq

Bpi
“
B ln pEppqq

B lnppiq
. (4)

For two goods, preferences can be represented via expenditure share functions using the following

characterization.7 For any homothetic preference Á over R2
`, the expenditure share of the first good

takes the form

s1pp1, p2q “
1

1`Q
´

p1
p2

¯

{
p1
p2

(5)

for some non-decreasing non-negative function Q : R`` Ñ R` Y t`8u. Moreover, for any such

function Q, there is a unique homothetic preference; see Lemma 5 in Appendix C.6.

By plugging a function Q with an infinite number of jumps in (5), we see that, rather counter-

intuitively, s1pp1, p2q may change monotonicity infinitely many times as p2 increases, i.e., the con-

sumer starts spending more on the first good as the price of the second one goes up, then less, then

more again, and so on; an explicit example of such preferences can be found in Section 5.1.

6In this form, the result can be found in (Samuelson, 1972); see Appendix A for a derivation.
7To the best of our knowledge, this characterization has not appeared in the literature.
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Substitutes and complements. The two important subdomains of homothetic preferences are

free from non-monotone behavior of expenditure shares described above.

A preference Á is said to exhibit substitutability among the goods if the expenditure share sippq

is a non-decreasing function of pj for each pair of goods i ‰ j. For differentiable expenditure shares,

Bsippq

Bpj
ą 0 for all i ‰ j. (6)

The intuition is that whenever the price of a good increases, the consumer starts spending more on

other goods since this good can be substituted. The canonical example is given by linear preferences

that correspond to utility functions

upxq “ xv,xy

for some vector of values v P Rn`zt0u. An elementary computation gives the expenditure function

and formula (2) provides expenditure shares

Eppq “ min
i“1,...,n

pi
vi

and sippq “

$

&

%

1, if vi
pi
ą

vj
pj

for all j ‰ i,

0, otherwise
. (7)

As we see, under linear preferences, the consumer spends her whole budget on the good with the

highest value-to-price ratio.

A preference Á exhibits complementarity among goods if sippq is a non-increasing function

of pj for each pair of goods i ‰ j. Each of the complementary goods is essential for consumer’s

satisfaction and so, when one good becomes more expensive, more money is spent on it and less on

other goods. The standard example is given by the Leontief preferences which correspond to the

following utility function

upxq “ min
i“1,...,n

xi
vi

for some vector of values v P Rn`zt0u. Note that the utility function has the same functional form

as the expenditure function for linear preferences. By duality, the expenditure function for Leontief

preferences is linear

Eppq “ xv,py and sippq “
vi ¨ pi
xv,py

. (8)

The intersection of the domains of preferences exhibiting substitutability and complementarity

consists of those preferences Á for which expenditure shares are constant, i.e., there is a fixed vector

a P ∆n´1 such that sppq “ a for any p. Budget shares determine the expenditure function by (2)

Eppq “
n
ź

i“1

paii (9)
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and the corresponding preference is given by the Cobb-Douglas utility function

upxq “
n
ź

i“1

xaii . (10)

Leontief, Cobb-Douglas, and linear preferences are contained as limit cases in a widely used

parametric family of preferences with constant elasticity of substitution (CES). A preference Á is

a CES preference with elasticity of substitution σ P R``zt1u if the corresponding utility function

has the form

upxq “

˜

n
ÿ

i“1

pai ¨ xiq
σ´1
σ

¸
σ
σ´1

(11)

for some vector a P Rn``. The corresponding expenditure functions and expenditure shares are

given by

Eppq “

˜

n
ÿ

i“1

ˆ

pi
ai

˙1´σ
¸

1
1´σ

and sippq “

´

pi
ai

¯1´σ

řn
j“1

´

pj
aj

¯1´σ . (12)

CES preferences exhibit substitutability for σ ą 1 and complementarity for σ P p0, 1q. Leontief,

Cobb-Douglas, and linear preferences preferences are the limiting cases as σ goes, respectively, to

0, 1, and `8. The limits are taken with respect to the topology that we discuss next.

Topology on preferences. Convergence of preferences, closed and open sets, and the Borel

structure are understood with respect to the following metric. We define the distance between

preferences Á and Á1 with expenditure functions E and E1 by

dpÁ,Á1q “ sup
pP∆n´1XRn

``

ˇ

ˇ

ˇ

ˇ

ˇ

plnEppq ´ lnEpeqq ´ plnE1ppq ´ lnE1peqq

p1`maxi | ln pi|q
2

ˇ

ˇ

ˇ

ˇ

ˇ

, (13)

where e “ p1, . . . , 1q. The main advantage of this way to introduce the distance is that it makes

the set of all homothetic preferences a compact metric space.8 In particular, the distance between

any pair of preferences is finite and bounded by 2. See Appendix B for the intuition behind the

definition.

3 Preference aggregation

Consider m ě 1 consumers k “ 1, . . . ,m. Consumer k has a positive budget bk P R`` and a

homothetic preference Ák over bundles of n ě 1 divisible goods as in Section 2. For any vector

8Economic literature has considered compact topologies on the set of preferences, e.g., the closed convergence

topology of upper contour sets (Hildenbrand, 2015; Bridges and Mehta, 2013). To the best of our knowledge, an

explicit metric structure giving compactness has not appeared in the literature.
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of prices p, this population generates the market demand equal to the sum of individual demands

D1pp, b1q ` . . .`Dmpp, bmq. To study the market demand, we aim to replace the population of m

consumers with a single aggregate consumer generating the same demand. The following definition

plays the central role in this methodology.

Definition 1. A preference Áaggregate is the aggregate preference for a population of consumers

with preferences Á1, . . . ,Ám and budgets b1, . . . , bm if

Daggregate

˜

p,
m
ÿ

k“1

bk

¸

“ D1pp, b1q ` . . .`Dmpp, bmq (14)

for any price vector p P Rn``. A consumer with preference Áaggregate is referred to as the aggregate

consumer.

In other words, the market demand generated by the population of consumers coincides with

the demand of the aggregate consumer endowed with the total budget. We stress that the aggregate

consumer is selected for a given collection of budgets b1, . . . , bm of individual consumers, and so, for

a different distribution of incomes over the population, we may end up with a different aggregate

consumer. This is an important distinction between Definition 1 and the approach of Gorman

(1961) who insist on independence of the aggregate preference on the income distribution which

can be achieved in knife-edge cases only.

Example 1. Consider m “ n single-minded consumers: consumer i only cares about good i, hence

uipxq “ xi. Hence, no matter what the prices are, consumer i spends her total budget bi on good

i. This observation helps to guess the aggregate consumer without any computations. Indeed,

the aggregate consumer spends the amount bi out of her total budget b1 ` . . . ` bn on good i

independently of prices. In other words, the expenditure share of each good i for the aggregate

consumer is price-independent and equal to saggregate,ippq “ bi{pb1 ` . . .` bnq. Hence, the aggregate

consumer must have the Cobb-Douglas preferences (10) with ai “ bi{pb1 ` . . .` bnq. One can verify

this guess directly by checking that the demand identity (14) holds. Alternatively, the result can

be deduced immediately from Theorem 1 below and explicit formulas for expenditure functions of

Cobb-Douglas and linear preferences.

The existence of an aggregate preference was established by Eisenberg (1961) for any population

of consumers with homothetic preferences. Denote by B the total budget of the population and by

βk the relative fraction of consumer k’s budget

B “
m
ÿ

k“1

bk, βk “
bk
B
. (15)
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Eisenberg (1961) showed that the aggregate preference corresponds to the utility function obtained

as the solution to the following optimization problem

uaggregatepxq “ max

#

m
ź

k“1

ˆ

ukpxkq

βk

˙βk

: xk P Rn`, k “ 1, . . . ,m,
m
ÿ

k“1

xk “ x

+

. (16)

In other words, the utility for the aggregate preference at a bundle x is equal to the maximal

weighted Nash social welfare where the maximum is taken over all possible allocations of x over the

consumers and consumer’s weight is equal to her relative budget.9 The optimization problem (16)

is called the Eisenberg-Gale problem as it is similar to a problem studied by Eisenberg and Gale

(1959) in the context of probabilistic forecast aggregation.

To determine the utility of an aggregate consumer, one needs to solve the Eisenberg-Gale prob-

lem (16) for each x P Rn`. Except for special cases such as Cobb-Douglas preferences, it does not

admit an explicit solution and is not easy to work with both analytically and computationally; see

Section 6.3.

We observe that the question of describing the aggregate consumer substantially simplifies if we

use the dual representation of preferences via expenditure functions.

Theorem 1. Consider a population of consumers with homothetic preferences Á1, . . . ,Ám and

budgets b1, . . . , bm. The preference of the aggregate consumer is described by the expenditure function

Eaggregate satisfying

lnEaggregateppq “
m
ÿ

k“1

βk ¨ lnEkppq, (17)

where the weights βk are given by (15).

Hence, preference aggregation is equivalent to taking convex combinations of individual loga-

rithmic expenditure functions. The simplicity of this operation will allow us to describe domains

invariant with respect to aggregation (Section 4) and to study decomposition of a given preference

as an aggregation of elementary ones (Section 5).

The identity (17) becomes almost immediate if we take into account the relation (2) between

the demand and the gradient of the expenditure function: Dpp, bq “ b ¨∇ ln pEppqq. The definition

of the aggregate consumer implies the equality

B ¨∇ lnEaggregateppq “
m
ÿ

k“1

bk ¨∇ lnEkppq, (18)

which must hold at all points of differentiability of the expenditure functions. As any concave

function is differentiable almost everywhere with respect to the Lebesgue measure, the equality (18)

9The welfare function equal to the product of consumer’s utilities is dubbed the Nash social welfare or the Nash

product as this welfare function naturally arises in the context of axiomatic bargaining studied by Nash (1950).
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holds on the set of full measure and can be integrated resulting in the identity (17). Integration

constants get absorbed by the expenditure functions since they are defined up to multiplicative

factors.

In Appendix C.1, we prove Theorem 1 using an approach similar to the one used by Eisenberg

(1961) and not relying on formula (2). This alternative proof clarifies that Theorem 1 is the dual

to Eisenberg’s result.

3.1 Connection to the geometric mean of convex sets

Theorem 1 links preferences aggregation and recent attempts to define the geometric mean of convex

sets; see a survey by Milman and Rotem (2017). Recall that the support function of a convex set

X Ă Rn is defined by

hXppq “ sup
xPX

xp,xy.

Böröczky et al. (2012) define the weighted geometric mean of convex sets by taking the usual

weighted geometric mean in the space of support functions.10 Formally, the weighted geometric

mean of convex sets X and Y with weights pλ, 1 ´ λq, λ P r0, 1s, is the convex set Z denoted by

Xλ b Y 1´λ such that

|hXλbY 1´λ | “ |hX |
λ
¨ |hY |

1´λ
. (19)

The weighted geometric mean extends to any number of convex sets in a straightforward manner.11

To see the connection between preference aggregation and the geometric mean, note that the

expenditure function E is equal to the support function of the upper contour set up to a sign:

Eppq “ ´hXp´pq where X “ tupxq ě 1u.

We obtain the following equivalent version of Theorem 1.

Corollary 1. An upper contour set of the aggregate consumer’s preferences
 

uaggregatepxq ě 1
(

is

the weighted geometric mean of individual upper contour sets with budget-proportional weights:

 

uaggregatepxq ě 1
(

“
 

u1pxq ě 1
(β1

b
 

u2pxq ě 1
(β2

b . . . . . .b
 

umpxq ě 1
(βk . (20)

In Example 1, we saw that Cobb-Douglas preferences over n goods originate as an aggregation

of n extreme linear preferences. Figure 1 illustrates the corresponding identity of convex sets

for n “ 2 and equal budgets.

10Defining algebraic operations on convex sets through the standard algebraic operations on their support functions

is a standard approach. For example, the Minkowski addition of convex sets corresponds to pointwise summation of

their support functions.
11Böröczky et al. (2012) refer to Xλ b Y 1´λ as the logarithmic sum of convex sets to distinguish it from other

definitions of the geometric mean. Since we do not consider other definitions, we call Xλ b Y 1´λ the weighted

geometric mean.
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Figure 1: Geometry: the set bounded by the hyperbola is the geometric mean of the two

orthogonal halfspaces. Economics: an aggregation of the two extreme linear preferences where

each consumer cares only about her own good gives a Cobb-Douglas preference.

Corollary 1 highlights a peculiar property of the class of convex sets that can be obtained

as upper contour sets of homothetic preferences. From formula (19), it is not evident that the

geometric mean is well-defined, i.e., that we can always find a convex set whose support function is

equal to hXλbY 1´λ . A byproduct of Corollary 1 is that the weighted geometric mean is well-defined

within the class of all convex subsets of Rn` that do not contain zero and are upward-closed. Indeed,

any such set is an upper contour set of some homothetic preference and the weighted geometric

mean is an upper contour set of the aggregate consumer’s preference. Contrast this observation

with the case of bounded convex sets which mathematical literature has mostly focused on. The

weighted geometric mean is well-defined for bounded convex sets containing zero; however, sets

that do not contain zero are problematic as the support function can be negative and the definition

of the weighted geometric mean requires ad hoc modifications.

4 Invariant domains

In Section 3, we saw that a population of consumers with homothetic preferences can be replaced

with a single aggregate consumer. Here we study domains of homothetic preferences invariant

with respect to aggregation: if each consumer’s preference belongs to the domain, so does the

aggregate preference. Tools developed in the previous section reduce invariance to convexity of the

set of logarithmic expenditure functions in a functional space and yield a flexible procedure for

constructing invariant domains.

Definition 2. A domain D of homothetic preferences over Rn` is invariant with respect to aggre-

15



gation if for any m ě 2 and any population of m consumers with preferences Ák P D and budgets

bk P R``, k “ 1, . . . ,m, the aggregate preference Áaggregate also belongs to D.

The set of all homothetic preferences or a domain containing just one preference D “ tÁu are

elementary examples of invariant domains.

Note that it is enough to check the condition of invariance for populations of m “ 2 consumers.

Indeed, aggregation for a population of m ą 2 consumers reduces to aggregation for pairs by adding

consumers one by one sequentially. Hence, if the outcome of aggregation belongs to the domain for

any pair, the outcome will belongs to this domain for any population.

With a domain D, we associate the set LD of all logarithmic expenditure functions of preferences

from D
LD “

!

f : Rn`` Ñ R : f “ lnEÁ, Á P D
)

.

The set LD inherits the freedom in the choice of expenditure functions: if f P LD, then f ` const P

LD and corresponds to the same preference. The following result is a direct corollaryof Theorem 1.

Corollary 2. A domain D is invariant with respect to aggregation if and only if the set of loga-

rithmic expenditure functions LD is a convex set of functions on Rn``.

