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Abstract

A principal hires an agent to work on a long-term project that cul-
minates in a breakthrough or a breakdown. At each time, the agent
privately chooses to work or shirk. Working increases the arrival rate of
breakthroughs and decreases the arrival rate of breakdowns. To moti-
vate the agent to work, the principal conducts costly inspections. She
fires the agent if shirking is detected. We characterize the principal’s
optimal inspection policy. Periodic inspections are optimal if work pri-
marily speeds up breakthroughs. Random inspections are optimal if
work primarily delays breakdowns. Crucially, the agent’s actions deter-
mine his risk attitude over the timing of punishments.
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1 Introduction

Inspections are frequently conducted to reveal information about agents’ other-
wise unobserved actions. Venture capital investors conduct financial audits to
ensure that entrepreneurs do not divert funds for private gain. Research grants
are extended only after researchers pass intermediate reviews. Workers oper-
ating expensive machinery or risky technology undergo checks to ensure their
compliance with safety regulations. Financial institutions are stress-tested to
confirm that they employ proper risk management.1

Some inspections occur at pre-announced times; others are surprises. In
this paper, we study the optimal timing of costly inspections in a dynamic
moral hazard setting. We show how the productive role of the inspected agent
determines whether predictable or random inspections are optimal. If the
agent’s main task is achieving a breakthrough—think of an entrepreneur in-
vesting in an innovative industry—then predictable inspections are optimal.2

If the main task is avoiding a breakdown—think of a financial institution man-
aging its risk in order to avoid default—then random inspections are optimal.

We analyze the following continuous-time model. A principal hires an agent
to work on a long-term project that culminates in a successful breakthrough
or a catastrophic breakdown. The principal commits to the timing of costly
inspections. At each time, the agent privately works or shirks.3 Work increases
the arrival rate of breakthroughs and decreases the arrival rate of breakdowns.
Each inspection yields a binary result—pass or fail—that (partially) reveals
the agent’s past actions, as described in detail below. If the agent fails an
inspection, the principal terminates the project. We solve for the cheapest
inspection policy that induces the agent to work until the project ends.

1Almost all economic activity involves inspections in some form, conducted either within
organizations or by external auditors. In 2017, the four accounting firms Deloitte, EY,
KPMG, and PwC earned over 47 billion dollars from auditing alone (The Economist, 2018).

2It is common for venture capitalists to disburse funds in stages after checking, at pre-
announced dates, that the entrepreneur has invested previous funds appropriately; see Gom-
pers and Lerner (2004, p. 5).

3In some applications, shirking represents an unproductive (even fraudulent) activity,
such as diverting funds.
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First, we derive the optimal policy in the special case of perfect inspections.
That is, each inspection perfectly reveals whether the agent has previously
shirked.

The form of the optimal inspection policy is driven by the agent’s endoge-
nous risk attitude over the timing of rewards and punishments. Planned in-
spections are carried out only if the project has not yet ended in a breakthrough
or breakdown. When the agent considers the impact of future inspections,
his effective discount factor reflects the probability that the inspection time
is reached before the project ends. This probability depends on the agent’s
planned actions. The agent’s effective discount factor is more convex if he
expects the project to end sooner, making him effectively more impatient.4

If the agent’s main task is achieving a breakthrough—work speeds up
breakthroughs by more than it delays breakdowns—then it is optimal to in-
spect periodically. That is, the time between consecutive inspections is con-
stant (Theorem 1). Shirking prolongs the project by reducing breakthroughs.
If the agent deviates and shirks, then he is effectively more patient, making his
effective discount factor as a function of time less convex than the principal’s.
Among inspection policies that are equally costly for the principal on-path, for
the agent planning to shirk, the expected loss from termination after a failed
inspection is greatest when inspections are periodic.

Conversely, if the agent’s main task is avoiding a breakdown—work de-
lays breakdowns by more than it speeds up breakthroughs—then it is optimal
to conduct inspections randomly. Under the optimal policy, inspections are
conducted with a constant hazard rate (Theorem 2). Shirking shortens the
project by generating breakdowns. If the agent deviates and shirks, then he is
effectively more impatient, making his effective discount factor as a function
of time more convex than the principal’s. Among inspection policies that are
equally costly for the principal on-path, the agent’s loss from shirking is great-
est if inspections are random. In both cases, the ratio between the cost of the

4See DeJarnette et al. (2020) for an axiomatic analysis of the connection between im-
patience and risk-preferences over time-lotteries. To be sure, our results are not driven by
primitive time preferences, but by effective time preferences determined endogenously by
the agent’s actions.
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best periodic policy and the best random policy can be arbitrarily large.
Next, we derive the optimal inspection policy in the general case of im-

perfect inspections. In this case, shirking by the agent does not always leave
behind a paper trail. The longer the agent shirks, the more likely he is to fail
an inspection. But if the agent recently passed an inspection, then another
inspection soon after is unlikely to give a different result. Thus, there is a new
force toward spacing out inspections.

If the agent’s main task is achieving a breakthrough, then periodic in-
spections are still optimal if inspections are imperfect (Theorem 3). Indeed,
periodic inspections are already spaced out.

Conversely, if the agent’s main task is avoiding a breakdown, then a memo-
ryless inspection policy is no longer optimal if inspections are imperfect. Such
a policy conducts inspections in quick succession with positive probability,
which is now wasteful. Theorem 4 characterizes the optimal timing of im-
perfect inspections in this case. If the inspection technology is sufficiently
imprecise, then the optimal inspection policy is periodic. The force towards
spacing out inspections dominates. If the inspection technology is sufficiently
precise, then the optimal policy leverages the benefits of randomization while
also spacing out inspections. After each inspection, there is a fixed period
during which no inspections are conducted. The next inspection is conducted
with positive probability exactly at the end of this period. If the agent is
not inspected at this point, then the next inspection arrives with a constant
hazard rate thereafter. Once the inspection is conducted, the cycle repeats,
beginning with the period of no inspection.

The rest of the paper is organized as follows. Section 1.1 discusses related
literature. Section 2 presents the model. Section 3 studies the agent’s behavior
without inspections. Section 4 formulates the principal’s problem recursively.
Next, we solve for the optimal inspection policy with perfect inspections in
Section 5 and with imperfect inspections in Section 6. Section 7 amends the
inspection technology to allow the agent to recover from past shirking. The
conclusion is in Section 8. The main proofs are in Appendix A. Additional
results and proofs are in Appendix B.
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1.1 Related literature

The inspection technology that we study is backward-looking—the probability
that the agent passes an inspection depends on his past actions. Lazear (2006)
studies the optimal allocation of monitoring resources, but the monitoring
technology in his model reveals only the agent’s current action.5 In that
model, the agent faces a binary action choice. The agent is punished if he is
monitored while he is taking the bad action. The cheapest way for the principal
to induce the agent to follow a given action path is to uniformly randomize
monitoring activity over the times at which the good action is induced.

Varas et al. (2020) study the timing of regulatory inspections in a model
of firm reputation. Their inspection technology takes the specific form intro-
duced in Board and Meyer-ter-Vehn (2013).6 These inspections are backward-
looking, but they have the special property that the agent’s incentives at each
time are independent of his past actions. As a result, it is sufficient to con-
sider local incentive constraints. Conducting inspections at a constant hazard
rate is the cheapest way for the principal to motivate the agent to always
take the desired action.7 In Varas et al. (2020), there are no breakthroughs or
breakdowns, and the project lasts forever.

We consider a richer inspection technology in which the agent’s past ac-
tions affect his preferences over future actions. This can capture, for example,
that an employee who has shirked has a weaker incentive to continue working
if he expects that his past shirking will be discovered at the next inspection.
To solve for the optimal inspection policy in our model, we explicitly consider

5Most subsequent work on dynamic contracts analyzes monitoring of current actions;
see Antinolfi and Carli (2015); Piskorski and Westerfield (2016); Chen et al. (2020); Li
and Yang (2020); Dai et al. (2022); Rodivilov (2022); Wong (2022). In Halac and Prat
(2016) and Dilmé and Garrett (2019), the principal’s investment has a persistent effect on
her monitoring capabilities, but monitoring still reveals information about current actions
only. In dynamic adverse selection problems, see Chang (1990); Monnet and Quintin (2005);
Wang (2005); Popov (2016); Malenko (2019) for monitoring of a state that is distributed
independently across periods, and Ravikumar and Zhang (2012); Kim (2015) for inspection
of a serially correlated state.

6The same inspection technology is used in Wagner and Knoepfle (2021).
7Varas et al. (2020) also consider the case in which the principal directly values informa-

tion acquisition. They show that this creates a force toward periodic inspections.
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dynamic, global deviations by the agent. Without breakthroughs and break-
downs, the optimal policy in our setting is generally periodic, in contrast to
previous work.

We contribute to the dynamic contracting literature by identifying which
kinds of tasks (breakthrough-enhancing v. breakdown-reducing) are best in-
centivized through predictable or random inspections. A number of papers
study the dynamic incentives of agents working toward breakthroughs: Berge-
mann and Hege (1998, 2005); Hörner and Samuelson (2013); Green and Taylor
(2016); Halac et al. (2016).8 A robust finding is that the principal benefits
from committing to a deterministic deadline. With breakthroughs, shirking
prolongs the relationship. This is less valuable when there is a deadline. Sim-
ilar to inspections in our setting, the reduction in shirking payoff is greatest
when the deadline is deterministic because the agent’s effective discount factor
when he shirks is less convex than the principal’s on-path discount factor. In
Green and Taylor (2016), the agent has to complete two breakthroughs, and
the second deadline is deterministic as above. The deadline for the first break-
through, however, is random to optimally incentivize the agent to immediately
report a breakthrough, which is privately observed by the agent. In our model,
breakthroughs and breakdowns are public.

Finally, an important force in our paper is the relationship between time-
and risk-preferences. Ortoleva et al. (2022) exploit this relationship in an
adverse selection problem. In their model, the agent’s discount rate is private
information. They show how the agent’s induced risk preferences can be used
to screen the agent in an allocation problem. In our moral hazard setting, the
agent’s hidden actions determine the agent’s effective risk preferences.

8For an analysis of incentives in the presence of breakdowns, without inspections, see
Keller and Rady (2015); Bonatti and Hörner (2017); Hörner et al. (2021); Wagner and
Klein (2022).
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2 Model

2.1 Setting

Environment Time is continuous and the horizon is infinite. There are two
players: a principal (she) and an agent (he). The principal hires the agent to
work on a project. During the project, the agent privately chooses at each time
t in [0,∞) whether to work (at = 1) or shirk (at = 0). The principal commits
to the timing of costly inspections. Each inspection reveals information about
the agent’s past actions, as described below.

The project culminates in a public breakthrough or a public breakdown,
which arrive independently at Poisson rates

atλG and (1− at)λB,

where λG and λB are nonnegative parameters. The subscripts abbreviate good
(for breakthroughs) and bad (for breakdowns). The principal can terminate the
project at any time prior to a breakthrough or a breakdown. The game ends
once the project ends in a breakthrough, in a breakdown, or by termination.

