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Abstract

We use natural experiments embedded in state-run lotteries and a new nationally representa-

tive survey to provide reduced-form and structural estimates of risk preferences and behavioral

biases in lottery demand. We find that sales respond more to the expected value of the jackpot

than to price, but are unresponsive to variation in the second prize—a pattern that is consistent

with probability weighting but is inconsistent with standard parameterizations. In the survey,

we find that lottery spending decreases modestly with income and is strongly associated with

measures of innumeracy, poor statistical reasoning, and other proxies for behavioral bias, which

also decline with income. Regression predictions suggest that Americans would spend 43 per-

cent less on lotteries if they were unbiased, while the remaining lottery demand is due to other

factors such anticipatory utility or entertainment value. We use these empirical moments to

estimate a model of socially optimal lottery design. In the model, current multi-state lottery

designs increase welfare but may harm heavy spenders.
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“[A lottery] preys upon the hard earnings of the poor; it plunders the ignorant and

simple.”

– U.S. Supreme Court, in Phalen v. Virginia (1850)

“In our stressful world, the ability to dream is well worth the price of a lottery ticket ...

The lottery is simply a form of entertainment that happens to benefit your state.”

– National Association of State and Provincial Lotteries (2021b)

“Since this regressive, addictive, partially hidden tax is here to stay, might a little

improvement still be conceivable? ... Here’s a modest suggestion: States should consider

reducing their skim of the wagers.”

– Purdue University president and former Indiana governor Mitch Daniels (2019)

People have long debated whether states should run lotteries. Opponents argue that lotteries

are a regressive tax on people who are bad at math. Proponents argue that lotteries are a win-win,

generating both consumer surplus and government revenues. If states do run lotteries, there are

further debates, such as the optimal “implicit tax”—the share of revenues that is allocated to the

government instead of returned to prize winners. Economists are divided: a recent survey of the

University of Chicago IGM experts panel found that 23 percent of leading economists believe that

state-run lotteries increase social welfare, 28 percent disagree, and 45 percent were uncertain or

had no opinion.1

These debates matter. Americans spent a remarkable $679 per household (or $87 billion in

total) on lottery tickets in 2019, generating $25 billion in state government revenues. This was

more than the revenue raised by federal estate or tobacco taxes, and just less than the revenue

raised by the federal gas tax (Internal Revenue Service 2021). Americans spend more on lottery

tickets than they do on cigarettes, and more than they do on music, sports tickets, movie tickets,

books, and video games combined (Isidore 2015).

Embedded within these debates is a series of core (behavioral) economics questions. How does

people’s demand for lotteries vary with their prize structure, and what does this imply about

underlying risk preferences? How much of lottery consumption is driven by innumeracy or other

behavioral biases, as opposed to entertainment and other normatively respectable preferences? Do

lower-income people spend more on lotteries, and is this good (because it reflects consumer surplus

for people with higher marginal utility) or bad (because it reflects exploitation of behavioral biases)?

How should states design lotteries to maximize welfare, accounting for consumer surplus, possible

behavioral biases, concerns about regressivity, and the value of public funds?

We address these questions with new data on how people respond to variation in prizes and

sales, and a new nationally-representative survey linking lottery expenditures to household income

and proxies for behavioral biases such as incorrect perceptions of lottery returns, over-optimism,

or self control problems. We complement the reduced-form results from these data by calibrating a

1See www.igmchicago.org/surveys/state-run-lotteries.

1

http://www.igmchicago.org/surveys/state-run-lotteries


structural model of lottery demand, including nonlinear probability weights (as in, e.g., Kahneman

and Tversky, 1979, and Prelec, 1998). Finally, we illustrate the policy relevance of our empirical

estimates by considering state-run lotteries in an optimal taxation model, and deriving implications

for welfare and optimal design.

Section 2 lays out our conceptual framework. We begin with a positive model of lottery demand

in which consumers apply flexible decision weights to potential outcomes, and we show that demand

elasticities with respect to prizes and prices of lottery tickets identify these weights. These decision

weights may be driven by behavioral biases, normative preferences, or a combination.We then

present an optimal policy model for studying the welfare effects of different lottery designs. This

model can be applied to goods other than lotteries, and it generalizes the “optimal sin tax” model

of Allcott, Lockwood, and Taubinsky (2019) to settings where the government can also regulate

or directly control a good’s attributes—for example, cigarette nicotine content or lightbulb energy

efficiency. In the model, the policymaker has multiple instruments that determine the implicit tax

on lotteries, including raising the price, reducing the jackpot or other prizes, and reducing the prize

probabilities. Optimal policy takes into account how these instruments can both counteract bias

(the usual corrective taxation logic) and affect bias—for example, if a change in the jackpot win

probability affects the misperception of that probability.

The model of positive lottery demand motivates the empirical analysis in Section 3, where we

estimate the aggregate semi-elasticities of demand with respect to prizes and price by exploiting

natural experiments built into the two large multi-state lotteries, Mega Millions and Powerball.

When nobody wins the jackpot, the jackpot prize money is “rolled over” to the next drawing.

Since the winning numbers are randomly selected, rollovers are random conditional on ticket sales,

generating conditionally random variation in the jackpot over time. In California, lower prizes

also roll over if they are not won, and winning the second prize is unlikely enough that it rolls

over regularly. We identify the effect of ticket prices on demand from event studies of when Mega

Millions and Powerball separately increased their prices from $1 to $2.
The semi-elasticities of demand with respect to the jackpot expected value, second prize ex-

pected value, and price are about 1.7, statistically zero, and −0.5, respectively. Strikingly, this

means that ticket sales increase over three times as much if the jackpot expected value increases by

$1 than if the price decreases by $1. This is the opposite of what would be expected for risk-averse

consumers, and it is not explained by substitution across games or time. This pattern is qualita-

tively consistent with the long literature on probability weighting.2 Quantitatively, however, the

jackpot elasticity is so large relative to the second prize elasticity that our estimates cannot be fit

by three standard functional forms from the literature (Goldstein and Einhorn 1987; Tversky and

Kahneman 1992; Prelec 1998). We show that these estimated elasticities are instead consistent

with the neo-additive specification formalized by Chateauneuf, Eichberger, and Grant (2007).

We complement the quasi-experimental analysis with a new nationally-representative survey to

2See, for example, Kahneman and Tversky (1979), Tversky and Kahneman (1992), Prelec (1998), Gonzalez and
Wu (1999), Wakker (2010), Filiz-Ozbay et al. (2015), and Bernheim and Sprenger (2020).
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inform two complementary questions. First, how much of the apparent probability weighting is

due to behavioral biases versus normative preferences like wishful thinking or the joy of playing?

Second, does demand for lotteries vary by income? We carried out the survey on the AmeriSpeak

panel, a high-quality probability-based sample that includes households that might not participate

in cheaper opt-in surveys.

We find that the spending distribution is highly skewed, generating some imprecision in the es-

timated means, but point estimates suggest that lottery spending declines moderately with income:

people with household income under $50,000 spend 29 percent more on the lottery than people with

household income above $100,000. Measures of perceived self-control problems, financial illiteracy,

statistical mistakes (such as the Gambler’s Fallacy, non-belief in the Law of Large Numbers, and

difficulty calculating expected values), and incorrect beliefs about expected returns from lottery

play are highly statistically significantly associated with more lottery spending. This holds both

unconditionally and after controlling for demographics, risk aversion, and questions measuring how

much people enjoy playing the lottery. Interestingly, not all of these relationships suggest that

bias increases consumption: while in reality 60 percent of lottery revenues are returned to winners,

the average person believes that the expected returns are only 29 percent, a misperception that

presumably decreases demand. We measure and correct for imperfect test-retest reliability by re-

sampling the same survey respondents one year later, building on other resampling designs such

as Beauchamp, Cesarini, and Johannesson (2017), Gillen, Snowberg, and Yariv (2019), Chapman

et al. (2020), and Stango and Zinman (Forthcoming).

Motivated by our model, we use these results to estimate the quantity of lottery demand that is

driven by behavioral biases. Regression predictions suggest that Americans would spend 43 percent

less on lotteries if they had perfect self-control, had the financial literacy and statistical ability of

the highest-scoring people in our sample, and had correct beliefs about expected returns. Lower-

income people score lower on financial literacy and statistical ability, so the point estimates suggest

that a larger share of their spending is attributable to bias. Although we control for a rich array of

demographics and preference measures, a key caveat is that these regression predictions are not the

causal effects of behavioral biases. With that important caveat, these results are consistent with

concerns that behavioral biases play a role in lottery spending.

These reduced-form results allow us to calibrate our structural model of lottery demand. The

structural estimates imply that the weight people attach to the jackpot is 221 times as large as

the objective probability of winning the jackpot. We estimate that on average, 30 percent of

the difference between the decision weight and the probability is driven by bias, although there

is significant heterogeneity in bias. The bias share ranges from 33 percent for heavy-spending

high-income consumers to 17 percent for middle- and high-income consumers who only buy lottery

tickets occasionally.

Using our structural model to simulate the implications of alternative lottery designs, we find

that the optimal implicit tax rate on lotteries is slightly lower than current Mega Millions and

Powerball designs. In our model, actual consumer surplus is much smaller than consumers’ per-
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ceived surplus at our baseline behavioral bias estimates, but the current Mega Millions and Power-

ball designs increase welfare and deliver close to maximal welfare levels. A key channel for these

gains comes through the effect on revenues: lotteries raise public funds while also generating (much

smaller) consumer surplus for lottery purchasers. These results hinge on the magnitude of behav-

ioral bias. For example, if we alternatively assume zero bias, then low-income heavy spenders derive

the most surplus. If bias is more than about twice as large as our baseline estimate, lotteries would

reduce overall welfare. This highlights the importance of our survey evidence but also underscores

the need for future work.

Our main contribution to the literature is the new empirical results on decisionmaking under risk

and key parameters relevant for lottery design, including elasticities and the relationship between

lottery consumption, income, and proxies for behavioral bias. Our paper is also the first to formalize

and empirically implement a framework for studying optimal lottery policy with behavioral bias

and redistributive concerns.

We build on six distinguished literatures. The first is a reduced-form empirical literature on

state-run lotteries; see Clotfelter and Cook (1989, 1990), Kearney (2005a), and Grote and Matheson

(2011) for overviews. This includes papers studying how lottery spending varies by income and

other demographics.3 While lotteries have changed substantially in the past two decades, to our

knowledge our AmeriSpeak survey is the first to measure individual-level lottery spending using a

nationwide probability sample since Clotfelter et al. (1999).4 This literature also includes papers

studying aggregate demand patterns and substitution across games.5 We extend that work by (i)

using instrumental variables to address simultaneity bias in the relationship between jackpots and

sales, (ii) using new data to estimate the elasticity with respect to the second prize, which we

find to be very different than the jackpot elasticity, and (iii) exploiting recent Mega Millions and

Powerball price changes to estimate the price elasticity of demand for those games. Both (ii) and

(iii) are necessary for structural estimates of the probability weighting function.

The second literature we build on is the work in structural behavioral economics (DellaVigna,

List, and Malmendier, 2012; DellaVigna et al., 2017, 2022), particularly in its application to field

and natural experiments.6 The third literature we build on studies behavioral biases that might

affect gambling and lottery demand in the field.7 While much of this literature studies one or two

biases in isolation, our survey extends this literature by offering a more comprehensive measure of

the many different biases that could affect lottery demand. The fourth literature studies the use of

3See, for example, Clotfelter and Cook (1987), Clotfelter et al. (1999), Farrell and Walker (1999), Price and Novak
(1999, 2000), and Oster (2004).

4Lottery spending is “drastically underreported” in the Consumer Expenditure Survey (Kearney 2005b).
5See, for example, Clotfelter and Cook (1989), Cook and Clotfelter (1993), Farrell, Morgenroth, and Walker (1999),

Farrell et al. (2000), Kearney (2005b), Grote and Matheson (2006), Guryan and Kearney (2010), and Knight and
Schiff (2012).

6See, also Conlin, O’Donoghue, and Vogelsang (2007), Giaccherini et al. (2019), Laibson et al. (2021), Shlain
(2021). See DellaVigna (2018) for a review.

7Studies outside of laboratory settings include Clotfelter and Cook (1993), Haisley, Mostafa, and Loewenstein
(2008), Guryan and Kearney (2008), Post et al. (2008), Snowberg and Wolfers (2010), and Suetens, Galbo-Jørgensen,
and Tyran (2016). A separate large literature, e.g. Kahneman and Tversky (1979) and subsequent work, studies
related biases in laboratory settings.
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lotteries to encourage beneficial behaviors such as saving money (Kearney et al. 2011), charitable

giving (Landry et al., 2006; Lange, List, and Price, 2007a,b), and healthy behaviors (Haisley et al.

2012). These behavior change-focused lotteries are distinct from the state-run lotteries that we

study because the objective of these lotteries is behavior change, rather than striking an optimal

balance between raising revenue and increasing consumer surplus through entertainment. The

fifth literature is the work in behavioral public economics, studying other settings where behavioral

biases affect optimal policy design.8 The sixth literature studies how survey measures of bias predict

behavior.9

Sections 1–6 present the background, conceptual framework, quasi-experimental evidence on

lottery demand, survey evidence on lottery expenditures and behavioral biases, model calibration,

and welfare analysis, respectively.

1 Background on Lotteries in the United States

From 1995 to 2019, real lottery spending grew from $540 per household ($53 billion in total) to

$679 per household ($87 billion in total); see Appendix Figure A1. There are two major types of

lottery games: instant (or “scratch-off”) games and draw games, where players choose numbers

and win if their numbers match those selected in the next drawing. The largest draw games are

two multi-state lotteries, Mega Millions and Powerball. From 1995 to 2019, instant games grew

from 38 to 65 percent of sales, Mega Millions and Powerball grew from 3 to 9 percent, and all other

games dropped from 59 to 26 percent.

Of the $87 billion in 2019 sales, 60 percent was returned in prizes, 10 percent was overhead

(6.5 percent commissions and 3.9 percent administrative costs), and the remaining 29 percent

represented state government proceeds; see Appendix Figure A2. This 29 percent implicit tax has

decreased from 34 percent since 1995, a trend that is associated with the growing market share of

instant games, which return a larger share to winners. Lottery prizes are taxed as income, so an

additional share of prize money returns to governments through the income tax.

Our aggregate demand estimation focuses on Mega Millions and Powerball from June 2010

through February 2020. In Mega Millions, players select five numbers from 1 to 70 and one Mega

Ball number from 1 to 25; this is the “5/70 + 1/25 format.” Powerball uses a 5/69 + 1/26 format.

Players win the jackpot if their numbers match all six balls selected in the next semi-weekly drawing;

players can also win lower prizes from $2 to $1,000,000 by choosing one or more numbers correctly.

Table 1 presents ticket price and prize information for the formats in place during our sample

period. For both games, tickets now cost $2, and the jackpot odds are about 1/300,000,000. The

8See, e.g., Bernheim and Rangel (2004, 2009), Mullainathan, Schwartzstein, and Congdon (2012), Allcott, Mul-
lainathan, and Taubinsky (2014), Allcott and Taubinsky (2015), Baicker, Mullainathan, and Schwartzstein (2015),
Bernheim, Fradkin, and Popov (2015), Handel and Kolstad (2015), Ambuehl, Bernheim, and Lusardi (2022), Spin-
newijn (2017), Taubinsky and Rees-Jones (2018), Allcott, Lockwood, and Taubinsky (2019), Handel, Kolstad, and
Spinnewijn (2019), Beshears et al. (2020), Farhi and Gabaix (2020), Goldin and Reck (2020), and Rees-Jones and
Taubinsky (2020); see Bernheim and Taubinsky (2018) for a review.

9See, e.g., Chabris et al. (2008), Meier and Sprenger (2010), Beauchamp, Cesarini, and Johannesson (2017), Gillen,
Snowberg, and Yariv (2019), Chapman et al. (2020), and Stango and Zinman (Forthcoming).
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ratios of ticket expected value to price are 0.28 and 0.32, so accounting for 10 percent overhead

gives implicit tax rates of 62 and 58 percent, respectively.

Jackpot amounts are determined on a parimutuel basis: the jackpot prize pool depends on ticket

sales, and the jackpot is split equally among all winners. Jackpot winners can choose to receive 30

annual installments that increase by five percent per year or the discounted present value of that

annuity at current interest rates; most choose the latter. Before each drawing, Mega Millions and

Powerball advertise an “estimated jackpot,” which is the undiscounted value of the annuity based

on projected ticket sales. If no one wins the jackpot, the jackpot prize pool is rolled over to the

next drawing. If someone wins the jackpot, the next drawing’s jackpot returns to a reset value,

which was a $40 million annuity for both Mega Millions and Powerball at the end of our sample in

February 2020.10

In most states, the lower prize amounts are fixed. However, the California Supreme Court ruled

in 1996 that the California State Lottery Act allows parimutuel games where players play against

other players, but not games where players play against the house. As a result, both Mega Millions

and Powerball have California-specific parimutuel prize pools for each lower prize that roll over to

the next draw if they are not won. The second prize odds are about 1/12,000,000 for both games,

so there are many drawings when no one wins the second prize and it thus rolls over. The third

and lower prizes have high enough odds that they generally don’t roll over.

Powerball began in 1992 with 15 states, and Mega Millions began in 2002 with 9 other states.

Both games replaced earlier multi-state games with different names, and both have gradually added

states over time. After a cross-selling agreement was reached, individual states began to offer both

games in 2010. By June 2010, 42 states had joined Mega Millions and 41 had joined Powerball.

From September 2014 through the end of our sample, both games were available through all 45

state lotteries and the D.C. and U.S. Virgin Islands lotteries.11

Mega Millions and Powerball have both adjusted their pricing and formats multiple times since

2010, as shown in Table 1. There are five key trends. First, both games increased prices from $1 to

$2. Second, the jackpot odds have been reduced, increasing the frequency of rollovers: the jackpot

was won every 7.4 drawings in 2010–2011 but only every 15.4 drawings in 2018–2019. Third, the

prize structure is being hollowed out: there is less expected value in the middle prizes and more in

the jackpot and lowest prizes. Fourth, as a result of the previous two trends, average jackpots have

grown: the average jackpot was $37 million in 2010–2011 and $103 million in 2018–2019. Fifth, the

ratio of expected value to price is decreasing, i.e., winners receive a smaller share of the revenues.

This pushes against the overall trend of lower implicit taxes described above.

10In March 2020, lottery sales dropped substantially due to the coronavirus pandemic, and both games temporarily
lowered their reset value to a $20 million annuity at the beginning of April. We say “current design” to refer to the
design in place just before the pandemic.

11Alabama, Alaska, Hawaii, Nevada, and Utah do not have state lotteries. The Puerto Rico lottery only offers
Powerball.
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2 Conceptual Framework

In this section we present a simple model to formalize the concepts that guide our empirical analysis.

We first present a positive model of lottery demand, and we show how key parameters are identified

from prize and price elasticities. We estimate these elasticities from historical sales data in Section

3. We then incorporate a general specification of behavioral biases, which includes probability

misperceptions, present focus, and misforecasted happiness. We end by characterizing optimal

price and lottery structure as a function of behavioral biases, elasticities, and society’s preference

for inequality reduction.

2.1 A Positive Model of Lottery Demand

In the tradition of Kahneman and Tversky (1979) and Tversky and Kahneman (1992), we model

individuals as maximizing their utility by aggregating across different outcomes with outcome-

specific “decision weights” that may differ from objective probabilities. Differences could be due

to salience or focusing effects (Bordalo, Gennaioli, and Shleifer 2013; Kőszegi and Szeidl 2013;

Bushong, Schwartzstein, and Rabin 2021), advertising effects, incorrect beliefs about objective

probabilities, and non-standard preferences. Although some papers building on this literature use

the phrase “probability weights” (e.g., Prelec, 1998) we use the more general phrase “decision

weights” to emphasize that the psychological weight applied a potential outcome may depend on

factors other than that outcome’s objective probability.

Individuals choose whether to buy a lottery ticket xt ∈ {0, 1} on each of many choice occasions

indexed by t. We disaggregate demand into a series of binary decisions on different choice occasions

because decision weighting most plausibly applies at the level of each individual ticket, rather than

at the level of an aggregate portfolio. This is consistent with the evidence on narrow bracketing

(Tversky and Kahneman 1981; Rabin and Weizsacker 2009), particularly as it applies to lottery

tickets (Haisley, Mostafa, and Loewenstein 2008). This is also consistent with our empirical results

that there is no substitution between different types of lotteries. To simplify exposition in the body

of the paper, we assume that there is a single choice occasion. The more general case with multiple

choice occasions is characterized in Appendix C.

To integrate our model of lottery demand into a broader policy model with redistributive tax-

ation and the associated distortions, we assume individuals also choose labor supply, and thus

earnings z, which are subject to a nonlinear income tax T (z). Lottery tickets are purchased, at

price p, out of net-of-tax income, the rest of which is spent on numeraire consumption c whose

price is normalized to one. We define a as a vector of lottery attributes, including the K prizes

w = (w1, . . . , wK) and corresponding probabilities π = (π1, . . . , πK), as well as other possible

attributes such as advertising.

Individuals have heterogeneous types θ capturing income-earning ability, preferences, and be-

havioral biases. On each choice occasion, individuals receive a lottery taste shock ε drawn from

a continuous distribution. We think of ε as representing the transaction cost of buying a lottery
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ticket. We let F (θ, ε) denote the joint distribution over types and taste shocks, and we let Fθ denote

the marginal distribution over θ, and Fε|θ the conditional distribution of ε. We define u(a; θ, ε) as

the perceived subutility from purchasing a lottery ticket—described in detail below—and we de-

fine ψ(z; θ) as the labor disutility of generating earnings z. Individuals maximize total “perceived

utility”

U = G(c+ x · u(a; θ, ε)− ψ(z; θ)), (1)

subject to their budget constraint z − T (z) = c+ px, where G is twice-differentiable and concave.

The more general model in Appendix C relaxes the quasilinarity assumption. Empirically, we find

income effects on lottery consumption to be small, and in our welfare simulations we find that these

effects have a negligible impact on our results.12

We assume that the subutility from a lottery ticket takes the form

u(a; θ, ε) =
∑
k

Φk(θ)m (wk; θ)− ε (2)

where m(wk; θ) is the incremental utility from gaining wk more post-tax income, normalized by

the individual’s marginal utility of consumption. Formally, if U(W ) is the utility function over

continuation wealth W and y denotes the agent’s (net) continuation wealth absent any prize, then

m(w) = U(y+w)−U(y)
U ′(y) . Consequently, concavity of U implies that m′(w) = U ′(u+ w)/U ′(y)≤ 1.