In other words, D is invariant whenever, for any pair of preferences Á1, Á2 P D with expenditure

functions E1 and E2 and λ P p0, 1q, the preference Á corresponding to the expenditure function E

defined by

lnE “ λ ¨ lnE1 ` p1´ λq ¨ lnE2 (21)

also belongs to D.

For example, the domain of Cobb-Douglas preferences (10) satisfies the requirement (21) and,

hence, is invariant. The domains of preferences exhibiting substitutability or complementarity are

also invariant. Indeed, expenditure shares can be obtained by differentiating logarithmic expendi-

ture functions (4) and so the monotonicity conditions defining these domains are preserved under

convex combinations.

Corollary 2 not only characterizes invariant domains in geometric terms but also gives a handy

tool to construct invariant domains containing a given one. Suppose D is not invariant. How to

complete it to an invariant domain? Of course, D is contained in the domain of all homothetic

preferences which is invariant. To exclude such a trivial answer we require the completion be

minimal with respect to set inclusion.

Definition 3. For a domain D, its completion Dcomplete is the minimal closed domain that is

invariant with respect to aggregation and contains D.
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Closure is defined with respect to the metric structure (13) on preferences. The closedness

assumption helps to get a tractable answer for infinite domains and, essentially, means that Dcomplete

is enriched by aggregate preferences of non-atomic populations with preferences from D.

The completion Dcomplete exists since it can be obtained as the intersection of all closed invariant

domains containing D and there is at least one such domain, namely, the domain of all homothetic

preferences. Corollary 2 implies a geometric characterization of Dcomplete.

Corollary 3. For any subdomain D of homothetic preferences, its completion Dcomplete is equal to

the set of all preferences corresponding to logarithmic expenditure functions from the closed convex

hull of LD:

Dcomplete “

!

Á : lnpEÁq P conv
”

LD

ı)

,

where convrXs denotes the minimal closed convex set containing X.

This corollary assumes that the choice of the topology on preferences is aligned with that on

logarithmic expenditure functions. This requirement is satisfied by the topology from Appendix B.

Note that convrXs can be obtained as the closure of the set of all convex combinations of finite

collections of elements from X. For finite subdomains D “ tÁ1, . . . ,Áqu, looking at combinations

of at most q “ |D| elements is enough and, hence, Corollary 3 is especially easy to apply. For such

D, the completion Dcomplete consists of all preferences Á with expenditure functions of the form

lnEppq “
řq
k“1 tk ¨ lnEkppq with t P ∆q´1. Reinterpreting Example 1, we conclude that Cobb-

Douglas preferences over n goods is the completion of D “
 

Á1, . . . ,Án

(

where Ái corresponds

to the utility function uipxq “ xi.

To compute the completion for infinite subdomains D, we need to take closure of the set of

preferences Á corresponding to all finite convex combinations of logarithmic expenditure functions

lnEppq “
q
ÿ

k“1

tk ¨ lnEkppq,

where q ě 1, a vector t P ∆q, and Ek represents some preference Ák from D, . It is convenient to

think about this convex combination as a result of integration with respect to the atomic distribution

µ placing weight tk on preference Ák:

lnEppq “

ż

D
lnEÁ1ppqdµpÁ1q. (22)

It turns our that taking closure is equivalent to allowing arbitrary probability measures µ in (22),

not necessarily atomic. For parametric domains such as linear or Leontief preferences discussed

below, the integral in (22) can be seen as the integral over the space of parameters and, hence,

passing to an arbitrary µ is straightforward. In Appendix B, we explain how to define (22) for any

domain D and measure µ.
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Theorem 2. The completion of a domain D consists of all preferences Á such that their expenditure

function E can be represented as

lnEppq “

ż

D
lnEÁ1ppqdµpÁ1q (23)

with some Borel probability measure µ supported on the closure D of D.

With general µ, representation (23) can be interpreted as the result of preference aggregation

where non-atomic populations are allowed and µ plays the role of preference distribution over the

population. In what follows, we refer to (23) as continuous aggregation.

A generalization of Theorem 2 is proved in Appendix C.2 together with Theorem 3 formulated

in the next section. Both results rely on Choquet theory which studies extreme points of compact

convex sets in topological vector spaces (Phelps, 2001). Application of this theory requires careful

choice of a topology and a measurable structure. For the proof to work, it is crucial that the sets

of preferences and logarithmic expenditure functions endowed with the distance (13) are compact

and admit an isometric embedding in a Banach space.

4.1 ARUM and completion of linear preferences

Consider the domain D of all linear preferences. Our goal is to characterize its completion Dcomplete.

This problem turns out to be tightly related to stochastic discrete choice theory. The intuition

behind this connection is as follows. By Theorem 2, finding the completion boils down to taking

average of logarithmic expenditure functions with respect to some measure µ. This average can be

thought as expectation over random preferences of a single decision maker and expenditure shares

can be interpreted as probabilities of choosing one of n possible alternatives.

In the additive random utility model (ARUM), there is a single decision maker choosing between

one of n alternatives. Her utility for alternative i is equal to wi ` εi, where wi is a deterministic

component and εi is a stochastic shock. The vector w P Rn and the joint distribution of shocks

pε1, . . . , εnq P Rn are given. For each realization of the shocks, the agent selects the alternative with

the highest utility. Hence, the expected utility of the decision maker and the probability that she

chooses alternative i are equal to12

Upwq “ E
„

max
i“1,...n

pwi ` εiq



and Sipwq “ E rtwi ` εi ą wj ` εj @j ‰ ius ,

where E and P denote the expectation and the probability with respect to the shock distribution.

12The formula for the choice probabilities holds for w such that the probability of a tie wi ` εi “ wj ` εj is zero.

This requirement is satisfied for Lebesgue almost all w no matter what the distribution of the shocks is.
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Proposition 1. A preference Á with an expenditure function E belongs to the completion of the

domain of all linear preferences over n goods if and only if there is a distribution of shocks such

that

Upwq “ ´ ln
`

Epe´w1 , . . . , e´wn
˘

(24)

is the expected utility in ARUM with deterministic utilities w P Rn.

Taking the gradient on both sides of (24) gives a version of the statement for expenditure

shares:13 Á is in the completion of linear preferences whenever spe´w1 , . . . , e´wn
˘

is the vector of

choice probabilities for some additive random utility model, i.e., there exists a distribution of shocks

such that

sipe
´w1 , . . . , e´wn

˘

“ P rtwi ` εi ą wj ` εj @j ‰ ius (25)

for all i “ 1, . . . , n and Lebesgue almost all w P Rn.

Substituting formula (7) for expenditure functions of linear preferences into Theorem 2, we see

that the completion of linear preferences consists of all preferences Á whose expenditure functions

E can be represented as

lnEppq “

ż

Rn
`

ln

ˆ

min
i“1,...,n

pi
vi

˙

dµpvq (26)

for some measure µ such that the integral converges. To get (24), it is enough to change variables

in (26). Denote εi “ ln vi and interpret ε “ pε1, . . . , εnq as a random vector by assuming that v is

sampled from distribution µ. Plugging in pi “ e´wi , we get ´ ln
´

mini“1,...,n
pi
vi

¯

“ maxi“1,...,npwi`

εiq and, hence, (26) is equivalent to

´ ln
`

Epe´w1 , . . . , e´wn
˘

“ E
„

max
i“1,...n

pwi ` εiq



.

As the right-hand side has the form of the expected utility in ARUM, we obtain Proposition 1.

The class of vector-functions that can arise as choice probabilities Spwq for some ARUM is

well-studied in the discrete choice theory. We need the following necessary condition applicable to

smooth vector-functions. For any ARUM with n alternatives and any subset of distinct alternatives

i, j1, j2, . . . , jq with q ď n´ 1, the following inequality holds

BqSipwq

Bwj1Bwj2 . . . Bwjq
¨ p´1qq ď 0

13The fact that the choice probabilities Sipwq can be obtained as partial derivatives of decision maker’s utility

is known as the Williams–Daly–Zachary theorem and its classic version requires regularity assumptions on the

distribution of shocks (McFadden, 1981). The possibility to drop all the assumptions and get the conclusion for

Lebesgue almost all w is a recent result (Sørensen and Fosgerau, 2022). The connection between ARUM and an

aggregation of linear preferences make this result a corollary of general formula (4) expressing expenditure shares as

the gradient of logarithmic expenditure functions for almost all prices.
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at any w where S is q times differentiable. Taking into account the connection between expenditure

shares and choice probabilities (25) and the identity B
Bwi

“ ´ B
B ln pi

for pi “ e´wi , we obtain the

following corollary of Proposition 1.

Corollary 4. If a preference Á belongs to the completion of the domain of all linear preferences,

then its expenditure shares satisfy the following inequalities

Bsippq

B ln pj1B ln pj2 . . . B ln pjq
ě 0 (27)

for any distinct goods i, j1, j2, . . . , jq with q ď n ´ 1 at any price vector p P Rn`` where s is

differentiable q times.

For q “ 1, the condition (27) becomes the substitutability condition (6). In other words, any

preference Á from the completion of linear preferences exhibits substitutability among goods. This

conclusion is not surprising as linear preferences exhibit substitutability and aggregation respects

this property.

One could expect that any preference exhibiting substitutability is in the completion of lin-

ear preferences. However, for n ě 3 goods, the condition (27) gives extra restrictions on top of

substitutability by restricting the second-order derivatives.

In the following example, we construct a preference over n “ 3 substitutes such that the second-

order elasticities of s change the sign and, hence, this preference is not in the completion of linear

ones. This example is a special case of Example 4 in (Matsuyama and Ushchev, 2017).

Example 2. Consider the following expenditure function over n “ 3 goods:

Eppq “ pp1 ` p2 ` p3q
1´α

´

p
1{3
1 ¨ p

1{3
2 ¨ p

1{3
3

¯α

, (28)

with 1 ă α ă 3{2. The corresponding budget share of good i “ 1, 2, 3 is given by

sippq “
B lnEppq

B ln pi
“
α

3
` p1´ αq

pi
p1 ` p2 ` p3

. (29)

The restriction α ă 3{2 guarantees that sippq ą 0 for all price vectors, while the restriction

α ą 1 guarantees substitutability. Yet, (28) does not belong to the invariant domain of linear

preferences:
Bs1ppq

B ln p2 B ln p3
“ 2p1´ αq

p1 ¨ p2 ¨ p3

pp1 ` p2 ` p3q
3
ă 0,

which violates (27).

It remains to verify that (28) is indeed an expenditure function of some homothetic preference.

For this purpose, we need to check that E is homogeneous, monotone, and concave. Homogeneity

is straightforward. Monotonicity follows since the elasticities (29) are all positive. Concavity of E
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follows from concavity of lnE. To check the latter, we compute the quadratic form of the Hessian

of lnEppq on a vector y P R3zt0u:

α

3

ˆ

y2
1

p2
1

`
y2

2

p2
2

`
y2

3

p2
3

˙

` pα´ 1q

ˆ

y1 ` y2 ` y3

p1 ` p2 ` p3

˙2

ă ´

ˆ

1´
2

3
α

˙

max
i“1,2,3

"

y2
i

p2
i

*

ă 0.

Hence, the Hessian is negative definite, which implies the concavity. Thus, (28) is indeed an

expenditure function.

Corollary 5. For n ě 3 goods, the completion of the domain of all linear preferences is a proper

subset of the domain of preferences exhibiting substitutability.

The corollary tells nothing about the case of n “ 2 goods, which turns out to be an exception.

Proposition 2. For n “ 2 goods, the completion of the domain of all linear preferences coincides

with the set of all preferences exhibiting substitutability.

This result follows from an explicit construction. Given Á such that the expenditure share of

the first good s1pp1, p2q “
B lnEpp1,p2q
B ln p1

is non-decreasing in p2, we need to find a distribution µ of

value vectors v so that the continuous aggregation (26) of linear preferences leads to Á.

To guess an explicit formula for such µ, take the partial derivative B
B ln p1

on both sides of (26):

s1pp1, p2q “ µ

ˆ"

v1

v2
ě
p1

p2

*˙

. (30)

The derivative exists and the identity holds for Lebesgue almost all pp1, p2q. The ratio MRS “ v1{v2

is the marginal rate of substitution for the corresponding linear preference. We conclude that

1´s1p ¨ , 1q must be the cumulative distribution function of MRS and the monotonicity of s1 makes

this possible. Choosing any such distribution µ and adding atoms of the weight 1´limp1Ñ`0 s1pp1, 1q

at v “ p0, 1q and of the weight limp1Ñ8 s1pp1, 1q at v “ p1, 0q completes the construction.

Note that we pinned down the distribution of the MRS “ v1{v2 but not the magnitude of v.

As v and λ ¨ v with λ ą 0 correspond to the same linear preference, the distribution of preferences

over the population is determined uniquely and we are free to chose any normalization of v so that

the integral in (26) converges, e.g., we can assume that µ is supported on v1 ` v2 “ 1.

Corollary 6. Any preference over two goods exhibiting substitutability can be represented as a

continuous aggregation of linear preferences (26). The distribution of linear preferences over the

population corresponding to Á is pinned down uniquely and admits an explicit formula: the cumu-

lative distribution function of the marginal rate of substitution MRS “ v1{v2 equals 1´ s1p ¨ , 1q.

Example 3 (translog preferences and Benford’s law). To illustrate Corollary 6, let us show how

a family of consumers with linear preferences over two goods can generate translog preference, a
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popular class of homothetic preferences obtained as a perturbation of Cobb-Douglas preferences

in the space of expenditure functions (Diewert (1974), p. 139). A preference Á is translog if its

logarithmic expenditure function has the following form

lnEpp1, p2q “

$

’

’

’

’

&

’

’

’

’

%

ln p1, ln
´

p1
p2

¯

ă ´ 1´α
β

α ln p1 ` p1´ αq ln p2 ´
β
2

´

ln p1
p2

¯2

, ´ 1´α
β ď ln

´

p1
p2

¯

ď α
β

ln p2, ln
´

p1
p2

¯

ą α
β

,

where α P p0, 1q and β ą 0.

By elementary computations and formula (30), we obtain that a distribution of value vectors

v “ pv1, v2q aggregates up to the translog preference if and only if the logarithm of the marginal

rate of substitution MRS “ v1{v2 is distributed uniformly:

ln MRS „ U
ˆ„

´
1´ α

β
,
α

β

˙

,

where U prc, dsq denotes the uniform distribution supported on rc, ds. Curiously enough, this is

equivalent to MRS following the so-called Benford law of digit bias (Benford, 1938).

Consider a particular case of translog preference Á with α “ β “ 1{2. We obtain that Á can be

represented as aggregation over the continuous population of consumers distributed uniformly in

r´1, 1s so that consumer α P r´1, 1s has utility upx1, x2q “ e
α
2 ¨ x1 ` e´

α
2 ¨ x2. The corresponding

identity (26) takes the following form:

lnEpp1, p2q “

ż 1

´1

ln
`

min
 

p1 ¨ e
´α2 , p2 ¨ e

α
2

(˘

dα.