Inspection technology There is an evolving detectability state θt ∈ {0, 1}
that is hidden to both players. This state is publicly revealed when the prin-
cipal conducts an inspection. Initially, θ0 = 0. While the state equals 0,
transitions to state 1 occur at Poisson rate δ(1− at), independently of break-
throughs and breakdowns. State 1 is absorbing. One interpretation is that
the state θt indicates whether the agent’s past shirking left behind evidence.
Such evidence is uncovered only at an inspection. Since state 1 is absorbing,
evidence does not disappear.9 The detectability parameter δ measures the rate
at which evidence is left behind when the agent shirks.

Each inspection has two possible results. Say that the agent passes (resp.
fails) an inspection if the state is revealed to be 0 (resp. 1). If the agent
follows an action path a = (at)t≥0, then it is straightforward to compute the

9In Section 7 we allow for transitions from state 1 to state 0.
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probability pt(a) that he passes an inspection conducted at time t:

pt(a) = exp

{
−δ
∫ t

0

(1− as) ds

}
.

The passage probability is a decreasing, convex function of the duration of
shirking prior to time t. If the agent fails an inspection, then he will neces-
sarily fail all subsequent inspections since state 1 is absorbing. The agent’s
conditional probability of passing an inspection at time t, given that he passed
an inspection at an earlier time t′, is

pt(a)

pt′(a)
= exp

{
−δ
∫ t

t′
(1− as) ds

}
.

This conditional probability depends only on the duration of shirking between
times t′ and t.

Payoffs The principal and the agent both discount future payoffs using the
exponential discount factor e−rt, where r > 0. While the project continues,
the agent’s flow utility, as a function of his action at in {0, 1}, is given by

u(at) = (1− at)u0 + atu1,

where u0, u1 > 0. When the project ends, the agent gets his outside option
payoff, which is normalized to 0. The agent does not receive a lump sum utility
from a breakthrough or a breakdown. This assumption is without loss because
lump sum payoffs from breakthroughs and breakdowns can be annuitized into
the agent’s flow payoffs; see Section 2.3 for details.

At each time the principal inspects the agent, she pays a lump sum cost,
normalized to 1. The setting is described by six parameters: λG, λB, δ, r, u0, u1.
We study the principal’s cost-minimization problem: What is the cheapest
inspection policy that induces the agent to work on the project at all times
until achieving a breakthrough?
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2.2 Principal’s problem

The principal commits to a dynamic, stochastic inspection policy. Formally,
an inspection policy is a collection T = (Tn)∞n=1 of random variables satisfying
0 < T1 < T2 < · · · . The n-th inspection is conducted at (random) time Tn if
the project has not already ended.

Technically, the principal also commits to the timing of project termination,
but the optimal termination policy is clear. In order to induce work until a
breakthrough, the principal cannot terminate the project on-path. In the off-
path event that the agent fails an inspection, it is optimal for the principal to
immediately terminate the project, imposing the maximal punishment on the
agent. Below, we consider the inspection policy only, with the understanding
that each inspection policy is combined with the optimal termination policy.

Given an inspection policy T, the agent chooses an action process A =

(At)t≥0 with right-continuous paths that is adapted to T.10 That is, the agent
takes action At at time t, provided that the project has not yet ended. The
principal chooses an inspection policy T to minimize the expected inspection
cost, subject to the constraint that it is a best response for the agent to work
until a breakthrough, i.e., to choose At = 1 for all t. Denote this action process
by A = 1.

To state the problem formally, define the effective discount factor

Dt(A) = exp

{
−rt− λG

∫ t

0

As ds− λB
∫ t

0

(1− As) ds

}
. (1)

This discount factor is the product of the standard exponential discount factor
e−rt and the conditional probability that the project has not yet ended in a
breakthrough or a breakdown by time t, given (As)0≤s≤t. To simplify notation,
set T0 = 0. Given an inspection policy T, the agent’s expected payoff from an

10Formally, A is adapted to the natural filtration generated by the counting process Nt =
#{n : Tn ≤ t} associated with T.
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action process A adapted to T is given by

U(A,T) = E

[
∞∑
n=1

pTn−1(A)

∫ Tn

Tn−1

Dt(A)u(At) dt

]
.

The expectation is over the inspection policy T and the action process A. For
each realization of (A,T), the expression inside brackets sums the agent’s con-
ditional expected utility over each inter-inspection interval. This expectation
is over the random inspection results and the random arrivals of breakthroughs
and breakdowns. In each term of the summation, we used conditional inde-
pendence to factor the expectation into the product of the passage probability
and the effective discount factor.

The principal chooses an inspection policy T to minimize the expected
discounted inspection cost

E

[
∞∑
n=1

pTn−1(1)DTn(1)

]
= E

[
∞∑
n=1

e−(λG+r)Tn

]
,

subject to the constraint that U(1,T) ≥ U(A,T) for all actions processes A
adapted to the inspection policy T.

2.3 Microfoundations for the agent’s payoffs

For simplicity, we refer to the agent’s actions as work and shirk, but our model
can capture various applications with different microfoundations for the flow
payoffs u0 and u1. Here are two examples.

• Employment contracts. Suppose the agent is a worker who receives flow
wage w while employed, pays flow effort cost c if he works (at = 1),
and gets a lump sum reward R for achieving a breakthrough. This is
captured by our setting (without lump sum payoffs) by defining

u0 = w, u1 = w − c+ λGR.

• Investment funding. Suppose the agent is an entrepreneur who runs a
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startup that is funded by an investor at flow rate ϕ. At each time t,
the entrepreneur can invest the funds (at = 1) or divert them for private
benefit (at = 0). The entrepreneur receives a lump sum reward R for
a breakthrough and pays a lump sum cost C for a breakdown. This is
captured by our setting (without lump sum payoffs) by defining

u0 = ϕ− λBC, u1 = λGR.

Our model assumes that breakthroughs arrive only when the agent is work-
ing, and breakdowns arrive only when the agent is shirking. This assumption
is without loss. If the breakthrough and breakdown rates were instead

¯
λG + λGat and

¯
λB + λB(1− at),

then we could incorporate the baseline arrival rates into the discount rate by
defining r′ = r +

¯
λG +

¯
λB.11 Thus, λG and λB represent the sensitivity of

breakthroughs and breakdowns to the agent’s actions.

3 Warm-up: No inspections

If the principal does not conduct inspections, then the agent’s expected payoff
from an action process A is

E
[∫ ∞

0

Dt(A)u(At) dt

]
. (2)

Working forever and shirking forever respectively yield expected payoffs

U1 :=
u1

λG + r
, U0 :=

u0

λB + r
.

Without inspections, the agent’s problem is stationary. His best response is
also stationary—either working forever or shirking forever is optimal.

11If breakthroughs and breakdowns yielded lump sum rewards and costs as above, then
we would add

¯
λGR−

¯
λBC to both flow utilities.
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Lemma 1 (No inspections)
Without inspections, working forever is a best response for the agent if and
only if U1 ≥ U0.

Myopically, the agent compares the flow payoffs of working and shirking.
He prefers to work if u1 ≥ u0. Dynamically, the agent considers the effect of
his actions on the probability that the project continues. If λG = λB, then
the agent’s actions do not affect the expected length of the project, so the
dynamic and myopic conditions coincide. If λG > λB, then working shortens
the project because earlier breakthroughs outweigh later breakdowns. In this
case, the dynamic constraint is more demanding than the myopic constraint.12

Conversely, if λG < λB, then working lengthens the project because earlier
breakthroughs are outweighed by later breakdowns. In this case, the dynamic
constraint is less demanding than the myopic constraint.

To rule out uninteresting cases, we make the following standing assumption.

Assumption 1. U0 > U1.

In view of Lemma 1, Assumption 1 ensures that inspections are necessary
to induce the agent to work.

4 Recursive formulation

We analyze the principal’s problem recursively. Consider the principal’s con-
tinuation problem after an inspection at time t. If the agent fails the inspec-
tion, i.e., θt = 1, then the continuation problem is trivial—terminating the
project is optimal. If the agent passes the inspection, i.e., θt = 0, then the
time-t continuation problem is identical to the time-0 problem.13

In the recursive formulation, after each passed inspection, the principal
chooses the random time T until the next inspection, and the agent chooses

12This comparison between the dynamic and myopic constraint is for fixed flow payoffs
u0 and u1. If these flow payoffs are microfounded by lump sum payments following a
breakthrough or a breakdown, then it is natural to adjust u0 and u1 as λG and λB change.

13Therefore, the principal would use the same dynamic policy if she could commit only
to the timing of the next inspection (and the associated termination decision).
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the action path that he will follow until the next inspection. The principal’s
minimal cost, denoted K∗, satisfies the Bellman equation

K∗ = inf
T

E
[
e−(λG+r)T (1 +K∗)

]
, (3)

where the infimum is taken over all random times T for which the value V = U1

satisfies the agent’s Bellman equation

V = sup
a

E
[∫ T

0

Dt(a)u(at) dt+ pT (a)DT (a)V

]
, (4)

where the supremum is over all action paths a = (at)t≥0.14

Equation (3) uses the discount factor DT (1) = e−(λG+r)T because the in-
spection is conducted at time T if and only if the project has not already
ended. The principal pays the inspection cost 1 and faces the continuation
cost K∗ if the agent passes the inspection (which occurs on path). The value
V = U1 solves (4) if and only if working continuously is a best response for the
agent. Inside the expectation in (4), we include only the agent’s continuation
value V if he passes the inspection. If he fails, then the project is terminated,
so his continuation value is 0.

The system of nested Bellman equations in (3)–(4) is complex. The set of
all action paths is large. For a given random time T , the supremum on the
right side of (4) might be achieved by many alternating periods of working and
shirking. To solve the principal’s problem, we set up a relaxed problem that
considers only a subclass of deviations by the agent. The suitable subclass de-
pends on the parameter values. We solve this relaxed problem by constructing
Lagrangian dual variables. Then we check that our relaxed solution is feasible
in the original problem by solving the agent’s HJB equation.

14It suffices to consider deterministic action paths. Between inspections, the agent does
not learn any information, unless the project ends, in which case he has no choice to make.
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5 Optimal timing of perfect inspections

To highlight the main force in the model, we first solve the principal’s problem
in the special case of perfect inspections. The passage probability is given by

pt(a) =

1 if
∫ t

0
(1− as) ds = 0,

0 if
∫ t

0
(1− as) ds > 0.

That is, the agent passes the time-t inspection if and only if he has not shirked
before time t. This passage probability is the limit of the passage probability
with imperfect inspections as the detectability parameter δ tends to ∞.

We separate the analysis into two regimes according to the relative sensi-
tivities of breakthroughs and breakdowns to the agent’s action.

5.1 Speeding up breakthroughs: λG > λB

If λG > λB, then working increases the arrival rate of breakthroughs by more
than it decreases the arrival rate of breakdowns. Consequently, working short-
ens the project. In particular, this case obtains if there are breakthroughs but
no breakdowns (λB = 0).

Theorem 1 (Periodic perfect inspections)
Suppose that inspections are perfect and λG > λB. Then it is optimal to inspect
periodically: for some period τ ∗, the gap Tn − Tn−1 equals τ ∗ for each n. If
u0 ≥ u1, then this policy is uniquely optimal and the period τ ∗ is given by

e−(λB+r)τ∗ =
U0 − U1

U0

. (5)

If the agent’s primary task is achieving a breakthrough—think of a start-
up entrepreneur or a researcher working toward a new discovery—then it is
optimal to conduct inspections at regular intervals.