The decision weight corresponding to outcome k is Φk, so that Φk(θ) ≡ πk corresponds to ex-

pected utility preferences. Because we normalize m by the local marginal utility of consumption,∑
k Φk(θ)m (wk; θ) can be interpreted as the certainty equivalent of the lottery, absent transaction

costs.

This utility specification nests many modifications of expected utility theory proposed in the

literature on prospect theory and cumulative prospect theory.13 In this class of models, the weight

applied to a particular outcome is invariant to the outcome’s payoff, so payoff variation can be

used to identify weights, as we describe in the next subsection. Although a decision weight Φk may

depend on the objective probability πk, as in models of probability weighting, it may also depend

on other factors, such as advertising, game frequency, or even other prize probabilities.

Type θ’s demand function is the average across many binary purchase decisions of type-θ indi-

viduals with different taste shocks ε:

s(p,a; θ) = Pr (u(a; θ, ε) > p) (3)

= Fε|θ

[∑
k

Φk(θ)m (wk; θ)− p

]
. (4)

12Quasilinearity also implies that changes to the lottery structure or price do not affect labor supply. The more
general model in the appendix allows for such distortionary effects, but shows that they are negligible if income effects
on lottery consumption are negligible.

13See, e.g., Kahneman and Tversky (1979), Prelec (1998), Gonzalez and Wu (1999), Wakker (2010), Filiz-Ozbay
et al. (2015), and Bernheim and Sprenger (2020).

8



We define s̄(p,a) :=
∫
s(p,a; θ)dFθ(θ) as population-level aggregate demand. When no ambiguity

arises, we sometimes suppress arguments in the demand functions.

2.2 Using Elasticities to Identify Decision Weights

With minor abuse of notation, we sometimes write s(z) and other statistics as functions of z, to

denote consumption of s among all z-earners, and so forth. We define ζp(z) :=
d ln s(z)

dp as the semi-

elasticity of demand with respect to ticket price, and we define ζa(z) :=
d ln s(z)

da as the semi-elasticity

of demand with respect to attribute a. We define ζ̄p and ζ̄a as population-wide semi-elasticities.

When there is no ambiguity, we use ζk to denote the elasticity with respect to the expected value of

the kth prize, πkwk. Consistent with our empirical analysis, this elasticity is defined with respect

to variation in the prize wk, not in the probability πk.
14

Our model implies the following relationship between decision weights Φk and the semi-elasticities:

ζk
|ζp|

=
Φk

πk
m′(wk). (5)

To see this, note that changing the ticket price by −dp < 0 induces an increase in lottery

purchases equal to ds = |ζp| s ·dp. The increase in the expected value of prize k that would generate

the same change in demand, denoted dxk = πkdwk, satisfies dp = Φk
πk
m′(wk)dxk. The change in

demand generated by this prize increase is ds = ζks·dxk. Therefore, |ζp| sΦk
πk
m′(wk)·dxk = ζks·dxk,

which simplifies to equation (5). This logic generalizes the simple principle that if m is concave

and decision weights equal objective probabilities, then people must be less responsive to a $1
change in the expected value of a prize than they are to a $1 change in the price. That is, a prize

semi-elasticity ζk that is higher than |ζp| is inconsistent with the standard assumptions of Φk = πk

and concave utility over wealth.

Comparing prize semi-elasticities to each other also provides insight into the decision weights.

A corollary of (5) is that
ζk
ζk′

=
Φk

πk
· πk

′

Φk′
· m

′(wk)

m′(wk′)
(6)

Letting wk > wk′ , note that if utility from wealth is (weakly) concave, so that m′(wk)
m′(wk′ )

≤ 1, then

if decision weights equal objective probabilities, we should observe ζk ≤ ζk′ .
15 Thus, ζk > ζk′ is

evidence that decision weights do not equal objective probabilities, and in particular that people

attach a relatively much larger decision weight to the larger prize than to the smaller prize.

If m(wk) is specified, semi-elasticities with respect to price and prizes can be used to recover

the decision weights Φk. This observation motivates our reduced-form analysis in Section 3, where

we estimate aggregate demand semi-elasticities with respect to price, jackpot, and second prize.

These estimates can also be used to calibrate the structural model of lottery demand in Section 5.

14Thus, this semi-elasticity is 1/πk multiplied by the semi-elasticity with respect to the prize wk. The 1/πk factor
is a normalization that improves exposition by ensuring that all of our estimated elasticities are of similar orders of
magnitude.

15Note that m′′(w) = U ′′(u+ w)/U ′(y), and thus m(w) is concave in w if U is concave in wealth.
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2.3 Behavioral Biases and Welfare

The function u can reflect a variety of possible motives for playing the lottery, including both

normatively-relevant preferences and behavioral biases. For example, it can include any entertain-

ment derived from playing the lottery (Conlisk 1993; Kearney 2005b), or anticipatory utility from

thinking about a chance of winning (e.g., Loewenstein 1987; Caplin and Leahy 2001; Brunnermeier

and Parker 2005; Gottlieb 2014). If the entertainment utility individuals receive from playing is

bounded away from zero, as long as the likelihood of winning is positive, individuals will behave

as if they overweight small probabilities. We also allow for perceptual distortions, such as over- or

under-estimating the likelihood of winning or imperfect processing of small probabilities (Woodford

2012; Steiner and Stewart 2016). Biases induced by salience or focusing effects (Bordalo, Gennaioli,

and Shleifer 2013; Kőszegi and Szeidl 2013; Bushong, Schwartzstein, and Rabin 2021) could affect

demand as well.

To formalize the possibility of mistakes, we draw a distinction between perceived utility, which

individuals maximize, and “normative utility,” which enters the planner’s objective function:

V = G(c+ x · v(a; θ, ε)− ψ(z; θ)). (7)

We define sV (p,a; θ) := Pr (v(a; θ, ε) > p) as the type-θ demand function that would obtain if

individuals maximized normative utility. We assume that v is also additively separable in ε.

Bias is the difference between the perceived utility and normative utility from consuming a

lottery ticket: γ(a; θ) := u(a; θ, ε)− v(a; θ, ε).16 This representation of bias mirrors Allcott, Lock-

wood, and Taubinsky (2019, henceforth “ALT”), where γ is equivalent to the price decrease that

would lead consumers maximizing V to purchase as many lottery tickets as consumers maximizing

U , i.e., sV (p− γ,a; θ) = s(p,a, θ).

Examples: Consider a simple lottery that offers a single large prize of amount w with probability

π, so that a = {w, π}, and consider demand from a given type of agent (with index θ suppressed

for simplicity). Further suppose that the perceived subutility from a lottery ticket is u(a; ε) =

(1+ϕ)πm(w)−ε, where m(w) is the utility gain from winning a prize of size w, and (1+ϕ)π is the

decision weight that the individual applies to that utility. If ϕ = 0, the individual is an expected

utility maximizer. We now provide examples of the types of biases that can be accommodated

by this framework. These examples also illustrate how our decision weights capture psychological

motivations other than just misperception or overweighting of certain probabilities.

Misperceived probability of winning. Suppose the individual has expected utility pref-

erences but misperceives the probability of winning as π̃ ̸= π. Then normative utility from lot-

tery consumption is v(a; ε) = πm(w) − ε, perceived utility is u(a; ε) = π̃m(w) − ε, and bias is

γ(a) = u(a; ε)− v(a; ε) = (π̃ − π)m(w).

Present focus (and addiction). Suppose that ϕV πm(w) is the immediate hedonic gain

16Note that γ is not a function of ε because both u and v are additively separable in ε.
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from anticipatory utility and joy of playing. Suppose further that individuals are quasi-hyperbolic

discounters who discount all consumption other than the immediate utility ϕV πm(w) by a factor

β < 1. Finally, suppose that normative utility corresponds to long-run preferences that set β = 1.

Then normative and perceived utility can be written, respectively, as v(a; ε) =
(
1 + ϕV

)
πm(w)−ε

and u(a; ε) =
(
1 + ϕV /β

)
πm(w)− ε. Bias is then γ(a) = (1/β − 1)ϕV πm(w).

Our framework can also accommodate the interaction between present focus and addiction, as

studied by, e.g., Gruber and Kőszegi (2001) in the context of smoking. Suppose that buying a

lottery ticket today imposes expected costs of dπm(w) on one’s future self because prior experience

with gambling makes it more painful not to gamble, and possibly also makes future gambling less

enjoyable. If these expected costs are down-weighted by present focus β (but additional anticipatory

utility ϕV πm is not), then u(a; ε) = (1 + ϕV )πm(w) − βdπm(w) − ε, v(a; ε) = (1 + ϕV )πm(w) −
dπm(w)− ε, and γ(a) = (1− β)dπm(w).

Misforecasted happiness. Suppose individuals overestimate the happiness they would gain

from winning the prize w by a factor of b. Then u(a; ε) = (1 + ϕV + b)πm(w)− ε, while v(a; ε) =

(1 + ϕV )πm(w)− ε, and thus γ(a) = πbm(w).

2.4 Optimal Lottery Policy

Turning to the question of optimal policy, we assume the government seeks to maximize normative

utility, aggregated across individuals using type-specific Pareto weights µ(θ, ε):∫
θ,ε
µ(θ, ε)V (c, s,a, z; θ, ε)dF (θ, ε), (8)

subject to individuals’ maximization of their perceived utility U , and to the government’s budget

constraint, ∫
θ
(ps(θ) + T (z(θ)))dFθ(θ)− C(a, s̄) ≥ R, (9)

where C(a, s̄) is the cost to the government of selling s̄ tickets with attributes a that includes the

expected prize payout plus administration, marketing, and any other costs. We refer to the percent

markup above average cost, ps̄−C(a,s̄)
ps̄ , as the “implicit tax rate.” Appendix C (Proposition C.1)

derives general optimality conditions that hold for an arbitrarily dynamic model with any number

of choice occasions, without requiring additive separability in ε, and allowing for income effects.

We let λ denote the marginal value of public funds (i.e., the multiplier on the government

budget constraint in equation (9) at the optimum), and we define g(θ, ε) := µ(θ, ε)U ′
c/λ to denote

the Pareto-weighted marginal utility from consumption for type (θ, ε). Following Saez (2002a) and

others, we assume that this “social marginal welfare weight” g(θ, ε) is equal for all individuals with

a given level of earnings (and thus, all who have a common type θ) under the optimal tax system.

We thus use g(z) to denote social marginal welfare weights as a function of income.

We now characterize optimality conditions for ticket prices and attributes. We define κ(θ)

to be the average willingness-to-pay (WTP) among θ-types for a marginal increase in attribute
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a. This statistic can be computed from empirically-measurable semi-elasticities in response to

variation in p and a, as κ(θ) = −ζa(θ)/ζp(θ) · s(θ). We define the average WTP among z-earners

as κ(z) := E[κ(θ)|z(θ) = z], and the average WTP across all consumers as κ̄ := E[κ(θ)].

We define γp(z) :=
E
[
γ(θ)

ds(θ)
dp

|z(θ)=z
]

E
[
ds(θ)
dp

|z(θ)=z
] and γ̄p :=

E
[
γ(θ)

ds(θ)
dp

]
E
[
ds(θ)
dp

] to be the average bias among z-

earners and across all individuals, respectively, who are marginal to a price change. We define

γa(z) and γ̄a analogously over individuals marginal to a change in attribute a.

Because bias can depend on the attribute a, individuals’ perceived utility from a change

in a may be biased. The bias in z-earners’ valuation of a marginal increase in a is ρ(z) :=

E
[

d
daγ(a; θ) · s(θ)|z(θ) = z

]
. We define ρ̄ := E [ρ(z)] as the population average. By definition,

κ̄− ρ̄ is the average impact on normative utility of increasing a, measured in dollars.

Finally, because our framework includes redistributive motives, the welfare effects of a change in

consumption depend on whose consumption is changed. All else equal, the welfare change is more

positive when more of the benefits of correcting bias accrue to low-income individuals. Because we

assume that social marginal welfare weights depend only on income, these statistics depend on the

concentration of bias correction across incomes z, rather than of types θ, and we define s(z) as the

lottery demand aggregated across all z-earners. To capture these redistributive concerns, we define

σp := Cov
[
g(z),

γp(z)
γ̄p

ζp(z)s(z)

ζ̄ps̄

]
, which we call the “progressivity of bias correction” from a price

change. We define an analogous statistic for an attribute change: σa := Cov
[
g(z), γa(z)γ̄a

ζa(z)s(z)

ζ̄as̄

]
.

These statistics quantify the extent to which the benefits of bias correction accrue to low-income

individuals, per unit change in s̄.

Our optimal policy conditions can be stated in terms of intuitive mark-up formulas.

Proposition 1. If p and a are interior optima, then

Mark-up above MC︷ ︸︸ ︷
p− ∂C

∂s̄
=

Bias correction︷ ︸︸ ︷
γ̄p(1 + σp) −

Regressivity of
increasing p︷ ︸︸ ︷

Cov [s(z), g(z)]

|ζ̄p|s̄
(10)

Mark-up above MC︷ ︸︸ ︷
p− ∂C

∂s̄
=

Bias correction︷ ︸︸ ︷
γ̄a(1 + σa) −

Mechanical effect on
consumer surplus

and revenues︷ ︸︸ ︷
κ̄− ρ̄− ∂C

∂a
+

Regressivity of
increasing a︷ ︸︸ ︷

Cov[κ(z)− ρ(z), g(z)]

ζ̄as̄
(11)

This result is a special case of Proposition C.1 in Appendix C, which derives these optimal

policy conditions in a more general setting with income effects and many purchase occasions.

For intuition, notice first that equation (10) is a special case of equation (11) if we think of price

p as an attribute. Because we assume that people do not misperceive prices, ρ(z) ≡ 0. Moreover,

κ(z) = s(z), as the mechanical effect on consumer surplus of lowering the price by dp is simply

dps(z). Finally, ∂C
∂p = s̄, as the mechanical revenue effect of lowering price by dp is simply a decrease

dps̄ in revenue. Thus, κ̄− ρ̄− ∂C
∂a = 0 when a = p, and equation (11) reduces to equation (10).
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Equation (11) is a generalization of Ramsey-style optimal commodity tax formulas. The wedge

p − ∂C
∂s̄ is analogous to a per-unit tax on a lottery ticket. This “tax” must equal the difference

between two terms. The first term, γ̄a(1 + σa), is a Pigouvian correction that corresponds to

the social marginal benefits of decreasing lottery consumption. This term is increasing in σa, the

progressivity of bias correction. The second term is the mechanical effect on consumer welfare net

of revenues; it consists of two parts. The first part, κ̄ − ρ̄ − ∂C
∂a , is the direct effect on consumer

surplus net of revenues. The second part is the extent to which the effects on consumer surplus

are distributed in a regressive or progressive way. In the case of a price change, this is simply the

extent to which lower-income individuals buy more lottery tickets, and are thus more impacted by

the price change. In the case of an attribute change more generally, this is the extent to which

lower-income individuals have a higher (normative) WTP for this attribute change.

To provide further intuition for the above conditions, Appendix B.1 presents several special

cases of Proposition 1, including (i) no bias and homogeneous preferences, (ii) no bias and het-

erogeneous preferences, (iii) homogeneous bias and preferences, and (iv) the revenue-maximizing

lottery structure.

Although we use the above model for our empirical analysis, we note two natural extensions to

it here. The first involves income effects on lottery consumption, which are considered in the more

general model of Appendix C. That extension creates a link to the celebrated theorem in Atkinson

and Stiglitz (1976), as we elaborate in Appendix C...

Second, note that our baseline model assumes assumes no substitution, motivated by our em-

pirical result in Section 3 that there is limited substitution between state-run lottery games, and

by Kearney’s (2005b) result that the introduction of state-run lotteries has no detectable effect on

non-state-sponsored gambling.17 If such substitution is present, one must account for the degree of

bias over substitute goods to which spending is diverted. Building on ALT’s formulas, a diversion

ratio r to other (non-state-run) gambling subject to the same bias implies that γ̄ should be replaced

by (1− r)γ̄ in Proposition 1.

2.5 From Theory to Measurement

Our model and theoretical results motivate the following main empirical analyses. The first is

estimating semi-elasticities of lottery demand with respect to ticket price and prizes. Section 2.2

shows that these identify decision weights, and Section 2.4 shows that these elasticities are a key

input in the optimal design formulas. We obtain these from the quasi-experimental analysis in

Section 3

The second is estimating the variation of lottery expenditures by income. Section 2.4 shows

that this is a key input into the regressivity component of the optimal price and attribute formulas.

We obtain this from our survey, which we analyze in Section 4. The third is a measure of bias,

which we also obtain from the survey.

17Interestingly, the introduction of new state-run lotteries did affect cross-border demand for existing state-run
lotteries (Knight and Schiff, 2012).
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The theory also motivates several secondary analyses, also performed in Sections 3 and 4. One

is substitution between lotteries. This can affect optimal attribute formulas, as we summarize at

the end of Section 2.4. The other is the causal affect of additional income on lottery demand. This

is fleshed out in Appendix C.

3 Aggregate Lottery Demand

This section presents estimates of the aggregate semi-elasticities of demand ζ̄a and ζ̄p for the two

major multi-state lotteries, Mega Millions and Powerball. We assume a static demand function

with constant semi-elasticity with respect to price and the expected value of each prize; we see

below that our data are consistent with these assumptions. k, j, and t index prizes, games, and

drawing dates, respectively, πkjt is the win probability from Table 1, and wkjt is the prize amount.

Aggregate demand is

ln s̄jt =
∑
k

ζ̄kπkjtwkjt + ζ̄ppjt + εjt. (12)

For reasons described below, we do not directly estimate equation (12). Instead, we separately

estimate the prize elasticities ζ̄k in Section 3.2 and the price elasticity ζ̄p in Section 3.3.

3.1 Data: Lottery Prizes and Aggregate Sales

Our primary analyses use draw-level sales and prize data for Mega Millions and Powerball from June

2010 through February 2020. We scraped jackpot and sales data from the website LottoReport.com,

and we scraped California second prize amounts from the California Lottery website. Jackpots

are advertised jackpot amounts, and ticket sales exclude the Just the Jackpot, Power Play, and

Megaplier add-ons.

Table 2 presents descriptive statistics. There are 2,035 observations: two draws per week for

almost ten years, for both Mega Millions and Powerball. The California sample is slightly smaller,

because California did not join Powerball until April 2013. The average jackpot was $68.8 million,

and the average California second prize was $948,200. The average draw sold 23 million tickets

nationwide and 3.3 million in California.

We run 36-month event study analyses around the four format changes described in Table 1.

To maintain a consistent set of states in the national sales data as states join Mega Millions or

Powerball, we construct separate national sales series for each event window that include total

sales from only the states that participated for the full 36-month period. For example, California,

Florida, Louisiana, and the U.S. Virgin Islands joined Mega Millions and/or Powerball during the

36-month window around the Powerball price increase on January 15, 2012, so we exclude them

from the national sales totals used for that event study.

We also use data on lottery sales by game, state, and week from January 1995 through February

2020 purchased from La Fleur’s, a standard data provider. To study substitution across games,
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we limit to a balanced panel including instant games plus the 85 other games that were offered

continuously and for which we have complete data from June 2010 through February 2020 in the

41 states that had Mega Millions and Powerball over that period, representing 61 percent of total

lottery sales reported in the Census of Governments over the sample period.

Because prize amounts are typically round numbers in nominal dollars, we use nominal dollars

throughout the paper except for Appendix Figures A1 and A2. When there are multiple winners

of the jackpot or any prize in California, the prize is split equally among all winners. To account

for prize-sharing, we use our LottoReport sales data to approximate the average factor by which

each prize is reduced in expectation by prize-sharing and apply that factor to prize amounts when

computing expected values. The factors applied to jackpots and California second prizes are 0.91

and 0.71, respectively. We also discount all jackpots to their present value using a conversion factor

of 0.59. We compute this conversion factor as the ratio between (i) the stock of cash required

to purchase bonds that yield enough interest in each period to pay out the jackpot annuity as

scheduled and (ii) the total annuity value of the jackpot.18

3.2 Prize Elasticities

3.2.1 Estimation Strategy

We identify the jackpot elasticity ζ̄1 off of jackpot variation generated by randomness in whether

someone won the jackpot in the previous draw, and we identify the second prize elasticity ζ̄2 off of

analogous variation in California second prizes. As an example, Figure 1 illustrates the identifying

variation for Powerball in 2014. Over that year, the jackpot varied between $24 million and $237
million in present value. In most drawings, nobody wins the jackpot, so the prize pool rolls over

to the next drawing. Each of the 11 times that someone won the jackpot in 2014, it returned to its

reset value. The odds of winning the jackpot were about 1/200,000,000 in 2014, so the expected

value of the jackpot varied from roughly $0.15 to $1.25. The California second prize varied from

$183,000 to $7.7 million, and the second prize odds were about 1/5,000,000, so the second prize

expected value varied from roughly $0.03 to $1.00. This illustrates that the California second prize

expected value can be material (and even larger than the jackpot), although the jackpot expected

value is about 3.3 times larger on average during our sample.

The figure also plots California ticket sales against the right axis. Sales and jackpots move

together, and sales rise especially sharply when jackpots are unusually high. However, sales do not

seem to respond to second prize variation, suggesting that ζ̄2 is close to zero.

While there is some randomness in prize amounts, there are two reasons why we do not directly

estimate equation (12). First, the draw t advertised jackpot is directly determined by forecasted

ticket sales for draw t, potentially generating simultaneity bias. Second, due to rollovers, the draw

t prize pool is also directly affected by previous draws’ sales, which may be correlated with draw t

18We use the average 30-year Treasury yield curve rate as the interest rate in our calculations. We also set the
number of annual payments to 30 and require payments to increase by 5 percent each year, reflecting the most
common annuity structure.
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demand if demand shocks are serially correlated.

To isolate the random variation in prize amounts, we instrument for prize k’s expected value

πkjtwkjt with a forecast πkjtZkjt based on whether or not the prize rolled over from the previous

period. Define rkjt as an indicator for whether prize k rolled over from t− 1 into t. A rollover from

t − 1 is less likely when t − 1 ticket sales s̄j,t−1 are higher, but the realization of rkjt is random

conditional on s̄j,t−1. Let ιkjf(t) denote the observed average percent increase in prize k in game j

conditional on a rollover when format f is in effect, and let wkjf(t) denote prize k’s reset value in

game j.19 The prize forecast is

Zkjt = rkjt ·
(
1 + ιkjf(t)

)
· wkj,t−1 + (1− rkjt) · wkjf(t) (13)

Rollovers rkjt and past prizes wkj,t−1 both depend on previous demand, and demand shocks may

be serially correlated. We address this following Borusyak and Hull (2021) by including a control

Z̄kjt for the forecast of the prize prior to the realization of the rollover outcome. Borusyak and

Hull (2021) formally show that including this control yields consistent estimates. This pre-rollover

prize forecast is20

Z̄kjt = (1− πkjt−1)
s̄j,t−1 ·

(
1 + ιkjf(t)

)
· wkj,t−1 +

(
1− (1− πkjt−1)

s̄j,t−1
)
· wkjf(t) (14)

Thus, after controlling for Z̄kjt, we identify only off of conditionally random variation in the prize

forecast Zkjt delivered by randomness in whether the prize rolled over.21

We also add a vector of fixed effects collectively denoted ξjt: game-format fixed effects to soak

up any changes in demand caused by changes in lower prize amounts and probabilities, game-

regional coverage fixed effects to soak up changes in demand when new states join, game-quarter

of sample indicators to soak up changes in demand over time, and game-weekend fixed effects to

soak up higher demand for Friday and Saturday draws. We do not include time fixed effects that

are common across both games, because this could introduce bias if consumers substitute across

games.