4.2 Complete monotonicity and the completion of Leontief preferences

We saw that, for n “ 2 goods, the completion of all linear preferences is the whole domain of

homothetic preferences with substitutability. By contrast, the completion of all Leontief preferences

turns out to be substantially narrower than the domain of all preferences with complementarity,

even for n “ 2.

By Theorem 2 and formula (8) for expenditure functions of Leontief preferences, the completion

of Leontief preferences over n ě 2 goods is the set of all preferences Á with expenditure functions

E of the following form:

lnEppq “

ż

Rn
`

lnxv,py dµpvq (31)

for some probability measure µ on Rn` such that the integral converges.

Note that lnxv,py is an infinitely smooth function of p P Rn``. Exchanging integration and

differentiation in (31), we conclude that the left-hand side must also be infinitely smooth. Thus
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the completion of Leontief preferences cannot contain preferences with expenditure functions and

expenditure shares that are not infinitely smooth.

Corollary 7. For any number n ě 2 of goods, the completion of the domain of Leontief preferences

is a proper subset of the domain of preferences exhibiting complementarity.

The following example provides a concrete preference over two complements that is outside of

the completion of Leontief preferences.

Example 4 (A preference over two complements outside of the completion of Leontief). We aim

to find a preference Á over n “ 2 complements such that its expenditure function E is not in-

finitely smooth. It is enough to find a preference such that the expenditure share of the first good

s1pp1, p2q “
B lnEpp1,p2q
B ln p1

has a discontinuous derivative. The existence of such Á follows from the

characterization of expenditure shares (5). We will describe Á explicitly.

The idea is to combine two distinct preferences exhibiting complementarity so that the con-

sumer’s preference alternates between the two depending on prices. Consider Á corresponding to

the following utility function:

upx1, x2q “ min t
?
x1 ¨ x2, x1u . (32)

A consumer with this preference behaves as if she switches between Cobb-Douglas and Leontief

preferences at p1 “ p2. A simple computation gives the expenditure share:

s1pp1, p2q “

$

&

%

1
2 ,

p1
p2
ă 1

p1
p1`p2

, 1 ď p1
p2

.

As we see, s1 is decreasing in p2 and, hence, Á exhibits complementarity. However, this preference

cannot be obtained as a continuous aggregation of Leontief preferences (31) since the expenditure

share has discontinuous derivative.14

The condition that a preference Á belongs to the completion of Leontief preferences is sub-

stantially more restrictive than the requirement of smoothness of the expenditure function. An

infinitely smooth function f “ fpλq, λ P R``, is called completely monotone if 15

p´1qk ¨
dk

dλk
f ě 0 for all k “ 0, 1, 2, . . ..

14For complements, expenditure shares can have discontinuous derivatives but are necessarily continuous them-

selves. This is a simple corollary of (5). By contrast, expenditure shares for substitutes can be discontinuous, e.g.,

for linear preferences expenditure shares are step functions.
15In economics, completely monotone functions arise as the dependence of decision maker’s payoff on the discount

factor λ. Indeed, by Bernstein’s theorem a function f is completely monotone if and only if fpλq “
ş

R`
e´λtdνptq

for some positive measure ν, i.e., f is the expected utility of a risk-neutral decision maker with geometric discounting

for a stream of payoff ν.
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Complete monotonicity provides a necessary condition for Á to be in the completion of Leontief

preferences.

Proposition 3. If a preference Á belongs to the invariant closure of Leontief preferences, then the

price-normalized expenditure share sippq{pi of a good i is a completely monotone function of pi for

each good i “ 1, . . . , n.

This proposition follows from the integral representation (31) of the expenditure function E and

the possibility to exchange differentiation with respect to pi and integration. The derivatives of the

integrand in (31) can be computed explicitly

Bk`1

Bkpi
lnxv,py “ p´1qk

vki ¨ k!

pxv,pyq
k`1

.

Hence,

p´1qk
Bk`1

Bkpi
lnEppq “ k!

ż

Rn
`

vki

pxv,pyq
k`1

dµpvq ě 0.

Since sppq{pi “
B
Bpi

lnEppq, we conclude that sippq{pi is a completely monotone functions of pi.

For n “ 2 goods, we are able to provide a simple criterion for a preference Á to be in the

completion of Leontief preferences. This criterion suggests that the necessary condition of complete

monotonicity established in Proposition 4.2 is almost sufficient.

A function f “ fpλq, λ P R``, is called a Stieltjes function if it can be represented as

fpλq “

ż

R`

1

λ` z
dνpzq (33)

for some positive measure ν on R`.16 The Stieltjes functions are exactly those completely monotone

functions that themselves can be obtained as the Laplace transform of a completely monotone

density.17

Proposition 4. For n “ 2 goods, a preference Á belongs to the completion of Leontief preferences if

and only if the price-normalized expenditure share of the first good s1pp1, 1q{p1 is a Stieltjes function

of the price p1.

16These functions are omnipresent in various branches of mathematics such as probability theory, spectral theory,

continued fractions, and potential theory (Schilling et al., 2012, Chapter 2).
17The integral operator on the right-hand side of (33) is known as the Stieltjes transform. It equals the Laplace

transform applied to ν twice: fpλq “
ş

R`
e´λt

´

ş

R`
e´tzdνpzq

¯

dt. By Bernstein’s theorem, the set of completely

monotone functions is the set of all functions equal to the Laplace transform of positive measures. Hence, Stieltjes

functions are those completely monotone functions that are Laplace transforms of completely monotone ones.
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If Á is in the completion, it is easy to see that it is a Stieltjes function. By (31), for any such

preference we have

B

Bp1
lnEpp1, 1q “

ż

R2
`

v1

v1p1 ` v2
dµpv1, v2q “

ż

R`

1

p1 ` z
dνpzq,

where ν is the distribution of v2
v1

. Since s1pp1,1q
p1

“ B
Bp1

lnEpp1, 1q, we get

s1pλ, 1q

λ
“

ż

R`

1

λ` z
dνpzq (34)

and conclude that s1pλ, 1q{λ is a Stieltjes function for any Á from the completion.

The right-hand side of (34) is the Stieltjes transform of ν. The Stieltjes transform is invertible.

Hence, if Á belongs to the completion of Leontief preferences, the expenditure shares determine the

distribution ν satisfying (34) uniquely. As a result, the distribution of Leontief preferences over the

population that leads to Á is pinned down uniquely. Namely, the continuous aggregation of Leontief

preferences (31) with distribution µ of pv1, v2q such that the ratio v2{v1 is distributed according to

ν gives Á. Leontief preferences with the same ratio coincide and so the distribution of preferences

corresponding to Á is indeed unique.

The Stieltjes transform can be inverted explicitly using tools from complex analysis. Before

describing the tools, we give an example obtained with their help.

Example 5 (CES with complements as an aggregation of Leontief preferences). We show that any

CES preference Á over n “ 2 complements (11) belongs to the completion of Leontief preferences.

First, consider a particular case with the elasticity of substitution σ “ 1
2 and weights a “ p1, 1q;

the corresponding utility function is the harmonic mean. The utility and the expenditure share of

the first good are as follows:

upx1, x2q “

ˆ

1

x1
`

1

x2

˙´1

and s1pp1, p2q “

?
p1

?
p1 `

?
p2
.

By Proposition 4, finding a probability distribution ν on R` such that the identity (34) holds is

enough to show that Á is in the completion of Leontief preferences. We end up with the following

equation:
1

λ`
?
λ
“

ż

R`

1

λ` z
dνpzq.

One can check that ν with a density ϕ given by

ϕpzq “
1

π

1
?
zp1` zq

(35)

is a solution, hence, Á is indeed in the completion. By taking any distribution µ of v “ pv1, v2q such

that v2{v1 is ν-distributed (e.g., v1 equals 1 identically and v2 has distribution ν), we represent Á

via a continuous aggregation of Leontief preferences (31).
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The above analysis extends to any CES preference over two complements. The utility function

and the expenditure share have the form

upx1, x2q “

´

pa1 ¨ x1q
σ´1
σ ` pa2 ¨ x2q

σ´1
σ

¯
σ
σ´1

and s1pp1, p2q “
pp1q

1´σ

pp1q
1´σ

`

´

a1
a2
p2

¯1´σ ,

where σ P p0, 1q. The corresponding distribution ν of v2{v1 has to solve the equation

1

λ`
´

a1
a2

¯1´σ

¨ λσ
“

ż

R`

1

λ` z
dνpzq.

One can check that ν with density

ϕpzq “
sinpπσq

π

¨

˚

˝

1
´

a2
a1

¯1´σ

¨ z2´σ ` z ¨ cospπσq `
´

a1
a2

¯1´σ

¨ zσ

˛

‹

‚

(36)

is a solution. Formula (35) is a particular case of (36) for σ “ 1{2 and a1 “ a2.

Formulas (35) and (36) were derived using the following observation from complex analysis. For

any distribution ν on R`, its Stieltjes transform is defined not only for λ P R`` but also for all

complex values of λ P CzR´, where C denotes the complex plane. Moreover, the function is analytic

on CzR´. The values of this analytic continuation above and below the “cut” over the negative

reals can be used to reconstruct ν. The answer is given by the Stieltjes-Perron formula: if f is the

Stieltjes transform of a measure ν with density ϕ, then

ϕpzq “
1

2πi
¨ lim
εÑ0

pfp´z ` iεq ´ fp´z ´ iεqq , (37)

where i is the imaginary unit and ε tends to zero from above.

Combining the Stieltjes-Perron formula and Proposition 4, we get the following corollary.

Corollary 8. If a preference Á over n “ 2 goods belongs to the completion of Leontief preferences,

then the expenditure share of the first good s1pp1, 1q as a function of its price p1 admits an analytic

continuation to complex prices p1 P CzR`. The function ϕ given by (37) for

fpλq “
s1pλ, 1q

λ

is the density of the unique distribution of v2{v1 such that the continuous aggregation of Leontief

preferences (31) gives Á.

Note that the analytic continuation is unique if exists. Hence, Corollary 8 can be used to

check whether a given preference belongs to the completion of Leontief preferences. First we check
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whether the expenditure share admits analytic continuation. If it does, we compute a candidate

for the distribution ν via the Stieltjes-Perron formula. Finally, we check that what we got is a

probability distribution and the expenditure share can be obtained as its Stieltjes transform. A

preference passes the test if and only if it is in the completion. Example 5 illustrated this approach.

5 Indecomposable preferences

In this section, we study those preferences that cannot be represented as an aggregation of distinct

preferences withing a given domain. We call such preferences indecomposable. They play the role of

elementary building blocks as any preference can be represented as an aggregation of indecomposable

ones.

We already saw an example of such a representation in Section 4, when represented any pref-

erence over two substitutes as a continuous aggregation of linear preferences. In contrast to the

discussion of Sections 3 and 4 where we started from specifying “elementary” preferences and asked

what can be obtained by aggregating them, now we start from a given domain and aim to identify

these elementary preferences.

Definition 4. For a given domain D, a preference Á from D is indecomposable if it cannot be

represented as an aggregation of two distinct preferences Á1 and Á2 from D. The set of all inde-

composable preferences from D is denoted by Dindec.

Recall that a point x from a subset X of a linear space is called an extreme point of X if it

cannot be represented as αx1 ` p1 ´ αqx2 with α P p0, 1q and distinct18 x1, x2 P X. The set of all

extreme points of X is denoted by Xextrem. Theorem 1 implies the following corollary.

Corollary 9. A preference Á is indecomposable in D if and only if the corresponding logarithmic

expenditure function lnE is an extreme point of the set of logarithmic expenditure functions

LD “
 

f “ ln pEÁ1q : Á1P D
(

.

The Choquet theorem states that, if X is a compact convex subset of a locally convex topological

vector space, then any point x P X can be obtained as the average of its extreme points x1 P Xextrem

with respect to some Borel probability measure µ “ µx supported on Xextrem:

x “

ż

Xextrem

x1 dµpx1q; (38)

see (Phelps, 2001). Using the Choquet theorem, we obtain the following result demonstrating that

indecomposable preferences can indeed be seen as elementary building blocks.

18Usually, one assumes that X is convex but we do not make this assumption.
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Theorem 3. If D is a closed domain invariant with respect to aggregation, then any preference

Á from D can be obtained as a continuous aggregation of indecomposable preferences from D, i.e.,

there exists a Borel measure µ supported on Dindec such that the expenditure function E “ EÁ can

be represented as follows

lnEppq “

ż

Dindec

lnEÁ1ppqdµpÁ1q (39)

for any vector of prices p P Rn``.

As in Theorem 2, the integral (39) is formally defined in Appendix B. Both theorems are proved

in Appendix C.2. The essence of the proof is checking that the topological assumptions of the

Choquet theorem are satisfied.

Representation (39) is especially useful if the set of indecomposable preferences is small relative

to the whole domain D. We will see that this is the case for substitutes but not the case for

complements and the full domain.

5.1 Indecomposability in the full domain

Let D be the domain of all homothetic preferences. It is easy to guess some indecomposable

preferences from D: for example, linear and Leontief preferences are indecomposable. It turns out

that there are many more. Let us call Á a Leontief preference over linear composite goods if it

corresponds to a utility function of the form

upxq “ min
aPA

tχapxqu , (40)

where A is a finite or countably infinite subset of Rn` and each a P A defines a linear composite

good χapxq by

χapxq “
n
ÿ

i“1

aixi.

The interpretation is that an agent treats the collection of bundles a P A as perfect complements.

Leontief and linear preferences are particular cases. For Leontief preferences, the bundles are, in

fact, single goods and so each a P A has only one non-zero coordinate. Linear preferences correspond

to a single bundle a, i.e., A “ tau. Geometrically, Leontief preferences over linear composite goods

are exactly those preferences that have upper contour sets with piecewise linear boundary.

Proposition 5. For any number of goods n, Leontief preferences over linear composite goods (40)

are indecomposable in the domain of all homothetic preferences.

The proposition implies that linear and Leontief preferences are indeed indecomposable. Another

immediate corollary is that aggregation of linear and Leontief preferences together is far from
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giving the full domain. Any preference of the form (40) is indecomposable and, hence, cannot be

represented as an aggregation of linear or Leontief preferences unless it is linear or Leontief itself.

For example, one can take a preference Á corresponding to

upxq “ mintx1 ` 2 ¨ x2, 2 ¨ x1 ` x2u.

The corollary can be strengthened. Budget shares for Á are not monotone, i.e., Á exhibits neither

substitutability nor complementarity. Since Á is indecomposable, we conclude that not every prefer-

ence can be represented as an aggregation of preferences exhibiting substitutability and preferences

exhibiting complementarity.

We see that the full domain has a lot of indecomposable preferences. To formalize this obser-

vation, note that piecewise linear concave functions are dense in the set of all concave functions.