We first consider the case u0 ≥ u1. With perfect inspections, once the agent
has shirked, his subsequent actions have no effect on his passage probability.
Thereafter, shirking is optimal because shirking lengthens the project (since
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λG > λB) and yields weakly higher flow payoff (since u0 ≥ u1). We consider the
relaxed problem that requires only that the agent prefers working, rather than
shirking, until the next inspection. The principal chooses a positive random
time T to solve

minimize E e−(λG+r)T

subject to E e−(λB+r)TU0 ≥ U0 − U1.
(6)

Each side of the constraint measures the agent’s loss relative to his payoff
U0 from shirking forever in the absence of inspections. The right side, U0 −
U1, captures this loss if the agent works until the next inspection. The left
side captures this loss if the agent shirks until the next inspection. In this
case, the agent will fail the inspection with certainty, thus forgoing the benefit
U0 from shirking forever after. Crucially, λB appears in the constraint but
λG appears in the objective. If the agent plans to shirk until time T , then
his effective discount factor is e−(λB+r)T . In contrast, the principal uses the
effective discount factor e−(λG+r)T because, on path, the agent works.

The solution of (6) becomes clear once we change variables. Instead of
choosing the random time T of the next inspection, the principal can equiv-
alently choose the random variable X = e−(λG+r)T , which is the cost of con-
ducting an inspection at time T . In terms of X, (6) becomes

minimize EX

subject to EX(λB+r)/(λG+r)U0 ≥ U0 − U1.

Figure 1 depicts the principal’s problem before (left) and after (right) the
change of variables, in an example with λG < λB.15 The left panel plots, as a
function of the inspection time t, the principal’s inspection cost (black) and the
agent’s loss from the inspection if he shirks (orange). The principal chooses a
distribution over the horizontal axis to minimize her expected inspection cost,
subject to the constraint that the agent’s expected loss from the inspection if
he shirks is at least U0 −U1. As a function of the inspection time, the agent’s
loss is less convex than the principal’s cost because λG > λB.

15In this example, λG + r = 2; λB + r = 1; U1 = 5/4; and U0 = 2.
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0

U0 − U1

e−(λG+r)t

U0e
−(λB+r)t

t
1 0

U0 − U1

U0x
(λB+r)/(λG+r)

x∗
x

Figure 1. Shirking agent’s loss from a perfect inspection with λG > λB

The right panel of Figure 1 puts the principal’s inspection cost X on the
horizontal axis [0, 1], which is reversed so that time still moves from left to
right. The principal chooses a distribution whose expectation is minimal (i.e.,
furthest right), subject to the constraint that the agent’s expected loss from
the inspection if he shirks is at least U0 − U1. This loss is a concave function
of X. Replacing any distribution with a point mass on its expectation strictly
slackens the constraint, without changing the principal’s objective. Therefore,
the unique solution is a unit mass on the point x∗ = e−(λG+r)τ∗ , with τ ∗ given
by (5) so that the constraint holds with equality.

The argument above assumes that u0 ≥ u1. If u0 < u1, then periodic
inspections are still optimal, but the argument is more subtle. If the agent
knows the time of the next inspection, then shirking all the way to the inspec-
tion is no longer the most attractive deviation. Once the agent has shirked,
he is certain to fail the next inspection. As the inspection nears, the agent
is increasingly myopic, eventually choosing to return to work because working
yields a higher flow payoff than shirking. In the proof, we identify the binding
shirk-before-work deviation.16 The period τ ∗ is strictly smaller than in (5)
because this new deviation binds. Shirking until the next inspection is strictly
unprofitable.

16We describe this argument in more detail in the setting of imperfect inspections; see
Theorem 3.
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e−(λG+r)t

U0e
−(λB+r)t
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(λB+r)/(λG+r)

x

Figure 2. Shirking agent’s loss from a perfect inspection with λG < λB

5.2 Delaying breakdowns: λG < λB

If λG < λB, then working decreases the arrival rate of breakdowns by more
than it increases the arrival rate of breakthroughs. Consequently, working
lengthens the project. In particular, this case obtains if there are breakdowns
but no breakthroughs (λG = 0).

Theorem 2 (Random perfect inspections)
Suppose that inspections are perfect and λG < λB. Then the optimal inspection
policy is unique: the gaps (Tn − Tn−1)n≥1 are independently and identically
distributed according to an exponential distribution with hazard rate γ∗, where

γ∗

λB + r
=
U0 − U1

U1

. (7)

If the agent’s primary task is avoiding a breakdown—think of a worker
guarding a nuclear plant or a bank managing its risk in order to avoid default—
then it is optimal to conduct inspections at random times.

First, consider only the deviation in which the agent shirks until the next
inspection. Figure 2 plots the same functions as Figure 1, before and after
the change of variables, in an example with λG < λB.17 As a function of the
inspection time, the agent’s loss from the inspection if he shirks is more convex

17In this example, λG + r = 1; λB + r = 2; U1 = 5/4; and U0 = 2.
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than the principal’s inspection cost. After the change of variables, the agent’s
loss from an inspection is a convex function of the principal’s cost of conducting
the inspection. Therefore, in this relaxed problem, the principal would like to
spread out the distribution as much as possible by inspecting either very soon
or else very far into the future. But such a policy is infeasible in the original
problem. If the agent is not inspected early on, then he can infer that there
will be no inspection anytime soon. Instead of working continuously, the agent
would strictly prefer to work briefly and then, once the risk of an inspection
had passed, shirk forever after.

Therefore, we must consider a richer class of dynamic deviations by the
agent. Under the optimal policy, inspections are conducted at a constant
hazard rate. This policy is memoryless—the distribution of the time until
the next inspection is the same, no matter the history of inspections. If the
agent has worked until some time t, then he is indifferent between working
continuously and shirking continuously until the next inspection. The optimal
policy is the only policy for which this indifference holds for all times t.

5.3 Comparing predictable and random policies

For this subsection, suppose that u0 ≥ u1.18 Define the quantities

µ =
U0 − U1

U0

and λ =
λG + r

λB + r
.

Regardless of the relative values of λG and λB, the period τ ∗ given in (5) is the
longest inter-inspection period that motivates the agent to work. Therefore,
the inspection policy with period τ ∗ is optimal among all periodic policies.
Similarly, the exponential policy with hazard rate γ∗ given in (7) is optimal
among all exponential policies. The ratio between the cost of the optimal
exponential policy and the optimal periodic policy is

µ(1− µλ)
λ(1− µ)µλ

.

18This is implied by Assumption 1 if λG ≤ λB , but not if λG > λB .
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For λ = 1 (i.e., λG = λB), this ratio equals 1 because both the periodic and
exponential policies are optimal. When the agent’s action does not affect the
length of the project, the perfect inspection technology is neutral. It does not
favor periodic or random inspections. For λ > 1, this ratio is strictly greater
than 1 and tends to ∞ as λ tends to ∞. Conversely for λ < 1, the ratio is
strictly less than 1 and tends to 0 as λ tends to 0. Thus, the benefit of using the
right timing structure—periodic versus exponential—can be arbitrarily large.

In work on dynamic contracts, it is sometimes assumed that the principal
is more patient than the agent. If the principal and the agent have respective
discount rates rP and rA, then our results still hold, but the relevant compari-
son for Theorems 1 and 2 is between λG+rP and λB+rA, rather than between
λG and λB.

6 Optimal timing of imperfect inspections

Consider the imperfect inspection technology with detectability parameter δ,
described in Section 2 on p. 6. We impose the standing assumption that
inspections are sufficiently precise.

Assumption 2. The detectability parameter δ satisfies the following:

A. δ > (λB + r)(U0 − U1)/U1;

B. δ > (λG + r) + (λG − λB).

Assumption 2.A ensures that sufficiently frequent inspections motivate the
agent to work. As δ converges downward to (λB + r)(U0−U1)/U1, the princi-
pal’s minimal inspection cost diverges. If 2.A is violated, then the principal’s
problem is infeasible. Assumption 2.A is more demanding if U0/U1 is larger,
meaning that shirking is more attractive relative to working. Assumption 2.B
ensures that the agent’s passage probability, as a function of the duration of
past shirking, is convex enough that local incentive constraints do not bind. If
λG = λB, then 2.B simply requires that the detectability parameter is larger
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Figure 3. Shirking agent’s loss from an imperfect inspection with λG > λB

than the agent’s effective discount rate.19

The imperfect inspection technology creates a new motive to space out
inspections. The longer the agent shirks before an inspection, the less likely
he is to pass. Conversely, after passing one inspection, the agent is likely
to pass another inspection conducted soon after. Even if the agent shirks in
between, he is unlikely to leave behind new evidence over a short time interval.

6.1 Speeding up breakthroughs: λG ≥ λB

If λG ≥ λB, then with perfect inspections, it is optimal to inspect periodically
(Theorem 1). A periodic inspection policy maintains a gap between consecu-
tive inspections. This structure remains optimal with imperfect inspections.

Theorem 3 (Periodic imperfect inspections)
Suppose λG ≥ λB. Then it is optimal to inspect periodically: for some period
τ ∗, the gap Tn − Tn−1 equals τ ∗ for each n.

As in the case of perfect inspections, we work with the agent’s loss relative
to his payoff U0 from shirking forever in the absence of inspections. If the agent

19If λG 6= λB , then the inequality captures an additional effect. As the agent shirks, his
continuation value decreases. If shirking lengthens the project (λG > λB), this decrease
makes shirking less attractive, tightening the constraint. If shirking shortens the project
(λG < λB), this decrease makes shirking more attractive, loosening the constraint.
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deviates by shirking until the next inspection, and this inspection is conducted
at time t, then the agent’s loss relative to U0 is

LS(t) = e−(λB+r)t(U0 − U1e
−δt). (8)

The agent’s effective discount factor is e−(λB+r)t. When the inspection is con-
ducted at time t, the agent does not forgo all of U0. With probability e−δt, the
agent passes the inspection and gets his continuation value U1. Consider first
the relaxed problem that requires only that the agent prefers working, rather
than shirking until the next inspection. The principal chooses a positive ran-
dom time T to solve

minimize E e−(λG+r)T

subject to ELS(T ) ≥ U0 − U1.

As before, we change variables. Equivalently, the principal chooses a random
variable X = e−(λG+r)T to solve

minimize EX

subject to E L̄S(X) ≥ U0 − U1,

where L̄S(x) = x(λB+r)/(λG+r)(U0 − U1x
δ/(λG+r)).

In Figure 3, the left panel plots the agent’s loss LS and the principal’s
inspection cost as a function of the inspection time. After the change of
variables, the right panel plots the agent’s inspection loss L̄S as a function of
the principal’s inspection cost. The loss function converges to U0 − U1 as t
tends to 0 because very early inspections are very likely to be passed.

The binding deviation may be for the agent to shirk for some time and
then work thereafter. The right panel of Figure 3 plots in green the agent’s
loss, as a function of the inspection time, if prior to the next inspection the
agent shirks until time t̄ and then works thereafter. We set x̄ = e−(λG+r)t̄.
If the inspection is conducted before time t̄, then the agent shirks all the
way until the inspection. Over this range, the agent’s loss coincides with L̄S.
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For inspection times after time t̄, the agent’s loss is linear in the principal’s
inspection cost because, conditional upon reaching time t̄, the project ends at
the same rate under this deviation as it does on-path.