Incorporating these modifications into equation (12), our estimating equation is

ln s̄jt = ζ̄1π1jtw1jt + β̄1π1jtZ̄1jt

(
+ζ̄2π2jtw2jt + β̄2π2jtZ̄2jt

)
+ ξjt + ϵjt. (15)

The second prize elasticity term in parentheses is included only in our California-specific estimates.

We instrument for ζ̄1π1jtw1jt (and ζ̄2π2jtw2jt) with the jackpot forecast π1jtZ1jt (and the second

19The second prize pool in California does not have a fixed reset value: it is allocated a pre-determined share of
revenues from each draw. We set w2jf(t) to the average second prize amount in the first draw after the second prize
is won during format f .

20This prediction assumes that players randomly select the numbers on their tickets. Appendix Figure A4 shows
that the frequency of rollovers predicted under this assumption is close to the observed frequency of rollovers; the
mean predicted and observed likelihood of a jackpot rollover are 0.91 and 0.90, respectively, while both the predicted
and observed likelihood of a California second prize rollover are 0.72.

21Z̄kjt is computed using a lag of the dependent variable. While serial correlation would bias our estimate of the
regression coefficient on Z̄kjt, we do not use or interpret that coefficient.
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prize forecast π2jtZ2jt).

3.2.2 Estimation Results

Figure 2 presents binned scatter plots of the variation that identifies the prize semi-elasticities ζ̄1

and ζ̄2, conditional on the controls in equation (15). Panel (a) shows that national ticket sales are

highly responsive to the jackpot expected value fitted values ̂π1jtw1jt from the first stage of equation

(15). The relationship is very close to linear, and the slope is slightly less than 2.0, meaning that a

$0.10 increase in the jackpot expected value increases sales by nearly 20 log points. However, Panel

(b) shows that California ticket sales are not responsive to the California second prize expected

value first-stage fitted values.

Table 3 presents estimates of equation (15). The first stages are very strong; see Appendix

Table A1. In all estimates in this section, we use Newey-West standard errors with up to ten lags.

Our standard errors do not change much if we allow more or fewer Newey-West lags or cluster

standard errors at the intersection of game and month, quarter, or half year; see Appendix Table

A2.

Panel (a) presents estimates of the jackpot elasticity ζ̄1 using the nationwide sales data, while

Panel (b) presents estimates of the jackpot and second prize elasticities ζ̄1 and ζ̄2 using California

sales only. In both panels, column 1 presents the OLS estimates without a πZ̄ pre-rollover prize

forecast control, and column 2 presents our IV estimates with that control.

The OLS estimates are slightly larger, consistent with slight simultaneity bias. The estimates

match the binned scatter plots in Figure 2. In both panels of Table 3, the jackpot semi-elasticity is

around 1.7-1.8. In Panel (b), the second prize semi-elasticity is statistically indistinguishable from

zero, and the 95 percent confidence intervals in column 2 exclude values larger than about 0.19.

As shown in equation (6) in Section 2.2, the large difference between these two elasticities im-

plies that decision weights do not equal objective probabilities, and that the decision weight on

the jackpot is relatively much larger than the decision weight on the smaller prize. A probability

weighting function with this form could arise for a variety of reasons. First, individuals might

underappreciate differences between the (small) second prize probability and the (very small) jack-

pot probability. Second, individuals could derive larger anticipatory utility from larger prizes, and

anticipatory utility might be insensitive to probabilities. Third, because the second prize expected

value doesn’t vary much (its standard deviation is only one-third of the jackpot’s), individuals

might be inattentive to the second prize, as in Gabaix (2014) and related theories of focusing and

salience (Bordalo, Gennaioli, and Shleifer 2013; Kőszegi and Szeidl 2013; Bushong, Schwartzstein,

and Rabin 2021); these theories have more recently been suggested as attentional microfoundations

for the probability weighting function (Bordalo, Gennaioli, and Shleifer, 2012; Dertwinkel-Kalt and

Koster, 2020; Bordalo, Gennaioli, and Shleifer, Forthcoming). Fourth, high jackpots generate extra

media attention that may temporarily increase sales. Fifth, while jackpot amounts are covered in

the media and heavily promoted on billboards and in online ads, the estimated second prize for
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the next draw must be inferred from results of the previous drawing.22 Of course, the second prize

might not be promoted precisely because individuals would be unresponsive.

Substitution. As described in Clotfelter and Cook (1990), Grote and Matheson (2011), and

the literature cited therein, it is ambiguous whether draw games such as Mega Millions and Power-

ball are substitutes or complements for other lottery games. While their similarity suggests that

they might be substitutes, the attention to high jackpots could also spill over to other games.

Furthermore, high jackpots bring additional consumers into lottery outlets, where they can imme-

diately buy other games. It could also be that high jackpots primarily bring in new consumers who

wouldn’t otherwise buy lottery tickets.

Appendix D.1 shows that Mega Millions or Powerball jackpots have tightly estimated zero

effects on sales of other games. Our confidence intervals from Appendix Table A3 rule out diversion

ratios of more than about four percent to the other multi-state game, major state-level draw games,

instant games, and other state-level games. This limited substitution is consistent with our “narrow

bracketing” model assumption under which people consider each lottery in isolation rather than

forming a utility-maximizing portfolio from a combination of different lotteries.

Short-run versus long-run responses. As in many other studies, we have a well-identified

short-run elasticity, but our policy analysis requires a long-run elasticity. To address this concern,

Appendix D.2 shows that the jackpot elasticity is very similar when we aggregate over time and

that lagged jackpot amounts have positive but relatively small effects on current sales. While not

dispositive, this is consistent with the idea that the long-run elasticity is not much different from

the short-run elasticity.

3.3 Price Elasticity

3.3.1 Estimation Strategy

We identify the price semi-elasticity ζ̄p from the change in ticket sales when Mega Millions and

Powerball raised their prices from $1 to $2. To use these event studies, we must also consider

the simultaneous format changes described in Table 1. Both games substantially increased their

jackpot amounts and expected values. However, as shown in Table 1, the expected return (i.e.,

expected value per dollar spent) from all lower prizes did not change very much. Because of this

limited change, and because we saw insignificant elasticity with respect to second prize variation

in Table 3, we assume that the lower prize changes did not affect demand.

Define Wjt as an indicator for the 12-month period around game j’s price change, six months

before and six months after, and W+
jt as an indicator for the 12-month period that follows. Our

estimating equation modifies equation (12) into an event study estimator that identifies the change

in sales within a 12-month event window around the price change:

22People can estimate the California games’ upcoming second prize amounts by using each game’s webpage to look
up the previous second prize pool and whether the prize was won, and then adding a guess about the increase in the
prize pool from the upcoming draw’s sales.
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ln s̄jt = ζ̄ppjtWjt + β1Wjt + β2pjtW
+
jt + β3π1jtw1jt + ξj + ϵjt, (16)

where ξj is now simply an event fixed effect. The jackpot expected value π1jtw1jt control increases

precision and controls for the simultaneous format change. Because lagged sales and jackpots are

also affected by the price change, we do not control for π1jtZ̄1jt, and we do not instrument for

the jackpot. Since our OLS and IV results were quite similar in Table 3, this is unlikely to affect

our results. To identify the coefficients on the controls with the most relevant data, we limit the

regression sample to the 36-month period around the price change.

3.3.2 Estimation Results

The red lines in Figure 3 present ticket sales residual of the jackpot expected value, i.e. ln s̄jt −
β̂2π1jtw1jt, in the 36-month event study window for the game whose price changed. Panel (a)

presents the Powerball price change in January 2012, while Panel (b) presents the Mega Millions

price change in November 2017. We recenter so that the average residual equals zero before the

price change when the jackpot is within $10 million of the reset value. In both event studies, sales

drop by about 50 log points immediately after the price increase.

The other lines on Figure 3 present ticket sales for the other multi-state game, major state draw

games, and all other games, respectively. To reduce noise, the other multi-state game −j’s sales are
residual of that game’s jackpot expected value control β̂2π1−jtw1−jt. Some long-run trends become

visible over the full 36 month period: both Mega Millions and Powerball sales gradually decline after

the other game’s price increases, and other game sales (mostly instant games) gradually increase.

However, the effect on own-game sales is much larger and more immediate than these gradual

trends for other games, suggesting that the other games’ trends are unrelated to the price change.

Table 4 presents estimates of equation (16). Column 1 presents our primary estimates pooling

the two event studies, while columns 2 and 3 consider each event study separately. Consistent with

Figure 3, the estimates suggest that the price changes decreased demand by 44 to 59 log points.

While we model demand as a function of the jackpot expected value, it could be that people pay

attention only to the jackpot amount and not the probability (Cook and Clotfelter 1993). From

Table 1, we can calculate that the Mega Millions jackpot probability decreased by 14 percent when

the price increased, while the Powerball jackpot probability increased by 12 percent. If demand

responds to the jackpot amount instead of the expected value, our price elasticity estimates would

be biased, although in opposite directions for the two games. Column 4 shows that the pooled

estimate changes little when we control for the jackpot amount.

Substitution. Consistent with the graphical evidence in Figure 3, Appendix Table A5 shows

statistically zero substitution to other games after Mega Millions and Powerball increase prices.

However, the estimates are not precise enough to rule out economically significant diversion ratios.

Placebo tests. As shown in Table 1, there were also two format changes during our sample

period that did not involve price changes. We can use these as placebo tests: if our price elastic-
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ity estimates are unbiased, these format changes should not affect demand. Appendix Table A8

presents estimates of equation (16) for these two other format changes, where we substitute pjt

for a post-format change indicator variable and again limit to the 36 months around the format

change. These format changes have statistically zero effect on demand after controlling for the

jackpot level, and the confidence intervals suggest that any confounding effects are small relative

to the price change coefficients in Table 4.23

Summary. Lottery purchases are (i) highly elastic to jackpot variation, (ii) unresponsive to

variation in smaller prizes, and (iii) less responsive to a $1 price change than to a $1 jackpot

expected value change. The third result suggests that jointly raising price and jackpot expected

value increases demand, consistent with the trends toward larger jackpots and higher ticket prices.

Taken together, these three results are consistent with a probability weighting function that weights

the jackpot higher than its objective probability and places little weight on smaller prizes. In the

next section, we consider the extent to which these lottery purchasing patterns might be driven by

innumeracy, confusion, or other types of mistakes.

4 Individual-Level Demand

4.1 AmeriSpeak Survey

This section provides evidence on how lottery expenditures vary with income and proxies for be-

havioral biases. We use a new survey that we designed to measure lottery spending and proxies

for preferences and biases potentially related to lottery purchases. The survey was fielded on

AmeriSpeak, a high-quality survey panel managed by the National Opinion Research Corporation

(NORC). Unlike internet panels that allow anyone to opt in, AmeriSpeak is a probability sample

that includes only U.S. households that have been randomly selected (and heavily incentivized) to

participate. This helps to reduce sample selection biases that can make surveys unrepresentative on

unobserved characteristics. The average spending estimates in Section 4.2 are weighted for national

representativeness on age, sex, race, education, geography, and other key characteristics using sam-

ple weights provided by NORC. The bias proxy regressions in Section 4.3 are left unweighted to

maximize precision, although the results with sample weights are similar.

The survey was fielded in April 2020, and a follow-up survey was fielded in April 2021. 3,013

people completed the 2020 survey, of whom 2,879 passed basic data quality checks. Table 5 presents

descriptive statistics. Panel (a) presents panelist demographics, Panel (b) presents survey questions

on spending and income effects, and Panel (c) presents questions that proxy for preferences and

bias. Sample sizes differ on individual questions due to item non-response. Appendix E.1 presents

the text of the survey questions, which we summarize here.

23In both of these format changes, the jackpot probabilities decreased substantially—much more than the jackpot
probabilities changed when the games increased prices. This means that controlling for jackpot level vs. jackpot
expected value matters more. Appendix Table A8 shows that controlling for the jackpot expected value (instead
of level) does not explain the demand increases after the format changes. This is consistent with a model in which
individuals respond to the jackpot level but are not responsive to the jackpot probability.
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Spending and income effects. Monthly lottery spending is the response to the question,

“How many dollars did you spend in total on lottery tickets in an average month in 2019?”

We asked panelists to “please include Mega Millions, Powerball, and other lotto/prize drawings,

instant/scratch-off games, and any other lottery game offered by your state lottery.” To ensure

that large expenditures were correctly reported, any person who reported more than $500 monthly

lottery spending was asked to explicitly confirm or update their response.

To measure income effects, the survey asked people to report the percent change in their house-

hold income and lottery spending in 2019 compared to 2018 (income change and spending change),

as well as how much they think their lottery spending would change “if you got a raise and your

income doubled” (self-reported income effect).

Preference proxies. We construct three proxies of preferences for playing the lottery. First,

we proxy for risk aversion using two questions: “In general, how willing or unwilling are you to take

risks?” and a second question measuring aversion to financial risks when saving or investing money.

Our risk aversion preference proxy is the average of these two measures after standardizing each

to have a standard deviation equal to one. Second, our lottery seems fun preference proxy is the

extent to which people agree or disagree that “For me, playing the lottery seems fun.” Third, our

enjoy thinking about winning preference proxy, which is intended to measure anticipatory utility,

is the extent to which people agree or disagree that “I enjoy thinking about how life would be if I

won the lottery.”

We designed the survey questions to allow us to construct proxies for six biases that might be

related to lottery purchases.

Self-control problems. Self-control problems might affect lottery purchases if the enjoyment

of playing is in the present, while the cost of buying the ticket (reduced consumption of other

goods) is incurred later. To measure perceived self-control problems, the survey said, “It can be

hard to exercise self-control, and some people feel that there are things they do too much or too

little – for example, exercise, save money, or eat junk food. Do you feel like you play the lottery

too little, too much, or the right amount?” Our self-control problems bias proxy is the response

to that question, on a seven-point scale from “far too little” (coded as -3) to “the right amount”

(coded as 0) to “far too much” (coded as +3).

Financial illiteracy. Financial illiteracy and innumeracy might affect lottery purchases by

making it harder to evaluate risky prospects and correctly perceive small probabilities. Financial

literacy is the share of correct answers on five standard questions from Lusardi and Mitchell (2014),

and financial numeracy is the share of correct answers on three numeracy questions from Banks

and Oldfield (2007). Our financial illiteracy bias proxy is the share of incorrect answers across all

eight questions.

Statistical mistakes. Poor statistical reasoning might similarly make it harder to evaluate

risky prospects and correctly perceive small probabilities. The survey included three measures

of statistical reasoning. First, we measured the Gambler’s Fallacy (Jarvik 1951; Tversky and

Kahneman 1971; Rabin 2002) by eliciting beliefs about the probability that an unbiased coin lands
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heads after three different sequences of heads and tails. The true probability is of course 50 percent.

Gambler’s Fallacy is the share of answers that differ from 50 percent; Table 5 reports that people

gave some other answer 29 percent of the time. Second, we measured non-belief in the Law of Large

Numbers (Benjamin, Rabin, and Raymond 2016; Benjamin, Moore, and Rabin 2018) by asking the

probability that out of 1000 coin flips, the number of heads would be between 481 and 519 (correct

answer = 0.78), 450 and 550 (correct answer = 0.9986), and 400 and 600 (correct answer = 0.9999).

Non-belief in the Law of Large Numbers is the average absolute deviation from the correct answer.

Third, we asked people to calculate the expected value of four simple example lotteries. Expected

value miscalculation is the share of answers that are incorrect. To construct our statistical mistakes

bias proxy, we standardize each of these three measures to have a standard deviation equal to one

in the 2020 sample, take the average, standardize the average to have a standard deviation equal

to one in 2020, and recenter so that zero is the best score in 2020.

Overconfidence. Overconfidence could increase lottery purchases by increasing people’s per-

ception of the chance of winning. The survey said, “Imagine you could keep buying whatever

lottery tickets you want, over and over for a very long time. For every $1000 you spend, how much

do you think you would win back in prizes, on average?” The survey also asked people to report

how much “the average lottery player” would win back. Overconfidence is the difference between

own and average person expected winnings per $1 spent.

Expected returns. Misunderstanding the expected returns for the average person might also

affect lottery purchases. Expected returns is the response to the question, “Think about the total

amount of money spent on lottery tickets nationwide. What percent do you think is given out in

prizes?”

Predicted life satisfaction. As argued by Kahneman et al. (2006) and others, people may

overestimate the effect of wealth on happiness, and such a bias would cause people to overestimate

the utility gains from winning a lottery. Using random variation in lottery winnings conditional

on winning some amount, Lindqvist, Ostling, and Cesarini (2020) estimate that the effect of an

additional $100,000 on life satisfaction (measured on a 0–10 scale) is 0.071 points. The survey

told panelists about the Lindqvist, Ostling, and Cesarini (2020) study design (but not the effect

size), informed them that the sample average life satisfaction was 7.21 out of 10, and asked them

to predict the effect of an additional $100,000 on life satisfaction. Predicted life satisfaction is the

response to that question.

2021 follow-up survey. We fielded the April 2021 follow-up survey to help address measure-

ment error. NORC invited everyone who had completed the 2020 survey to participate. 2,186

people responded, representing a normal follow-up response rate for AmeriSpeak, of whom 2,124

passed our data quality checks. The 2021 survey asked the same preference and bias proxy ques-

tions as in 2020. It also re-elicited monthly lottery spending in 2019 for 104 people who reported

outlying values in 2020; we use this to confirm or winsorize the outlying responses.24

24Specifically, we resampled the 104 people who had reported spending more than $150 per month or more than
10 percent of their income on lottery tickets. If the 2021 report was within 50 percent of the 2020 report, we use the
average. Otherwise, we use the minimum. We then regress this modified monthly spending on the 2020 report and
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4.2 Lottery Spending by Income

The spending distribution is highly skewed: in our survey data, the top 10 percent of spenders

account for 56 percent of spending, while over 40 percent of people report no spending at all;

see Appendix Figure A6. This skewness reduces the precision of our estimates and underscores

the importance of our efforts to validate outlying self-reports of monthly spending. The average

spending of $15 per month multiplied by 255 million American adults gives $47 billion, which is

smaller than the $87 billion total nationwide sales reported in Figure A1. Clotfelter et al. (1999,

Table 6) also found that survey responses understate total nationwide sales. This understatement

and other forms of measurement error would bias our conclusions only if correlated with income or

bias proxies. As a suggestive test, we find no evidence that income or bias proxies are correlated

with the change in 2021 vs. 2020 reports of monthly lottery spending ; see Appendix Table A13.

Figure 4 presents average monthly lottery spending by income. People with household income

above $100,000 spend an average of $13 per month on the lottery, while people with household

income under $50,000 spend an average of $17, or 29 percent more.25 The cross-sectional income

elasticity of lottery spending (from a regression of ln(1 + spending) on ln(income)) is −0.111. The

share of people with non-zero spending also declines slightly with income; see Appendix Figure A7.

Clotfelter et al. (1999, Table 10) also found that lower-income households spend more on lotteries,

although their point estimates suggest a steeper decline in spending by income as of 1998. Golosov

et al. (2021) find that U.S. lottery winners have wage earnings, employment status, and age similar

to the average tax filer, although lottery winners are more likely to be single.

Proposition C.1 in Appendix C distinguishes two reasons why lottery spending might vary with

income: the causal effect of income and preference heterogeneity that is correlated with income.

The survey offers two ways to measure causal income effects. First, regressing spending change

on income change suggests a causal income elasticity of 0.194; see Appendix Table A11 for formal

regression results. This should be interpreted cautiously because changes in life circumstances

correlated with income changes might also change lottery consumption preferences. Second, the

average of self-reported income effect (the amount by which people thought their lottery spending

would change if their income doubled) is −1.4 percent, suggesting a causal income elasticity of

d ln s/d ln z ≈ −0.014/ ln(2/1) ≈ −0.02. This should be interpreted cautiously because the question

was hypothetical.

While the exact point estimates differ, both of these strategies are consistent in suggesting

limited income effects, and they are both statistically less negative than the cross-sectional income

elasticity of −0.111 illustrated in Figure 4.

use the prediction for the 25 out of the 104 people who did not take the 2021 survey.
25If we do not winsorize outliers using the second elicitation in 2021, average monthly spending increases by about

$9. However, our policy analyses use only the differences in spending across income groups, and those differences are
not significantly affected by winsorization; see Appendix Figure A8.
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4.3 Association Between Bias Proxies and Lottery Spending

This section presents the relationships between bias proxies and lottery spending. Although we

control for confounders such as measures of preferences, caution is warranted in interpreting these

relationships as causal.

Define si as person i’s monthly lottery spending, define bik as person i’s value of bias proxy k,

and define bVk as the benchmark value of bk for an unbiased consumer who does not have self-control

problems, has high financial literacy and statistical reasoning ability, is not overconfident, and has

correct beliefs about expected returns and the effect of lottery winnings on life satisfaction. Define

the standardized bias proxy b̃ik :=
bik−bVk
SD(bik)

as the difference between person i’s proxy bik and the

unbiased value bVk in 2020 standard deviation units, and define b̃i as a vector of the six standardized

bias proxies. All bias proxies are signed so that a more positive value should cause more lottery

consumption. Finally, define xi as a vector of controls, including the three preference proxies (risk

aversion, lottery seems fun, and enjoy thinking about winning), the demographic characteristics

presented in Panel (a) of Table 5, and state fixed effects.

Test-retest reliability. To summarize test-retest reliability, Figure 5 presents binned scatter

plots of (unstandardized) bias proxies bik elicited in 2021 vs. 2020. The area of each circle is

proportional to the share of observations in each bin. For overconfidence, the large mass at zero

reflects the fact that 65 percent of people expect to win the same amount as the average lottery

player, and there is close to zero correlation in relative optimism or pessimism across years. For

the other five bias proxies, however, the correlations range from 0.34 to 0.75. For comparison,

Stango and Zinman (2021, Table 3) find within-person rank correlations of 0.04 to 0.59 for bias

proxies similar to ours in surveys separated by three years, and Chapman et al. (2020, Table 2)

find correlations of 0.30 to 0.96 between “econographic” preference measures elicited twice on the

same survey.