Accordingly, indecomposable preferences are dense in the full domain D and extreme points of the

set LD of logarithmic expenditure functions are dense in this set.19

The main insight behind Proposition 5 is as follows. We know that describing indecomposable

preferences in a domain D boils down to finding extreme points of the set of logarithmic expenditure

functions LD. Finite-dimensional linear programming intuition suggests that natural candidates for

extreme points of a convex set are those points where the maximal number of constraints defining

the set are active. Leontief preference over linear composite goods are those preferences Á for which

the concavity constraint on the expenditure function E is active almost everywhere.

The formal proof of Proposition 5 is contained in Appendix C.3; we sketch the argument here.

A utility function u is of the form (40) if and only if the corresponding expenditure function is

also piecewise linear: E “ mincPC
řn
i“1 ci ¨ pi for finite or countable C Ă Rn`. To demonstrate

indecomposability, we need to show that if E “ pE1q
αpE2q

1´α, then E1 and E1 are proportional to

each other (and thus to E). By strict concavity of the function hptq “ tα1 ¨ t
1´α
2 on rays not passing

through the origin, E cannot be linear in regions where E1 and E1 are not proportional. Hence,

E1 and E2 must be proportional in each of the linearity regions of E. As these regions cover the

whole space, E1 and E2 are proportional everywhere implying that Á is indecomposable.

In Appendix C.3 we also explore how close Proposition 5 is to characterizing all indecomposable

preferences. We show that if there is a neighborhood of a point where the concavity constraint on

E is inactive, then a preference can be decomposed (Proposition 13). The idea is that we can find

small perturbation ψ “ ψppq vanishing outside of this neighborhood and such that E1 “ E ¨ p1`ψq

19The existence of non-trivial convex sets with dense extreme points highlights that finite-dimensional intuition

can be misleading in infinite-dimensional convex geometry (Poulsen, 1959). In economic literature, such sets have

appeared in the context of the n-good monopolist problem with n ě 2, where mechanisms can be identified with

convex functions on r0, 1sn such that their gradients also belong to r0, 1sn (Manelli and Vincent, 2007).
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and E2 “ E{p1`ψq are valid logarithmic expenditure functions. Since lnE “ 1{2¨lnE1`1{2¨lnE2,

the preference corresponding to E can indeed be decomposed.

Intuitively, a concave function is either piecewise linear or there is a neighborhood where it is

strictly concave and, hence, Propositions 5 and 13 seem to cover all possible cases. However, there

is a family of pathological examples not captured by this intuition, e.g., concave functions whose

second derivative is a continuous measure supported on a Cantor set. Proposition 14 formulated

and proved in the appendix shows that such pathological preferences are also indecomposable.

Proposition 5 has implications for the geometric mean of convex sets. Consider the collection

X of all closed convex subsets X of Rn` that do not contain zero and are upward-closed, i.e., all

those that can be obtained as upper contour sets of homothetic preferences. We call a set X P X
indecomposable if it cannot be represented as the geometric mean Xλ

1 b X1´λ
2 with distinct X1

and X2 from X and λ P p0, 1q. Proposition 5 implies that convex polytopes (with possibly infinite

number of faces) are indecomposable. There is mathematical literature inspired by Gale (1954)

and studying a similar concept of indecomposability where instead of taking weighted geometric

means, one takes convex combinations with respect to the Minkowski addition.20 In contrast

to our setting, planar sets indecomposable in the sense of Gale form a simple parametric family

(Gale, 1954; Silverman, 1973). However, in the dimension 3 and higher, Gale’s indecomposability

behaves similarly to ours: indecomposable sets are dense in all convex sets and one can derive some

necessary and some sufficient conditions of indecomposability that almost match each other but yet

no criterion is known; see, e.g., (Sallee, 1972).

5.2 The domain of substitutes and the simplex property

Consider the domain DS of all homothetic preferences over n substitutes. Linear preferences be-

long to DS and are indecomposable since they are indecomposable even in the larger domain of

all homothetic preferences by Proposition 5. For two goods, there are no other indecomposable

preferences in DS .

Proposition 6. For n “ 2 goods, a preference Á is indecomposable in the domain DS of homothetic

preferences with substitutability if and only if Á is linear.

From Corollary 6, we know that any preference over n “ 2 goods exhibiting substitutability can

be obtained by aggregating linear preferences. Hence, any non-linear preference can be decomposed

and we get Proposition 6.

Corollary 6 provides an explicit Choquet decomposition (39) for DS . Moreover, the corollary

states that the decomposition is unique in the sense that the distribution of linear preferences over

20Gale (1954) calls such sets irreducible.
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the population is pinned down uniquely. This phenomenon has the following geometric interpreta-

tion.

Consider a collection of d points in a finite-dimensional linear space such that no subset of k ď d

points belongs to a pk´2q-dimensional linear subspace. The convex hull of such a collection is called

a simplex. A simplex has the property that any point has the unique decomposition as a convex

combination of extreme points. The uniqueness of the decomposition characterizes simplices among

all other closed convex subsets of a finite-dimensional space. In the infinite-dimensional space, this

property can be used to define a simplex, namely, a compact convex set is called a simplex if

each point can be uniquely represented as the average of the extreme points, i.e., the measure in

the Choquet integral (38) is uniquely defined (Phelps, 2001). Accordingly, we say that a closed

domain of preferences is a simplex domain if there is a unique way to represent any preference as

an aggregation of indecomposable ones, i.e., the measure µ in (39) is unique.

Corollary 10. For two goods, the domain of homothetic preferences exhibiting substitutability is a

simplex domain.

For n ě 3 goods, there are other indecomposable preferences in DS except for linear ones.

Indeed, by Corollary 5, aggregation of linear preferences does not give the whole domain DS . Since

any preference can be represented as an aggregation of indecomposable ones, we conclude that there

must be other indecomposable preferences. Describing them explicitly and checking whether DS is

a simplex domain for n ě 3 remains an open question.

5.3 The domain of complements

Let us discuss the domain DC of homothetic preferences exhibiting complementarity. Leontief pref-

erences are indecomposable in DC since they are indecomposable in the full domain. By Corollary 7,

aggregation of Leontief preferences does not give the whole DC even for n “ 2 goods and, hence,

there must be other indecomposable preferences. It turns out that indecomposable preferences are

dense in DC and their structure resembles the one for the full domain. We call a preference Á a

Leontief preference over Cobb-Douglas composite goods if it corresponds to a utility function

upxq “ min
aPA

tχapxqu , (41)

where A is finite or countably infinite subset of R`` ˆ ∆n´1 and each a “ pa0, a1, . . . , anq P A

defines a Cobb-Douglas composite good χapxq by

χapxq ” a0 ¨

n
ź

i“1

xaii .
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Cobb-Douglas and Leontief preferences are particular cases of (41) corresponding, respectively, to

a singleton A “ tau and to A “ tpa1
0, e1q, . . . , pa

n
0 , enqu where ei is the i’th basis vector. We call a

Leontief preference Á over Cobb-Douglas composite goods non-trivial if the set A contains at least

two vectors a and a1 with pa1, . . . , anq ‰ pa
1
1, . . . , a

1
nq. Equivalently, Á is non-trivial if it is not a

standard Cobb-Douglas preference.

Proposition 7. For n “ 2 goods, non-trivial Leontief preferences over Cobb-Douglas composite

goods are indecomposable in the domain of homothetic preferences with complementarity.

The requirement of non-triviality is needed as standard Cobb-Douglas preferences can be decom-

posed as an aggregation of Ái corresponding to uipxq “ xi; see Example 1. Note that Ái — which

can be seen as either extreme linear or extreme Cobb-Douglas preference — is indecomposable in

DC since it is indecomposable even in the full domain by Proposition 5.

Proposition 7 is proved in Appendix C.4. The idea is similar to Proposition 5 dealing with

indecomposability in the full domain: indecomposable preferences correspond to expenditure func-

tions E with maximal number of active constraints. In contrast to Proposition 5 where the concavity

of E was the only constraint that matters, now we have the new monotonicity constraint on the

expenditure share. Leontief preferences over Cobb-Douglas composite goods are obtained if the

space is partitioned into regions where the monotonicity constraint is active (expenditure shares

are constant) or the concavity constrain is active (the expenditure function is linear). The former

regions correspond to hyperbolic parts of the upper contour sets and the latter regions, to cusps.

6 Applications

This section illustrates how the geometric approach to preference aggregation can be used in various

economic contexts.

6.1 Preference identification and simplex domains

Market demand reflects individual preferences but information loss is unavoidable. For example,

aggregate behavior does not allow to distinguish populations where a pair of agents swapped their

preferences and incomes or where a pair of agents with identical preferences is replaced with one

agent with the joint income. We can still ask whether market demand determines the distribution

of preferences over population, i.e., whether, by looking at the aggregate behavior, it is possible

to determine what fraction of the population’s income corresponds to agents with preferences of a

particular kind.

Consider a population of consumers with homothetic preferences from some domain D. An

analyst knows neither the income distribution nor the size of the population and observes market
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demand generated by this population for any vector of prices. For any subset of preferences D1 Ă D,

the analyst aims to identify what fraction of the total income corresponds to agents in D1.
In general, identification is impossible. For example, if D is the domain of Cobb-Douglas pref-

erences, the aggregate demand corresponding to uaggregatepx1, x2q “ x
1{3
1 ¨ x

2{3
2 can be generated

by a population where each agent has the same preference Á“Áaggregate or, alternatively, by the

population where 1{3 of the total income is earned by agents with preference u1pxq “ x1 and 2{3

by those with u2pxq “ x2; see Example 1.

The domain D of linear preferences over n “ 2 goods is an exception. A linear preference over

two goods is determined by its marginal rate of substitution MRS “ v1{v2. By Corollary 6, the

fraction of income corresponding to consumers with MRS above a certain threshold α is equal to

the fraction of income spent by the population on the first good for prices p1 “ α ¨ p2, i.e.,

µ

ˆ

MRS ě
p1

p2

˙

“ saggregate,1ppq “
p1 ¨Daggregate,1pp, Bq

p1 ¨Daggregate,1pp, Bq ` p2 ¨Daggregate,2pp, Bq
.

Hence, even a few observations of market demand Daggregate at non-collinear price vectors can give

a good understanding of the preference distribution over the population.

More generally, the distribution of preferences from a domain D can be identified if any prefer-

ence Á obtained by aggregation of preferences from D cannot be decomposed over D in a different

way. A geometric interpretation of this property relies on the notion of simplex domains from

Section 5.2 and is contained in the following corollary.

Corollary 11. If the completion Dcomplete of D is a simplex domain and D consists of indecom-

posable preferences, then the distribution of preferences over the population can be identified from

price dependence of market demand.

Apart from linear preferences over two goods,there are many other domains satisfying the re-

quirements of Corollary 11. One can take D given by any finite collection of preferences tÁ1, . . . ,Áqu

none of which can be obtained as an aggregation of the others. For example, if q equals the number

of goods n and each Ák corresponds to upxq “ xk, then the income fraction of consumers with

preference Ák is equal to the expenditure share saggregate,kppq at any price p; see also Example 1.

We stress that just one observation of aggregate behavior at any particular vector of prices p turns

out to be enough to determine the distribution of preferences. The origin of this phenomenon is not

the orthogonality of preferences but the fact that the dimension of the domain of preferences does

not exceed the dimension of the consumption space. To illustrate this point, note that if Á1, . . . ,Áq

are Cobb-Douglas preference with vectors of parameters a1, . . . ,aq that are linearly independent

(possible only if q ď n), then one observation of market demand also gives a linear system enough

for identification.
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Another domain D satisfying conditions of Corollary 11 is the domain of Leontief preferences

over two goods. By Corollary 8, any preference from its completion Dcomplete can be uniquely de-

composed over Leontief preferences. Hence, Dcomplete is a simplex domain and Leontief preferences

are indecomposable in it. We conclude that, in theory, the distribution of Leontief preferences can

be identified. A peculiarity is that the Stieltjes-Perron inversion formula underlying Corollary 8

requires continuation of demand to complex prices. Therefore, it guarantees identification but gives

no practical recipe of reconstructing the distribution of preferences for an analyst who observes

demand for real prices only. Instead, the analyst can use real-inversion techniques for the Stieltjes

transform, e.g., (Widder, 1938; Love and Byrne, 1980).

6.2 Robust welfare analysis via information design

Understanding how the population’s welfare changes as a function of prices is crucial for designing

government market interventions. Consider an analyst who observes market demand as a function

of prices and, based on this information, aims to estimate a certain aggregate measure of individual

well-being.

The recent quantitative literature on gains from trade (see (Costinot and Rodŕıguez-Clare, 2014)

for a survey) uses representative consumer’s utility as an aggregate welfare measure. Hence, there

is a one-to-one mapping between the market demand and the welfare functional. As pointed out

by Arkolakis et al. (2012) and, more recently, by Arkolakis et al. (2019), this approach leads to

surprisingly low gains from trade.

The assumption that market demand is a sufficient statistic for welfare is hardwired in the

approach taken by the empirical literature. However, the same market demand — hence, the same

aggregate preferences — can be generated by different populations of consumers. As a result, the

same aggregate behavior may be compatible with a range of aggregate welfare levels. We illustrate

how one can combine Theorem 1 with ideas from information design to compute the range of values

of the welfare functional (or any other functional depending on individual preferences) compatible

with given aggregate behavior, being fully agnostic about the specific decomposition of the market

demand into individual demands. We call this a robust approach to welfare analysis.

As market demand pins down the aggregate consumer’s preference, we can assume that the

aggregate preference Áaggregate is given. In addition, the analyst is given the total income B in the

economy and a measure of individual “welfare” w “ wpÁ, bq for a consumer with preference Á and

income b. The goal is to find the range of values of the welfare functional

W “
ÿ

j

wpÁj , bjq (42)

over all finite populations of consumers j “ 1, 2, . . . with preferences Á1,Á2, . . . and incomes b1, b2 . . .
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such that the individual preferences aggregate up to Áaggregate and incomes sum up to B “
ř

j bj .

Note that w may also depend on other parameters — e.g., prices before and after a market

intervention — but such dependence does not affect our analysis and hence omitted. A popular

choice is wpÁ, bq equal to the consumer surplus as prices change from p0 to p1:

wpÁ, bq “

ż 1

0

D
`

pptq, b
˘

dpptq,

where pptq is the curve in the space of prices such that pp0q “ p0 and pp1q “ p1. Since the demand

is proportional to the gradient of the logarithmic expenditure function (2), we get

wpÁ, bq “ b ¨
`

lnEpp2q ´ lnEpp1q
˘

. (43)

Another natural choice of wpÁ, bq is the normalized indirect utility vpp, bq “ b{Eppq. Normalizing

the indirect utility to 1 at the unit budget and some price vector p “ p0 we obtain

wpÁ, bq “ b ¨
Epp0q

Eppq
. (44)

Let us focus on computing the maximal value of W . We first analyze the case where w depends

on income linearly

wpÁ, bq “ b ¨ hpÁq

as in (43) and (45), and then discuss general w. Let us represent preferences by expenditure

functions and rewrite the problem with the help of Theorem 1. Denote by L the set of all logarithmic

expenditure functions of homothetic preferences and by βj “ bj{B, the relative income. We obtain

that the maximal value of (42) is equal to the maximal value of

B ¨
ÿ

j

βj ¨ hpÁjq,

where the maximum is taken over all possible ways to represent lnEaggregate as a finite convex

combination lnEaggregate “
ř

j βj lnEj with lnEj from L.