In the proof we identify the binding shirk-before-work deviation. We show
that the resulting loss is concave as a function of the inspection time. In
particular, concavity is preserved at the kink; otherwise, the shirk-before-work
loss would lie above L̄S, contrary to the optimality of this deviation for the
agent. The inspection period τ ∗ is determined by the intersection of this kinked
loss curve with the threshold U0 − U1. The point x∗ = e−(λG+r)τ∗ is shown on
the plot. As in the case of perfect inspections, the periodic solution is unique
if the binding deviation is to shirk all the way to the next inspection. If the
binding deviation is to return to work at time t̄, with t̄ < τ ∗, then every
optimal inspection policy involves a no-inspection period of length at least t̄.
In particular, exponentially distributed inspections are strictly suboptimal.

6.2 Delaying breakdowns: λG < λB

If λG < λB, then with perfect inspections, it is optimal to conduct inspections
with a constant hazard rate (Theorem 2). Under this memoryless policy, the
gap between consecutive inspections can be arbitrarily small. With imperfect
inspections, conducting two inspections in short succession is no longer optimal
because the agent is almost certain to pass the second inspection, conditional
on passing the first. The optimal policy leverages the benefits of randomization
while also spacing out inspections.

To state the optimal inspection policy in this case, define the period τ̂ by
(λB − λG + δ)e−δτ̂ = λB − λG. Recall the function LS defined in (8). Let δ̂
be defined by LS(τ̂) = U0 − U1. Finally, denote by Exp(γ) an exponentially
distributed random variable with hazard rate γ.

Theorem 4 (Periodic/exponential imperfect inspections)
Suppose λG < λB.

1. If δ ≤ δ̂, then it is optimal to inspect periodically: for some period τ ∗ in
(0, τ̂ ], the gap Tn − Tn−1 equals τ ∗ for each n.
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Figure 4. Shirking agent’s loss from an imperfect inspection with λG < λB

2. If δ > δ̂, then the following policy is uniquely optimal. The gaps (Tn −
Tn−1)n≥1 are independently and identically distributed. With some prob-
ability π∗ in (0, 1), the gap Tn − Tn−1 equals τ̂ . With probability 1− π∗,
the gap Tn − Tn−1 has the distribution of τ̂ + Exp(γ∗), where

γ∗ =
(U0 − U1)(λB + r)(λB + r + δ)

U1(λB + r + δ)− U0(λB + r)
. (9)

Figure 4 plots the same loss functions as in Figure 3 in an example with
λG < λB and δ > δ̂.20 In general, the loss function L̄S is concave and then
convex. The right panel indicates the point x̂ = e−(λG+r)τ̂ . This point always
lies before (left of) the point of inflection of L̄S. In this example, the solution
(with the changed variables) puts positive probability on the point x̂ and then
puts density on points x to the right of x̂.

If δ ≤ δ̂, then inspecting before time τ̂ is necessary to motivate the agent to
work. In this case, periodic inspections are optimal. The force toward spacing
out inspections dominates. If δ > δ̂, then inspecting with constant period τ̂

strictly induces the agent to work. To reduce inspection costs, the principal
could increase the period length, but this would not leverage the benefits
of randomization with λG < λB. Instead, it is optimal for the principal to
randomize the time of the next inspection, once time τ̂ has elapsed since the

20In this example, λG + r = 1; λB + r = 2; U0 = 2; U1 = 5/4; and δ = 5.
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last inspection. The dynamic inspection policy proceeds as follows. The agent
initially gets an inspection-free period of length τ̂ . With positive probability,
the agent is inspected exactly at time τ̂ . If the agent is not inspected at time τ̂ ,
then the next inspection arrives with a constant hazard rate thereafter. Once
the inspection is conducted, the cycle repeats, beginning with a fresh period
without inspections.21

The time τ̂ is decreasing in λB − λG and δ, as we check in the proof. The
greater the rate δ at which the agent’s shirking leaves behind a paper trail, the
shorter the no-inspection period. As λB−λG increases, there is a stronger force
towards randomization due to the relative convexity of the shirking agent’s
discount factor e−(λB+r)T . As the detectability parameter δ tends to ∞, the
optimal policy in Theorem 4 converges to the optimal exponential policy from
Theorem 2. In particular, τ̂ and π∗ both tend to 0.

7 Recovery

With the inspection technology in the main model, once the agent’s shirking
leaves behind evidence, the agent is certain to fail all subsequent inspections.
We now consider how the solution changes if recovery is possible. Formally,
the detectability state θt evolves as follows. Transitions from state 0 to state
1 occur at Poisson rate δ(1 − at), as before. Now transitions from state 1 to
state 0 occur at Poisson rate ρat. The main model corresponds to ρ = 0.

The optimal policies in Theorem 3, if u0 > u1, and in Theorem 4 remain
optimal if ρ is perturbed away from 0, as long as the detectability parameter
δ is large enough; for a formal statement, see Appendix B.2. The reason is
that the parameter ρ only makes a difference if the agent returns to work after
shirking, which is not a binding deviation in the cases above.

If the recovery rate ρ is sufficiently large, however, the agent’s incentives
change substantially. If ρ = 0, then the result of an inspection depends only

21The structure of this policy is similar to the optimal policy in Varas et al. (2020) in the
case in which the principal directly values the information revealed by an inspection. In
our model, however, the principal does not directly value this information. Moreover, the
structure of the binding deviations is quite different in our problem.
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on the duration of shirking, not the allocation of this shirking over time. If
ρ > 0, then for a given duration of shirking, the agent’s passage probability is
maximized if working is concentrated right before the inspection. With a high
recovery rate ρ, window-dressing becomes effective—the agent can substan-
tially increase his passage probability by working just before the inspection.
In an education setting, this corresponds to “cramming” for an exam. To de-
ter this deviation, it is optimal for the principal to conduct inspections with
a constant hazard rate, so that the timing of past inspections provides no
information about the timing of future inspections.

Theorem 5 (Exponential inspections with recovery)
Suppose that inspections have recovery rate ρ > 0. If ρ+λG ≥ δ+λB, then the
following policy is uniquely optimal. The gaps (Tn−Tn−1)n≥1 are independently
and identically distributed according to an exponential distribution with hazard
rate γ∗, where

γ∗ =
(λB + r)(λG + r + ρ)(U0 − U1)

U1(λB + r + δ)− U0(λB + r)
. (10)

The condition ρ+ λG ≥ δ + λB ensures that under the exponential policy,
the agent has a stronger incentive to work if he has previously shirked. In
this case the binding deviation is local—shirking briefly and then returning to
work—rather than global as in our main model. If ρ = 0, then the condition
in Theorem 5 becomes δ ≤ λG − λB, which is inconsistent with Assumption
2.B.22 If λG = λB, then the condition in Theorem 5 reduces to the inequality
ρ ≥ δ, i.e., the detectability state θt is more sensitive to the agent’s action if
θt = 1 than if θt = 0.23 In this special case, Theorem 5 suggests that the force
towards the optimality of random inspections identified by Varas et al. (2020)
extends to this richer inspection technology with ρ ≥ δ.

22In fact, for δ ≤ λG−λB+(λG+r), as long as the problem is feasible, it can be shown that
periodic inspections are still optimal. There may be other optimal policies. In particular,
if δ ≤ λG − λB , a slight modification of the proof of Theorem 5 shows that exponential
inspections are also optimal, but the uniqueness part of the proof requires ρ > 0.

23If λG 6= λB , then there is an additional effect. If the agent shirks, his continuation
value decreases. If shirking lengthens the project (λG > λB), this decrease makes working
more attractive, loosening the condition. If shirking shortens the project (λG < λB), this
decrease makes working less attractive, tightening the condition.
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Finally, compare the hazard rate γ∗ in Theorem 5 and Theorem 4. In
Theorem 4, the binding deviation does not involve returning to work. Thus,
the payoff from this deviation is independent of ρ. If ρ+λG > δ+λB, then the
local deviation binds. Shirking until the next inspection is strictly unprofitable,
so the hazard rate in (10) must be strictly larger than the hazard rate in (9).

8 Conclusion

We study the design of inspection policies in a dynamic moral hazard setting.
In contrast to previous work, dynamic deviations play a central role in our
analysis. We show that predictable inspections are better suited to motivating
agents who are tasked with achieving a breakthrough, such as entrepreneurs
in an innovative industry. Random inspections are better suited to motivating
agents who are tasked with avoiding a breakdown, such as safety personnel
responsible for preventing accidents. This dichotomy is driven by the agent’s
effective risk attitude over time lotteries, which is determined endogenously
by the agent’s actions.
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A Main proofs

A.1 Notation

Throughout the proofs we use the notation λ0 := λB + r and λ1 := λG+ r. Let
Ui = ui/λi for i = 0, 1. We express the solutions in terms of the five (strictly
positive) parameters λ0, λ1, δ, U0, U1.

A.2 Proof of Lemma 1

We discretize the agent’s problem. Fix ∆ > 0. In the ∆-discretized problem,
the agent can change his action only at times k∆ for k = 0, 1, . . .. Let V∆

denote the agent’s supremal utility in the ∆-discretized problem. The Bellman
equation reads

V∆ = max
i=0,1

{
Ui(1− e−λi∆) + e−λi∆V∆

}
.

The unique solution is V∆ = max{U0, U1}. By a limiting argument,24 it follows
that the agent’s value in the continuous-time problem is also max{U0, U1}.
Thus, working forever is optimal if and only if U1 ≥ U0.

A.3 Proof outline for Theorems 1–4

The proofs of Theorems 1–4 have the following structure.

I. Binding deviations. Identify the candidate policy and a subclass of de-
viations.

II. Relaxed problem. Consider the relaxed problem that requires only that
deviations in this subclass be unprofitable. Use Lagrangian relaxation
to show that the candidate policy solves the relaxed problem.

24Any right-continuous function a : [0,∞) → {0, 1} can be expressed as the pointwise
limit of a sequence of step functions an : [0,∞) → {0, 1} defined by an(t) = a(k/2n) if
(k − 1)/2n ≤ t < k/2n, for k = 1, 2, . . .. By dominated convergence, as n tends to ∞, the
agent’s expected utility from an converges to the agent’s expected utility from a.
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III. Remaining deviations. Check that the candidate policy is feasible in
the original problem, i.e., that all deviations outside the subclass are
unprofitable.

A.4 Proof of Theorem 1

Shirk-before-work deviation Suppose that until the next inspection, the
agent plans to shirk over [0, t) and work over [t,∞). Let USW(t | τ) denote
the agent’s expected payoff if the principal inspects at time τ . If 0 < t ≤ τ ,25

then the agent is certain to fail the inspection, so

USW(t | τ) =

∫ t

0

u0e
−λ0s ds+ e−λ0t

∫ τ

t

u1e
−λ1(s−t) ds

= U0(1− e−λ0t) + e−λ0tU1(1− e−λ1(τ−t)).

Define the period τ ∗ to be the largest time τ such that

sup
t∈(0,τ ]

USW(t | τ) ≤ U1. (11)

It can be checked that τ ∗ is well-defined and strictly positive; moreover, τ = τ ∗

satisfies (11) with equality.26

Let U ′SW denote the derivative of USW with respect to its first argument.
We have

U ′SW(t | τ ∗) = e−λ0t
[
(U0 − U1)λ0 − U1(λ1 − λ0)e−λ1(τ∗−t)] .