Descriptive correlations. Figure 6 presents binned scatter plots of (unstandardized) bias

proxies bik against the natural log of 1 + monthly lottery spending, using the 2020 survey data.

We use natural logs because spending is skewed and it is natural to think of bias entering multi-

plicatively, as in the examples from Section ??, and we add 1 to spending to be able to include

zero-spending observations. Our results in Table 6 below are similar when using spending levels

or the inverse hyperbolic sine of spending. In each of the six panels, a vertical line indicates the

unbiased benchmark bVk .

For self-control problems, the unbiased benchmark bVk is playing the lottery “the right amount”

instead of “too little” or “too much.” The relationship between lottery spending and self-control

problems is not as close to linear as with the other five bias proxies. To the left of zero, a stronger

feeling that one plays the lottery “too little” is not clearly associated with spending. We thus

recode negative values as 0 for the regressions and predictions described below. To the right of

zero, a stronger feeling that one plays “too much” is positively associated with spending, suggest-

ing that self-control problems might contribute to overconsumption. This contribution may be

limited, however, because the circle sizes indicate that 71 percent of people report playing “the
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right amount,” and more people report playing “too little” than “too much.”

For financial illiteracy and statistical mistakes, we define the unbiased benchmarks bVk as the

best scores in the sample. For financial illiteracy, this is answering all eight questions correctly,

and statistical mistakes is constructed so that 0 is the best score in the sample. The best fit lines’

upward slopes mean that people with higher financial illiteracy and more statistical mistakes spend

more on lotteries. The figure suggests that this might contribute to overconsumption: many people

score relatively poorly on these two scales, and people with the worst scores spend 100 log points

more on the lottery than people with the best scores.

For overconfidence, we define the unbiased benchmark bVk as predicting no difference between

one’s own lottery winnings and the average person’s lottery winnings. The figure suggests that

overconfidence may not contribute much to overconsumption: there is little relationship between

overconfidence and spending, and 65 percent of people reported the same expected earnings for

themselves and the average player. The lack of relationship between overconfidence and spending

is unsurprising given the low test-retest reliability.

For expected returns, the unbiased benchmark bVk is 60 percent: the true share of state lottery

ticket sales that are given out as prizes, using data reported in Appendix Figure A2. The best

fit line’s upward slope means that people who think the expected returns are higher spend more

on lotteries. Most of the mass is to the left of bVk , and the average person believes that only 29

percent of lottery spending is returned to winners. This suggests that people might play more if

they didn’t underestimate the expected returns.

Finally, the unbiased benchmark bVk for predicted life satisfaction is the actual effect from

Lindqvist, Ostling, and Cesarini (2020): an additional $100,000 of lottery winnings increased life

satisfaction by 0.071 points on the 0–10 scale. The slope of the best fit line suggests that predict-

ing that additional winnings increase life satisfaction by 1 additional point on the 0–10 scale is

associated with spending about 4.3 log points more on lottery tickets.

Regression estimates. To test whether these relationships survive controls for demographics

and preferences, we estimate the following regression:

ln(si + 1) = τ b̃i + βxi + ϵi. (17)

Table 6 presents results. Column 1 presents the full model, column 2 presents the regression

without any controls, and columns 3 and 4 progressively add controls. Column 1 shows that four

of the unconditional relationships from Figure 6 survive controls: self-control problems, financial

illiteracy, statistical mistakes, and expected returns are all strongly conditionally associated with

lottery spending, while overconfidence and predicted life satisfaction are not. All the estimated τ̂

coefficients are positive.

Comparing columns 2 and 3 shows that the preference proxies explain a large share of the

variation in lottery spending, increasing the R2 from 0.16 to 0.36. These controls also materially

attenuate the τ coefficients, which underscores the importance of having collected the preference

control variables. Adding the demographic controls in column 4 increases the R2 slightly and has
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limited effects on the τ coefficients.

Measurement error can attenuate the relationships in columns 1–4. To address this, we use

the Obviously Related Instrumental Variables (ORIV) approach of Gillen, Snowberg, and Yariv

(2019): we estimate equation (17) in a stacked dataset with the 2021 b̃i and xi below the 2020 b̃i

and xi, instrumenting for the 2020 variables with their 2021 values and vice versa, while clustering

standard errors by i. The ORIV approach is more efficient than an unstacked IV approach that

instruments the 2020 variables with their 2021 values or vice versa, and it avoids the ambiguity

that arises if those two unstacked estimates are different.

We drop overconfidence because the low test-retest reliability causes a weak instruments prob-

lem. After that drop, the first stage regressions involve highly statistically significant relationships

between the resampled values of the same variable and limited correlations with other variables;

see Appendix Table A12. The one exception is that financial illiteracy and statistical mistakes are

moderately correlated.

Column 5 of Table 6 presents OLS estimates in the subsample that also responded in 2021; the

coefficients change little relative to column 1. Column 6 presents the ORIV estimates using the same

sample as column 5. The coefficient on self-control problems grows substantially, consistent with

its lower test-retest reliability. The financial illiteracy coefficient also grows, while the coefficient

on statistical mistakes becomes insignificant. The coefficients on expected returns and predicted life

satisfaction also become statistically insignificant. Interestingly, the coefficient on education shrinks

substantially and becomes statistically insignificant, meaning that after correcting for measurement

error, our bias and preference proxies explain why higher-education people spend less on the lottery.

Meanwhile, the Black and Hispanic indicators remain strongly positively associated with lottery

spending, even after all other covariates are included.

Share of consumption attributable to bias. We can use the regression results to predict

what lottery spending would be without systematic bias, i.e., if all individuals’ bias proxies bik

equaled the unbiased benchmarks bVk . Define ŝV as predicted consumption with b̃ik = 0. Equation

(17) implies that ln(si+1)− ln(ŝVi +1) = τ̂ b̃i, and thus ŝVi = si+1

exp(τ̂ b̃i)
− 1. We winsorize at ŝVi ≥ 0,

and we fix ŝVi = 0 for people with zero spending (si = 0). Using the OLS τ̂ in column 1 of Table

6, the share of consumption levels statistically attributable to bias is
∑

i(si−ŝVi )∑
i si

≈ 43 percent.

We can also compute the share of consumption attributable to each individual bias k by con-

structing ŝVi with exp(τ̂k b̃ik) instead of exp(τ̂ b̃i). Figure 7 presents estimates using the OLS τ̂k.

For self-control problems, financial illiteracy, and statistical mistakes, the average b̃ik > 0 and τ̂k

is positive, so Figure 7 correspondingly attributes increased lottery spending to these biases. The

τ̂k coefficients for overconfidence and predicted life satisfaction are both very close to zero, so the

figure attributes little spending to those biases. Since the average person underestimates expected

lottery returns, the average b̃ik < 0 for expected returns, and the figure attributes about a 10 percent

spending reduction to this.

As we will show in Section 2.4, optimal policy depends on whether lower-income people are more

or less biased. Figure 8 presents binned scatter plots of each bias proxy by income. Self-control
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problems is the only bias proxy that becomes more positive with income: higher-income people are

more likely to report that they play the lottery “too much.” Financial illiteracy declines strongly

with income: people with household incomes under $20,000 incorrectly answered 44 percent of

our eight financial literacy and financial numeracy questions, while people with household incomes

over $100,000 incorrectly answered only 17 percent. Similarly, people with household incomes

under $20,000 scored about 0.7 standard deviations worse on our statistical mistakes questions

than people with household incomes over $100,000. Overconfidence, expected returns, and predicted

life satisfaction differ little across income groups.

Using these differences in bias proxies by income, we construct the share of consumption at-

tributable to bias separately for each income group. Figure 9 shows that this share declines mod-

erately by income, from 46 percent for people with household incomes under $50,000 to 40 percent

for people with household incomes over $100,000.
We can also adjust these two figures for measurement error by using the instrumental variables

estimates from column 6 of Table 6; see Appendix Figures A9 and A10. Consistent with the

results in Table 6, the shares of consumption attributable to self-control problems and financial

illiteracy grow, while the shares attributable to the other variables attenuate. The estimates are

less precise, but they continue to suggest that a larger share of consumption is attributable to bias

for lower-income people. On average across all incomes, the share of consumption attributable to

bias increases slightly to 47 percent.

5 Structural Model

In this section, we impose additional structure on the model of lottery demand presented in Section

2 and calibrate the model using the reduced-form moments from Sections 3 and 4. In Section 6,

we use this calibrated model for policy evaluation.

5.1 Functional Form Assumptions

Utility of prizes. We assume that m(wk; θ) arises from a concave constant relative risk aversion

(CRRA) utility function. This rules out the possibility that lottery demand is driven by convexity

in the value function, as proposed by Friedman and Savage (1948). The theory that utility might be

convex at high amounts of money is largely inconsistent with the bulk of the evidence, as reviewed

in Appendix F.3. Appendix F.2 presents the formal derivation ofm arising from continuation utility

with a constant coefficient of relative risk aversion. Our baseline specification employs a CRRA

parameter of 1, the central estimate from Chetty (2006), corresponding to logarithmic utility over

continuation wealth. We consider modestly higher and lower values in our sensitivity analyses, and

in Appendix F.3 we summarize evidence that CRRA parameters more substantially different from

1 generate unrealistic implications for consumers’ willingness to pay for lottery tickets.

Decision weights. Because we lack independent prize variation to identify decision weights

at each prize level, we must impose a functional assumption about their shape. We consider a
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variety of standard parameterizations proposed previously in the literature on prospect theory

and probability weighting (Tversky and Kahneman 1992; Goldstein and Einhorn 1987; Prelec

1998). As we show in Appendix F.1, these standard parameterizations cannot simultaneously fit

the estimates of Φ1 and Φ2 implied by equation (5) using our estimated aggregate elasticities,

because they imply that the ratio of second-prize to jackpot expected value semi-elasticities must

be significantly larger than what we estimate, and in fact larger than 1. However, we show that

the “neo-additive” weighting function, axiomatized by Chateauneuf, Eichberger, and Grant (2007),

matches these elasticity patterns well. This weighting function is discontinuous at the endpoints

π = 0 and π = 1, and linear on the interval (0, 1), with intercept b0 and slope b1. We therefore use

the neo-additive form for our structural model.

Distribution of taste shocks. We assume that θ and ε are independently distributed. The

distribution of ε is then inferred from our estimates of the semi-elasticities at various levels of

lottery demand. In the utility specification from equation (4), demand is determined by the net-of-

price certainty equivalent
∑

k Φkm (wk)−p, and we assume that the semi-elasticity of demand with

respect to this certainty equivalent is constant over the range of net certainty equivalents generated

by the variation in our data. Appendix F.2 provides further details on this calibration.

Specification of bias. In Section ??, we showed how various biases, including misperceived

probabilities and present focus, enter utility by multiplying m (w). In line with those examples, we

assume that a share χ(θ) of the difference Φk(θ)−πk between the decision weight and the objective

probability is due to bias, and the remaining share is due to normative factors such as anticipatory

utility. Thus, normative utility is

v(a; θ, εt) = u(a; θ, εt)− χ(θ)
∑
k

(Φk(θ)− πk)m (wk; θ)︸ ︷︷ ︸
γ(a;θ)

. (18)

This specification allows us to recover the bias share χ(θ) from the quantity effect of bias estimated

in Section 4.3. Appendix B.2 shows that each of the Section ?? examples is consistent with the

functional form above.

Redistributive preferences. The welfare weights g(z) in our optimal policy formulas entail

normative judgments about the policymaker’s degree of inequality aversion. We follow Saez (2002b)

in setting these weights proportional to c(θ)−ν , where c(θ) denotes consumption, which is drawn

from our survey measure of pre-tax income using the pre- to post-tax income mapping from Piketty,

Saez, and Zucman (2018). Our baseline calibrations assume ν = 1; we consider higher and lower

values in the robustness results in Table 8. For numerical simplicity, we treat these weights as fixed

(i.e., as arising from the Pareto weights µ(θ, ε) rather than concavity in G(·)) during our policy

optimization.

5.2 Calibration

We summarize the intuition behind the calibration here; Appendix F.2 presents details.
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We calibrate the model assuming a single, representative lottery game with price, prizes, and

probabilities set to match the current values for Powerball from Table 1. We assume that all prizes

are reduced by 30 percent to account for income taxes.

The positive model of demand is fully characterized by the decision weight function parameters

b0 and b1. We first calibrate a representative consumer model using our estimates of aggregate

demand semi-elasticities from Section 3.

The bias share parameter χ is identified from the average counterfactual level of lottery spending

if consumers were unbiased, based on the survey results in Section 4.3. We use equation (18) to

compute the bias share χ that would generate this normative level of consumption. This analysis

requires the strong assumption that the results from Section 4.3 identify the causal effect of bias,

and would be violated if there are omitted variables correlated with both bias and lottery demand,

or if our bias proxies do not cover all relevant biases.

We then allow for heterogeneity by exploiting the survey microdata on household income and

lottery spending. We partition income into the three bins displayed in Figure 4: less than $50,000,
$50,000 to $100,000, and more than $100,000. Within each income bin, we specify three types of

individuals: those who consume zero lotteries, and among positive consumers, those with below-

vs. above-median consumption. We assume non-consumers continue to not purchase lottery tickets

in all counterfactual scenarios. Among the remaining types, we draw the average level of lottery

spending and counterfactual unbiased spending from our survey, and we assume our semi-elasticity

estimates are homogeneous across types. This allows us to compute type-specific parameters.

Table 7 presents the estimated model parameters b0, b1, and χ in both the representative agent

and heterogeneous calibrations. The probability weighting function intercept term b0, though small

in absolute terms, is large relative to the jackpot probability π1, implying substantial overweight-

ing of small probabilities. Approximately 30 percent of the wedge between decision weights and

objective probabilities is attributable to bias, with above-median lottery consumers being the most

biased in the heterogeneous specification.

6 Implications for Welfare and Optimal Lottery Design

We use the calibrated structural model to address two questions. First, what is the net welfare

) under the status quo lottery design? Second, what are the implications for optimal lottery

attributes? We focus on the optimal attributes for which observe variation in our empirical data:

ticket price, and jackpot size.

Figure 10 plots the estimated surplus per capita that each consumer type derives from the

status quo representative lottery. For ease of interpretation, these numbers are normalized by each

$100 of total lottery spending. Total perceived surplus is decomposed into lottery revenues, which

we assume are distributed evenly across individuals, and perceived consumer surplus, reflecting

consumers’ WTP for lotteries. Behavioral biases reduce actual (normative) consumer surplus below

perceived surplus, to the point that actual surplus may be negative. We plot actual surplus both
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for our baseline bias estimates and under the alternative assumption that bias share χ(θ) is 2

times as large. We find substantial heterogeneity in surplus conditional on income, with heavier

consumers deriving far more perceived utility from lotteries, while also incurring larger bias costs.

Total surplus is positive in our baseline specification, but it declines if we scale up bias in the model

to be larger than in our estimates, and surplus is negative for the heaviest consumers in the “2x

bias” specification. The threshold at which total surplus from the status quo becomes negative is

2.19 times our baseline bias estimates.

Figure 11 presents our baseline estimates of optimal ticke price and jackpot size. Both panels

display plots of social welfare (relative to a counterfactual scenario with no lottery) across a range of

prices (Panel a) and jackpots (Panel b). These figures report results for three different assumptions

about bias. The dashed green lines report results under the assumption that all observed demand is

fully normatively justified (χ(θ) ≡ 0). Unsurprisingly, lotteries generate substantial surplus in this

case. The optimal “effective tax rate”—by which we mean the implicit tax rate (share of ticket price

that is a markup over marginal cost) after reducing marginal cost to account for additional revenues

recovered by a 30 percent income tax on lottery winnings—is lower than in the status quo because

there is no corrective benefit from reducing consumption. In fact, redistributive considerations

favor a small subsidy, because poorer consumers buy more lottery tickets. Relative to the current

Powerball design, decreasing the price (Panel a) or increasing the jackpot (Panel b) would increase

welfare in this case.

The solid blue lines in Figure 11 show the welfare gain from the lottery given our empirical

estimates of bias. The lottery generates lower welfare gains, although welfare remains positive

under the status quo price and jackpot. Holding prizes fixed, the status quo price is close to

optimal, although the welfare effect of changing the price is small. Holding price fixed, the optimal

jackpot is substantially higher than the status quo, reflecting the normative utility that consumers

derive from larger jackpots. The dot-dashed red lines plot the welfare gains assuming that the bias

share χ(θ) is 2 times our empirical estimates. In this case, the welfare gain under the status quo

lottery is barely positive, and the optimal policy is to set the price substantially higher (or the

jackpot somewhat lower) in order to reduce lottery overconsumption.

In Appendix G, we compute the optimal price and jackpot using the optimal policy conditions

derived in Section 2.4, using the approximation that statistics like demand elasticities and money-

metric bias are the same at the optimum as we estimate in our data. Reassuringly, those estimates

are similar to the ones estimated in the structural model, suggesting that the welfare conclusions

are not sensitive to the assumptions in either approach.

Finally, we use the structural model tojointly solve for the optimal combination of ticket price

and jackpot size, and the resulting effective tax rate. Table 8 presents theresults. Row 1 presents

estimates under our baseline assumptions. The optimal price is $2.78, the optimal jackpot expected

value is $0.75, and the optimal effective tax rate is 58 percent. This optimal effective tax rate is

slightly lower than the current Mega Millions and Powerball effective rates, which are about 70
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percent, assuming that prizes are subject to income taxes of 30 percent.26 Our model’s predicted

optimal price and jackpot are both somewhat higher than in the status quo because our estimates

suggest that substantial normative utility is derived from higher jackpots. Thus, a revenue-neutral

perturbation that jointly raises jackpots and prices above status quo levels would increase consumer

surplus.

The remaining rows present results under alternative assumptions. Rows 2 and 3 report the

consequences ofalternative bias assumptions. When consumers are completely unbiased (row 2),

the optimal effective tax rate is close to zero, and in fact is slightly negative due to regressivity

concerns. When consumers are 2 times as biased as in the baseline (row 3), the optimal effective

tax rate increases. For sufficiently high levels of bias, welfare would be maximized by eliminating

the lottery altogether.

Rows 4 and 5 consider alternative assumptions about the curvature of utility over wealth. Our

baseline assumption was a CRRA parameter of 1 (Chetty 2006), and we consider alternative values

of 0.9 and 1.5. These values cover the CRRA range across which the model predicts reasonable

willingness to pay for lottery tickets.27

Rows 6 and 7 consider weaker and stronger redistributive preferences, with welfare weights

proportional to c(θ)−0.25 and c(θ)−4, rather than c(θ)−1 as in our baseline. Rows 8 and 9 consider

alternative possibilities for the second prize semi-elasticity. Motivated by the fact that our baseline

estimate for ˆ̄ζ2 in Table 3 is statistically indistinguishable from zero, row 8 assumes that ζ̄2 = 0.

To account for the possibility that our statistically insignificant estimate for ˆ̄ζ2 reflects inattention

to variation in the California second prize, rather than a low weight on those prizes’ expected

value, row 9 assumes a second-prize semi-elasticity of ζ̄2 = ζ̄1 as a conservative upper bound. Row

10 assumes b1 = 1 for all consumers, implying that decision weights depart from expected utility

maximization only for the jackpot and, correspondingly, only the jackpot decision weight is subject

to bias. Row 11 examines the case where the jackpot varies over time, cycling over 10 values

corresponding to the average value of each decile of Powerball jackpots in our data. In this case,

jackpot size policy variation is performed by rescaling all values of the jackpot proportionally. Row

12 reports results when we estimate bias with the ORIV measurement error correction. The results

in rows 6–12 are all broadly similar to row 1.

The remaining rows explore the role of differences in bias and consumption across the income

distribution. Rows 13 and 14 report results when the bias share χ(θ) is assumed to be the same

at all incomes, while still varying across the three consumption groups (row 13), or homogeneous

across incomes and consumption groups (row 14). Row 15 reports results when we assume a steeper

decline in expenditures across income groups, assuming consumption in the bottom (top) income

26The status quo effective taxes on instant games are somewhat lower.
27In our model, the CRRA parameter affects WTP for lottery tickets. With more curvature, the value function

m(w) is less sensitive to variation in the jackpot, requiring a higher decision weight Φ1 to rationalize our empirical

estimates of the jackpot EV semi-elasticity ˆ̄ζ1. In Appendix F.3, we describe how CRRA values from 1 to 1.5 appear
consistent with lottery purchasers’ willingness to pay for a ticket, as measured in the short 200-subject supplementary
survey described in Appendix E.3. In contrast, CRRA values below 0.9 imply low WTP for the representative lottery
ticket, to the point that if the jackpot declines to the Powerball jackpot reset value, demand falls to zero.
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bin is the highest (lowest) level in the 95 percent confidence intervals of consumption in each bin.

Finally, Row 16 explores sensitivity to breaking out the top decile of consumers in each income

partition as a separate consumer type; results are basically identical to the baseline specification.

7 Conclusion

People have long debated whether state-run lotteries are a regressive “tax on people who are bad

at math” or a win-win that generates both enjoyment and government revenues. In this paper, we

provide a novel set of empirical results that are relevant for optimal policy. We find that aggregate

demand responds more to a $1 change in jackpot expected value than it does to a $1 price change

or to a $1 change in second prize expected value, a result consistent with a particular form of

probability weighting. In our new nationally-representative survey, lottery spending is correlated

with proxies of behavioral bias such as innumeracy and poor statistical reasoning, and regression

predictions suggest that Americans would spend 43 percent less on lotteries if they were unbiased.

Using these empirical moments, we calibrate a structural model of lottery demand to study

welfare and optimal policy. Results suggest that current multi-state lotteries increase welfare over-

all, and—under our baseline bias estimates—across most consumer types. However, higher levels

of bias would lead above-median spenders to receive the least—and possibly negative—surplus.

This suggests that quantity restrictions such as monthly spending limits could increase welfare.

The model’s socially optimal implicit tax rate is slightly lower than the current Mega Millions and

Powerball designs.