Similar optimization problems are well-known in Bayesian persuasion, a benchmark model for

a situation where an informed party decides what information to reveal to an uninformed one and

has an objective depending on induced beliefs (Kamenica and Gentzkow, 2011). Mathematically,

persuasion boils down to solving the following optimization problem. We are given a set of states

Ω, a prior belief µ P ∆pΩq where ∆pΩq denotes the simplex of probability distributions over Ω, and

an objective function g defined on ∆pΩq. The goal is to maximize

ÿ

j

βj ¨ gpµjq
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over all possible ways to represent the prior µ as a finite convex combination µ “
ř

j βj ¨ µj with

µj P ∆pΩq.

Similarity between the two problems must be apparent: the set L of logarithmic expenditure

functions plays the role of ∆pΩq, the logarithmic expenditure function of the aggregate preference

corresponds to the prior µ, and h “ hpÁq considered as a function on L is the analog of informed

party’s objective g.

The persuasion problem has an elegant geometric solution. For a function f on a convex subset

X of a linear space, its concavification cavX rf s is the smallest concave functions on X larger

than f . The optimal value of the persuasion problem is cav∆pΩqrgspµq (Kamenica and Gentzkow,

2011). Inspired by this result, we obtain a similar answer for welfare maximization.

Proposition 8. For wpÁ, bq “ b ¨ hpÁq, the maximal welfare (42) compatible with an aggregate

preference Áaggregate and income B is given by

B ¨ cavL
“

h
‰`

Áaggregate

˘

. (45)

The function hpÁq in (45) is treated as a functional on the space of logarithmic expenditure

functions. Hence, the concavification is over the infinite-dimensional functional space. Although

the proposition may look abstract, it has straightforward economic implications and can be used

for numeric simulations via finite-dimensional approximations.

Applying Proposition 8 to h̃ “ p´1q ¨ h, we get a version of the result for the minimal welfare:

the minimal welfare equals B ¨ vexL
“

h
‰`

Áaggregate

˘

where vex denotes convexification vexX rf s “

´cavX r´f s. Thus

W P

”

B ¨ vexL
“

h
‰`

Áaggregate

˘

, B ¨ cavL
“

h
‰`

Áaggregate

˘

ı

(46)

is the range of possible values that the welfare can take for a given aggregate behavior.

The use of the aggregate agents’s welfare B ¨ hpÁaggregateq as a proxy of populations welfare

is justified if the interval (46) is, in fact, a singleton, i.e., the convexification coincides with the

concavification. The two coincide only for affine functions.

Corollary 12. Aggregate consumer’s welfare is a sufficient statistic for the population’s welfare if

the measure of individual welfare hpÁq is an affine functional of the logarithmic expenditure function

lnpEÁq. If it is not affine, there is an aggregate preference Áaggregate and two populations with the

same total budget whose preferences aggregate up to Áaggregate but welfare levels are different.

The consumer surplus (43) is an affine functional of the logarithmic expenditure function. Hence,

if the change in welfare is measured by the consumer surplus as in (Kang and Vasserman, 2022),

the market demand is a sufficient statistic to calculate the population’s welfare. By contrast, the
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indirect utility (44) is not an affine function of the logarithmic price index and the same aggregate

behavior can be compatible with a non-trivial range of welfare levels.

Let us discuss extensions and important particular cases of Proposition 8. In the maximization

problem, one can easily replace the assumption of linearity of w in b with concavity and wpÁ, 0q “ 0.

For concave w, splitting a consumer with preference Á and income b into a large number l of clones

with the same preference and incomes b{l can only increase welfare and does not affect the aggregate

behavior. Hence, only the behavior of w around zero plays matters: the maximal welfare for concave

w is equal to the maximal welfare for linear w̃ “ b ¨ h with

hpÁq “ lim
bÑ0

BwpÁ, bq

Bb
.

One can similarly handle the case of convex dependence on b in the minimization problem. To get

bounds for general w, one can squeeze it between a concave upper bound and a convex lower bound

(without loss of generality, both can be taken to be linear).

The analysis extends to the case where the analyst additionally knows that individual preferences

are not arbitrary but come from a certain subdomain D of homothetic preferences. For domains D
such that the set of logarithmic expenditure functions LD corresponding to D is convex (equivalently,

D is invariant with respect to aggregation) one just need to replace L with LD in the above

treatment.

A domain restriction can result in a tractability gain. If D is generated by a finite collection of

preferences as in Example 1, finding concavification in (45) becomes a finite-dimensional problem.

Domain restriction also helps to establish the formal equivalence between welfare maximization and

persuasion beyond similarity.

We saw that welfare maximization with w linear in b is similar to Bayesian persuasion. The

difference is that in Bayesian persuasion, the concavification takes place over a simplex ∆pΩq while

the set LD of logarithmic expenditure functions is not necessarily a simplex. Recall that a convex

set is a simplex if the decomposition over the extreme points is unique; we call D a simplex domain

if the corresponding set of logarithmic expenditure functions LD is a simplex (Section 5.2).

For simplex domains, welfare maximization is equivalent to a persuasion problem. We will

exemplify the equivalence for the domain DS of all preferences exhibiting substitutability over

n “ 2 goods. Any preference ÁP DS can be represented as an aggregation of linear preferences

and this representation is unique (Corollary 6). Linear preferences over two goods form a one-

parametric family with the marginal rate of substitution MRS “ v1{v2 P R`Yt`8u as a parameter.

A preference ÁP DS defines a unique distribution µ of MRS by formula (30): the cumulative

distribution function is equal to 1 ´ s1p ¨ , 1q. The function hpÁq can equivalently be thought as

a function of µ. Thus the welfare maximization problem takes the following form. We are given
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µaggregate P ∆pR` Y t`8uq and a functional h “ hpµq. The goal is to maximize

B ¨
ÿ

j

βj ¨ hpµjq

over all possible ways to represent the prior µ as a finite convex combination µ “
ř

j βj ¨ µj with

µj P ∆pR` Y t`8uq.
We conclude that, for two substitutes, welfare maximization is equivalent to persuasion with the

set of states Ω “ R`Yt`8u, the cumulative distribution function of the prior µ equal to 1´s1p ¨ , 1q,

and the objective h “ hpµq. Persuasion problems with a continual state space are not easy to solve

analytically unless some further assumptions are made. For example, if µ is finitely supported, i.e.,

there is a finite number of preference “types” in the population, then the support can be taken as

the new set of states reducing the problem to the well-understood case of persuasion with finite

number of states. If µ has infinite support, tractability can be gained by imposing assumptions

on the objective h. Tractable cases include h depending on µ through the mean value of a given

function ϕ, i.e., h “ h
`ş

ϕpzqdµpzq
˘

as in (Dworczak and Martini, 2019; Arieli et al., 2019; Kleiner

et al., 2021) or h depending on µ through a quantile of ϕ as in (Yang and Zentefis, 2022).

6.3 Fisher markets, fair division, complexity, and bidding languages

Consider a population of consumers with budgets b1, . . . , bm and homothetic preferences Á1, . . . ,Ám

over n goods. Let us augment this setting by adding a bundle x P Rn`` interpreted as fixed total

supply of the goods. This economy is known in algorithmic economics literature as the Fisher

market21 and is by far the most studied economy from computational perspective (Nisan et al.,

2007, Chapters 5 and 6). Since the classic works of Varian (1974) and Hylland and Zeckhauser

(1979), Fisher markets and their modifications are used for fair allocation of private goods without

monetary transfers giving rise to a famous mechanism known as the competitive equilibrium with

equal incomes (CEEI) or the pseudo-market mechanism (Moulin, 2019; Pycia, 2022).

A collection of bundles x1, . . . ,xm and a price vector p form a competitive equilibrium (CE) of

the Fisher market with preferences Á1, . . . ,Ám, budgets b1, . . . , bm, and total supply x if

xk P Dkpp, bkq, for each consumer k, and
m
ÿ

k“1

xk “ x, (47)

i.e., each consumer buys the most preferred bundle within her budget and the market clears. We

pinpoint that money have no intrinsic value and the Fisher market is equivalent to an exchange

economy where each agent k is endowed with the fraction βk “ bk{B of x where B is the total

budget.

21Named after Irving Fisher who introduced a hydraulic method for equilibrium price computation; see (Brainard

and Scarf, 2005).
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One can think of a CE as an allocation mechanism: agents report their preferences, the mech-

anism computes an equilibrium and allocates each agent her bundle xk. In this interpretation,

budgets bk represent agents’ entitlement to the goods in the bundle x. The case of equal entitle-

ments b1 “ . . . “ bm (CEEI) is especially important. In this case, each agent selects her best bundle

from the same budget set and, hence, the resulting allocation is envy-free in the sense that xk Ák xl

for any pair of agents k and l. Since any CE is Pareto optimal by the first welfare theorem, CEEI

gives a simple recipe to combine strong fairness and efficiency guarantees. CEEI and its variants

have been applied to rent division (Goldman and Procaccia, 2015), chores allocation (Bogomolnaia

et al., 2017), course allocation (Budish et al., 2017; Kornbluth and Kushnir, 2021; Soumalias et al.,

2022), cloud computing (Devanur et al., 2018), school choice (Ashlagi and Shi, 2016; He et al.,

2018), and other problems (Echenique et al., 2021).

Despite its attractive properties, popularity of CEEI remains limited as computing its outcome

is a challenging problem. It is known that an equilibrium allocation x1, . . . ,xm can be obtained via

maximizing the Nash social welfare
m
ź

k“1

ˆ

ukpxkq

βk

˙βk

(48)

over all bundles x1, . . . ,xm such that
řm
k“1 xk “ x. This result tightly related to the existence of an

aggregate consumer was established by Eisenberg and Gale (1959) for linear preferences but holds

for all homothetic preferences; see (Shafer and Sonnenschein, 1982). Although the Eisenberg-Gale

problem is convex, computing its solutions is not an easy task unless n or m are small. Even

in the benchmark case of linear preferences, algorithms with good theoretical performance have

required more than a decade of research and dozens of papers using cutting-edge techniques; see,

e.g., (Devanur et al., 2002; Orlin, 2010; Végh, 2012). Developing algorithms with good performance

in practice is critical for large-scale applications of Fisher markets — e.g., to fair recommender

systems (Gao and Kroer, 2022) and Internet ad markets (Conitzer et al., 2022) — but despite the

recent progress this problem is yet to be solved.

We examine the question of finding a CE from preference aggregation perspective. This per-

spective sheds light on why computing a CE can be challenging in seemingly innocent domains such

as linear preferences and helps to identify domains where computing a CE is easy.

The find a CE, it is enough to compute the vector of equilibrium prices p. Once we know p,

each agent is allocated her demanded bundle xk at these prices.22 Thus the essence of computing a

CE is finding a vector of prices p such that the market demand matches the supply. In other words,

22If utilities are not strictly concave, Dkpp, bqmay not be a singleton, e.g., in the domain of linear preferences. Even

in this case, once equilibrium prices are known, choosing bundles xk from each agent’s demand so that
ř

k xk “ x is a

simple problem, which boils down to a maximum flow computation (Devanur et al., 2002; Brânzei and Sandomirskiy,

2019).
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we need to find p such that the aggregate consumer’s demand contains x. This simple observation

combined with our insights about the structure of aggregate preferences has many implications.

Finding a CE for a population of consumers boils down to finding a CE for one aggregate

consumer and we know that aggregation is easier to handle in the space of logarithmic expenditure

functions. Recall that the demand is proportional to the gradient of the logarithmic expenditure

function (2) and, hence, p is an equilibrium price vector if and only if 23

x “ B ¨∇ lnEaggregateppq,

where B is the total budget. Interpreting this identity as the first order condition and taking into

account concavity of lnEaggregate, we conclude that p is a vector of equilibrium prices whenever

p is the global maximum of xx,py ´B ¨ lnEaggregateppq. (49)

Combining this result with Theorem 1, we get the following proposition.

Proposition 9. A vector p is a vector of equilibrium prices for a population of consumers with

homothetic preferences Á1, . . . ,Ám, budgets b1, . . . , bm, and total supply x if and only if p is the

global maximum of

xx,py ´
m
ÿ

k“1

bk ¨ lnEkppq. (50)

This optimization problem is convex. Its particular case for linear preferences has been known

and obtained as the Lagrange dual to the Eisenberg-Gale optimization problem (Cole et al., 2017;

Devanur et al., 2016; Shmyrev, 2009). Our approach explains the preference-aggregation origin of

this dual and provides the generalization to all homothetic preferences almost without any compu-

tations.

The optimization problems (49) and (50) indicate that to find a CE for a population of consumers

with preferences from a certain domain D we must be able to find the market equilibrium for any

preference that can be obtained as an aggregation of preferences from D. In other words, the

complexity of finding a CE is determined not by the domain D of individual preferences itself but

rather by its completion Dcomplete. We illustrate this point for the domain of linear preferences over

two goods.

By Proposition 2, aggregation of linear preferences over n “ 2 goods (domain D) gives all prefer-

ences with substitutability (Dcomplete). We will show that any algorithm computing an approximate

CE for preferences from D can be used to compute an approximate CE for Dcomplete. Hence, finding

CE for D cannot be easy if it is hard for Dcomplete. Let us call p an ε-equilibrium price vector if

23For expenditure functions that are not smooth the gradient is to be replaced with the superdifferential.
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there are xk P Dkpp, bkq, j “ 1, . . . ,m such that

xp, ey ď ε ¨B, where ei “

ˇ

ˇ

ˇ

ˇ

ˇ

xi ´
m
ÿ

k“1

xk,i

ˇ

ˇ

ˇ

ˇ

ˇ

,

i.e., the excess demand is relatively small compared to the total budget.

Proposition 10. Let D be the domain of linear preferences over two goods and assume we have

an algorithm computing an ε-equilibrium price vector for any population of agents with preferences

from D. Then a 3ε-equilibrium price vector for a population of m agents with preferences from

Dcomplete can be computed by applying the algorithm as a black box to an auxiliary population with

preferences from D and the number of agents of the order of m{ε.

The idea is to approximate preferences from Dcomplete by the aggregate preference of linear

consumers so that the expenditure shares differ by at most ε. Such approximation can be con-

structed via Corollary 6 and requires of the order of 1{ε auxiliary linear consumers. As we show

in Appendix C.5, if expenditure shares in two populations differ by at most ε, then ε-equilibrium

price vector for one population is an p1 ` nqε-equilibrium price vector for the other. Hence, an ε-

equilibrium price vector for the approximating population of linear consumers gives a 3ε-equilibrium

price vector for the original population.