Since λ1 > λ0 (because λG > λB), this derivative is single-crossing in t from
25If t = 0 or τ = 0, then USW(t | τ) = U1. If 0 < τ < t, then USW(t | τ) = USW(τ | τ) =

U0(1− e−λ0τ ).
26For 0 < t ≤ τ , we have

USW(t | τ) ≤ U0(1− e−λ0t) + e−λ0tU0(1− e−λ1(τ−t)) = U0(1− e−λ1τ ),

and the right side tends to 0 as τ → 0. Hence, (11) is satisfied for τ sufficiently small. On
the other hand, USW(τ | τ)→ U0 as τ →∞, so (11) is violated for τ sufficiently large. By
Berge’s theorem, the left side of (11) is continuous in τ .
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above. Note that U ′SW(τ ∗ | τ ∗) = e−λ0τ
∗
(U0λ0 − U1λ1).27

1. If U1λ1 ≤ U0λ0, then U ′SW(τ ∗ | τ ∗) ≥ 0 and hence the function USW(· | τ ∗)
is strictly increasing over (0, τ ∗]. Therefore, τ ∗ is given by USW(τ ∗ | τ ∗) =

U1, hence

e−λ0τ
∗

=
U0 − U1

U0

.

In this case, set t̄ = ∞ (below we consider the deviation in which the
agent shirks until time t̄).

2. If U1λ1 > U0λ0, then U ′SW(τ ∗ | τ ∗) < 0. Therefore, USW(· | τ ∗) achieves
its maximum over (0, τ ∗] at a unique point, denoted t̄, which lies in
(0, τ ∗). The times τ ∗ and t̄ are given by

e−λ0τ
∗

=
λ1 − λ0

λ1

(
λ0(U0 − U1)

U1(λ1 − λ0)

)λ0/λ1
, e−λ0 t̄ =

λ1 − λ0

λ1

.

Relaxed problem With t̄ defined above, consider the relaxed problem of
choosing a positive random variable T to solve

minimize E e−λ1T

subject to EUSW(t̄ | T ) ≤ U1,

where we set USW(∞ | T ) = U0(1 − e−λ0T ). We change variables. Define
Ū : [0, 1]→ R by

Ū(x) = USW(t̄ | −λ−1
1 log x).

Consider the equivalent relaxed problem of choosing a random variable X =

e−λ1T to solve
minimize EX

subject to E Ū(X) ≤ U1.
(12)

27Technically, this is the left derivative. Throughout the proofs, derivatives evaluated at
kinks should be interpreted as either left or right derivatives. The appropriate choice should
be clear from context.
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Set x̄ = e−λ1 t̄ ∈ [0, 1). We can express Ū as

Ū(x) =

U0(1− xλ0/λ1) if x ≥ x̄,

U0(1− x̄λ0/λ1) + U1x̄
λ0/λ1(1− x/x̄) if x < x̄.

Clearly, Ū is strictly decreasing. Since λ1 > λ0, the function Ū is convex,
strictly so over [x̄, 1].28

We check that the constant x∗ = e−λ1τ
∗ solves (12). By construction,

Ū(x∗) = U1, so x∗ is feasible. If a random variable X satisfies EX < x∗, then
X is infeasible because

E[Ū(X)] ≥ Ū(EX) > Ū(x∗) = U1,

where the inequalities hold because Ū is convex and strictly decreasing.
Now we turn to uniqueness. If U1λ1 ≤ U0λ0, then x̄ = 0. Therefore, Ū is

strictly convex over [0, 1], so x∗ is the unique solution of (12). If U1λ1 > U0λ0,
then 0 < x∗ < x̄ < 1. Since Ū is strictly convex over [x̄, 1], any solution X of
(12) must concentrate on [0, x̄], hence T = −λ−1

1 logX must concentrate on
[t̄,∞].

Remaining deviations Suppose that the principal conducts the next in-
spection at time τ ∗. By construction, no shirk-before-work deviation is prof-
itable. We prove that no other deviation is profitable. By a limiting argument
(see Footnote 24), it suffices to check that for each positive integer n, in the dis-
cretized problem with ∆ = τ ∗/n, any deviation outside the shirk-before-work
class can be strictly improved upon. Suppose that for some k, with k ≤ n− 2,
the agent works over [k∆, (k+ 1)∆) and shirks over [(k+ 1)∆, (k+ 2)∆). The
agent can strictly improve his payoff by instead shirking over [k∆, (k + 1)∆)

28Convexity is preserved even if there is a kink because t̄ is agent-optimal. We have x̄ > 0
if and only if U1λ1 > U0λ0, in which case

D+Ū(x̄) = −U0λ0

λ1
x̄(λ0−λ1)/λ1 > −U1x̄

(λ0−λ1)/λ1 = D−Ū(x̄),

where D+ and D− denote right and left derivatives.
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and working over [(k + 1)∆, (k + 2)∆) since

U0(1− e−λ0∆) + e−λ0∆U1(1− e−λ1∆) > U1(1− e−λ1∆) + e−λ1∆U0(1− e−λ0∆).

Each side of this inequality is a weighted combination of U0 and U1 with total
weight 1− e−λ0∆−λ1∆, but the left side puts strictly more weight on the larger
utility U0. By switching the order (but not the duration) of shirking and
working, the agent’s probability of passing the inspection at time τ ∗ does not
change.

A.5 Proof of Theorem 2

Work-before-shirk deviations Suppose that until the next inspection, the
agent plans to work over [0, t) and shirk over [t,∞). Let UWS(t | τ) denote
the agent’s expected payoff if the principal inspects at time τ . If t ≥ τ , then
UWS(t | τ) = U1. If t < τ , then the agent is certain to fail the inspection, so

UWS(t | τ) =

∫ t

0

u1e
−λ1s ds+ e−λ1t

∫ τ

t

u0e
−λ0(s−t) ds

= U1(1− e−λ1t) + e−λ1tU0(1− e−λ0(τ−t))

= U1 + e−λ1th(t, τ),

where h(t, τ) = U0(1− e−λ0(τ−t))− U1.

Relaxed problem Consider the relaxed problem of choosing a positive ran-
dom variable T to solve

minimize E e−λ1T

subject to EUWS(t | T ) ≤ U1, t ≥ 0.
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This problem is equivalent to choosing a cumulative distribution function F

supported on [0,∞) to solve29

minimize
∫

[0,∞)

e−λ1t dF (t)

subject to
∫

(t,∞)

h(t, s) dF (s) ≤ 0, t ≥ 0.

(13)

The constraints are indexed by times t ≥ 0. Attach a nonnegative mass
multiplier η0 to the time-0 constraint and a nonnegative density multiplier η(t)

to the time-t constraint, for all t ≥ 0. The Lagrangian becomes

L(F ; η0, η) =

∫
[0,∞)

e−λ1t dF (t) + η0

∫
(0,∞)

h(0, s) dF (s)

+

∫ ∞
0

[∫
(t,∞)

h(t, s) dF (s)

]
η(t) dt.

Change the order of integration in the double integral30 and relabel the dummy
variables to get

L(F ; η0, η) = F (0) +

∫
(0,∞)

I(t) dF (t),

where

I(t) = e−λ1t + η0h(0, t) +

∫ t

0

η(s)h(s, t) ds.

Let η(t) = η̄e−λ1t for some η̄ ≥ 0. Plug in this expression, integrate, and
group like terms to obtain

I(t) = e−λ1t
(

1− η̄U0

λ0 − λ1

− η̄(U0 − U1)

λ1

)
+ e−λ0tU0

(
−η0 +

η̄

λ0 − λ1

)
+ (U0 − U1)

(
η0 +

η̄

λ1

)
.

29Since F is not necessarily continuous, we explicitly specify which endpoints are included
in integrals against F .

30Here and below, we freely interchange the order of integration because h is bounded
and we will only evaluate the Lagrangian for dual functions that are bounded.
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To make I(t) constant in t, we set

η̄ =

(
U0

λ0 − λ1

+
U0 − U1

λ1

)−1

and η0 =
η̄

λ0 − λ1

.

Since λ1 < λ0, both η̄ and η0 are well-defined and strictly positive. With these
multipliers, the Lagrangian reduces to

F (0) +
(U0 − U1)λ0

(U0 − U1)λ0 + U1λ1

[1− F (0)].

The coefficient on 1−F (0) is strictly less than 1, so the Lagrangian is minimized
by any cumulative distribution function F with F (0) = 0. By the Kuhn–
Tucker conditions, a cumulative distribution function F solves (13) if and only
if F (0) = 0 and

U0

U0 − U1

∫
(t,∞)

e−λ0(s−t) dF (s) = 1− F (t),

for every time t ≥ 0.31 By Lemma 2 in Appendix B.3, the unique solution is the
exponential distribution with hazard rate γ∗ given by γ∗/λ0 = (U0 − U1)/U1.

Remaining deviations Suppose that the time until the next inspection
is exponentially distributed with hazard rate γ∗. By construction, no work-
before-shirk deviation is profitable. We prove that no other deviation is prof-
itable. It suffices to show that once the agent has shirked, he finds it optimal
to shirk until the next inspection. Once the agent has shirked, he is certain to
fail the next inspection. Therefore, the project ends at Poisson rate

(λG + γ∗)at + (λB + γ∗)(1− at).
31Complementary slackness requires equality for t = 0 and for almost every t > 0, but

each side of this equality is right-continuous (by dominated convergence), so the equality
must hold for every time t ≥ 0.
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The agent’s problem is identical to the no-inspection problem with λi + γ∗ in
place of λi, for i = 0, 1. By Lemma 1, shirking forever is optimal if and only if

U1λ1

λ1 + γ∗
≤ U0λ0

λ0 + γ∗
,

which holds (strictly) because U1 < U0 and λ1 < λ0.

A.6 Proof of Theorems 3 and 4

Our unified proof is organized around the structure of the binding deviations.

Shirk-before-work deviations Suppose that until the next inspection, the
agent plans to shirk over [0, t) and work over [t,∞). Let USW(t | τ) denote the
agent’s expected payoff if the principal inspects at time τ . For t ≤ τ ,32 the
agent’s passage probability is e−δt, so

USW(t | τ) =

∫ t

0

u0e
−λ0s ds+ e−λ0t

∫ τ

t

u1e
−λ1(s−t) ds+ e−λ0t−λ1(τ−t)U1e

−δt

= U0(1− e−λ0t) + U1e
−λ0t

[
1− e−λ1(τ−t)(1− e−δt)

]
.

Define the period τ ∗ to be the largest time τ such that

max
t∈[0,τ ]

USW(t | τ) ≤ U1. (14)

It can be checked that τ ∗ is well-defined and strictly positive; moreover, τ = τ ∗

satisfies (14) with equality.33 For all t in [0, τ ∗], we have USW(t | τ ∗) ≤ U1 =

USW(0 | τ ∗). It follows that U ′SW(0 | τ ∗) ≤ 0, where U ′SW denotes the derivative
with respect to the first argument.

32If t > τ , then USW(t | τ) = USW(τ | τ) = U0(1− e−λ0τ ) + U1e
−(λ0+δ)τ .