Our optimal policy and welfare results hinge on estimates of bias, which highlights the im-

portance of our survey work but also motivates additional research in that area. In addition, our

results have a limited ability to speak to the structural determinants of decision weights, and to

the determinants of lottery demand for products beyond lotto-style games, such as scratch games

or non-lottery gambling like the growing field of sports betting. More research is warranted in each

of these areas, and we think of this paper as a first step toward studying state-run lotteries through

the lens of behavioral optimal taxation. Our theoretical and empirical techniques may also be more

broadly useful for studying regulation of non-price attributes in the presence of behavioral bias.
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Table 1: Mega Millions and Powerball Prices and Prize Structures

Mega Millions Powerball

Start date June 22, October 19, October 28, January 7, January 15, October 7,

2005 2013 2017 2009 2012 2015

Ticket price $1 $1 $2 $1 $2 $2
Format 5/56 + 1/46 5/75 + 1/15 5/70 + 1/25 5/59 + 1/39 5/59 + 1/35 5/69 + 1/26

Jackpot (average) $34 million $57 million $102 million $39 million $66 million $101 million

Reset value $7 million $9 million $24 million $12 million $24 million $24 million

Probability 1/175,711,536 1/258,890,850 1/302,575,350 1/195,249,054 1/175,223,510 1/292,201,338

Expected value $0.18 $0.20 $0.31 $0.18 $0.34 $0.31
Second prize $250,000 $1 million $1 million $200,000 $1 million $1 million

Probability 1/3,904,701 1/18,492,204 1/12,607,306 1/5,138,133 1/5,153,633 1/11,688,054

Expected value $0.064 $0.054 $0.079 $0.039 $0.19 $0.086
Third prize $10,000 $5,000 $10,000 $10,000 $10,000 $50,000

Probability 1/689,065 1/739,688 1/931,001 1/723,145 1/648,976 1/913,129

Expected value $0.015 $0.0068 $0.011 $0.014 $0.015 $0.055
Fourth prize $150 $500 $500 $100 $100 $100

Probability 1/15,313 1/52,835 1/38,792 1/19,030 1/19,088 1/36,525

Expected value $0.0098 $0.0095 $0.013 $0.0053 $0.0052 $0.0027
Fifth prize $150 $50 $200 $100 $100 $100

Probability 1/13,781 1/10,720 1/14,547 1/13,644 1/12,245 1/14,494

Expected value $0.011 $0.0047 $0.014 $0.0073 $0.0082 $0.0069
Sixth prize $7 $5 $10 $7 $7 $7

Probability 1/306 1/766 1/606 1/359 1/360 1/580

Expected value $0.023 $0.0065 $0.016 $0.019 $0.019 $0.012
Seventh prize $10 $5 $10 $7 $7 $7

Probability 1/844 1/473 1/693 1/787 1/706 1/701

Expected value $0.012 $0.011 $0.014 $0.0089 $0.0099 $0.01
Eighth prize $3 $2 $4 $4 $4 $4

Probability 1/141 1/56 1/89 1/123 1/111 1/92

Expected value $0.021 $0.035 $0.045 $0.032 $0.036 $0.043
Ninth prize $2 $1 $2 $3 $4 $4

Probability 1/75 1/21 1/37 1/62 1/55 1/38

Expected value $0.027 $0.047 $0.055 $0.049 $0.072 $0.10

Probability, any prize 1/40 1/15 1/24 1/35 1/32 1/25

Lower prize expected value $0.18 $0.17 $0.25 $0.17 $0.36 $0.32
Total expected value $0.36 $0.38 $0.55 $0.36 $0.70 $0.63

Notes: This table reports the prizes, win probabilities, and expected values corresponding to each prize level and
the overall ticket for all Mega Millions and Powerball formats used since 2010. All jackpot prize amounts are
discounted to their approximate present values as described in Section 3.1, resulting in lower reset values than
the advertised annuity amounts. The non-jackpot prize amounts are the fixed prizes offered in states other than
California. The expected value is computed simply as the win probability multiplied by the advertised prize (or
average prize discounted by a constant factor to account for prize-sharing, in the case of the jackpot).
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Table 2: Descriptive Statistics: Mega Millions and Powerball Sales and Prize Data

Obs. Mean Std. dev. Min Max

Jackpot ($millions) 2,035 68.8 68.1 7.1 946.3
California 2nd prize pool ($000s) 1,705 948.2 1,034.6 82.7 7,660.3
Nationwide ticket sales (millions) 2,035 23.0 30.6 8.8 651.9
California ticket sales (millions) 1,705 3.3 5.1 0.9 120.2

Notes: This table presents descriptive statistics for draw-level Mega Millions and Powerball sales and prize
data from June 2010 through February 2020. Jackpot amounts and sales data are from LottoReport.com;
California second prize amounts are from https://www.calottery.com/draw-games/. Jackpots are advertised
jackpot amounts, and ticket sales exclude the Just the Jackpot, Power Play, and Megaplier add-ons.

Table 3: Prize Semi-Elasticity Estimates

(a) Jackpot Semi-Elasticity: National Sales

(1) (2)
OLS IV

Jackpot expected value ($) 1.8648∗∗∗ 1.7277∗∗∗

(0.0576) (0.0619)

Observations 2,035 2,035

(b) Jackpot and Second Prize Semi-Elasticities: Califor-
nia Sales Only

(1) (2)
OLS IV

Jackpot expected value ($) 2.0154∗∗∗ 1.8466∗∗∗

(0.0776) (0.0852)
2nd prize expected value ($) -0.0202 0.0837

(0.0590) (0.0554)

Observations 1,705 1,701

Notes: This table presents estimates of equation (15), a regression of the natural log of sales on prize
expected values, controlling for game-format, game-regional coverage, game-quarter of sample, and game-
weekend fixed effects. The IV regressions instrument for prize expected values with a forecast based on
the previous period prize amount and an indicator for whether the prize was won in the previous period
and additionally control for the expectation of the forecast prior to the realization of the rollover outcome.
Panel (a) uses nationwide sales, while Panel (b) uses California sales only. The samples include all Mega
Millions and Powerball drawings from June 2010 to February 2020; the sample in Panel (b) is smaller because
California did not join Powerball until April 2013. Newey-West standard errors allowing up to ten lags are
in parentheses. *, **, ***: statistically significant with 90, 95, and 99 percent confidence, respectively.
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Table 4: Price Semi-Elasticity

(1) (2) (3) (4)
Pooled Powerball Mega Millions Pooled

Price × 12-month window -0.5150∗∗∗ -0.5935∗∗∗ -0.4408∗∗∗ -0.5163∗∗∗

(0.0412) (0.0536) (0.0528) (0.0461)
Jackpot expected value ($) 1.8516∗∗∗ 1.9379∗∗∗ 1.8071∗∗∗

(0.0861) (0.0469) (0.1274)
Jackpot ($millions) 0.0064∗∗∗

(0.0007)

Observations 625 312 313 625

Notes: This table presents estimates of equation (16), a regression of the natural log of sales on (i) ticket price
interacted with an indicator for the 12-month window—six months before and six months after—around a
price change event, (ii) the 12-month window indicator, and (iii) ticket price interacted with an indicator for
the 12-month period following the 12-month window around the price change event, controlling for game-
weekend fixed effects and either the jackpot expected value or the jackpot amount. Columns 1 and 4 pool the
data from both the Powerball and Mega Millions price changes and also include a price-change event fixed
effect, while columns 2 and 3 consider each price change in isolation. We use Newey-West standard errors
with up to ten lags. *, **, ***: statistically significant with 90, 95, and 99 percent confidence, respectively.
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Table 5: Descriptive Statistics: 2020 Survey Data

(a) Demographics

Obs. Mean Std. dev. Min Max

Household income ($000s) 2,879 72.12 53.08 5 250
Years of education 2,879 14.32 2.26 4 20
Age 2,879 48.82 16.79 18 91
1(Male) 2,879 0.50 0.50 0 1
1(White) 2,879 0.66 0.47 0 1
1(Black) 2,879 0.11 0.31 0 1
1(Hispanic) 2,879 0.16 0.36 0 1
Household size 2,879 3.04 1.62 1 6
1(Married) 2,879 0.53 0.50 0 1
1(Employed) 2,879 0.63 0.48 0 1
1(Urban) 2,879 0.83 0.37 0 1
1(Attend church) 2,879 0.36 0.48 0 1
Political ideology 2,878 3.83 1.59 1 7

(b) Spending and Income Effects

Obs. Mean Std. dev. Min Max

Monthly lottery spending ($) 2,877 15.16 38.04 0 1,000
Income change (%) 2,871 0.17 18.52 -50 50
Spending change (%) 2,870 -5.46 19.17 -50 50
Self-reported income effect (%) 2,855 -1.41 16.28 -50 50

(c) Proxies for Preferences and Biases

Obs. Mean Std. dev. Min Max

Unwillingness to take risks 2,879 -3.93 1.38 -7 -1
Financial risk aversion 2,879 3.05 0.82 1 4
Lottery seems fun 2,875 0.16 1.83 -3 3
Enjoy thinking about winning 2,871 0.81 1.93 -3 3
Self-control problems 2,875 -0.34 1.10 -3 3
Financial literacy 2,879 0.77 0.25 0 1
Financial numeracy 2,879 0.63 0.32 0 1
Gambler’s Fallacy 2,879 0.29 0.39 0 1
Non-belief in Law of Large Numbers 2,879 0.42 0.18 0.00 0.93
Expected value miscalculation 2,879 0.69 0.37 0 1
Overconfidence 2,865 -0.01 0.51 -4.95 4.95
Expected returns 2,871 0.28 0.20 0.05 0.95
Predicted life satisfaction 2,850 2.34 4.76 -10 10

Notes: This table presents descriptive statistics for our 2020 AmeriSpeak survey. Panel (a) presents demo-
graphics, Panel (b) presents spending and income effects, and Panel (c) presents proxies for preferences and
biases. Section 4.1 summarizes the coding of these variables.
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Table 6: Regressions of Monthly Lottery Spending on Bias Proxies

(1) (2) (3) (4) (5) (6)
OLS OLS OLS OLS OLS ORIV

Self-control problems 0.281∗∗∗ 0.414∗∗∗ 0.293∗∗∗ 0.280∗∗∗ 0.279∗∗∗ 0.708∗∗∗

(0.029) (0.033) (0.031) (0.030) (0.035) (0.143)

Financial illiteracy 0.123∗∗∗ 0.190∗∗∗ 0.142∗∗∗ 0.127∗∗∗ 0.137∗∗∗ 0.182∗

(0.032) (0.034) (0.030) (0.032) (0.040) (0.099)

Statistical mistakes 0.101∗∗∗ 0.157∗∗∗ 0.133∗∗∗ 0.097∗∗∗ 0.096∗∗∗ 0.019
(0.027) (0.031) (0.027) (0.027) (0.033) (0.097)

Overconfidence 0.029 0.034 0.032 0.027
(0.023) (0.029) (0.024) (0.024)

Expected returns 0.068∗∗∗ 0.199∗∗∗ 0.098∗∗∗ 0.068∗∗∗ 0.051∗ -0.025
(0.024) (0.028) (0.025) (0.024) (0.029) (0.079)

Predicted life satisfaction 0.006 0.153∗∗∗ 0.024 0.005 -0.009 -0.082
(0.025) (0.027) (0.025) (0.024) (0.029) (0.097)

Risk aversion -0.012 -0.013 -0.009 -0.012 0.028
(0.026) (0.025) (0.027) (0.031) (0.046)

Lottery seems fun 0.614∗∗∗ 0.604∗∗∗ 0.608∗∗∗ 0.606∗∗∗ 1.082∗∗∗

(0.029) (0.029) (0.029) (0.033) (0.085)

Enjoy thinking about winning 0.167∗∗∗ 0.171∗∗∗ 0.176∗∗∗ 0.175∗∗∗ 0.064
(0.029) (0.029) (0.029) (0.033) (0.084)

ln(household income) 0.104∗∗∗ 0.104∗∗∗ 0.099∗∗ 0.096∗∗

(0.036) (0.036) (0.043) (0.046)

ln(years of education) -0.652∗∗∗ -0.635∗∗∗ -0.552∗∗∗ -0.160
(0.170) (0.173) (0.192) (0.211)

1(Black) 0.560∗∗∗ 0.572∗∗∗ 0.533∗∗∗ 0.271∗∗

(0.095) (0.093) (0.115) (0.121)

1(Hispanic) 0.387∗∗∗ 0.348∗∗∗ 0.441∗∗∗ 0.329∗∗∗

(0.080) (0.075) (0.097) (0.103)

Other demographics Yes No No Yes Yes Yes
State fixed effects Yes No No No Yes Yes
R2 0.41 0.16 0.36 0.39 0.40 0.57
Observations 2,810 2,810 2,810 2,810 2,072 4,144
Clusters 2,810 2,810 2,810 2,810 2,072 2,072

Notes: This table presents estimates of equation (17), a regression of ln(1+monthly lottery spending) on bias
proxies, preference proxies, demographic controls, and state fixed effects using data from our AmeriSpeak
surveys. “Other demographics” includes age, household size, political ideology, and indicators for male,
Black, Hispanic, other (non-white) race, married, employed, urban area, and attends religious services at
least once a month. Columns 1–5 present OLS estimates. Column 6 presents Obviously Related Instrumental
Variables estimates: we estimate equation (17) in a stacked dataset with the 2021 bias and preference proxies
below the 2020 bias and preference proxies, instrumenting for the 2020 variables with their 2021 values and
vice versa, while clustering standard errors by respondent. Robust standard errors are in parentheses. *, **,
***: statistically significant with 90, 95, and 99 percent confidence, respectively.
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Table 7: Estimates of Parameters in Structural Model

Representative agent model

b0 b1 χ

7.55× 10-7 0.35 0.30

Model with heterogeneity

Below-median s Above-median s

b0 b1 χ b0 b1 χ

Low incomes 1.45× 10-6 0.45 0.20 1.45× 10-6 0.45 0.30

Middle incomes 7.29× 10-7 0.34 0.17 7.29× 10-7 0.34 0.29

High incomes 3.96× 10-7 0.29 0.17 3.96× 10-7 0.29 0.33

Notes: This table reports estimates of parameters for the structural models, both in the representative agent
case, and in the heterogeneous agent case with three income levels and two levels of consumption. Parameters
b0 and b1 are the intercept and slope parameters of the neo-additive probability weighting function. The
parameter χ represents the share of the departure from expected utility weighting that is attributed to bias,
as opposed to normative preferences. (Lottery non-consumers are omitted from the lower panel.) In the
heterogeneous agent specification, semi-elasticities are assumed to be constant, resulting in homogeneous
values of b0 and b1 conditional on income. See Section 5.1 for details.

Table 8: Optimal Lottery Tax and Attributes Under Alternative Assumptions

Ticket
price ($)

Average jackpot
expected value ($)

Effective
tax rate

1. Baseline 2.78 0.75 0.58
2. Completely unbiased 1.41 1.06 -0.05
3. 100 percent more biased 3.80 0.44 0.77
4. CRRA = 0.9 2.92 0.76 0.59
5. CRRA = 1.5 2.31 0.59 0.56
6. Weaker redistribution 2.75 0.76 0.57
7. Stronger redistribution 2.82 0.74 0.59
8. Lower value of ζ̄2=0 2.78 0.74 0.58
9. Higher value of ζ̄2=ζ̄1 2.78 0.84 0.55
10. All bias is on jackpot 2.78 0.76 0.57
11. Variable jackpot 2.70 0.58 0.57
12. Measurement error correction 2.95 0.70 0.62
13. Same bias share across incomes 2.80 0.74 0.58
14. Same bias share for everyone 2.21 0.89 0.41
15. Steeper decline across incomes 2.78 0.73 0.58
16. Finer top tail of consumption 2.80 0.74 0.58

Notes: This table reports key features of the optimal representative lottery according to our structural
model. The first two columns report the jointly optimal price and jackpot expected value of a lottery ticket
resembling a current Powerball ticket. The third column reports the optimal effective tax rate, calculated as
the share of price that is a mark-up over marginal cost (net-of-tax total ticket expected value plus overhead).
See Section 6 for details about the specifications considered in each row.
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Figure 1: Powerball Prizes and Ticket Sales in 2014
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Notes: This figure presents the expected values of the jackpot and California second prize as well as California
ticket sales for each Powerball drawing in 2014.
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Figure 2: Responsiveness of Ticket Sales to Jackpot and California Second Prize

(a)National Sales versus Jackpot Expected Value First-Stage Fitted Values
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(b) California Sales versus Second Prize Expected Value First-Stage Fitted
Values
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Notes: Panel (a) presents a binned scatter plot of the natural log of national sales against the jackpot
expected value fitted values from the first stage of equation (15), residual of the controls in that equation.
Panel (b) presents a binned scatter plot of the natural log of California sales against the California second
prize expected value fitted values from the first stage of equation (15), residual of the jackpot expected value
first-stage fitted values and the other controls in that equation. The sample includes all Mega Millions and
Powerball drawings from June 2010 through February 2020.
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Figure 3: Price Change Event Studies

(a) Powerball
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Notes: These figures present the natural log of Powerball and Mega Millions ticket sales (residual of jackpot
expected values and weekend fixed effects from columns 2 and 3 of Table 4, respectively) and the natural
log of other games’ sales in dollars (residual of week fixed effects) before and after price increases, which are
indicated by the vertical red lines. The levels of Mega Millions and Powerball sales are adjusted so that the
average natural log of sales is zero before the price change when jackpots are within $10 million of the reset
value, while the levels of other games’ sales are adjusted so that the average natural log of sales is zero before
the price change. In Panel (a), the Powerball ticket price increased from $1 to $2 on January 15, 2012. In
Panel (b), the Mega Millions ticket price increased from $1 to $2 on October 28, 2017. One value in Panel
(b) from a Mega Millions drawing with a record jackpot is winsorized at −1.
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Figure 4: Lottery Spending by Income
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Notes: This figure presents average monthly lottery spending within household income groups, with 95
percent confidence intervals, using data from our AmeriSpeak survey. Observations are weighted for national
representativeness.
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Figure 5: Test-Retest Reliability of Bias Proxies
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Notes: This figure presents binned scatter plots of the 2020 vs. 2021 elicitations of our six bias proxies, using
data from our AmeriSpeak surveys.
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Figure 6: Relationship Between Lottery Spending and Bias Proxies
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Notes: This figure presents binned scatter plots of ln(1+monthly lottery spending) versus our six bias proxies,
using data from our 2020 AmeriSpeak survey. The vertical line on each panel corresponds to the correct or
“unbiased” value of the bias proxy.
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Figure 7: Share of Lottery Spending Attributable to Biases
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Notes: This figure plots the share of lottery spending attributable to each of our six bias proxies, with 95
percent confidence intervals. Predicted unbiased consumption is ŝVik = si+1

exp(τ̂k b̃ik)
− 1, where si is monthly

lottery spending , τ̂k is the OLS estimate from column 1 of Table 6, and b̃ik =
bik−bVk
SD(bik)

is the difference between

person i’s proxy bik and the unbiased value bVk in standard deviation units. We winsorize at ŝVi ≥ 0, and we

fix ŝVik = 0 if si = 0. The share of consumption attributable to each bias proxy is
∑

i(si−ŝVik)∑
i si

.
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Figure 8: Relationship Between Income and Bias Proxies
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Notes: This figure presents binned scatter plots of our six bias proxies by household income, using data from
our 2020 AmeriSpeak survey. The horizontal line on each panel corresponds to the correct or “unbiased”
value of the bias proxy.
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Figure 9: Share of Lottery Spending Attributable to Bias within Income Groups
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Notes: This figure plots the share of lottery spending attributable to bias within household income groups,
with 95 percent confidence intervals. Predicted unbiased consumption is ŝVi = si+1

exp(τ̂ b̃i)
− 1, where si is

monthly lottery spending , τ̂ is the OLS estimate from column 1 of Table 6, and b̃ik =
bik−bVk
SD(bik)

is the difference

between person i’s proxy bik and the unbiased value bVk in standard deviation units. We winsorize at ŝVi ≥ 0,

and we fix ŝVik = 0 if si = 0. The share of consumption attributable to bias is
∑

i(si−ŝVi )∑
i si

.
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Figure 10: Estimated Surplus from Lotteries in the Status Quo
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Notes: This figure plots the estimated surplus per capita that each consumer type derives from $100 of
per-capita spending on the status quo representative lottery in our structural model, relative to a setting
with no lottery. Income bins are partitioned into those who purchase no lottery tickets, those who purchase
less than the median amount (conditional on purchasing), and those who purchase more than the median.
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Figure 11: Effect of Lottery Attributes on Social Welfare
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(b) Variation in Jackpot Size
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Notes: These figures plot the simulated social welfare gain from a representative lottery relative to no
lottery, when varying ticket price (Panel a) or jackpot size (Panel b). The baseline representative lottery is
based on a standard $2 Powerball ticket with a jackpot pool of $101 million. Prizes are reduced by 30
percent to account for income taxes.
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A Background Appendix

Figure A1: Lottery Sales by Game Type over Time
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Notes: This figure presents total U.S. lottery sales by type of game, using data from La Fleur’s. Census

data are from the Census of Governments, inflated to account for the assumption that retailers receive 6.5

percent of sales as commissions, the midpoint of the typical range (North American Association of State and

Provincial Lotteries 2021a). Monetary amounts are in real 2019 dollars.
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Figure A2: Lottery Sales Allocation and Implicit Tax Rate over Time
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Notes: This figure presents the allocation of the proceeds of U.S. lottery sales and the implicit lottery tax
rate using data from the Census of Governments, assuming that commissions equal 6.5 percent of sales, the
midpoint of the typical range (North American Association of State and Provincial Lotteries 2021a). The
implicit tax rate equals state government proceeds divided by total sales. Monetary amounts are in real
2019 dollars.

B Additional Theoretical Results

B.1 Special Cases of Proposition 1

To provide intuition for the implications of our formulas, we consider a number of special cases.

No bias, homogeneous preferences. When γ(θ) ≡ 0 and s(z), κ(z) and ρ(z) are constant

across the population, Proposition 1 implies p = C ′
s(a, s̄) and κ̄ = C ′

a(a, s̄). In other words, the

price is equal to the marginal cost of an additional lottery ticket, while a is set such that lottery

buyers’ surplus from an increase in a is equal to the marginal cost of increasing a.

To further build intuition, consider these implications when applied to a simple single-prize

lottery like the one from Section ?? with only two attributes a = {w, π}, where w= is the size of

the single prize and π is the probability of winning. Assume that the only costs of the lottery are
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prize payouts and a constant administrative cost o per ticket, so that C(a, s̄) = (πw + o)s̄. Then

the condition for the optimal price requires p = C ′
s(a, s̄) = πw + o, i.e., price should be equal to

the expected value of the lottery ticket plus its administrative cost. Letting attribute a denote the

prize size w, the optimal attribute condition requires that κ̄ = C ′
w(a, s̄) = πs̄. Assume as in Section

?? that individual utility is u(a; ε) = (1 + ϕ)πm(w)− ε, so that κ̄ = ∂u(a;ε)
∂w · s̄ = (1 + ϕ)πm′(w)s̄.