The example of linear preferences demonstrates that even a simple parametric domain — if the

choice of parameters is not aligned with aggregation — can have a large non-parametric completion.

As a result, the simplicity of a parametric domain does not carry over to the aggregate behavior

thus complicating computation of a CE. To preserve the simplicity of a parametric domain, the

choice of parameters is to be aligned with aggregation. Motivated by this concern, we consider

computing a CE in parametric domains invariant with respect to aggregation.

Fix a finite family of “elementary” preferences Á1, . . . ,Áq and consider the domain D “ Dcomplete

of all preferences that can be obtained by aggregating the elementary preferences. We will call such

invariant domains finitely-generated. Cobb-Douglas preferences are an example of a finitely gener-

ated domain; see Example 1. By Theorem 1, a finitely generated D consists of all preferences Á

whose expenditure function E can be represented as lnE “
řq
l“1 tl lnEl and, hence, the vector of

coefficients t P ∆q´1 provides a parameterization of D.

Proposition 11. Consider a finitely-generated invariant domain D “ tÁ1, . . . ,Áqu
complete and

fix ε ě 0. Assume we have access to an algorithm finding an ε-equilibrium vector of prices for

m “ 1 agent and using at most T operations. Then an ε-equilibrium price vector for a population

of m ě 1 agents can be computed in time of the order of m ¨ q ` T .

The proof is straightforward. If preferences of individual agents are represented by t1, . . . , tm

and β1, . . . , βm are relative incomes, then, by Theorem 1, the aggregate consumer corresponds to
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t “
řm
k“1 βk ¨ tk. Computing t requires of the order of m ¨ q operations. Applying the one-agent

algorithm to the aggregate agent, we get an ε-equilibrium vector of prices for the original population

in T operations.

The linear growth of running time with the number of agents m and absence of large hidden

constants suggests that finitely-generated domains can be a natural candidate for scalable fair

division mechanisms. Note that the best running time for linear preferences achieved by Orlin

(2010) and Végh (2012) grows as m4.

In economic design, the choice of a preference domain corresponds to the choice of a bidding

language, i.e., the information about the true — possibly substantially more complicated — pref-

erences that the participants can report to a mechanism. Our results indicate that the advantages

of bidding languages corresponding to finitely-generated invariant domains.

Finitely-generated invariant domains offer enough flexibility to the designer. For example, apart

from Cobb-Douglas preferences, one can consider domains generated by a finite collection of linear

preferences. By adding preferences exhibiting complementarity among certain subsets – e.g., pairs

— of goods to the collection of elementary preferences, we can allow agents to express both sub-

stitutability and complementarity patterns while keeping the domain narrow. Of course, the use of

such domains and bidding languages in practice requires additional experimental evaluation as in

(Budish and Kessler, 2022).
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A Convex analysis basics

Superdifferentials. Let X be a convex subset of Rn and f : X Ñ R a concave function. Any

such function f is continuous in the relative interior of X but may have discontinuities on the

boundary (Aliprantis and Border, 2013, 7.24 Theorem). The superdifferential of f is defined by

Bfpxq “ tp P Rn : fpyq ď fpxq ` xp, y ´ xy, @y P Xu. (51)

The superdifferential is non-empty in the relative interior of X. Recall that the gradient ∇fpxq is

the vector of partial derivatives

∇fpxq “
ˆ

Bf

Bx1
, . . . ,

Bf

Bxn

˙

.
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The gradient is defined for any x where partial derivatives exist. At any such point, the superdiffer-

ential Bfpxq consists of just one element: Bfpxq “ t∇fpxqu (Rockafellar, 1970, Theorem 25.1). By

the Alexandrov theorem, a concave function is twice differentiable except for a set of zero Lebesgue;

see (Rockafellar, 1970, Theorem 25.5). In particular, the gradient ∇fpxq is defined almost every-

where and coincides with the superdifferential.

Application to demand and expenditure functions. Consider a consumer with budget b ą 0

and homothetic preferences Á on Rn` represented by a homogeneous utility function u. The demand

Dpp, bq considered as a function of prices and the budget is referred as the Marshallian demand.

The demand as a function of prices and the utility level w ą 0 is referred to as the Hicksian demand:

Hpp, wq “ argmin
x:upxqěw

xp,xy.

The Sheppard’s lemma for homothetic preferences gives the following identity:

Hpp, wq “ w ¨ BEppq,

where BEppq is the superdifferential of the expenditure function. This identity holds for all p P Rn``
including those points where E is not differentiable (Mas-Colell et al., 1995, p.141).

By the utility-maximization/cost-minimization duality (Diewert, 1982), Dpp, bq “ Hpp, wq if w

is such that xp,xy “ b for x P Hpp, wq. Hence, Dpp, bq “ w ¨ BEppq for some w “ wpbq. Choosing

wpbq so that each bundle from the right-hand side has the price of b, we get

Dpp, bq “ b ¨
BEppq

Eppq
“ b ¨ B lnEppq,

where we used the Euler identity for 1-homogeneous functions: xBEppq,py “ Eppq.

By the Alexandrov theorem, there exists a set A Ă Rn`` such that Rn``zA has zero Lebesgue

measure and E is differentiable for any p P A. By homogeneity of E, the set A can be selected so

that p P A ñ α ¨ p P A for any α ą 0. For p P A, the superdifferential BE consists of just one

element, the gradient BEppq “ t∇Eppqu. Consequently, the Marshallian demand Dpp, bq contains

just one bundle on the set p P A of full measure and can be thought as the single-valued function

Dpp, bq “ b ¨∇ lnEppq

defined almost everywhere.

For a bundle x P Dpp, bq, the expenditure share of a good i is defined by xi ¨pi{b. For p P A, the

demand is single-valued and so the expenditure share is a single-valued function of prices defined

almost everywhere and satisfying the identity

spp, bq “

ˆ

p1 ¨
B lnE

Bp1
, . . . , pn ¨

B lnE

Bpn

˙

“

ˆ

B lnE

B ln p1
, . . . ,

B lnE

B ln pn

˙

.
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B Topology on preferences and integration

There are two high-level reasons why we need a topology on preferences. The topology is necessary

to define closure of preference domains as in our discussion of completion but, most importantly,

it is needed to formalize integration over preferences and to apply Choquet theory (Phelps, 2001).

Recall that Choquet theory deals with compact convex subsets of locally convex topological vector

spaces. Our goal is to identify the domain of all homothetic preferences with a compact convex

subset of a Banach space (complete normed and, hence, locally convex vector space).

We represent a homothetic preference Á by its logarithmic expenditure function lnE. We call

two functions f and g equivalent if f ´ g “ const. Since the expenditure function is defined up to a

multiplicative factor, each preference corresponds to the class of equivalent logarithmic expenditure

functions.

Let L be the set of classes of equivalent continuous functions f on Rn`` that can be obtained as

logarithmic expenditure functions of homothetic preferences. The set L is in one-to-one correspon-

dence with the domain of homothetic preferences. Hence, to define a topology and integration for

preferences, it is enough to define them for L. We first introduce a metric structure. To motivate

the definition of a distance, we need some estimates on expenditure functions.

Lemma 1. For any expenditure function E, the following inequality holds

ˇ

ˇlnEppq ´ lnEpp1q
ˇ

ˇ ď max
i

ˇ

ˇln pi ´ ln p1i
ˇ

ˇ (52)

for any pair of price vectors p and p1 from Rn``.

In other words, logarithmic expenditure functions are 1-Lipshitz functions of logarithms of

prices.

Proof. We need to show that

min
i

pi
p1i
ď

Eppq

Epp1q
ď max

i

pi
p1i
.

It is enough to demonstrate the upper bound and the lower bound will follow by flipping the roles

of p and p1.

Recall that Eppq is the minimal budget that the agent needs to achieve the unit level of utility

for prices p. Given prices p and p1, define p2 “ maxi
pi
p1i
¨ p1. The price of each good under p2 is

higher than for p and, hence, the agent needs at least as much money to achieve the same welfare

level. Thus

Eppq ď Epp2q “ max
i

pi
p1i
¨ Epp1q,

where we used the homogeneity of the expenditure function. Dividing both sides by Epp1q, we

obtain the desired inequality and complete the proof.
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Denote by e the vector of all ones e “ p1, . . . , 1q. By the lemma, we see that any expenditure

function satisfies the following estimate
ˇ

ˇ

ˇ

ˇ

lnEppq ´ lnEpeq

1`maxi | ln pi|

ˇ

ˇ

ˇ

ˇ

ď 1 (53)

for any vector of prices. The normalization in (53) suggest how to define a distance so that the set

of logarithmic expenditure functions has a bounded diameter.

We define the distance between preferences Á and Á1 or, equivalently, between the corresponding

logarithmic expenditure functions f “ lnE and f 1 “ lnE1 as follows:

dpÁ,Á1q “ dpf, f 1q “ sup
pP∆n´1XRn

``

ˇ

ˇ

ˇ

ˇ

ˇ

plnEppq ´ lnEpeqq ´ plnE1ppq ´ lnE1peqq

p1`maxi | ln pi|q
2

ˇ

ˇ

ˇ

ˇ

ˇ

. (54)

The denominator in (54) is squared so that

lnEppq ´ lnEpeq

p1`maxi | ln pi|q
2 Ñ 0 as p approaches the boundary of ∆n´1. (55)

Hence, the supremum is always attained at an interior point of the simplex and so can be replaced

with the maximum.

Note that the ratio in (54) does not depend on the choice of a logarithmic expenditure function

from the class of equivalent ones. On the other hand, the distance between any two distinct

preferences or, equivalently, between two non-equivalent logarithmic expenditure functions is non-

zero as the values of logarithmic expenditure functions on Rn`` are determined by their values on

the interior of the simplex ∆n´1 X Rn`` “ tp P Rn`` :
ř

i xi “ 1u since Epα ¨ pq “ α ¨ Eppq.

The metric structure on preferences allows one to define convergence and closed sets. A closure

of a domain D of preference consists of all limit points of D, i.e., of all the preferences Á such that

there exists a sequence of preferences ÁplqP D with dpÁ,Áplqq Ñ 0 as l Ñ 8. A closed domain is a

domain that coincides with its closure.

Open sets are complements of closed ones and so the metric defines a topology. Once the

topology is defined, one constructs the Borel measurable structure in the standard way (Aliprantis

and Border, 2013, Section 4.4). Hence, we can write integrals of the form
ż

D
GpÁqdµpÁq “

ż

L
Gpfqdµpfq

formally where G is a Borel-measurable function and µ is a Borel measure (as usual, we iden-

tify functions and measures on preferences and on logarithmic expenditure functions). In all our

examples, the integrated function G is continuous and, hence, measurable.

By (53), the diameter of L does not exceed 2. Hence, L is a bounded convex set. To fit the

assumptions of the Choquet theory, we need to show that L is compact and can be thought as a
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subset of a Banach space. We achieve both goals by constructing an isometric compact embedding

of L into a Banach space.

Consider the Banach space C p∆n´1q of all continuous functions on the simplex endowed with

the standard sup-norm }h} “ suppP∆n´1
|hppq|.

Lemma 2. Let T be a map that maps a logarithmic expenditure function f “ lnE to a function

T rf s on ∆n´1 given by

T rf sppq “

$

’

&

’

%

lnEppq ´ lnEpeq

p1`maxi | ln pi|q
2 , p P ∆n´1 X Rn``

0, otherwise

. (56)

Then E is an isometric embedding of the set L of logarithmic expenditure functions in the Banach

space of continuous functions C p∆n´1q and the image T rLs is a compact convex set.

Proof. The function T rf s is continuous in the interior of the simplex by the continuity of expenditure

functions and it is continuous on the boundary by (55). Hence, T rf s belongs to Cp∆n´1q. By the

definition of the distance (54) and the norm in Cp∆n´1q, we get dpf, f 1q “ }T rf s ´ T rf 1s}. Hence,

T preserves the distance and, in particular, f ‰ f 1 implies Erf s ‰ T rf 1s. Thus T is an isometric

embedding of L in Cp∆n´1q.

The diameter of the image T rLs of L does not exceed 2 by (53). Hence, T rLs is a bounded

subset of Cp∆n´1q. By Lemma (52), functions from T rLs are uniformly equicontinuous. Applying

the Arcellà-Ascolli theorem, we conclude that the closure of T rLs is compact.24

It remains to show that T rLs is closed and convex. The set L is convex by Theorem 1 and E

maps convex combinations to convex combinations, hence T rLs is convex. To show that it is closed,

consider a sequence of functions hplq P T rLs converging to some h and show that the limit belongs

to T rLs. Convergence in } ¨ } implies pointwise convergence and hence h is equal to zero at the

boundary of the simplex. At any p from the interior, we obtain that the sequence of expenditure

functions Eplqppq{Eplqpeq corresponding to hplq converges to gppq “ exp
`

p1`maxi | ln pi|q
2 ¨ hppq

˘

.

As concavity is preserved under pointwise limits, g is a non-negative concave function on ∆n´1XRn``
and, hence, there is a preference with an expenditure function E “ g. Therefore, h “ T rlnEs and

so T rLs is closed.

By Lemma 2, one can think of L and the set of all homothetic preferences as a closed convex

subset of Cp∆n´1q and thus can use Choquet theory.

24Consider a subset T of the set CpXq of continuous functions on a compact set X with sup-norm. Arcellà-Ascolli

theorem states that the closure T of T is compact in CpXq if T is bounded and functions from T are uniformly

equicontinuous.
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C Proofs

C.1 Proof of Theorem 1

Proof. By the result of Eisenberg (1961), we know that the aggregate consumer exists and her

preference corresponds to the following utility function

uaggregatepxq “ max

#

m
ź

k“1

ˆ

ukpxkq

βk

˙βk

: xk P Rn`, k “ 1, . . . ,m,
m
ÿ

k“1

xk “ x

+

. (57)

Our goal is to compute the corresponding expenditure function Eaggregateppq and check that it

satisfies the identity

ln pEaggregateppqq “
m
ÿ

k“1

βk ¨ ln pEkppqq . (58)

As an intermediate step, we compute the indirect utility of the aggregate consumer. Recall that

the indirect utility for a consumer with preference Á represented by a utility function u is given by

vpp, bq “ max
 

upxq : x P Rn`, xx,py ď b
(

and is related to the expenditure function by

vpp, bq “
b

Eppq
. (59)

For the aggregate consumer, we get

vaggregatepp, bq “ max

#

m
ź

k“1

ˆ

ukpxkq

βk

˙βk

: xk P Rn`, k “ 1, . . . ,m,

C

p,
m
ÿ

k“1

xk

G

ď b

+

.