33For 0 < t ≤ τ , as (t, τ) tends to (0, 0), the derivative U ′SW(t | τ) tends to λ0(U0 −
U1)− δU1, which is strictly negative by Assumption 2.A. Thus, for τ sufficiently small, the
maximum on the left side of (14) is achieved at t = 0 and hence (14) holds. On the other
hand, USW(τ | τ) → U0 as τ → ∞, so (14) is violated for τ sufficiently large. By Berge’s
theorem, the left side of (14) is continuous in τ .
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We claim that U ′SW(0 | τ ∗) < 0. Suppose not. Then

0 = U ′SW(0 | τ ∗) = (U0 − U1)λ0 − e−λ1τ
∗
U1δ. (15)

Differentiating USW twice with respect to the first argument gives

U ′′SW(0 | τ ∗) = −(U0 − U1)λ2
0 + e−λ1τ

∗
U1δ(δ + 2λ0 − 2λ1)

= (U0 − U1)λ0(δ + λ0 − 2λ1)

> 0,

where the second equality uses (15) and the inequality uses Assumption 2.B.
It follows that USW(t | τ ∗) > USW(0 | τ ∗) = U1 for t sufficiently small, contrary
to the definition of τ ∗.

Let t̄ be the largest maximizer of USW(· | τ ∗) over [0, τ ∗]. We claim that
t̄ > 0. Suppose not. Then USW(t | τ ∗) < U1 for all t in (0, τ ∗]. Since
U ′SW(0 | τ ∗) < 0, it follows that (14) holds for some τ strictly greater than τ ∗,
contrary to the definition of τ ∗.

We separate into two cases according to the condition

U1(λ0 + δ − λ1)e−δτ
∗ ≥ U0(λ0 − λ1). (16)

If λ1 ≥ λ0, then (16) holds (because U1e
−δτ∗ < U0).

A. Relaxed problem: shirk-before-work Suppose that (16) holds. With
t̄ defined above, consider the relaxed problem of choosing a positive random
variable T to solve

minimize E e−λ1T

subject to EUSW(t̄ | T ) ≤ U1.

We change variables. Define functions Ū and ŪS from [0, 1] to R by

Ū(x) = USW(t̄ | −λ−1
1 log x), ŪS(x) = US(−λ−1

1 log x | −λ−1
1 log x).
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Consider the equivalent relaxed problem of choosing a random variable X =

e−λ1T ∈ [0, 1] to solve

minimize EX

subject to E Ū(X) ≤ U1.
(17)

Set x̄ = e−λ1 t̄ ∈ (0, 1). We can express Ū as

Ū(x) =

ŪS(x) if x ≥ x̄,

ŪS(x̄) + α(x̄)(x− x̄) if x < x̄,

where α(x̄) = −U1x̄
λ0/λ1(1− x̄δ/λ1) < 0. Clearly, Ū is strictly decreasing over

[0, x̄]. Since (16) holds, it can be shown that Ū is convex, strictly so over
[x̄, 1].34

We check that the constant x∗ = e−λ1τ
∗ solves (17). By construction,

Ū(x∗) = U1, so x∗ is feasible. If a random variable X satisfies EX < x∗, then
X is infeasible because

E[Ū(X)] ≥ Ū(EX) > Ū(x∗) = U1,

where the first inequality holds because Ū is convex and the second holds
34Differentiate ŪS twice to get

Ū ′′S (x) = λ−2
1 x(λ0−2λ1)/λ1

[
U1(λ0 + δ)(λ0 + δ − λ1)xδ/λ1 − U0λ0(λ0 − λ1)

]
.

By Assumption 2.B, λ0 + δ − λ1 > λ1 > 0. There are two cases. If λ1 ≥ λ0, then ŪS is
globally convex. In this case, set xc = 0. If λ1 < λ0, then define the point xc in (0, 1) by
ŪS(xc)− ŪS(0) = xcŪ

′
S(xc), or equivalently,

U1(λ0 + δ − λ1)xδ/λ1
c = U0(λ0 − λ1).

By (16), this point xc exists and satisfies xc ≤ x∗ ≤ x̄.
In both cases, the convexification of ŪS , denoted cvx ŪS , coincides with ŪS over [xc, 1].

It remains to check that convexity is preserved at the kink. If Ū ′ jumped down at the kink,
then for all x ≤ x̄, we would have Ū(x) ≤ cvx ŪS(x) ≤ ŪS(x). In particular, taking x = x∗

gives
USW(t̄ | τ∗) = Ū(x∗) ≤ ŪS(x∗) = USW(τ∗ | τ∗),

contrary to the definition of t̄.
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because Ū is strictly decreasing over [0, x̄]. Since x∗ < x̄ and Ū is strictly
convex over [x̄, 1], any solution X of the relaxed problem must concentrate on
[0, x̄], so T = −λ−1

1 logX must concentrate on [t̄,∞].

B. Relaxed problem: work-before-shirk Suppose that (16) is violated.
It follows that λ1 < λ0. Suppose that until the next inspection, the agent
plans to work over [0, t) and shirk over [t,∞). Let UWS(t | τ) denote the
agent’s expected payoff if the principal inspects at time τ . If t ≥ τ , then
UWS(t | τ) = U1. If t < τ , then the agent’s passage probability is e−δ(τ−t), so

UWS(t | τ) = U1(1− e−λ1t) + e−λ1tU0(1− e−λ0(τ−t)) + e−λ1t−λ0(τ−t)U1e
−δ(τ−t)

= U1 + e−λ1th(t, τ),

where h(t, τ) = U0(1− e−λ0(τ−t))− U1(1− e−(λ0+δ)(τ−t)).
Consider the relaxed problem of choosing a positive random variable T to

solve
minimize E e−λ1T

subject to EUWS(t | T ) ≤ U1, t ∈ {0} ∪ [τ,∞),

where the value of τ will be determined below. This problem is equivalent to
choosing a cumulative distribution function F supported on [0,∞) to solve

minimize
∫

[0,∞)

e−λ1t dF (t)

subject to
∫

(t,∞)

h(s, t) dF (s) ≤ 0, t ∈ {0} ∪ [τ,∞).

(18)

The constraints are indexed by times t in {0} ∪ [τ,∞). Attach a nonneg-
ative mass multiplier η0 to the time-0 constraint and a nonnegative density
multiplier η(t) to the time-t constraint, for all t ≥ τ . The Lagrangian becomes

L(F ; η0, η) =

∫
[0,∞)

e−λ1t dF (t) + η0

∫
(0,∞)

h(0, s) dF (s)

+

∫ ∞
τ

[∫
(t,∞)

h(t, s) dF (s)

]
η(t) dt.
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Change the order of integration in the double integral and relabel the dummy
variables to get

L(F ; η0, η) =

∫
[0,∞)

I(t) dF (t),

where

I(t) = e−λ1t + η0h(0, t) +

∫ t

τ∧t
η(s)h(s, t) ds.

To get this expression for the Lagrangian, we used the fact that I(0) = 1,
which holds because h(0, 0) = 0.

For some η̄ ≥ 0, let η(t) = η̄e−λ1t for all t ≥ τ . Plug in this expression,
integrate, and group like terms. For t ≥ τ , we get

I(t) = e−λ1t
[
1− η̄

λ1

(
U0λ0

λ0 − λ1

− U1(λ0 + δ)

λ0 + δ − λ1

)]
+ e−λ0tU0

[
−η0 +

η̄

λ0 − λ1

e(λ0−λ1)τ

]
+ e−(λ0+δ)tU1

[
η0 −

η̄

λ0 + δ − λ1

e(λ0+δ−λ1)τ

]
+ (U0 − U1)

[
η0 +

η̄

λ1

e−λ1τ
]
.

(19)

Recall that τ̂ is defined by e−δτ̂ = (λ0 − λ1)/(λ0 + δ − λ1). Let τ = τ ∗ ∧ τ̂ .
Define η̄ and η0 by

η̄ = λ1

(
U0λ0

λ0 − λ1

− U1(λ0 + δ)

λ0 + δ − λ1

)−1

, η0 =
λ1e

(λ0−λ1)τ

U0λ0 − e−δτU1(λ0 + δ)
.

The multiplier η̄ is well-defined and positive because U1 < U0 and (λ0 +δ)(λ0−
λ1) < λ0(λ0 + δ − λ1). The multiplier η0 is well-defined because

e−δτ <
U0(λ0 − λ1)

U1(λ0 + δ − λ1)
<

U0λ0 − U1λ1

U1(λ0 + δ − λ1)
<

U0λ0

U1(λ0 + δ)
, (20)

where the first inequality holds because (16) is violated; the second inequality
uses U0 > U1; and the third inequality holds by Assumption 2.

The definition of η̄ eliminates the first line in (19). Now consider η0. If
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τ ∗ ≥ τ̂ , so τ = τ̂ , then the second and third lines of (19) vanish as well. If
τ ∗ < τ̂ , so τ < τ̂ , it can be checked that the derivative of (19) is zero at t = τ

and is strictly positive over [τ,∞).35 In both cases, it can be shown that I is
strictly decreasing over [0, τ ].36 We separately characterize the minimizers of
the Lagrangian in the two cases.

First suppose τ ∗ < τ̂ . In this case, the integrand I is uniquely minimized
at τ ∗. Therefore, a point mass at τ ∗ is the unique minimizer of the Lagrangian.
Clearly, UWS(t | τ ∗) = U1 for all t ≥ τ = τ ∗. To see that a point mass at τ ∗

solves the relaxed problem, we check that UWS(0 | τ ∗) = U1, or equivalently,
USW(τ ∗ | τ ∗) = U1. We showed in the first section of the proof that U ′SW(0 |
τ ∗) < 0. Since (16) is violated, we have

U ′SW(τ ∗ | τ ∗) = e−λ0τ
∗(
U0λ0 − U1λ1 − e−δτ

∗
U1(λ0 + δ − λ1)

)
≥ e−λ0τ

∗
λ1(U0 − U1)

> 0.

(21)

The function t 7→ U ′SW(t | τ ∗) is a sum of at most three exponentials, so it
has at most two zeros by Descartes’ rule of signs. Therefore, U ′SW(t | τ ∗)
cannot cross zero from above over (0, τ ∗), and hence USW(· | τ ∗) cannot have
an interior maximizer over [0, τ ∗]. Since t̄ > 0, we must have t̄ = τ ∗. Thus,
USW(τ ∗ | τ ∗) = U1.

Next suppose τ ∗ ≥ τ̂ . In this case, argmint≥0 I(t) = [τ̂,∞), so the La-
grangian is minimized by any distribution supported on [τ̂,∞). By the Kuhn–
Tucker conditions (see Footnote 31), a cumulative distribution function F

solves the relaxed problem (18) if and only if F is supported on [τ̂,∞), and F

35If τ < τ̂ , then in (19) the coefficient on e−λ0t is negative and the coefficient on e−(λ0+δ)t

is positive. After differentiating, these signs flip, so the derivative becomes positive for t > τ .
36Since h(t, t) = 0 for all t, the integrand I is differentiable at t = τ , and we have I ′(τ) = 0.