Then the condition for the optimal prize attribute implies 1 = (1+ ϕ)m′(w), which determines the

optimal value of w. For example, if m(x) = ln(1 + x), then the optimal prize is w = max {ϕ, 0},
and thus p = πmax {ϕ, 0}+ o. This implies that w > 0 at the optimum if and only if ϕ > 0, i.e., if

entertainment utility leads individuals to value lotteries above their monetary expected value.

No bias, heterogeneous preferences. Retaining γ(θ) ≡ 0 but allowing for heterogeneous pref-

erences, so that s and κ vary across types, Proposition 1 implies the conditions p − C ′
s(a, s̄) =

−Cov[s(z),g(z)]

|ζ̄p|s̄ and κ̄ = C ′
a(a, s̄) +Cov[s(z), g(z)] ζ̄a

|ζ̄p| −Cov[κ(z), g(z)]. The first condition is analo-

gous to Diamond’s (1975) “many-person Ramsey tax rule,” which states that the tax is proportional

to its degree of progressivity and is inversely proportional to the elasticity. The condition for κ̄,

which results from substituting (10) into (11), is new, and states that lottery buyers’ surplus from

a marginal increase in a must equal the marginal cost of increasing a plus the degree to which

increasing a is more progressive than decreasing p.

Homogeneous bias and preferences. When s(z), γ(z), κ(z) and ρ(z) are homogeneous across

the income distribution, Proposition 1 implies p − C ′
s(a, s̄) = γ̄ and κ̄ = C ′

a(a, s̄) + ρ̄. In this

case, the price is set above a lottery ticket’s marginal cost when γ̄ > 0, so as to discourage lottery

consumption. Moreover, the optimal level of an attribute a is set such that κ̄ > C ′
a(a, s̄) when

individuals overvalue not just the absolute utility of the lottery ticket but also changes in a (i.e.,

ρ̄ > 0). This implies that the optimal choice of a is lower than what it would be when individuals

correctly evaluate lottery tickets (under the reasonable assumption that κ̄(a) is decreasing in a due

to the concavity of m). Thus, individuals are effectively taxed in two ways relative to the no-bias

benchmark. First, the price is set to be higher than the marginal cost of a lottery ticket. Second,

utility-increasing attributes of the lottery ticket (e.g., its prize levels) are set to be lower than what

would be optimal in the absence of bias.

Returning to the simple single-prize lottery example considered above and in Section ?? where

u = (1 + ϕ)πm(w) and v = (1 + ϕV )πm(w), we have κ̄ = (1 + ϕ)πm′(w)s̄, ρ̄ = (ϕ − ϕV )πm′(w)s̄,

and γ = (ϕ− ϕV )πm(a). At an interior optimum, we thus have the first-order conditions p− πa =

(ϕ − ϕV )πm(a) and (1 + ϕ)m′(a) = 1 + (ϕ − ϕV )m′(a). Note that if ϕV is sufficiently low, it is

optimal to choose a = 0.

Revenue-maximizing lottery structure. The revenue-maximizing lottery structure can be

obtained from our calculations by ignoring the effects on consumer surplus. The revenue effects of

changing a and p are p ds̄
da − d

daC(a, s̄(a)) and p ds̄
dp − d

dpC(a, s̄(a)), respectively. This leads to the
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conditions p − C ′
s(a, s̄) =

1

|ζ̄p| and C′
a(a,s̄)
s̄ = ζ̄a

|ζ̄p| . The first condition is just the standard inverse

elasticity rule for product pricing. The second condition states that the per-ticket marginal cost of

increasing a has to equal the ratio of the semi-elasticities. The intuition for the second condition is

that increasing a by da and increasing p by dp = daC′
a(a,s̄)
s̄ has a zero direct effect on government

revenue; thus, this perturbation cannot affect consumer demand if a and p are set optimally. For

example, when a corresponds to expected payout of a lottery ticket, so that C ′
s = a and C ′

a/s̄ = 1,

the optimal choice of p and a must satisfy p− a = 1/
∣∣ζ̄p∣∣ and ∣∣ζ̄p∣∣ = ζ̄a.

B.2 Motivating the Parametrization of Bias in the Structural Model

In our structural model we assume that

v(a; θ, εt) = u(a; θ, εt)− χ(θ)
∑
k

(Φk(θ)− πk)m (wk; θ)︸ ︷︷ ︸
γ(a;θ)

. (19)

Here we illustrate how this parametrization is of bias is consistent with the examples in Section 2.3

in the setting of a simple lottery with a single large prize.

Misperceived probability of winning. In this example, u − v = (π̃ − π), Φk = π̃, and thus

χ = 1

Present focus over joy-of-playing. In this example, u − v = (1/β − 1)ϕV πm(w), Φk = (1 +

ϕV /β)π, and thus

χ =
(1/β − 1)ϕV π

(1 + ϕV /β)π − π

=
(1/β − 1)ϕV

ϕV /β

= 1− β

Present focus over addiction. In this example, u− v = (1− β)dπm(w), Φk = (1+ϕV − βd)π,

and thus

χ =
(1− β)d

ϕV − βd

which is constant in π and w as long as d and ϕV are are also constant in π and w.

Misforecasted happiness. In this example, u− v = bπm(w), Φk = (1 + ϕV + b)π, and thus

χ =
b

b+ ϕV
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which is constant in π and w as long as b and ϕV are are also constant in π and w.

C Theory Appendix: A More General Model and Generalizations

of Proposition 1

C.1 A More General Model

We consider a more general model in which individuals first choose income z and then choose

whether or not to buy lottery tickets on various occasions. Specifically, we assume that individuals

choose their income in period t = 0, and then choose whether or not to buy a lottery ticket on

choice occasions t = 1, . . . , t∗. Individuals realize taste shocks εt at the beginning of each periodde-

termining their hassle costs (or other utility shocks) from purchasing a lottery ticket in each period.

Individuals’ utility given a vector of shocks ε and a vector x = (x1, . . . , xt∗) ∈ {0, 1}t∗ of lottery

ticket purchase decisions is given by U(x, c, z;a, θ, ε) = G(n(c; θ) +
∑

t u(xt;a, θ, εt) − ψ(z; θ)),

where a is a vector of attributes, with jth component aj , and n is increasing and weakly concave in

c. Without loss of generality, we can consider individuals’ optimization problem as a static problem

where the vector of shocks ε is realized in period 1 and individuals choose a consumption plan X

for all t∗ periods. Formally, X maps each period-t history Ht = (ε1, x1, . . . , εt−1, xt−1) of taste

shocks and lottery decisions into a period t choice xt ∈ {0, 1} of whether or not to buy the lottery.

Lottery demand is a random variable sθ(ε) that maps shocks ε to a total number of lottery

tickets purchased. We let s̄θ denote expected lottery purchases. We assume that ε is smoothly

distributed, so that s̄θ is smooth in p and aj . For shorthand, we will sometimes write u(s;a, θ, ε) =

argmaxx{
∑

t u(xt;a, θ, εt)|
∑

t xt = s}; that is, u is utility obtained after a vector of shocks ε is

realized and the person executes an optimal consumption plan given the constraint that s lottery

tickets are purchased.

In contrast to the body of the paper, this functional form allows for exogenous shocks to

income to change lottery consumption, but we still maintain the assumption of weak separability.

The weak separability assumption could also be relaxed by following the approach of ALT, and

replacing the (causal) income elasticity of lottery demand with the elasticity of lottery demand

with respect to changes in earnings z, where appropriate.

We let κj(p,a, z; θ) denote the valuation of a marginal increase in the jth attribute of a. We

let V (x, c, z;a, θ, ε) = G(n(c; θ) +
∑

t v(xt;a, θ, εt) − ψ(z; θ)) denote normative utility. We define

v(s;a, θ, ε) analogous to u(s;a, θ, ε).

We let C(a, s̄) be the cost of supplying lottery tickets, with C ′
j denoting the derivative with

respect to the jth component aj of a, and C ′
s denoting the derivative with respect to s̄.

Note that we assume that the utility from gambling does not depend on the history of prior

gambling decisions (i.e., no habit formation) for expositional simplicity. Our results, which apply

the Envelope Theorem to the expected perceived utility function, do not require this form of

stationarity.
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C.2 Assumptions

We make the following assumptions:

Assumption 1. Utility from numeraire consumption, n(c), has bounded relative risk aversion:

there is r > 0 such that |cn′′(c)/n′(c)| < r for all c.

Assumption 2. Lottery expenditures are a small share of the total budget, so that terms of order
s̄θ

z(θ)−T (z(θ))−ps̄θ
and pV ar[sθ(ε)]/s̄θ

z(θ)−T (z(θ))−ps̄θ
are negligible.

Assumption 3. Constant social marginal welfare weights conditional on income at the optimum:

g(θ, ε) = g(θ′, ε) if z(θ) = z(θ′).

Assumption 4. U and V are smooth functions that are strictly concave in c, s, and z, and µ is

differentiable with full support.

Assumption 5. The optimal income tax function T (·) is twice differentiable, and each consumer’s

choice of income z admits a unique global optimum, with the second-order condition holding strictly

at the optimum.

Assumption 6. s̄θ and κj(θ) are orthogonal to the income elasticity ζz conditional on income.

Assumptions 1 and 2 ensure unpredicted variation in an individual’s lottery expenditures does

not have consequential effects on her marginal utility from numeraire consumption, as is clarified

in Lemma C.1 and its proof. Assumption 2 also implies that the difference between compensated

and uncompensated demand for lottery tickets is negligible (see ALT). The term s̄θ
z(θ)−T (z(θ))−ps̄θ

is negligible simply when lotteries are a small share of total expenditures. By the Central Limit

Theorem, the term pV ar[sθ(ε)]/s̄θ
z(θ)−T (z(θ))−ps̄θ

approaches zero when the number of choice occasions grows large

while s̄θ stays constant. Thus, the second part of Assumption 2 mechanically holds when there are

many choice occasions and s̄θ is assumed to not exceed a certain fixed share of expenditures.

Assumption 3 is analogous to Assumption 1 in Saez (2002a). Saez (2002a) argues this is a

reasonable normative requirement even under heterogeneity “if we want to model a government that

does not want to discriminate between different consumption patterns...” Therefore we sometimes

write g(z) to denote the welfare weight directly as a function of earnings.

Assumptions 4 and 5 ensure that the income distribution does not exhibit any atoms and

consumers’ labor supply and consumption decisions respond smoothly to perturbations of the tax

system (Jacquet and Lehmann 2021).

C.3 Elasticity Concepts and Sufficient Statistics

All statistics are understood to be endogenous to the tax regime (t, T ), though we suppress those

arguments for notational simplicity. We begin by defining the elasticities related to sin good

consumption.
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Price and attribute elasticities

• ζp(θ): the price semi-elasticity of demand for s from type θ, formally equal to
(
ds̄θ
dp

)
1
s̄θ

• ζaj (θ): the price semi-elasticity of demand for s from type θ, formally equal to
(
ds̄θ
daj

)
1
s̄θ

• ξ(θ): the causal income elasticity of demand for s, equal to d
dz s̄θ (p,a, z; θ) ·

z
s .

Income Elasticities

We define labor supply responses to include any “circularities” due to the curvature of the income

tax function, which is assumed to be differentiable. Thus, following Jacquet and Lehmann (2021),

we define a tax function T̂ which has been locally perturbed around the income level z0 by raising

the marginal tax rate by τ and reducing the tax level by ν:

T̂ (z; z0, τ, ν) := T (z) + τ(z − z0)− ν. (20)

Let z∗(θ) denote a type θ’s choice of earnings under the status quo income tax T , and let ẑ(θ; τ, ν)

denote θ’s choice of earnings under the perturbed income tax T̂ (z; z∗(θ), τ, ν). Then the com-

pensated elasticity of taxable income is defined in terms of the response of ẑ to τ , evaluated at

τ = ν = 0:

ζcz(θ) :=

(
− ∂ẑ(θ; τ, 0)

∂τ

∣∣∣∣
τ=0

)
1− T ′(z∗(θ))

z∗(θ)
. (21)

The income tax is similarly defined in terms of the response of ẑ to a tax credit ν (this statistic

will be nonpositive if leisure is a non-inferior good):

ηz(θ) :=

(
∂ẑ(θ; 0, ν)

∂ν

∣∣∣∣
ν=0

)(
1− T ′(z∗(θ))

)
. (22)

These definitions are comparable to those in Saez (2001), except that they include circularities and

thus permit a representation of the optimal income tax in terms of the actual earnings density,

rather than the “virtual density” employed in that paper.

Bias

We continue defining bias γ analogous to the definition in the body of the paper: it is the value

that γ(p, a, y; θ, ε) that satisfies

u(1;a, θ, ε)− v(1;a, θ, ε) = n(y − p+ γ; θ)− n(y − p; θ)

where y is disposable income. In other words, γ is the degree, in units of dollars, by which the

individual overestimates the value of the lottery ticket.
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We define

γ(z;a, θ) = E[γ(p,a, z − T (z)− sθ(ε); θ, ε)

|u(sθ(ε) + 1;a, θ, ε)− u(sθ(ε);a, θ, ε) = n(z − T (z)− p(sθ(ε) + 1); θ)

− n(z − T (z)− sθ(ε); θ), z(θ) = z]

In other words, γ(z) is the average bias of z-earners who are on the margin of purchasing an

additional lottery ticket. The statistics γ̄, σp and σaj are constructed as in the body of the paper.

By definition, the social welfare impact of inducing a marginal z-earner to purchase one fewer

lottery ticket is γ(z)g(z).

We define ρj more generally as the difference ρj = κj − κVj , where κ
V
j is the willingness to pay

for a marginal change in aj that would result if consumers chose according to normative preferences

V.

Aggregation

With some abuse of notation, we write s(z), γ(z), κj(z) and so forth to denote the averages among

z-earners. We denote population averages of these statistics using “bar” notation. For example,

average consumption of s is denoted s̄. The cumulative density function of the income distribution

is denoted H(z), which we assume possesses a density function h(z).

Income-effect Augmented Welfare Weights

We use ĝ(z) to denote social marginal welfare weights augmented to reflect the welfare effects of

the behavior change that occurs when individuals earning z are given additional income. These are

given by

ĝ(z′) = g(z′) + E
[
ηz(θ)

T ′(z′)

1− T ′(z′)
|z(θ) = z′

]
+ E

[
(p− C ′

s − g(θ)γ(θ)) +
ξ(θ)

1− T ′(z′)

s

z

(
1 +

ηz
1− T ′(z′)

)]
Causal Income Effects and Preference Heterogeneity

Following ALT, we distinguish between two sources of cross-sectional variation in s(z): income

effects and (decision) preference heterogeneity. Let s̄′(z) denote the cross-sectional change in s

with respect to income z at a particular point in the income distribution. This total derivative can

be decomposed into two partial derivatives: the (causal) income effect, s′inc(z), and between-income

preference heterogeneity s′pref (z). The causal income effect depends on the empirically estimable

income elasticity of s: s′inc(z) = E [ξ(θ)/z | z(θ) = z]. Between-income preference heterogeneity is

the residual: s′pref (z) = s̄′(z) − s′inc(z). The key sufficient statistic for preference heterogeneity,

“cumulative between-income preference heterogeneity” is defined as:
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spref (z) :=

∫ z

x=zmin

s′pref (x)dx

sinc(z) :=

∫ z

x=zmin

s′inc(x)dx

The spref (z) term quantifies the amount of lottery consumption at income z, relative to the lowest

income level zmin, that can be attributed to preference heterogeneity rather than income effects.

Analogously, we define κ′j(z) to be the cross-sectional heterogeneity in the valuation of a

marginal increase in aj . We define κ′j,inc(z) := E
[
∂
∂zκj(p,a, z; θ)|z(θ) = z

]
, and let κ′j,pref (z) =

κ′j(z)− κ′j,inc(z) be the residual. We define

κj,pref (z) :=

∫ z

x=zmin

κ′j,pref (x)dx

κj,inc(z) :=

∫ z

x=zmin

κ′j,inc(x)dx.

C.4 Results and Derivations

Preliminary Lemmas

Although in contrast to standard optimal tax models, ours features discrete choice of a commodity,

we show that we can still establish an approximate Roy Identity in our model under assumptions 1

and 2, and thus derive a simple expression for how changes in lottery attributes affect labor supply.

This is the content of Lemma C.1 below.

Lemma C.1. The change in earnings of type θ induced by a small change daj is equal to the

change in earnings that would be induced by imposing a type-specific dT θ(z) = −daj · κj(p,a, z; θ).
Under assumptions 1 and 2, the change in earnings of type θ induced by a small change dp in the

price is equal to dT θ(z) = dp · s̄(p,a, z; θ) up to negligible terms.

Proof. The first statement follows from Lemma 1 of Saez (2002a). To prove the second statement,

assume, without loss, that G is linear. The Envelope Theorem implies that a change dp in the

price of the lottery has an expected utility impact of Eε [n
′(z − T (z)− psθ(ε))sθ(ε)] dp. Similarly, a

change dy = dps̄θ in after-tax income has an expected utility impact of Eε [n
′(z − T (z)− psθ(ε))] s̄θdp.

Up to second order, the difference between these two terms is

|E
[
n′′(z − T (z)− s̄θ)((sθ(ε))

2 − sθ(ε)s̄θ)
]
dp| = |n′′(z − T (z)− s̄θ)dp|V ar[sθ]

≤ rn′(z − T (z)− s̄θ)
pV ar[sθ(ε)]/s̄θ

z(θ)− T (z(θ))− ps̄θ
|dp|
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Thus, for dT θ(z) = dp · s̄(p,a, z; θ),

dz(θ)

dp
/
dz(θ)

dT θ
= 1 +O

(
pV ar[sθ(ε)]/s̄θ

z(θ)− T (z(θ))− ps̄θ

)

The next lemma will also prove useful in the derivations below.

Lemma C.2. Let q(x) be any continuously differentiable function with q(zmin) = 0. Then∫ ∞

z=zmin

∫ ∞

x=z
(1− ĝ(x))h(x)dxq′(z)dz =

∫ ∞

z=zmin

q(z)(1− ĝ(z))h(z)dz.

Proof. This follows from integration by parts and the fact that
∫∞
z=zmin

(1 − ĝ(z))h(z) = 0 at the

optimum.

The Main Result

Proposition C.1. If p, a, and T are set optimally, then

Mark-up above MC︷ ︸︸ ︷
p− ∂C

∂s̄
=

Bias correction︷ ︸︸ ︷
γ̄p(1 + σp) −

Regressivity of
increasing p︷ ︸︸ ︷

Cov [spref (z), ĝ(z)]

|ζ̄p|s̄

Mark-up above MC︷ ︸︸ ︷
p− ∂C

∂s̄
=

Bias correction︷ ︸︸ ︷
γ̄aj (1 + σaj )−

Mechanical effect on
consumer surplus

and revenues︷ ︸︸ ︷
κ̄j − E[ρj(z)g(z)]−

∂C

∂aj
+

Regressivity of
increasing aj︷ ︸︸ ︷

Cov[κj,pref (z), ĝ(z)]

ζ̄aj s̄

for all aj, with equality when aj > 0.

If the income tax T is not necessarily optimal, but p and a are set optimally, then

p− C ′
s = γ̄(1 + σp)−

E [s(z)(ĝ(z)− 1)]

|ζ̄p|s̄
− 1

|ζ̄p|s̄
E
[

T ′(z)

1− T ′(z)
ζz(z)zs

′
inc(z)

]
p− ∂C

∂aj
= γ̄(1 + σaj )−

E [κj(z)ĝ(z)− ρj(z))g(z)]− ∂C
∂aj

ζ̄aj s̄
+

1

ζ̄aj s̄
E
[

T ′(z)

1− T ′(z)
ζz(z)zκ

′
j,inc(z)

]
The intuition behind the “regressivity” and “consumer surplus” terms comes from considering

a joint reform where a change in p or aj is accompanied by a corresponding change in the income

tax T that leaves labor supply preserved. When there are no causal income effects, a change in

p or aj has no effect on labor supply, and thus no accompanying change in the income tax T is

necessary; in this case, spref (z) = s(z) and κj,pref (z) = κj(z) . When lotteries are a normal good,

an increase in the price, for example, generates a higher tax burden on those choosing to earn

more, and thus creates disincentives for higher labor supply equivalent to the change produced by
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an increase in the marginal income tax rate—this is formalized in Lemma 1. Thus, an increase in

p must be accompanied by a decrease in the income tax, which leads the net tax burden of the

reform to be proportional to spref (z) rather than s(z).

Proposition C.1 generalizes the classic Atkinson and Stiglitz (1976) result in three ways. First,

note that in the case of no correlated preference heterogeneity, spref ≡ 0, and thus the optimal price

equals the marginal cost. This is analogous to the classic Atkinson and Stiglitz (1976) result that

when consumption preferences are homogeneous, commodity taxes are not useful for redistribution

in the presence of nonlinear income taxation. Second, our results allow us to establish an Atkinson-

Stiglitz type result for optimal attribute regulation. In the absence of biases, and when κj,pref ≡
0, meaning that preferences for the attribute are uncorrelated with earnings ability, the optimal

attribute choice must satisfy κ̄j = C ′
j+(p− C ′

s)
∣∣ζ̄aj ∣∣ s̄. In other words, consumers’ average marginal

valuation of each attribute component must equal the marginal cost of increasing that attribute

component. This again parallels the classic Atkinson and Stiglitz (1976) results, but extends to

the case of attribute regulation. Third, while the case of spref = 0, and κj,pref ≡ 0 is a special case

corresponding to the assumptions of Atkinson and Stiglitz (1976), our general result in Proposition

C.1 provides a characterization of optimal regulation under a much broader set of assumptions.

Proof. Consider first increasing the marginal tax rate between z∗ and z∗ + dz by a small amount

dτ . Assumption 2 implies that the effects of small changes in z induced by this perturbation have

negligible effects on the consumption s (this is a simple extension of the derivations in ALT of the

proof of Proposition 1). Following the derivations of Saez (2001) or ALT, and utilizing Assumption

??, the optimal income tax T must thus satisfy

T ′(z∗)

1− T ′(z∗)
=

∫∞
x=z∗(1− ĝ(x))dH(x)

ζ̄z(z∗)z∗h(z∗)
(23)

Consider now the effect of increasing the price p by dp. The total welfare effect, written in

terms of the marginal value of public funds, can be decomposed into the following components:

• Mechanical revenue effect : the reform mechanically raises revenue from each consumer by

dp · s(θ), for a total of dps̄.