(60)

Plug in b “ 1 and consider an optimal collection of bundles xk, k “ 1, . . . ,m in (60). Denote

their prices xp,xky by αk. Our goal is to show that αk “ βk. The argument is along the lines of

Eisenberg (1961). Rescale each bundle xk to make its price equal to βk. We obtain a new collection

of bundles x1k “
βk
αk
¨ xk, which also satisfies the aggregate budget constraint xp,

řm
k“1 x1ky ď 1.

By the optimality of xk, the product of utilities
ś

k

`

ukpxkq
˘βk is at least as big as

ś

k

`

ukpx
1
kq
˘βk .

By homogeneity of utilities, this inequality on the products can be rewritten as follows:

1 ď
m
ź

k“1

ˆ

αk
βk

˙βk

.

Taking logarithm, we get an equivalent inequality

0 ď
m
ÿ

k“1

βk ¨ ln
αk
βk
. (61)
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The concavity of the logarithm implies an upper bound on the right-hand side

m
ÿ

k“1

βk ¨ ln
αk
βk
ď ln

˜

ÿ

k

βk ¨
αk
βk

¸

“ ln

˜

ÿ

k

αk

¸

ď lnp1q “ 0. (62)

Inequalities (61) and (62) can only be compatible if they are, in fact, equalities. As the logarithm is

strictly concave, the equality between the first two expressions in (62) implies that the ratio αk
βk

is

a constant independent of k. Since the average value of the logarithms is zero, this constant equals

one. We conclude that αk “ βk.

We proved that xp,xky “ βk, for any optimal collection of bundles xk, k “ 1, . . . ,m, from the

optimization problem (60). In particular, the inequality xp,xky ď βk always holds at the optimum.

Therefore, we can replace the budget constraint of the aggregate consumer xp,
řm
k“1 xky ď 1 with

a stronger requirement of individual budget constraints xp,xky ď βk, k “ 1, . . . ,m, and this

modification will not alter the value:

vaggregatepp, Bq “ max

#

m
ź

k“1

ˆ

ukpxkq

βk

˙βk

: xk P Rn`, xp,xky ď βk, k “ 1, . . . ,m

+

.

The maximization of the product reduces to maximizing each term ukpxkq separately over the

corresponding budget set xp,xky ď βk, which gives the indirect utility of consumer k:

vrpp, Bq “
m
ź

k“1

¨

˝

max
!

ukpxkq : xk P Rn`, p ¨ xk ď βk

)

βk

˛

‚

βk

“

m
ź

k“1

ˆ

vkpp, βkq

βk

˙βk

.

Expressing each indirect utility through expenditure functions via formula (59), we end up with

the following equality: Eaggregateppq “
śm
k“1 pEkppqq

βk . Taking logarithm of both sides, we obtain

identity (58) completing the proof.

C.2 Generalizations and proofs of Theorems 2 and 3

We first prove Theorem 3 and then formulate and prove a general result containing both Theorem 2

and Theorem 3 as particular cases.

Recall that Dcomplete is the completion of a domain D, i.e., the minimal closed domain invariant

with respect to aggregation and containing D. The set of indecomposable preferences in D is

denoted by Dindec and contains all preferences ÁP D that cannot be represented as an aggregation

of two distinct preferences Á1,Á2P D.

For the reader’s convenience, we repeat the statement of Theorem 3.

Theorem. If D is a closed domain such that D “ Dcomplete, then a preference Á belongs to D if

and only if there exists a Borel probability measure µ supported on Dindec such that the expenditure
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function E “ EÁ can be represented as follows

lnEppq “

ż

Dindec

lnEÁ1ppqdµpÁ1q (63)

for any vector of prices p P Rn``.

The requirement that µ is supported on Dindec means that the complement of this set of pref-

erences has µ-measure zero. The topology on preferences and logarithmic expenditure functions is

described in Appendix B. The Borel structure is defined by this topology.

We will need the Choquet theorem formulated below. Consider a (not necessarily convex)

subset X of a linear space. A point x P X is an extreme point of X if it cannot be represented

as αx1 ` p1 ´ αqx2 with α P p0, 1q and distinct x1, x2 P X. All extreme points of X are denoted

by Xextrem.

Theorem (Choquet’s theorem; see Phelps (2001), Section 3). If X is a metrizable compact convex

subset of a locally convex space, then a point x belongs to X if and only if there is a Borel probability

measure µ on X supported on Xextrem such that

x “

ż

Xextrem

x1 dµpx1q. (64)

In our application, X will be a subset of the Banach space of continuous functions with the sup-

norm. A Banach space is a complete separable normed space. Each such space is locally convex

and metrizable via the metric induced by the norm.

The identity (64) is to be understood in the weak sense, i.e., for any continuous linear func-

tional F

F rxs “

ż

Xextrem

F rx1sdµpx1q.

Proof of Theorem 3. A homothetic preference Á is represented by a family of equivalent logarithmic

expenditure functions which differ by a constant. Let L be the be the set of all classes of equivalent

logarithmic expenditure functions corresponding to homothetic preferences. Denote by LD the

subset of L corresponding to the domain D. The set LD is closed and convex. Indeed, convexity

follows from invariance of D by Corollary 3 and closedness of D is inherited by LD as the topologies

on preferences and logarithmic expenditure functions are aligned.

By Lemma 2, the set L admits an affine isometric compact embedding T in the Banach space

C p∆n´1q of continuous functions on the simplex ∆n´1 with the sup-norm. Since LD is a closed

convex subset of L, the embedding T rLDs is a compact convex subset of C p∆n´1q.

Applying the Choquet theorem to X “ T rLDs, we conclude that a logarithmic expenditure

function lnE belongs to LD if and only if there is a measure µ supported on Xextrem such that

x “ T rlnEs is given by the integral of the form (64).
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As there is a natural bijection between D and X, we can assume that µ is a measure on D. By

Theorem 1, a preference Á1 is indecomposable in Dindec if and only if its logarithmic expenditure

function lnEÁ1 cannot be represented as a convex combination of two non-equivalent expenditure

functions from D (Corollary 9). Hence, Á1 belongs to Dindec if and only if T rlnEÁ1s is in Xextrem.

We obtain that Á with an expenditure function E is contained in the completion Dcomplete if and

only if

T rlnEs “

ż

Dindec

T rlnEÁ1sdµpÁ
1q (65)

for some µ supported on Dindec. To get the desired pointwise identity (63), it remains to apply an

appropriate linear functional on both sides.

Let Fp be the functional on C p∆n´1q evaluating a function at some p P ∆n´1. This functional

is continuous and the family of such functionals with p P ∆n´1 X Rn`` separates points, i.e., if

two functions are not equal, there is a functional taking different values on them. Hence, (65) is

equivalent to the following identity

Fp

”

T rlnEs
ı

“

ż

Dindec

Fp

”

T rlnEÁ1s

ı

dµpÁ1q

for all p P ∆n´1 X Rn``. Plugging in the explicit form (56) of the embedding T , we conclude

that ÁP D if and only if its logarithmic expenditure function Á can be represented as follows

lnEppq ´ lnEpeq

p1`maxi | ln pi|q
2 “

ż

Dindec

lnEÁ1ppq ´ lnEÁ1peq

p1`maxi | ln pi|q
2 dµpÁ1q

for all p P ∆n´1 X Rn``. Multiplying both sides by the denominator, we get

lnEppq “ const`

ż

Dindec

lnEÁ1ppqdµpÁ1q (66)

for p P ∆n´1 X Rn``. Since Epα ¨ pq “ α ¨ Eppq, the identity extends to Rn``. As expenditure

functions that differ by a constant correspond to the same preference, the constant in (66) can be

absorbed by lnE. This completes the proof of Theorem 3.

With the help of Theorem 3, we can prove that, without any assumptions on the domain D,

the completion Dcomplete is obtained by continuous aggregation of preferences from Dindec
, i.e.,

of indecomposable preferences from the closure of D. This result extends both Theorem 3 and

Theorem 2.

Theorem 4. For any domain D, a preference Á belongs to its completion Dcomplete if and only if

the expenditure function E of Á admits the following representation

lnEppq “

ż

Dindec
lnEÁ1ppqdµpÁ1q, p P Rn``, (67)

for some Borel probability measure µ supported on Dindec
.
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Theorem 3 corresponds to closed invariant domains D and Theorem 2 is a corollary since Dindec

is a subset of D.

Our proof of Theorem 4 relies on already proved Theorem 3 and on Milman’s converse to the

Krein-Milman theorem. Recall that convrZs denotes the closed convex hull of a set Z.

Proposition 12 (Milman; see Phelps (2001), Proposition 1.5). If X is a compact convex subset of a

locally convex space and X “ convrZs, then extreme points Xextrem are contained in the closure Z.

From the definition of extreme points it is immediate that if Z Ă X, then any extreme point

of X contained in Z is an extreme point of Z. Hence, the conclusion of Proposition 12 can be

strengthened as Xextrem Ă Z
extrem

.

Since the completion corresponds to taking closed convex hull (Corollary 3) and indecomposable

preferences correspond to extreme points, Proposition 12 implies the following corollary.

Corollary 13. For any preference domain D, all indecomposable preferences of its completion are

contained in indecomposable preferences of its closure, i.e., pDcompleteqindec Ă D
indec

.

With this corollary, Theorem 4 follows from Theorem 3 almost immediately.

Proof of Theorem 4. Apply Theorem 3 to the closed invariant domain D1 “ Dcomplete. We get that

Á is in Dcomplete if and only if there is a measure supported pDcompleteqindec such that

lnEppq “

ż

pDcompleteqindec
lnEÁ1ppqdµpÁ1q.

By Corollary 13, pDcompleteqindec Ă D
indec

, which completes the proof.

C.3 Indecomposability in the full domain and proof of Proposition 5

We will need the following simple lemma.

Lemma 3. Consider a function hptq “ tα1 ¨ t
1´α
2 where α P p0, 1q and t P R2

``. If t ‰ const ¨ t1,

then

h
`

λt` p1´ λqt1
˘

ą λhptq ` p1´ λqhpt1q

for any λ P p0, 1q.

Proof. The result follows from strict concavity of gpλq “ h
`

λt` p1´ λqt1
˘

. To demonstrate strict

concavity, it is enough to show that the second derivative g2pλq ă 0. After a linear change of

variable, this requirement boils down to negativity of the second derivative of γαp1 ` γq1´α with

respect to γ. We omit the elementary computation.
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With the help of this lemma, we prove Proposition 5.

Proof of Proposition 5. A utility function u is of the form (40) if and only if the corresponding

expenditure function is also piecewise linear:

E “ min
cPC

˜

n
ÿ

j“1

cjpj

¸

, (68)

where C Ă Rn` is finite or countable. We need to show that preferences with such expenditure

functions are indecomposable. Towards a contradiction, assume that E of the form (68) can be

represented as

lnE “ α lnE1 ` p1´ αq lnE2,

where E1 and E2 are expenditure functions representing distinct homothetic preferences and α P

p0, 1q. Hence, E1 and E2 are not proportional to each other, i.e., the ratio E1{E2 ‰ const. By

continuity of expenditure functions, this means that there is a linearity region of E where E1{E2 ‰

const. Therefore, we can find p,p1 P Rn`` from the same linearity region of E such that

E1ppq

E2ppq
‰
E1pp

1q

E2pp1q
. (69)

By homogeneity of expenditure functions, we can assume that p and p1 are normalized so that

Eppq “ Epp1q “ 1. Since p and p1 belong to the same linearity region, the value of E at the

mid-point p2 “ pp` p1q{2 is also equal to 1. Therefore,

1 “ E
`

p2
˘

“ E1pp
2qαE2pp

2q1´α ě

ˆ

1

2
E1ppq `

1

2
E1pp

1q

˙αˆ
1

2
E2ppq `

1

2
E2pp

1q

˙1´α

,

where we used concavity of E1 and E2. By Lemma 3, the right-hand side admits the following

lower bound

ˆ

1

2
E1ppq `

1

2
E1pp

1q

˙αˆ
1

2
E2ppq `

1

2
E2pp

1q

˙1´α

ą
1

2
E1ppq

αE2ppq
1´α `

1

2
E1pp

1qαE2pp
1q1´α.

The right-hand side can be rewritten as

1

2
E1ppq

αE2ppq
1´α `

1

2
E1pp

1qαE2pp
1q1´α “

1

2
Eppq `

1

2
Epp1q “ 1.

We end up with a contradictory inequality 1 ą 1. Therefore, E cannot be represented as a convex

combination (69) and we conclude that the corresponding preference is indecomposable.

Let us explore whether there are other indecomposable preferences in the full domain. For

simplicity, we focus on the case of n “ 2 goods. As opposed to preferences with piecewise linear u
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and E considered in Proposition 5, we examine preferences with expenditure functions E that is

strictly concave in a neighborhood of a certain point.

We say that a function of one variable h “ hptq is strictly concave in the neighborhood of t “ t0

if there is ε ą 0 and δ ą 0 such that the second derivative of h2ptq ă ´δ for almost all t in the

ε-neighborhood rt0 ´ ε, t0 ` εs of t0. We note that the second derivative exists almost everywhere

for any concave function by Alexandrov’s theorem.

Proposition 13. Consider a preference Á over two goods with expenditure function E. If there is

a point p0 P R2
`` and a direction r P R2zt0u such that gptq “ Epp0` t ¨ rq is strictly concave in the

neighborhood of t “ 0, then Á is not indecomposable.

Proof. Since Epα ¨pq “ α ¨Eppq, the values of the expenditure function on the line p2 “ 1 determine

its values everywhere by Epp1, p2q “ p2 ¨Epp1{p2, 1q. Accordingly, the condition from the statement

is equivalent to the existence of t0 such that gptq “ Ept, 1q is strictly concave in the neighborhood

of t0.

Let us show that if gptq “ Ept, 1q is strictly concave in the neighborhood of t0, then the preference

Á is an aggregation of some distinct Á1 and Á2. By strict concavity g2 ă ´δ on rt0 ´ ε, t0 ` εs

for some ε, δ ą 0. Let ϕpzq be a smooth function function on R not equal to zero identically and

vanishing outside of the interval r´1, 1s together with all its derivatives. For example, one can take

ϕpzq “ exp

ˆ

´
1

1´ z2

˙

for z P p´1, 1q and zero outside. Define

g1ptq ”
`

1` γ ¨ ϕ
`

εpt´ t0q
˘˘

gptq and g2ptq ”
1

1` γ ¨ ϕ
`

εpt´ t0q
˘gptq

fo some constant γ ą 0. Note that g1 “ g2 “ g outside the ε-neighborhood of t0. The second

derivatives of g1 and g2 continuously depends on γ and, for γ “ 0, the derivatives are bounded from

above by ´δ in the ε-neighborhood of t0. Hence, for small enough γ ą 0, the second derivative is

non-positive, i.e., both g1 and g2 are concave.