To prove that I ′(t) < 0 for t < τ , we show that that eλ1tI ′(t) is strictly increasing over [0, τ ].
For t < τ ≤ τ̂ we have(

eλ1tI ′(t)
)′

= e−(λ0−λ1)tη0

[
U1(λ0 + δ)e−δt(λ0 + δ − λ1)− U0λ0(λ0 − λ1)

]
> 0,

where the inequality holds because U1(λ0 + δ) > U0λ0 (by Assumption 2.A) and e−δt(λ0 +
δ − λ1) > λ0 − λ1 (since t < τ̂).
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satisfies ∫
(0,∞)

[
U0

U0 − U1

e−λ0s − U1

U0 − U1

e−(λ0+δ)s

]
dF (s) = 1, (22)

and for every t ≥ τ̂ ,∫
(t,∞)

[
U0

U0 − U1

e−λ0(s−t) − U1

U0 − U1

e−(λ0+δ)(s−t)
]

dF (s) = 1− F (t). (23)

By Lemma 3 in Appendix B.3, for each π in [0, 1] there is a unique cumulative
distribution function F supported on [τ̂,∞) with F (τ̂) = π that satisfies (23)
for every t ≥ τ̂ . Among these solutions, let π̂ be the unique value of π for
which (22) holds. To see that such a probability π̂ exists, note that left side
of (22) is at most 1 if π = 1 (since τ ∗ ≥ τ̂) and is strictly greater than 1 if
π = 0 (by the definition of γ∗). Moreover, π̂ is unique because the integrand
is strictly decreasing in s for s ≥ τ = τ̂ by (20).

Discount factor threshold in Theorem 4 We now relate the solution to
the detectability parameter δ. Clearly, τ ∗ is increasing in δ. On the other
hand, τ̂ is decreasing in δ since we have

τ̂ =
log(λ0 − λ1 + δ)− log(λ0 − λ1)

δ
,

and log is a concave function. Therefore, as a function of δ, the difference τ ∗−τ̂
is strictly increasing in δ. Observe that τ ∗ ↓ 0 as δ ↓ (λB +r)(U0−U1)/U1 (the
lower bound in Assumption 2.A), and τ̂ ↓ 0 as δ ↑ ∞. We conclude that there
exists a unique threshold δ̂ in ((λB +r)(U0−U1)/U1,∞) for which τ ∗ coincides
with τ̂ . If δ ≤ δ̂, then in both relaxed problems, the solution is periodic. If
δ ≥ δ̂, then τ ∗ ≥ τ̂ , so

e−δτ
∗
<

λ0 − λ1

λ0 + δ − λ1

<
U0(λ0 − λ1)

U1(λ0 + δ − λ1)
.

Thus, (16) is violated, and hence the relaxed solution is periodic/exponential.
Finally, we check that δ̂ can be defined by the formula given in the main

text. If δ = δ̂, then USW(τ ∗ | τ ∗) = U1 and hence USW(τ̂ | τ̂) = U1. For any δ,
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we have

USW(τ̂ | τ̂) = U0 − e−λ0τ̂
(
U0 − U1e

−δτ̂) = U0 − e−λ0τ̂
(
U0 − U1

λ0 − λ1

λ0 + δ − λ1

)
.

Since τ̂ is strictly decreasing δ, it follows that USW(τ̂ | τ̂) is strictly decreasing
in δ. Therefore, δ̂ can be defined by the equation USW(τ̂ | τ̂) = U1, as in the
main text (where the formula is stated in terms of LS rather than US).

Remaining deviations The same argument from “Remaining Deviations”
in the proof of Theorem 2 shows that the agent has a best response in which
shirking is frontloaded over inspection-free intervals. If the relaxed solution is
T = τ ∗, then by construction no shirk-before-work deviation is profitable, so
the proof is complete.

Now suppose that the relaxed solution is periodic/exponential. First we
show that the agent finds it optimal to shirk over the exponential phase, no
matter his action history. Over the exponential phase, the distribution of
inspection times is memoryless, so the only relevant state variable is the agent’s
belief, denoted q, that the state is 0. The agent’s belief evolves according to
the differential equation q̇t = −qtδ(1− at). Therefore the HJB equation reads

0 = max
a=0,1

{(1− a)u0 + au1 − qδ(1− a)V ′(q)− λaV (q) + γ∗(qU1 − V (q))} .

We verify that this HJB equation is solved by the value function

V (q) = U1 + (q − 1)(U0 − U1)λ0/δ. (24)

Plug in this value function, write λa = λ1a+ λ0(1− a), and substitute in the
expression for γ∗ from Theorem 4. Simplify to get

0 = max
a=0,1

a(q − 1)(U0 − U1)λ0(λ0 + δ − λ1)/δ.

Since λ0 + δ ≥ λ0 > λ1, this equation holds. At every belief q, the agent
weakly prefers shirking to working (strictly so if q < 1).
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We have shown that given any periodic/exponential policy (τ̂, π, γ∗), with
π < 1, the agent has a best response that takes the following form: shirk until
some time t, with t ≤ τ̂ , work until time τ̂ , and then shirk thereafter. Let
USWS(t | τ̂, π, γ∗) denote the agent’s expected payoff from such a deviation. In
terms of the value function V from (24), we have

USWS(t | τ̂, π, γ∗) = U0(1− e−λ0t) + e−λ0tU1(1− e−λ1(τ̂−t))

+ e−λ0t−λ1(τ̂−t) [πU1e
−δt + (1− π)V (e−δt)

]
.

Define π∗ to be the smallest probability π such that

max
t∈[0,τ̂ ]

USWS(t | τ̂, π, γ∗) = U1. (25)

Equation (25) holds for π = 1 (since τ ∗ ≥ τ̂) and fails for π = 0 (by the
definition of γ∗). By continuity, π∗ is well-defined and strictly positive.

To complete the proof, it suffices to check that USWS(τ̂ | τ̂, π∗, γ∗) = U1,
which implies that π∗ coincides with π̂. Differentiate USWS with respect to t.
We have

U ′SWS(τ̂ | τ̂, π∗, γ∗) = (U0 − U1)λ0e
−λ0τ̂ > 0,

and

U ′SWS(0 | τ̂, π∗, γ∗) = (U0 − U1)λ0 − e−λ1τ̂ [π∗U1δ + (1− π∗)(U0 − U1)λ0] .

By Assumption 2.B, we can apply the same argument following (15), with
π∗U1δ + (1 − π∗)(U0 − U1)λ0 in place of U1δ, to conclude that U ′SWS(0 |
τ̂, π∗, γ∗) < 0. Follow the argument after (21) to conclude that USWS(τ̂ |
τ̂, π∗, γ∗) = U1.
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B Online appendix

B.1 Proof of Theorem 5

Local deviations Suppose that until the next inspection, the agent plans
to shirk over [t, t + s) and work otherwise. Let Ut(s | τ) denote the agent’s
expected payoff if the principal inspects at time τ . For t + s < τ , the agent’s
probability of failing the inspection is (1− e−δs)e−ρ(τ−t−s), so

Ut(s | τ) = U1(1− e−λ1t) + e−λ1tU0(1− e−λ0s) + e−λ1t−λ0sU1(1− e−λ1(τ−t−s))

+ e−λ1(τ−s)−λ0sU1

[
1− (1− e−δs)e−ρ(τ−t−s)] .

For t < τ , differentiate with respect to s and simplify to get

U ′t(0 | τ) = e−λ1t
[
(U0 − U1)λ0 − e−(λ1+ρ)(τ−t)U1δ

]
. (26)

For t ≥ τ , we have Ut(s | τ) = U1 for all s ≥ 0, so U ′t(0 | τ) = 0.

Relaxed problem—local deviations Consider the relaxed problem of
choosing a positive random variable T to solve

minimize E e−λ1T

subject to EU ′t(0 | T ) ≤ 0, t ≥ 0.

To see that this constraint is necessary, recall that for all times t, we must have
EUt(s | T ) ≤ U1 = EUt(0 | T ). Now differentiate under the integral sign.

After substituting in the expression for Ut above, we see that this problem
is equivalent to choosing a cumulative distribution function F supported on
[0,∞) to solve

minimize
∫

[0,∞)

e−λ1t dF (t)

subject to
∫

(t,∞)

[
(U0 − U1)λ0

U1δ
− e−(λ1+ρ)(s−t)

]
dF (s) ≤ 0, t ≥ 0.

(27)
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Denote by h(t, s) the term in brackets in (27). The constraints are indexed by
times t ≥ 0. Attach a nonnegative multiplier η0 to the time-0 constraint and
a nonnegative density multiplier η(t) to the time-t constraint, for t ≥ 0. The
Lagrangian becomes

L(F ; η0, η) =

∫
[0,∞)

e−λ1t dF (t) + η0

∫
[0,∞)

h(0, s) dF (s)

+

∫ ∞
0

[∫
(t,∞)

h(t, s) dF (s)

]
η(t) dt.

Change the order of integration in the double integral and relabel the dummy
variables to get

L(F ; η0, η) = F (0) +

∫
(0,∞)

I(t) dF (t),

where

I(t) = e−λ1t + η0h(0, t) +

∫ t

0

η(s)h(s, t) ds.

Let η(t) = η̄e−λ1t for some η̄ ≥ 0. Substitute in this expression, integrate,
and group like terms to get

I(t) = e−λ1t
[
1− η̄

λ1

(U0 − U1)λ0

U1δ
− η̄

ρ

]
+ e−(λ1+ρ)t

[
−η0 +

η̄

ρ

]
+

(
η0 +

η̄

λ1

)
(U0 − U1)λ0

U1δ
.

To make the bracketed terms vanish, define the multipliers η̄ and η0 by

η̄ =
U1δλ1ρ

(U0 − U1)λ0ρ+ U1δλ1

, η0 =
U1δλ1

(U0 − U1)λ0ρ+ U1δλ1

.

The integrand I(t) is constant in t, so the relaxed problem is solved by any
cumulative distribution function F with F (0) = 0 that satisfies

U1δ

λ0(U0 − U1)

∫
(t,∞)

e−(λ1+ρ)(s−t) = 1− F (t),

for every t ≥ 0. By Assumption 2, U1δ > λ0(U0−U1), so we can apply Lemma 2
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from Appendix B.3 to conclude that the unique solution of the relaxed problem
is the exponential distribution with hazard rate

γ∗ =
(U0 − U1)λ0(λ1 + ρ)

U1(λ0 + δ)− U0λ0

.

Remaining deviations It remains to check that if the principal uses the
exponential policy with hazard rate γ∗, then it is optimal for the agent to work
until the inspection. Since the distribution of inspections is memoryless, the
only revelant state variable is the agent’s belief, denoted q, that the state is 0.
The agent’s belief evolves according to the differential equation

q̇t = (1− qt)ρat − qtδ(1− at).

The HJB equation reads

0 = max
a=0,1

{
(1− a)u0 + au1 + [(1− q)ρa− qδ(1− a)]V ′(q)

− λaV (q) + γ∗(qU1 − V (q))
}
. (28)

We verify that this HJB equation is solved by the function

V (q) = U1 + (q − 1)(U0 − U1)λ0/δ.

Plug in this value function, write λa = λ1a+ λ0(1− a), and substitute in the
expression for γ∗ from Theorem 5. Simplify to get

0 = max
a=0,1

(a− 1)(q − 1)(U0 − U1)λ0(λ0 + δ − λ1 − ρ)/δ.

If λ1 + ρ ≥ λ0 + δ, then this equation is satisfied. In this case, at every belief
q, the agent weakly prefers working to shirking (strictly so if q < 1).

B.2 Robustness to small recovery rate

Here we formalize the claimed robustness to perturbing ρ.
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Theorem 6 (Robustness to recovery)
Fix all the problem parameters other than δ and ρ.