• Mechanical welfare effect : As in the proof of Lemma 1, the reform mechanically reduces each

consumer’s net income by dp · sθ(ε). To isolate the mechanical effect, we compute the loss in

welfare as if this reduction all comes from composite consumption c. Under Assumption 2,

and using the derivations in the proof of Lemma 1, we can write this dp · s̄θ up to negligible

higher-order terms. Thus the total mechanical welfare effect is −dpE [s(z)ĝ(z)]

• Revenue effects of substitution. The reform changes costs by C ′
s
ds̄
dpdp, and changes earnings

by p ds̄
dp . The net effect is thus (p− C ′

s) ζ̄ s̄dp
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• Bias-correcting effects of substitution: the reform causes each consumer to decrease their s

consumption by dp · ζ(θ)/p. This generates a behavioral welfare effect equal to

−dpE [g(z)γ(z)ζp(z)s(z)] = −dpγ̄p(1 + σp)ζ̄ s̄

• Effect on earnings: The reform causes a change in income tax revenue collected from type

θ equal to dz(θ)
dp T ′(z(θ)). Lemma 1 implies that dz(θ)

dp = −ζz(θ)
(

z(θ)
1−T ′(z(θ))

)
∂s(p,a,z;θ)

∂z . By

Assumption 6, this generates a total fiscal externality through the income tax equal to −dp ·
E
[

T ′(z)
1−T ′(z)ζz(z)zs

′
inc(z)

]
.

• Indirect effects on sin good consumption: The change in earnings affects consumption indi-

rectly. However, relative to the other effects above, these effects are of order s̄θ
z(θ)−T (z(θ))−ps̄θ

and therefore negligible by Assumption 2 (formally, this is easily proven by extending the

calculations of ALT in their proof of Proposition 1).

Combining these components, and taking into account that the income tax T is set optimally, the

total welfare effect of the price change is equal to

dW

dp
= E [s(z)(1− ĝ(z))] +

(
p− C ′

s

)
ζ̄ps̄− γ̄(1 + σp)ζ̄ps̄ (24)

− E
[

T ′(z)

1− T ′(z)
ζz(z)zs

′
inc(z)

]
(25)

= E [s(z)(1− ĝ(z))] +
(
p− C ′

s

)
ζ̄ps̄− γ̄p(1 + σp)ζ̄ps̄

−
∫ ∞

z=zmin

∫ ∞

x=z
(1− ĝ(x))h(x)dxs′inc(z)dz (26)

= E [s(z)(1− ĝ(z))] +
(
p− C ′

s

)
ζ̄ps̄− γ̄p(1 + σp)ζ̄ps̄

−
∫ ∞

z=zmin

(1− g(z))sinc(z)h(z)dz (27)

= −Cov [spref (z), ĝ(z)] +
(
p− C ′

s

)
ζ̄ps̄− γ̄p(1 + σp)ζ̄ps̄

In the computations above, expression (26) follows from (23), while expression (27) follows from

Lemma C.2. At the optimum, dW
dp = 0, which implies the first-order condition

p− C ′
s = γ̄p(1 + σp)−

Cov [spref (z), ĝ(z)]

|ζ̄p|s̄
(28)

Next consider the effects of increasing aj . The total welfare effect, written in terms of the

marginal value of public funds, can be decomposed into the following components:

• Mechanical welfare effect : The reform mechanically reduces changes consumers’ perceived

utility by κj(θ) dollars, and consumers’ normative utility by κj(θ)− ρj(θ) dollars. Thus the

total mechanical welfare effect is E [(κj(z)− ρj(z))g(z)] daj + E [κj(z)(ĝ(z)− g(z))] daj , or

E [κj(z)ĝ(z)− ρj(z)g(z)] daj
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• Revenue effects. The reform changes costs by C ′
jdaj + C ′

p
ds̄
daj
daj , and changes earnings by

p ds̄
daj

. The net effect is thus (p− C ′
s) ζ̄aj s̄daj − C ′

jdaj

• Bias-correcting effects of substitution: The reform causes each consumer to decrease their s

consumption by dp · ζaj (θ)/p. This generates a behavioral welfare effect equal to

−dajE
[
g(z)γ̄(z)ζaj (z)s(z)

]
= −daj γ̄aj (1 + σaj )ζ̄aj s̄

• Effect on earnings: The reform causes a change in income tax revenue collected from type

θ equal to dz(θ)
daj

T ′(z(θ)). Lemma 1 implies that dz(θ)
daj

= ζz(θ)
(

z(θ)
1−T ′(z(θ))

)
∂kj(p,a,z;θ)

∂z . By

Assumption 6, this generates a total fiscal externality through the income tax equal to daj ·
E
[

T ′(z)
1−T ′(z)ζz(z)zκ

′
j,inc(z)

]
.

• Indirect effects on sin good consumption: The change in earnings affects consumption indi-

rectly. However, relative to the other effects above, these effects are of order s̄θ
z(θ)−T (z(θ))−ps̄θ

and therefore negligible by Assumption 2 (formally, this is easily proven by extending the

calculations of ALT in their proof of Proposition 1).

Combining these components, and taking into account that the income tax T is set optimally, the

total welfare effect of the price change is equal to

dW

daj
= E [κj(z)ĝ(z)− ρj(z)g(z)] +

(
p− C ′

s

)
ζ̄aj s̄− C ′

j − γ̄aj (1 + σaj )ζ̄aj s̄ (29)

+ E
[

T ′(z)

1− T ′(z)
ζz(z)zκ

′
j,inc(z)

]
(30)

= E [κj(z)ĝ(z)− ρj(z)g(z)] +
(
p− C ′

s

)
ζ̄aj s̄− C ′

j − γ̄aj (1 + σaj )ζ̄aj s̄

+

∫ ∞

z=zmin

∫ ∞

x=z
(1− ĝ(x))h(x)dxκ′j,inc(z)dz

= E [κj(z)ĝ(z)− ρj(z)g(z)] +
(
p− C ′

s

)
ζ̄aj s̄− C ′

j − γ̄aj (1 + σaj )ζ̄aj s̄

+

∫ ∞

z=zmin

(1− ĝ(z))κj,inc(z)h(z)dz

= κ̄j − E[ρj(z)g(z)] + Cov[κj,pref (z), ĝ(z)] +
(
p− C ′

s

)
ζ̄aj s̄− C ′

j − γ̄aj (1 + σaj )ζ̄aj s̄

At the optimum dW
daj

= 0 if aj > 0 and dW
daj

< 0 if aj = 0, which implies the first-order condition

κ̄j − E[ρj(z)g(z)] + Cov[κj,pref (z), ĝ(z)] ≤ γ̄aj (1 + σp)
∣∣ζ̄aj ∣∣ s̄− (

p− C ′
s

) ∣∣ζ̄aj ∣∣+ C ′
j .

with equality when aj > 0. Rearranging gives the second condition in the Proposition.

Finally, note that the first-order conditions implied by (24)-(25) and (29)-(30) also allow us to

characterize the optimal p and a even when the income tax is not optimal.
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D Aggregate Lottery Demand Appendix

Table A1: First Stages for Prize Semi-Elasticity Estimates

(a) Jackpot Semi-Elasticity: Nationwide Data

(1)
Jackpot
EV ($)

Jackpot expected value forecast ($) 1.0884∗∗∗

(0.0466)

F-statistic 545
R2 0.96
Observations 2,035

(b) Jackpot and Second Prize Semi-Elasticities: California Data

(1) (2)
Jackpot
EV ($)

2nd prize
EV ($)

Jackpot expected value forecast ($) 1.0968∗∗∗ 0.1475∗∗∗

(0.0533) (0.0339)
2nd prize expected value forecast ($) -0.0162 1.0281∗∗∗

(0.0175) (0.0300)

F-statistic 6,875 1,183
R2 0.96 0.81
Observations 1,701 1,701

Notes: This table presents first stage estimates of equation (15). The first stages regress prize expected values
on a forecast based on the previous period prize amount and an indicator for whether the prize was won
in the previous period, controlling for the expectation of the forecast prior to the realization of the rollover
outcome as well as game-format, game-regional coverage, game-quarter of sample, and game-weekend fixed
effects. Panel (a) uses nationwide data, while Panel (b) uses California data only. The samples include
all Mega Millions and Powerball drawings from June 2010 to February 2020; the sample in Panel (b) is
smaller because California did not join Powerball until April 2013. Newey-West standard errors allowing up
to ten lags are in parentheses. *, **, ***: statistically significant with 90, 95, and 99 percent confidence,
respectively.
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Table A2: Prize Semi-Elasticity Estimates with Alternative Standard Errors

(a) Jackpot Semi-Elasticity: National Sales

(1) (2)
OLS IV

Jackpot expected value ($) 1.8648 1.7277
(0.0577)

(0.0576)

(0.0588)

(0.0546)

(0.0574)

(0.0563)

(0.0615)

(0.0619)

(0.0626)

(0.0603)

(0.0611)

(0.0591)

Observations 2,035 2,035

(b) Jackpot and Second Prize Semi-Elasticities: Cal-
ifornia Sales Only

(1) (2)
OLS IV

Jackpot expected value ($) 2.0154 1.8466
(0.0764)

(0.0776)

(0.0805)

(0.0744)

(0.0789)

(0.0789)

(0.0837)

(0.0852)

(0.0862)

(0.0841)

(0.0842)

(0.0807)
2nd prize expected value ($) -0.0202 0.0837

(0.0587)

(0.0590)

(0.0613)

(0.0576)

(0.0555)

(0.0565)

(0.0586)

(0.0554)

(0.0504)

(0.0546)

(0.0518)

(0.0413)

Observations 1,705 1,701

Notes: This table presents estimates of equation (15), a regression of the natural log of sales on prize
expected values, controlling for game-format, game-regional coverage, game-quarter of sample, and game-
weekend fixed effects. The IV regressions instrument for prize expected values with a forecast based on
the previous period prize amount and an indicator for whether the prize was won in the previous period
and additionally control for the expectation of the forecast prior to the realization of the rollover outcome.
Panel (a) uses nationwide sales, while Panel (b) uses California sales only. The samples include all Mega
Millions and Powerball drawings from June 2010 to February 2020; the sample in Panel (b) is smaller because
California did not join Powerball until April 2013. The standard errors, in order from top to bottom, are
Newey-West with five lags, Newey-West with ten lags, Newey-West with twenty-five lags, robust standard
errors clustered by game and month, robust standard errors clustered by game and quarter, and robust
standard errors clustered by game and half year.
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Figure A3: Prize Expected Values Accounting for Prize Sharing
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Notes: This figure presents “simplified” and “actual” expected values of the Powerball jackpot and Cali-
fornia second prize for each drawing in 2014. The “simplified” expected value is the product of the win
probability and prize amount. The “actual” expected value approximates the expected value accounting for
the possibility of prize sharing among multiple winners, assuming players select ticket numbers randomly.
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Figure A4: Actual versus Predicted Jackpot and California Second Prize Rollovers
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Notes: This figure presents a binned scatter plot of the predicted probability of a rollover assuming that
players select the numbers on their tickets randomly and an indicator for observed rollovers. A dashed 45-
degree line is included for reference. Panel (a) uses nationwide jackpot data, while Panel (b) uses California
second prize data only. The sample includes all Mega Millions and Powerball drawings from June 2010
through February 2020.
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D.1 Substitution Across Games

D.1.1 Substitution in Response to Jackpot Variation

Our modeling considers only one good subject to behavioral bias. If changes in prices or attributes

cause substitution to other goods subject to behavioral bias, optimal policy would have to account

for this (Allcott, Lockwood, and Taubinsky 2019). To test for substitution between Mega Millions

and Powerball, we re-estimate equation (15) with two changes. First, the dependent variable is in

levels instead of logs, which allows us to easily construct a diversion ratio by dividing regression

coefficients. Second, we add the jackpot for game −j. The regression is

s̄jt = ζ̄jπ1jtw1,j,t + ζ̄cπ1,−j,tw1,−j,t + βjπ1jtZ̄1,j,t + βcπ1,−j,tZ̄1,−j,t + ξjt + ϵjt. (31)

As before, we instrument for π1jtw1jt and π1,−j,tw1,−j,t with π1jtZ1jt and π1,−j,tZ1,−j,t, and we

control for π1jtZ̄1jt and π1,−j,tZ̄1,−j,t in order to isolate random variation in jackpot amounts.

Mega Millions draws are on Tuesday and Friday, while Powerball draws are on Wednesday and

Saturday. We define t by matching the Tuesday-Wednesday draws and Friday-Saturday draws for

a given week.

Panel (a) of Appendix Table A3 presents OLS and IV estimates. Column 2 shows that when a

game’s jackpot expected value increases by $1, that game’s sales increase by 107.14 million tickets.

However, the other game’s ticket sales are statistically unaffected, and the 95 percent confidence

intervals exclude effects larger than about 7.9 million tickets.

We can also estimate substitution to lottery games other than the multi-state games. To do

that, we collapse the balanced panel of games in the La Fleur’s data to the nationwide weekly level.

Now let s̄jt be sales in units of dollars, let π1tw1t denote the average jackpot expected value across

the four draws of Mega Millions and Powerball in week t. The regression is

s̄jt = ζ̄cπ1tw1t + βcπ1j,tZ̄1j,t + ξjt + ϵjt. (32)

We instrument for π1tw1t with a weekly version of the rollover instrument and only include the

weekly version of the pre-rollover expectation of the instrument π1j,tZ̄1j,t in our IV regressions.28

In these weekly data, ξjt represents quarter-of-sample fixed effects and 52 week-of-year fixed effects,

which we have found to improve precision by soaking up seasonality.

Panel (b) of Appendix Table A3 presents the OLS estimates. The IV estimates are very similar;

see Appendix Table A4. Each column considers sales of different games. Column 1 shows that when

the average Mega Millions and Powerball jackpot expected values increase by $1, their combined

weekly ticket sales increase by $500.36 million. Column 2 shows that sales of 13 major state-level

draw games increase by $1.79 million, suggesting statistically significant but economically small

28The weekly version of the instrument is the product of the jackpot win probability and the draw-level jackpot
forecast, constructed as described in equation (13), averaged over weeks in the same way as the jackpot expected
values.
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complementarity.29 Columns 3 and 4 show no statistically significant effects on instant games

and on the combination of all games other than Mega Millions and Powerball. The 95 percent

confidence interval in column 4 rules out that a $1 increase in the Mega Millions and Powerball

jackpots increases sales of other games by more than $9.6 million or decreases sales by more than

$11.9 million, implying economically very limited substitution. Appendix Figure A5 presents visual

examples of these null effects for the 2014 data, paralleling Figure 1.

Table A3: Cross-Game Substitution

(a) Mega Millions and Powerball

(1) (2)
OLS IV

Own game jackpot 108.32∗∗∗ 107.14∗∗∗

expected value ($) (14.62) (16.76)
Other game jackpot 0.06 1.94
expected value ($) (2.44) (3.01)

Observations 2,035 2,035
Dependent variable mean 23.0 23.0

(b) Different Game Types

(1) (2) (3) (4)
Mega Millions

& Powerball

Major state

draw games
Instant
games

Other state-
level games

Jackpot expected value ($) 500.36∗∗∗ 1.79∗∗∗ 0.01 -1.16
(74.03) (0.32) (4.99) (5.47)

Observations 508 508 508 508
Dependent variable mean 108.2 12.4 509.5 669.2

Notes: Panel (a) of this table presents estimates of equation (31), a regression of the level of sales of a
multi-state game on the prize expected values of both multi-state games, controlling for game-format, game-
regional coverage, game-week, weekend, and quarter-of-sample fixed effects, using nationwide game-by-draw
data. The IV regression instruments for prize expected values with a forecast based on the previous period
prize amount and an indicator for whether the prize was won in the previous period and additionally controls
for the expectations of the forecasts prior to the realization of rollover outcomes. Panel (b) presents estimates
of equation (32), a regression of the aggregate level of sales of the lottery games indicated in each column on
the week-average prize expected values of Mega Millions and Powerball, controlling for week and quarter-of-
sample fixed effects, using a balanced panel of nationwide game-by-week data. Newey-West standard errors
allowing up to ten lags are in parentheses. Sales are in millions of tickets in Panel (a) and millions of dollars
in Panel (b). *, **, ***: statistically significant with 90, 95, and 99 percent confidence, respectively.

29We selected these 13 games because they were the most likely substitutes for Mega Millions and Powerball. We
first selected the largest draw game in each state plus additional games where jackpot data were available, then limited
to a balanced panel in states that were always Mega Millions and Powerball members. The 13 games are Lotto from
Colorado, Lotto! from Connecticut, Lotto from Illinois, Megabucks Doubler from Massachusetts, Multi-Match from
Maryland, Tri-State Megabucks Plus from Maine and New Hampshire, Gopher 5 from Minnesota, Lotto from New
York, Classic Lotto and Rolling Cash 5 from Ohio, Megabucks from Oregon, Lotto Texas from Texas, and Lotto from
Washington.
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Table A4: Cross-Game Substitution: IV

(1) (2) (3) (4)
Mega Millions

& Powerball

Major state

draw games
Instant
games

Other state-
level games

Jackpot expected value ($) 470.69∗∗∗ 1.68∗∗∗ -9.26 -13.96
(106.77) (0.49) (13.01) (14.51)

Observations 508 508 508 508
Dependent variable mean 108.2 12.4 509.5 669.2

Notes: This table presents estimates of equation (32), a regression of the aggregate level of sales in millions
of dollars of the lottery games indicated in each column on the week-average prize expected values of Mega
Millions and Powerball, using a balanced panel of nationwide game-by-week data. Week-average prize
expected values are instrumented with week averages of a forecast based on the previous period prize amount
and an indicator for whether the prize was won in the previous period. Controls for the week averages of
the expectation of the forecast prior to the realization of each rollover outcomes as well as game-week and
quarter-of-sample fixed effects are included. Newey-West standard errors allowing up to ten lags are in
parentheses. *, **, ***: statistically significant with 90, 95, and 99 percent confidence, respectively.

Figure A5: Powerball Prizes and Other Games Ticket Sales in 2014
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Notes: This figure presents the expected values of the Powerball jackpot, the natural log of Powerball and
Mega Millions California ticket sales for each drawing in 2014, and the natural log of aggregate sales from
a balanced panel of all other California game-by-week data. The levels of sales are adjusted so that the
average natural log of sales is zero.
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D.1.2 Substitution in Response to Price Variation

We can also test for substitution by estimating the effect of game j’s price change on other games.

To do this, we estimate an analogue to equation (16), except with the substitute game’s sales level

on the left-hand side, a control for the substitute game’s jackpot expected value, and a vector of

week-of-year and event fixed effects collectively denoted ξt:

s̄−jt = ζ̄ppjtWjt + β1Wjt + β2pjtW
+
jt (+β2π1−jtw1−jt) + ξt + ϵjt. (33)

The substitute game expected value control π1−jtw1−jt is used only to study substitution to the

other major multi-state game, not when we estimate substitution to other games in the La Fleur’s

data. Table A5 presents results.

Table A5: Cross-Price Demand Responses

(1) (2) (3) (4)
Own-price

response
Other multi-
state game

Major state

draw games
All other
games

Price × 12-month window -21.15∗∗∗ 5.84 -0.03 7.82
(3.55) (6.62) (0.37) (6.46)

Jackpot expected value ($) 131.32∗∗∗ 167.38∗∗∗

(14.94) (40.55)

Observations 312 312 312 312
Dependent variable mean 37.8 38.5 12.6 650.5

Notes: This table presents estimates of equation (33), a regression of the aggregate level of sales of the
lottery games indicated in each column header on (i) the ticket price of a multi-state game interacted with
an indicator for the 12-month window—six months before and six months after—around a price change event
for that multi-state game, (ii) the 12-month window indicator, and (iii) the ticket price of the multi-state
game interacted with an indicator for the 12-month period following the 12-month window around the price
change event, controlling for week fixed effects and a price-change event fixed effect. Columns 1 and 2 also
include controls for the week-average jackpot expected value of the game indicated in the column header.
Each column pools data from a 36-month window around both the Powerball and Mega Millions price
changes, using a balanced panel of nationwide game-by-week data. Newey-West standard errors allowing
up to ten lags are in parentheses. Sales are in millions of tickets in columns 1–2 and millions of dollars in
columns 3–4. *, **, ***: statistically significant with 90, 95, and 99 percent confidence, respectively.

D.2 Long-Run vs. Short-Run Elasticity

As in many other studies, we have a well-identified short-run elasticity, but our policy analysis

requires a long-run elasticity. Consider two models in which these elasticities might differ. First,

consumption might be substitutable or complementary over time, e.g. if previous purchases cause

people to tire or get excited in the future. Second, consumers might have a desired average spending

(e.g. $X per month) that they allocate across draws to maximize expected value. In the limiting

case, demand might be fully inelastic to the average jackpot level but highly elastic to variation

across draws.

To address these issues, we test for effects of lagged jackpot amounts and also aggregate over
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time. Define a “jackpot spell” as a group of draws beginning after a jackpot is won and continuing

until the next win. The sawtooth pattern in Figures 1 and A5 illustrates that while the length of

each jackpot spell varies, these spells are well-defined units of analysis that capture the variation

we want to use. We collapse the data to the average ln s̄jt and average πkjtwkjt over each of the

196 complete jackpot spells in our sample, which are 4.7 weeks long on average. Now using t to

index jackpot spells, we estimate an analogue of equation (15) including lags indexed by l:

ln s̄jt =
L∑
l=0

ζ̄1lπ1j,t−lw1j,t−l +
L∑
l=0

β1lπ1j,t−lZ̄1j,t−l + ξjt + ϵjt, (34)

where the fixed effects ξjt are now game-format, game-regional coverage, and game-year of sample

fixed effects based on the first draw in the spell. We instrument for π1jtw1jt with a forecast of the

spell midpoint jackpot expected value using the reset value w1jf(t), the average percent increase

ι1jf(t), and the number of rollovers Rjt in the spell:
(
1 + ι1jf(t)

)Rjt/2 · π1jtw1jf(t). In our IV

regressions, we control for the expectation of the spell midpoint jackpot expected value conditional

on ≤ R̄ rollovers in the spell, where R̄ is the observed number of rollovers in the spell, and assuming

players randomly select the numbers on their tickets:
(
1 + ι1jf(t)

)E[Rjt/2|Rjt≤R̄] · π1jtw1jf(t). The

first stages are strong, and the jackpot expected value forecast instrument for lag t − l strongly

predicts the actual jackpot expected value for lag t− l but not for other lags; see Appendix Table

A7.

Table A6 presents results. Columns 1 and 2 present the OLS and IV estimates with no lags,

while columns 3 and 4 add three lags. In case aggregating to jackpot spells is still not enough

to identify a long-run elasticity, columns 5 and 6 present estimates after aggregating to groups of

three jackpot spells. There are 64 complete three-spell groups in our sample, which are 15.2 weeks

long on average.