Define E1ppq “ p2 ¨ g1pp1{p2q and E2ppq “ p2 ¨ g2pp1{p2q. These are non-negative homogeneous

concave functions that are not proportional to each other. Hence, E1 and E2 are expenditure

functions of some distinct preferences Á1 and Á2. By the construction,

lnE “
1

2
lnE1 `

1

2
lnE2

and thus Á is the aggregate preference for a pair of consumers with preferences Á1 and Á2 and

equal incomes.
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It may seem that Propositions 5 and 13 cover all possible preferences in the case of two goods:

intuitively, an expenditure function E is either piecewise linear or there is a point in the neighbor-

hood of which E is strictly concave. However, there are pathological examples not captured by the

two propositions.

Any concave function f on R` can be represented as

fptq “ fp0q ´

ż t

0

ˆ
ż s

0

dνpqq

˙

ds

for some positive measure ν on R`. This ν is uniquely defined distributional second derivative

of f . Abusing the notation, we will write ν “ f2. Note that the classic pointwise second derivative

(where exists) equals the density of the absolutely continuous component of ν.

Propositions 5 and 13 address the cases where the second derivative of Ept, 1q is either an atomic

measure with nowhere dense set of atoms or has an absolutely continuous component with a strictly

negative density on a certain small interval.

Recall that ν is called singular if there is a set of zero Lebesgue measure such that its complement

has ν-measure zero. For example, atomic measures with discrete set of atoms are singular, but there

are other singular measures such as non-atomic measures supported on a Cantor set or atomic

measures with everywhere dense set of atoms.

Proposition 14. If Á is a preference over two goods with an expenditure function E such that the

second distributional derivative of gptq “ Ept, 1q is singular, then Á is indecomposable in the full

domain.

We see that the set of indecomposable preferences is broader than suggested by Proposition 5.

Note that, in the particular case of two goods, Proposition 5 is a direct corollary of Proposition 14.

Proof. It is enough to show that if Á is an aggregation of two distinct preferences Á1 and Á2, then

the second distributional derivative of g has a non-zero absolutely continuous component. In other

words, we need to show that the classic derivative g2 ‰ 0 on a set of positive Lebesgue measure.

Let E1 and E2 be expenditure functions of Á1 and Á2. Since the preferences are distinct,

E1 ‰ const ¨ E2. By the assumption, E “ Eα1 ¨ E
1´α
2 with some α P p0, 1q. Without loss of

generality, we can assume that α “ 1{2. Indeed, if α ‰ 1
2 , one can define new expenditure functions

E11 “ Eα´ε1 ¨ E1´α`ε
2 and E12 “ Eα`ε1 ¨ E1´α´ε

2 for some ε ă mintα, 1´ αu so that E “
a

E11 ¨ E
1
2.

Hence, g “
?
g1 ¨ g2 where g1ptq “ E1pt, 1q and g2ptq “ E2pt, 1q are non-negative concave

functions not proportional to each other. Computing the classic second derivative of g, we obtain

g2 “
g21 ¨ g2 ` g

2
2 ¨ g1

2
?
g1 ¨ g2

´

`

g11 ¨ g2 ´ g
1
2 ¨ g1

˘2

4pg1 ¨ g2q
3{2

.
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Both terms are non-positive. The numerator in the second term can be rewritten as follows

`

g11 ¨ g2 ´ g
1
2 ¨ g1

˘2
“

˜

pg2q
2 ¨

ˆ

g1

g2

˙1
¸2

Since the ratio g1{g2 is non-constant, its derivative pg1{g2q
1 is non-zero on a set of positive measure.

Thus the distributional derivative g2 contains a non-zero absolutely continuous component. We

conclude that preferences such that g2 has no absolutely continuous component are indecomposable.

The approach from Proposition 14 extends to n ą 2 goods. It can be used to show that if the

distributional second derivative of

gptq “ Epp1, . . . , pi´1, t, pi`1, . . . , pnq

is singular for any i “ 1, . . . , n and any fixed

p´i “ pp1, . . . , pi´1, pi`1, . . . , pnq P Rn´1
`` ,

then the corresponding preference is indecomposable. This result extends Proposition 5.

C.4 Proof of Proposition 7

Proof. Consider a Leontief preference Á over Cobb-Douglas composite goods. It corresponds to a

utility function

upxq “ min
aPA

#

a0 ¨

n
ź

i“1

xaii

+

,

where A is finite or countably infinite subset of R`` ˆ ∆n´1. Assume that Á is non-trivial, i.e.,

there are a,a1 P A such that pa1, . . . , anq ‰ pa
1
1, . . . , a

1
nq. Intersection of convex sets corresponds

to convexification of the maximum of their support functions (Aliprantis and Border, 2013, Theo-

rem 7.56). Since expenditure functions are support functions of upper contour sets up to a sign,

the expenditure function corresponding to Á takes the following form

Eppq “ cav

«

max
aPA

#

1

a0
¨

n
ź

i“1

paii

+ff

,

where cav denotes concavification.

Let us focus on the case of n “ 2 goods. In this case, E has a particularly simple structure.

The positive orthant R2
`` is partitioned into a finite or countably infinite number of cones of two

types: (I) cones where E is linear (II) cones where E coincides with the Cobb-Douglas expenditure

function 1{a0 ¨
śn
i“1 p

ai
i for some a P A. The cones of type (I) and (II) interlace and derivatives
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of E change continuously. Note that there must be at least one cone of type (I) as otherwise E

would be an expenditure function of standard Cobb-Douglas preferences, which is ruled out by the

non-triviality assumption.

Let us show that such a preference Á over two goods is indecomposable. Towards a contradiction,

assume that

lnE “ α ¨ lnE1 ` p1´ αq lnE2, α P p0, 1q, (70)

where and E1 and E2 corresponds to two distinct preferences Á1 and Á2 exhibiting complementarity.

As in the proof of Proposition 5, one shows that in each linearity region of E, the expenditure

functions E1 and E2 are proportional to each other. In other words, E1 “ const ¨ E2 in each cone

of type (I), where the constant can depend on the cone.

Recall that by (4), the partial derivative of a logarithmic expenditure function with respect to

ln pi is the expenditure shares of good i. Denote the expenditure shares for Á, Á1, and Á2 by si,

s1,i, and s2,i, respectively. Since E1 and E2 are proportional in cones of type (I), we obtain that

si “ s1,i “ s2,i there.

Consider cones of type (II). In these cones, si is constant since expenditure shares are constant

for Cobb-Douglas preferences. Taking the partial derivative on both sides of (70), we get

sipp1, p2q “ α ¨ s1,ipp1, p2q ` p1´ αqs2,ipp1, p2q.

The expenditure shares depend only on the ratio of prices. By complementarity, s1,i and s2,i must

be non-increasing functions of the ratio p3´i{pi. Note that if si is constant and one of s1,i or s2,i

increases, the other must decrease violating the monotonicity requirement. Hence, in all the cones

of type (II), si, s1,i and s2,i are constant. These constants must be all equal. Indeed, suppose that

si “ c, s1,i “ c1 and s2,i “ c2 in some cone of type (II) with c1 ‰ c2. Since si is continuous and

coincides with s1,i and s2,i in the neighboring cone of type (I), s1,i and s2,i are discontinuous on

the boundary between the two cones and at least one of these discontinuities necessarily violates

the monotonicity requirement. Thus in cones of type (II), si “ s1,i “ s2,i.

We conclude that si “ s1,i “ s2,i everywhere, i.e., partial derivatives of lnE, lnE1, and lnE2

coincide. Hence, lnE1 “ lnE2`const, i.e., E1 and E2 are proportional. Thus Á1“Á2 contradicting

the assumption that the two preferences are distinct. We conclude that, for n “ 2, any non-trivial

Leontief preference over Cobb-Douglas composite goods is indecomposable.

C.5 Proof of Proposition 10

The proof relies on the following lemma showing that if preferences in two populations have expen-

diture shares that are close, then ε-equilibrium price vectors are close as well.
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Lemma 4. Consider two populations of m consumers with the same budgets b1, . . . , bm but different

preferences over n goods: Á1, . . . ,Ám in the first population and Á11, . . . ,Á
1
m in the second one.

Assume that the expenditure shares sk,ippq and s1k,ippq differ by at most some δ ą 0 for any

consumer k, good i, and price p. Then any ε-equilibrium price vector for one population is an

pε` nδq-equilibrium price vector for the other.

Proof of Lemma 4. The demand of an agent k for a good i can be expressed through expenditure

shares as follows:

Dk,ipp, bkq “ sk,ippq ¨
bk
pi
. (71)

Let x1` . . .`xm and x11` . . .`x1m be market demands of the two populations from the statement

of the lemma at some vector of prices p. By (71) and the assumption that expenditure shares differ

by at most δ,

n
ÿ

i“1

pi ¨

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

k“1

xk,i ´
m
ÿ

k“1

x1k,i

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

i“1

m
ÿ

k“1

bk ¨max
i,k

ˇ

ˇsk,ippq ´ s
1
k,ippq

ˇ

ˇ ď n ¨B ¨ δ.

Hence, if p is an ε-equilibrium price vector for Á11, . . . ,Á
1
m, it is an pε`nδq-equilibrium price vector

for Á1, . . . ,Ám.

To prove the proposition, it remains to show that any preference Á over two substitutes can

be approximated by the aggregate preference Á1“Áaggregate of an auxiliary population with linear

preferences so that the expenditure shares differ by at most ε at any vector of prices and the number

of auxiliary agents is of the order of 1{ε.

Proof of Proposition 10. Since sÁ,1`sÁ,2 “ 1 and expenditure shares depend on the ratio of prices

only, it is enough to ensure that
ˇ

ˇsÁ,1pp1, 1q´saggregate,1pp1, 1q
ˇ

ˇ ď ε for any p1 P R``. As Á exhibits

substitutability, sÁ,1p ¨ , 1q is a non-increasing function with values in r0, 1s. For any such function

f , there is a piecewise-constant function fε with at most 1{ε` 1 jumps such that the two functions

differ by at most ε; indeed, one can take fε “ ε ¨ rf{εs, where rts denotes the integer part of a

real number t. By Corollary 6, any piecewise-constant non-decreasing function with values in r0, 1s

is equal to saggregate,1p ¨ , 1q for a population of linear consumers with the number of consumers

equal to the number of jumps, marginal rates of substitution given by positions of the jumps, and

budgets determined by jumps’ magnitude. We conclude that 1{ε` 1 linear consumers are enough

to approximate expenditure shares of any preference exhibiting substitutability with precision ε.

Combined with Lemma 4, this observation completes the proof.

Note that constructing the approximation in a computationally efficient way requires solving

the equation sÁ,1pp1, 1q “ ε ¨ l multiple times for various Á and l. Provided that there is an oracle

computing expenditure shares, one can use binary search for this task.
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C.6 Characterization of expenditure shares for two goods

For a preference Á over n “ 2 goods, consider the expenditure shares s1ppq and s2ppq of these

goods. We explore what functions one can get as expenditure shares. Since s1 ` s2 “ 1, we can

focus on the expenditure share s1 of the first good. As s1pα ¨pq “ s1ppq, the expenditure share can

be seen as a function of one variable z “ p1{p2. Our goal is to characterize functions h “ hpzq such

that h “ s1 for some homothetic preference Á.

Lemma 5. A function h : R`` Ñ R is the expenditure share of the first good associated with some

homothetic preference Á over two goods (i.e., hpp1{p2q “ s1ppq, p P R2
``) if and only if

hpzq “
z

z `Qpzq
, (72)

where Q : R`` Ñ R` Y t`8u is a non-negative non-decreasing function.

Leontief and linear preferences correspond to the two extreme cases: a constant Q “ const and

an infinite step function

Q “

$

&

%

0, z ď α

`8 z ą α
,

respectively.

Note that for any non-increasing function h with values in r0, 1s, the function

Qpzq “
1

hpzq
´ 1

satisfies the requirement of Lemma 5.

Corollary 14. Any non-increasing function h with values in r0, 1s is the expenditure share of the

first good for some preference Á exhibiting substitutability among the two goods.

Proof of Lemma 5. Consider a homothetic preference Á for n “ 2 goods. The expenditure share

s1ppq of the first good satisfies s1pα ¨ pq “ α ¨ sppq and, hence, s1ppq “ s1pz, 1q, where z “ p1{p2.

Let us show that, for any Á, the function hpzq “ s1pz, 1q admits the representation (72). In

other words, we need to show that

Qpzq “
z

s1pz, 1q
´ z

is non-negative and non-decreasing. Expressing the expenditure share through the logarithmic

expenditure function by (4) and denoting πpzq “ Epz, 1q, we get

Qpzq “
πpzq

π1pzq
´ z. (73)
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Note that π is a non-negative non-decreasing concave function of z. Hence, Q is non-negative as

well. To show that Q is non-decreasing, let us differentiate both sides of (73). We get

Q1pzq “ ´
πpzq

pπ1pzqq2
¨ π2pzq. (74)

We see that Q1 ě 0 and so Q is non-decreasing.25 We conclude that h “ s1pz, 1q admits the

representation (72).

To prove the converse, consider h of the form (72) with non-negative non-decreasing Q and

construct the corresponding preference. The identity (73) suggests how to define the expenditure

function. We get
π1pzq

πpzq
“

1

z `Qpzq
,

where πpzq “ Epz, 1q. Integrating this identity, we obtain

πpzq “ exp

ˆ
ż z

1

1

w `Qpwq
dw

˙

.

By the construction, π is non-negative and non-decreasing. Since the identity (74) is hardwired

in the definition of π and the function Q is non-decreasing, we conclude that π2 is non-positive.

Hence, π is concave. Define E by

Epp1, p2q “ p2 ¨ πpp1{p2q.

This function is homogeneous, non-negative, non-decreasing, and concave. Thus E is an expendi-

ture function corresponding to some homothetic preference. By the construction, s1pz, 1q “ hpzq

completing the proof.

25If π1 is not differentiable, the identity (74) is to be understood in the sense of distributional derivatives: π2 is a

non-negative measure, and the right-hand side is a measure having density ´πpzq{pπ1pzqq2 with respect to π2.

65


	Introduction
	Related literature

	Preliminaries
	Preference aggregation
	Connection to the geometric mean of convex sets

	Invariant domains
	ARUM and completion of linear preferences
	Complete monotonicity and the completion of Leontief preferences

	Indecomposable preferences
	Indecomposability in the full domain
	The domain of substitutes and the simplex property
	The domain of complements

	Applications
	Preference identification and simplex domains
	Robust welfare analysis via information design
	Fisher markets, fair division, complexity, and bidding languages

	Convex analysis basics
	Topology on preferences and integration
	Proofs
	Proof of Theorem 1
	Generalizations and proofs of Theorems 2 and 3
	Indecomposability in the full domain and proof of Proposition 5
	Proof of Proposition 7
	Proof of Proposition 10
	Characterization of expenditure shares for two goods