1. Suppose λG ≥ λB and u1 < u0. Then there exist strictly positive thresh-
olds δ̄ and ρ̄ such that for all δ ≥ δ̄ the optimal policy in Theorem 3
remains optimal with any recovery rate ρ in [0, ρ̄].

2. Suppose λG < λB. Then there exist strictly positive thresholds δ̄ and ρ̄
such that for all δ ≥ δ̄, the periodic policy in Theorem 4 remains optimal
with any recovery rate ρ in [0, ρ̄].

Proof. We follow the proof of Theorems 3 and 4 (Appendix A.6), indicating
the appropriate modifications to accommodate a positive recovery rate ρ.

Binding shirk-before-work deviation With a positive recovery rate ρ,
the agent’s shirk-before-work payoff now takes a different form. For t ≤ τ , the
agent’s probability of failing the inspection is (1− e−δt)e−ρ(τ−t), so

USW(t | τ)

= U0(1− e−λ0t) + e−λ0tU1(1− e−λ1(τ−t)) + e−λ0t−λ1(τ−t)U1

[
1− (1− e−δt)e−ρ(τ−t)]

= U0 − (U0 − U1)e−λ0t − U1e
−λ0t−λ1(τ−t)(1− e−δt)e−ρ(τ−t).

Define τ ∗ and t̄ with this new expression for USW. As before (see footnote 33),
it can be shown that τ ∗ is well-defined.

We first identify a condition under which we get U ′SW(0 | τ ∗) < 0. If

0 = U ′SW(0 | τ ∗) = −e−(λ1+ρ)τ∗U1δ + λ0(U0 − U1),

then

U ′′SW(0 | τ ∗) = e−(λ1+ρ)τU1δ(δ + 2λ0 − 2λ1 − 2ρ)U1 − (U0 − U1)λ2
0

= (U0 − U1)λ0(δ + λ0 − 2λ1 − 2ρ)U1

> 0,

(29)

provided that δ + λ0 − 2λ1 − 2ρ > 0.
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Assuming δ + λ0 − 2λ1 − 2ρ > 0, we identify a further condition under
which we get t̄ = τ ∗. Since U ′SW(0 | τ ∗) < 0, we can argue as before, using
Descartes’ rule of signs, provided that

0 < U ′SW(τ ∗ | τ ∗) = e−λ0τ
∗(
U0λ0 − (λ1 + ρ)U1 − e−δτ

∗
(λ0 + δ − λ1 − ρ)U1

)
.

Combining these two sufficient conditions gives the system

δ + λ0 − 2λ1 − 2ρ > 0, (30)

ρU1 + e−δτ
∗
(λ0 + δ − λ1 − ρ)U1 < U0λ0 − λ1U1. (31)

The agent’s payoff from shirking forever is unaffected by ρ. Therefore, if this
system is satisfied, then the period τ ∗ and the relaxed problems and solutions
are the same as in the model without recovery.

Remaining deviations The argument from “Remaining Deviations” in the
proof of Theorem 2 can be modified to show that it is optimal for the agent to
frontload shirking over no-inspection intervals. In fact, with recovery, front-
loading shirking has the additional benefit of increasing the agent’s passage
probability.37

Suppose that the solution of the relaxed problem is periodic/exponential
with π∗ < 1. It follows that λ0 > λ1. First we check that the agent finds it
optimal to shirk over the exponential inspection interval [τ̂,∞), no matter his
action history. As in (28), the relevant state variable is the belief q that the
the state is 0. Now the HJB equation reads

0 = max
a=0,1

{
(1− a)u0 + au1 + [(1− q)ρa− qδ(1− a)]V ′(q)

− λaV (q) + γ∗(qU1 − V (q))
}
.

37If the state is 0 with probability q, then after shirking for duration ∆ and then working
for duration ∆, the state is 0 with probability qSW = 1 − (1 − qe−δ∆)e−ρ∆. If instead
the agent works for duration ∆ and then shirking for duration ∆, then the state is 0 with
probability qWS = (1 − (1 − q)e−ρ∆)e−δ∆. With δ and ρ both strictly positive, it can be
checked that qSW > qWS, no matter the value of q.

49



We verify that this HJB equation is solved by the same value function

V (q) = U1 + (q − 1)(U0 − U1)λ0/δ.

Plug in this value function, write λa = λ1a+ λ0(1− a), and substitute in the
expression for γ∗ from Theorem 4. Simplify to get

0 = max
a=0,1

a(q − 1)(U0 − U1)λ0(λ0 + δ − λ1 − ρ)/δ.

This equation is satisfied if λ0 + δ − λ1 − ρ > 0, which is implied by (30).
In this case, at every belief q, the agent weakly prefers shirking to working
(strictly so if q < 1).

Finally, we turn to the shirk-work-shirk deviations. With a positive recov-
ery rate ρ, the agent’s shirk-work-shirk payoff now takes a different form. We
have

USWS(t | τ̂, π, γ∗) = U0(1− e−λ0t) + e−λ0tU1(1− e−λ1(τ̂−t))

+ e−λ0t−λ1(τ̂−t) [πq(t)U1 + (1− π)V (q(t))] ,

where q(t) = 1− (1− e−δt)e−ρ(τ̂−t). Define π∗ by (25), with the new expression
for USWS. As before, it can be shown that π∗ is well-defined.

To complete the proof, it suffices to check that USWS(τ̂ | τ̂, π∗, γ∗) = U1, for
then π∗ agrees with π̂ (which is the same in the no-recovery case). We have

U ′SWS(τ̂ | τ̂, π∗, γ∗) = e−λ0τ̂
[
(U0 − U1)λ0 −

ρ(π∗U1δ + (π∗ − 1)(U0 − U1)λ0)

λ0 + δ − λ1

]
.

This expression is strictly positive if

(U0 − U1)λ0 −
ρU1δ

λ0 + δ − λ1

> 0.

Since λ0 > λ1, this holds if

ρ <
λ0(U0 − U1)

U1

. (32)
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If (30) holds, then we can apply the same argument following (29), with
π∗U1δ + (1 − π∗)(U0 − U1)λ0 in place of U1δ, to conclude that U ′SWS(0 |
τ̂, π∗, γ∗) < 0. The rest of the proof is completed as before using Descartes’
rule of signs.

Solving for the thresholds For part 1, assuming U1λ1 < U0λ0, we can
select thresholds δ̄ and ρ̄ such that (30)–(31) hold for all δ ≥ δ̄ and ρ ≤ ρ̄.38

For part 2, we have U1λ1 < U0λ0 because λ1 < λ0. In this case, choose δ̄
and ρ̄ as before to satisfy (30)–(31), and then use min{ρ̄, λ0(U0 − U1)/U1} as
the new threshold for ρ to ensure that (32) holds as well.

B.3 Uniqueness

The proofs of uniqueness rely on the following lemmas. To represent a distribu-
tion over [0,∞), define a cumulative distribution function supported on [0,∞)

to be a function F : [0,∞)→ [0, 1] that is weakly increasing, right-continuous,
and satisfies supx≥0 F (x) = 1.

Lemma 2 (Unique fixed point—single exponential)
Fix A > 1 and α > 0. For each π in [0, 1), there exists exactly one cumulative
distribution function F supported on [0,∞) with F (0) = π satisfying∫

(t,∞)

Ae−α(s−t) dF (s) = 1− F (t), (33)

for every t ≥ 0. Namely, F (t) = π + (1− π)(1− e−γt), with γ = α/(A− 1).

Proof. Let F be a cumulative distribution function on [0,∞) that satisfies this
system. Put t = 0 in (33) to get∫

(0,∞)

Ae−αs dF (s) = 1− F (0) = 1− π.

38Note that the second term on the left side of (31) is at most e−δτ
∗
(λ0 + δ−λ1)U1. First

choose δ̄ and ρ̄ to ensure that τ∗ is bounded from below by some positive constant c. Then
take τ∗ = c in (31), and strengthen the thresholds as needed to ensure that this new form
of (31) and also (30) both hold.
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For all t ≥ 0, we have∫
(t,∞)

Ae−α(s−t) dF (s) = eαt
[
1− π −

∫
(0,t]

Ae−αs dF (s)

]
.

Use the layer-cake representation and then change variables to get∫
(0,t]

Ae−αs dF (s) = Ae−αt[F (t)− F (0)] + A

∫ 1

e−αt
[F (−α−1 log x)− F (0)] dx

= Ae−αtF (t) +

∫ t

0

Aαe−αsF (s) ds− Aπ.

Substitute these equalities into (33) to get

(1− π)eαt − AF (t)−
∫ t

0

Aαe−α(s−t)F (s) ds+ Aπeαt = 1− F (t).

Solve for F (t) to get

F (t) = πeαt +
1

A− 1

[
eαt − 1−

∫ t

0

Aαe−α(s−t)F (s) ds

]
.

That is, F is a fixed point of an operator defined by the the expression on
the right side. Define this operator on the space of bounded functions on an
interval [0, t1] with the supremum norm. For t1 < Aα/(A − 1), this operator
is a contraction, and hence has a unique fixed point, denoted F1. For some t2
larger than t1, define the operator on the space of bounded functions on [0, t2],
by replacing F (t) with F1(t) on the right side for t ≤ t1. If t2 < t1+αA/(A−1),
then this operator is a contraction and hence has a unique fixed point F2 on
[0, t2] that extends F1. Continuing in this way, each operator is a contraction
provided that ti+1−ti < Aα/(A−1). Construct a sequence (ti) satisfying these
inequalities with ti ↑ ∞. We get a sequence of fixed points Fi over [0, ti]. For
each fixed t, we must have F (t) = Fi(t) for all i such that ti ≤ t. Therefore,
F is unique.

It remains to check that this F is actually a cumulative distribution func-
tion. Guess that F (t) = π + (1 − π)(1 − e−γt) for t ≥ 0. We have F (0) = π,
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and (33) is satisfied for all t if Aα/(α + γ) = 1, hence γ = α/(A − 1). This
cumulative distribution function is therefore the unique solution.

Lemma 3 (Unique fixed point—sum of exponentials)
Fix positive numbers A,B, α, β with A−B = 1 and βB > αA. For each π in
[0, 1), there exists exactly one cumulative distribution function F supported on
[0,∞) with F (0) = π satisfying∫

(t,∞)

[
A(1− e−α(s−t))−B(1− e−β(s−t))

]
dF (s) = 0, (34)

for every t ≥ 0. Namely, F (t) = π+(1−π)(1−e−γt), with γ = αβ/(βB−αA).

Proof. Let F be a cumulative distribution function on [0,∞) that satisfies
this system. The integrand is continuous in (s, t) and vanishes when s = t.
Therefore, we can calculate the total derivative of the left side with respect to t
by differentiating under the integral (by dominated convergence) and ignoring
the change in the left endpoint. Thus,∫

(t,∞)

[
−αAe−α(s−t) + βBe−β(s−t)] dF (s) = 0, (35)

for all t ≥ 0. Multiply (34) by β and subtract (35). Simplify using the equality
A−B = 1 to conclude that∫

(t,∞)

(β − α)A

β
e−α(s−t) dF (s) = 1− F (t),

for all t ≥ 0. Since A = B + 1 and βB > αA, it follows that βA > αA + β.
Therefore, (β − α)A/β > 1, so we can apply Lemma 2 to complete the proof,
noting that

γ =
α

(β − α)A/β − 1
=

αβ

βA− αA− β
=

αβ

βB − αA
.
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