The contemporaneous effects in columns 1, 2, 5, and 6 are comparable to the draw-level esti-

mates from Table 3. The lag coefficients in columns 3 and 4 imply intertemporal complementarity:

higher jackpots in recent prior spells cause higher demand now, with an effect that decays toward

zero by the third lag. The OLS and IV estimates are similar, suggesting limited simultaneity bias.
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Table A6: Intertemporal Substitution

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Jackpot expected value, 1.6699∗∗∗ 2.0158∗∗∗ 1.7178∗∗∗ 2.0001∗∗∗ 1.7928∗∗∗ 2.6474∗∗∗

t ($) (0.0797) (0.1133) (0.0943) (0.1075) (0.2589) (0.4104)
Jackpot expected value, 0.2831∗∗∗ 0.7027∗∗∗

t− 1 ($) (0.0697) (0.1259)
Jackpot expected value, 0.1624∗∗ 0.3870∗∗∗

t− 2 ($) (0.0665) (0.1480)
Jackpot expected value, 0.0890∗∗ 0.0542
t− 3 ($) (0.0366) (0.0745)

R2 0.87 0.89 0.88 0.92 0.74 0.81
Observations 193 191 187 185 61 61

Notes: This table presents estimates of equation (34), a regression of the average natural log of sales on
contemporaneous and lagged average jackpot expected values, controlling for game-format, game-regional
coverage, and game-year of sample fixed effects based on the first draw in the period of interest. In columns
1–4, we use nationwide game-by-jackpot spell data, where a jackpot spell is defined as a group of draws
beginning after a jackpot is won and continuing until the next win. In columns 5–6, we use nationwide
game-by-three-spell data, averaging across series of three jackpot spells. The sample includes all complete
Mega Millions and Powerball jackpot spells from June 2010 to February 2020. Observation counts exclude
singletons. Newey-West standard errors allowing up to ten lags are in parentheses. *, **, ***: statistically
significant with 90, 95, and 99 percent confidence, respectively.
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Table A7: First Stages for Intertemporal Substitution Estimates

(1) (2) (3) (4) (5) (6)
Spell

jackpot
EV, t

Spell
jackpot
EV, t

Spell
jackpot
EV, t− 1

Spell
jackpot
EV, t− 2

Spell
jackpot
EV, t− 3

3-spell
jackpot
EV, t

Jackpot expected value midpoint 0.9462∗∗∗ 1.0234∗∗∗ 0.1431∗∗ 0.0450 -0.0627 1.6058∗∗∗

forecast, t ($) (0.0876) (0.2586) (0.0616) (0.1087) (0.1298) (0.4377)
Jackpot expected value midpoint 0.1900∗ 1.0700∗∗∗ 0.1201 0.0499
forecast, t− 1 ($) (0.1059) (0.2803) (0.0839) (0.0953)
Jackpot expected value midpoint 0.0698 0.1052 1.1054∗∗∗ 0.1360
forecast, t− 2 ($) (0.0657) (0.1218) (0.2730) (0.1030)
Jackpot expected value midpoint 0.0501 0.0659 0.0693 1.1240∗∗∗

forecast, t− 3 ($) (0.0814) (0.0925) (0.1229) (0.2749)

F-statistic 16.3 25.8 18.1 57.4 28.4 13.5
R2 0.69 0.79 0.80 0.79 0.71 0.79
Observations 193 185 185 185 185 61

Notes: This table presents first stage estimates of equation (34). The first stages regress average jackpot
expected values on forecasts of the midpoint of the jackpot expected value within a jackpot spell or averaged
across a three-spell period based on the number of rollovers during the period as well as the expected value
of the jackpot when it resets and the average percent jackpot increase after a rollover corresponding to the
game-format of the first draw in the period of interest. Controls for the approximate expectation of the
expected value midpoint forecasts as well as game-format, game-regional coverage, and game-year of sample
fixed effects based on the first draw in the period of interest are included. In columns 1–5, we use nationwide
game-by-jackpot spell data, where a jackpot spell is defined as a group of draws beginning after a jackpot is
won and continuing until the next win. In column 6, we use nationwide game-by-three-spell data, averaging
across series of three jackpot spells. The sample includes all complete Mega Millions and Powerball jackpot
spells from June 2010 to February 2020. Observation counts exclude singletons. Newey-West standard errors
allowing up to ten lags are in parentheses. *, **, ***: statistically significant with 90, 95, and 99 percent
confidence, respectively.
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D.3 Format Change Appendix

Table A8: Placebo Tests: Non-Price Format Change Event Studies

(1) (2) (3) (4) (5) (6)
Mega

Millions
Mega

Millions
Mega

Millions
Powerball Powerball Powerball

Post format change × 12-month 0.3273∗ 0.1546∗∗∗ -0.0226 0.3352 0.2944∗∗∗ 0.0516
window (0.1811) (0.0500) (0.0502) (0.2466) (0.0647) (0.0757)
Jackpot expected value ($) 2.2981∗∗∗ 1.7557∗∗∗

(0.1064) (0.0760)
Jackpot ($millions) 0.0088∗∗∗ 0.0061∗∗∗

(0.0003) (0.0006)

Observations 313 313 313 313 313 313

Notes: This table presents estimates of a regression of the natural log of sales on (i) an indicator for a
post-format change period interacted with an indicator for the 12-month window—six months before and
six months after—around a game-format change event, (ii) the 12-month window indicator, and (iii) an
indicator for the post-format change period interacted with an indicator for the 12-month period following
the 12-month window around the format change event, controlling for weekend fixed effects in all columns,
jackpot expected value in columns 2 and 5, and jackpot amounts in columns 3 and 6. In columns 1–3, the
sample includes all Mega Millions draws in a 36-month window around the October 19, 2013 format change
event. In columns 4–6, the sample includes all Powerball draws in a 36-month window around the October 7,
2015 format change event. We use Newey-West standard errors with up to ten lags. *, **, ***: statistically
significant with 90, 95, and 99 percent confidence, respectively.

E Survey Appendix

E.1 AmeriSpeak Survey Question Text

Variable Question text

Spending and income effects

Monthly lottery

spending

How many dollars did you spend in total on lottery tickets in an average

month in 2019?

Income change How much income did you earn in 2019 compared to 2018? In 2019, I earned

. . . [Less than half as much, 25% to 50% less, 10% to 25% less, 5% to 10%

less, 1% to 5% less, The exact same amount, 1% to 5% more, 5% to 10%

more, 10% to 25% more, 25% to 50% more, Over 50% more]

Spending change How much money did you spend in total on lottery tickets in 2019 compared

to 2018? In 2019, I spent . . . [Less than half as much, 25% to 50% less, 10%

to 25% less, 5% to 10% less, 1% to 5% less, The exact same amount, 1% to 5%

more, 5% to 10% more, 10% to 25% more, 25% to 50% more, Over 50% more]
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Self-reported

income effect

Imagine you got a raise and your income doubled. How do you think your

lottery spending would change? I would spend . . . [Less than half as much,

25% to 50% less, 10% to 25% less, 5% to 10% less, 1% to 5% less, The exact

same amount, 1% to 5% more, 5% to 10% more, 10% to 25% more, 25% to

50% more, Over 50% more]

Preferences

Unwillingness to

take risks

In general, how willing or unwilling are you to take risks? [1 Very unwilling,

2, 3, 4, 5, 6, 7 Very willing]

Financial risk

aversion

Which of the following statements comes closest to the amount of financial

risk that you are willing to take when you save or make investments?

[Substantial financial risks expecting to earn substantial returns,

Above-average financial risks expecting to earn above-average returns,

Average financial risks expecting to earn average returns, No financial risks]

Lottery seems fun To what extent do you agree or disagree with the following statement: For

me, playing the lottery seems fun. [-3 Strongly disagree, -2, -1, 0 Neutral, 1,

2, 3 Strongly agree]

Enjoy thinking

about winning

To what extent do you agree or disagree with the following statement: I enjoy

thinking about how life would be if I won the lottery. [-3 Strongly disagree, -2,

-1, 0 Neutral, 1, 2, 3 Strongly agree]

Bias proxies

Self-control

problems

It can be hard to exercise self-control, and some people feel that there are

things they do too much or too little – for example, exercise, save money, or

eat junk food. Do you feel like you play the lottery too little, too much, or

the right amount? [-3 Far too little, -2, -1, 0 The right amount, 1, 2, 3 Far too

much]

Financial illiteracy Normally, which asset displays the highest fluctuations over time? [Savings

accounts, Bonds, Stocks]

When an investor spreads her money among different assets, does the risk of

losing money: [Increase, Decrease, Stay the same]

A second hand car dealer is selling a car for $6,000. This is two-thirds of what

it cost new. How much did the car cost new? [$ ]
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If 5 people all have the winning numbers in the lottery and the prize is $2

million, how much will each of them get? [$ ]

Let’s say you have $200 in a savings account. The account earns 10% interest

per year. How much will you have in the account at the end of two years? [$ ]

Suppose you had $100 in a savings account and the interest rate was 2% per

year. After 5 years, how much do you think you would have in the account if

you left the money to grow? [More than $102, Exactly $102, Less than $102]

Imagine that the interest rate on your savings account was 1% per year and

inflation was 2% per year. After 1 year, how much would you be able to buy

with the money in this account? [More than today, Exactly the same as

today, Less than today]

Do you think that the following statement is true or false? “Buying a single

company stock usually provides a safer return than a stock mutual fund.”

[True, False]

Statistical ability For the next few questions, imagine flipping a coin that has a 50% chance of

landing heads and a 50% chance of landing tails. Imagine that after eight

flips, you observe the patterns described in the table below. What is the

probability, in percent from 0-100, that the next flip is tails?

[tails-tails-tails-heads-tails-heads-heads-heads %,

heads-heads-heads-heads-heads-heads-heads-heads %,

heads-tails-heads-tails-tails-tails-tails-tails %]

Now imagine starting over and flipping a coin 1000 times. What are the

chances, in percent from 0-100, that the total number of heads will lie within

the following ranges? [Between 481 and 519 heads %, Between 450 and 550

heads %, Between 400 and 600 heads %]
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Now we are going to ask you how much people might win from different

lotteries. For each lottery described in the table below, please give us your

best estimate of what percent (from 0-100) of the lottery revenues are

returned to the winners. [Tickets cost $1, and 1 out of every 10 tickets wins

$10. %, Tickets cost $1, and 1 out of every 1,000 tickets wins $500. %,

Tickets cost $1, 1 out of every 400,000,000 tickets wins $200,000,000, and 1

out of every 1,000 tickets wins $100. %, Tickets cost $1, and 1 out of every

300,000,000 tickets wins $200,000,000. %]

Overconfidence Imagine you could keep buying whatever lottery tickets you want, over and

over for a very long time. For every $1000 you spend, how much do you think

you would win back in prizes, on average? [$0 to $99, $100 to $199, $200 to

$299, $300 to $399, $400 to $499, $500 to $599, $600 to $699, $700 to $799,

$800 to $899, $900 to $999, $1000 to $1499, $1500 to $1999, $2000 to $5000,

More than $5000]

Imagine that the average lottery player in the country could keep buying

whatever lottery tickets they want, over and over for a very long time. For

every $1000 they spend, how much do you think they would win back in

prizes, on average? [$0 to $99, $100 to $199, $200 to $299, $300 to $399, $400

to $499, $500 to $599, $600 to $699, $700 to $799, $800 to $899, $900 to $999,

$1000 to $1499, $1500 to $1999, $2000 to $5000, More than $5000]

Expected returns Think about the total amount of money spent on lottery tickets nationwide.

What percent do you think is given out in prizes? [0 - 9%, 10 - 19%, 20 -

29%, 30 - 39%, 40 - 49%, 50 - 59%, 60 - 69%, 70 - 79%, 80 - 89%, 90 - 100%]

Predicted life

satisfaction

A recent study surveyed Swedish lottery winners. A typical person in the

study had won between $100,000 and $800,000 in the lottery about 12 years

before the survey. The study compared people who had won more vs. less

money to determine the effect of additional lottery winnings.

The survey asked the following question about life satisfaction: “Taking all

things together in your life, how satisfied would you say that you are with

your life these days?” People responded on a scale from 0 (“Extremely

dissatisfied”) to 10 (“Extremely satisfied”). The average response was 7.21

out of 10.
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Do you think lottery winnings increased life satisfaction, decreased life

satisfaction, or had exactly zero effect? [Increased life satisfaction, Decreased

life satisfaction, Had exactly zero effect]

By how much do you think an additional $100,000 in lottery winnings

[increased/decreased] average life satisfaction on the 0-10 scale?

E.2 Additional Tables and Figures from AmeriSpeak Survey

Table A10: Descriptive Statistics: 2021 Survey Data

Obs. Mean Std. dev. Min Max

Unwillingness to take risks 2,124 -3.96 1.37 -7 -1
Financial risk aversion 2,124 3.04 0.80 1 4
Lottery seems fun 2,124 -0.04 1.76 -3 3
Enjoy thinking about winning 2,122 0.71 1.86 -3 3
Self-control problems 2,124 -0.66 1.27 -3 3
Financial literacy 2,124 0.80 0.25 0 1
Financial numeracy 2,124 0.66 0.32 0 1
Gambler’s Fallacy 2,124 0.27 0.39 0 1
Non-belief in Law of Large Numbers 2,124 0.39 0.17 0.00 0.93
Expected value miscalculation 2,124 0.66 0.38 0 1
Overconfidence 2,123 0.01 0.46 -4.95 4.65
Expected returns 2,123 0.27 0.20 0.05 0.95
Predicted life satisfaction 2,112 2.28 4.82 -10 10

Notes: This table presents descriptive statistics for our 2021 AmeriSpeak survey, which resampled proxies
for preferences and biases. Section 4.1 summarizes the coding of these variables.
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Figure A6: Distribution of Monthly Lottery Spending
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Notes: This figure presents a histogram of monthly lottery spending, using data from our AmeriSpeak survey.
For this figure, spending is winsorized at $100 per month.
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Figure A7: Non-Zero Lottery Spending by Income
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Notes: This figure reports the share of people with non-zero monthly lottery spending in 2019 within
household income groups, with 95 percent confidence intervals, using data from our AmeriSpeak survey.
Observations are weighted for national representativeness.
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Figure A8: Lottery Spending by Income with and without Winsorization
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Notes: This figure presents average monthly lottery spending within household income groups, with 95
percent confidence intervals, using data from our 2020 AmeriSpeak survey. The winsorized values are the
same as in Figure 4. The unwinsorized values are the original survey responses. Observations are weighted
for national representativeness.
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Table A11: Causal and Cross-Sectional Income Effects

(1) (2) (3)
Spending
change

Self-reported
income effect

ln(1 + monthly

lottery spending)

Income change 0.194∗∗∗

(0.025)

ln(household income) -0.111∗∗∗

(0.035)

Constant -5.483∗∗∗ -0.014∗∗∗ 1.911∗∗∗

(0.353) (0.003) (0.144)

Observations 2,862 2,855 2,877

Notes: Columns 1 and 2 report estimates of the causal elasticity of lottery spending with respect to income,
using data from our AmeriSpeak survey. Income change and spending change refer to the self-reported
percent change in household income and lottery spending in 2019 compared to 2018, respectively. Self-
reported income effect is the answer to the question “Imagine you got a raise and your income doubled.
How do you think your lottery spending would change?” in percent. Column 3 reports the cross-sectional
elasticity of lottery spending with respect to income.
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Table A12: First-Stage Estimates for Preference and Bias Proxies

(1) (2) (3) (4) (5) (6) (7) (8)
Self-control
problems

Financial
illiteracy

Statistical
mistakes

Expected
returns

Predicted life
satisfaction

Risk
aversion

Lottery
seems fun

Enjoy thinking
about winning

Self-control problems 0.353∗∗∗ 0.025∗∗ 0.008 0.022 -0.023 -0.002 0.008 0.003
(0.058) (0.010) (0.013) (0.015) (0.017) (0.010) (0.013) (0.012)

Financial illiteracy 0.064∗∗∗ 0.551∗∗∗ 0.248∗∗∗ 0.050∗∗∗ -0.003 0.017 0.004 0.007
(0.020) (0.018) (0.015) (0.017) (0.019) (0.011) (0.015) (0.015)

Statistical mistakes 0.021 0.155∗∗∗ 0.439∗∗∗ -0.017 0.026 0.008 0.036∗∗∗ 0.038∗∗∗

(0.018) (0.011) (0.019) (0.016) (0.017) (0.010) (0.013) (0.013)
Expected returns 0.023 0.020∗∗ -0.018 0.356∗∗∗ 0.011 0.012 0.036∗∗∗ 0.009

(0.015) (0.009) (0.011) (0.023) (0.014) (0.010) (0.012) (0.012)
Predicted life satisfaction -0.016 0.005 0.019∗ 0.010 0.286∗∗∗ -0.005 0.028∗∗ 0.054∗∗∗

(0.015) (0.009) (0.011) (0.014) (0.023) (0.010) (0.012) (0.012)
Risk aversion -0.027∗ 0.028∗∗∗ 0.011 0.002 -0.015 0.720∗∗∗ -0.050∗∗∗ 0.009

(0.014) (0.008) (0.011) (0.015) (0.015) (0.014) (0.011) (0.011)
Lottery seems fun 0.028 0.004 0.021 0.071∗∗∗ 0.028 -0.034∗∗∗ 0.472∗∗∗ 0.115∗∗∗

(0.019) (0.011) (0.014) (0.018) (0.018) (0.012) (0.021) (0.017)
Enjoy thinking about winning 0.017 0.005 0.025∗ 0.005 0.103∗∗∗ 0.022∗ 0.122∗∗∗ 0.491∗∗∗

(0.016) (0.011) (0.014) (0.018) (0.018) (0.011) (0.016) (0.023)
ln(household income) 0.029 -0.059∗∗∗ -0.031∗∗ 0.024 -0.011 -0.055∗∗∗ -0.016 0.003

(0.019) (0.011) (0.014) (0.018) (0.019) (0.009) (0.013) (0.013)
ln(years of education) -0.174∗∗ -0.469∗∗∗ -0.281∗∗∗ -0.152∗ -0.269∗∗∗ -0.105∗∗ -0.178∗∗∗ -0.196∗∗∗

(0.083) (0.047) (0.070) (0.087) (0.092) (0.041) (0.062) (0.061)
1(Black) 0.088 0.227∗∗∗ 0.161∗∗∗ 0.153∗∗∗ 0.102∗∗ -0.050∗∗ 0.081∗∗ 0.043

(0.054) (0.028) (0.033) (0.046) (0.050) (0.021) (0.033) (0.029)
1(Hispanic) 0.055 0.190∗∗∗ 0.069∗∗ 0.088∗∗ 0.105∗∗ -0.041∗∗ 0.024 0.022

(0.038) (0.025) (0.028) (0.037) (0.043) (0.019) (0.028) (0.028)

Other demographics Yes Yes Yes Yes Yes Yes Yes Yes
State fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
F-statistic 50.4 506.9 299.0 225.0 132.7 2,570.9 363.9 312.2
R2 0.22 0.82 0.91 0.77 0.30 0.60 0.38 0.40
Observations 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144
Clusters 2,072 2,072 2,072 2,072 2,072 2,072 2,072 2,072

Notes: This table presents first stage estimates of the Obviously Related Instrumental Variables version of
equation (17): regressions of 2020 and 2021 bias and preference proxies on 2021 and 2020 bias and preference
proxies plus demographic controls and state fixed effects, using data from our AmeriSpeak surveys. “Other
demographics” includes age, household size, political ideology, and indicators for male, Black, Hispanic,
other (non-white) race, married, employed, urban area, and attends religious services at least once a month.
Robust standard errors, clustered by respondent, are in parentheses. *, **, ***: statistically significant with
90, 95, and 99 percent confidence, respectively.
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Table A13: Association of Income and Bias Proxies with Differences in Reported Lottery
Spending

(1) (2) (3) (4) (5) (6) (7)
Household

income ($000s)
Self-control
problems

Financial
illiteracy

Statistical
mistakes

Over-
confidence

Expected
returns

Predicted life
satisfaction

∆ monthly -0.000080 -0.000060 -0.000046 0.000001 0.000225 0.000430 0.000061
lottery spending (0.013641) (0.000865) (0.000303) (0.000328) (0.000290) (0.000393) (0.000268)

R2 0.00 0.00 0.00 0.00 0.00 0.03 0.00
Observations 79 79 79 79 79 79 79

Notes: This table reports the associations of household income and bias proxies with the difference in 2019
monthly lottery spending reported on the 2020 vs. 2021 surveys. The sample includes all respondents from
whom we re-elicited 2019 monthly lottery spending in the 2021 survey, which included only people who had
reported spending more than $150 per month or more than 10 percent of their income on lottery tickets in
our 2020 survey. Robust standard errors are in parentheses. *, **, ***: statistically significant with 90, 95,
and 99 percent confidence, respectively.

Figure A9: Share of Lottery Spending Attributable to Biases (Instrumental Variables
Estimates)
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Notes: This figure plots the share of lottery spending attributable to each of our six bias proxies, with 95
percent confidence intervals. Predicted unbiased consumption is ŝVik = si+1

exp(τ̂k b̃ik)
− 1, where si is monthly

lottery spending , τ̂k is the IV estimate from column 6 of Table 6, and b̃ik =
bik−bVk
SD(bik)

is the difference between

person i’s proxy bik and the unbiased value bVk in standard deviation units. We winsorize at ŝVi ≥ 0, and we

fix ŝVik = 0 if si = 0. The share of consumption attributable to each bias proxy is
∑

i(si−ŝVik)∑
i si

.
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Figure A10: Share of Lottery Spending Attributable to Bias within Income Groups
(Instrumental Variables Estimates)
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Notes: This figure plots the share of lottery spending attributable to bias within household income groups,
with 95 percent confidence intervals. Predicted unbiased consumption is ŝVi = si+1

exp(τ̂ b̃i)
− 1, where si is

monthly lottery spending , τ̂ is the IV estimate from column 6 of Table 6, and b̃ik =
bik−bVk
SD(bik)

is the difference

between person i’s proxy bik and the unbiased value bVk in standard deviation units. We winsorize at ŝVi ≥ 0,

and we fix ŝVik = 0 if si = 0. The share of consumption attributable to bias is
∑

i(si−ŝVi )∑
i si

.

E.3 Supplemental Survey

We administered a brief survey on the online platform Prolific in June 2021 with a final sample

of 200 respondents. We restricted recruitment to respondents with (a) residency in the U.S., (b)

at least 15 prior submissions on Prolific, and (c) a prior-submission approval rate of at least 95%.

We did not allow respondents to take the survey on a mobile device to maintain the legibility of

graphics in the survey. The average respondent took 2.8 minutes to complete the survey and was

paid $1.50 for their participation.

The survey proceeded in the following steps. First, respondents consented to participate in the

survey and entered their unique identifier used for anonymous compensation and communication

on the platform. They then answered a set of four questions in which they expressed whether they

would hypothetically prefer to receive a smaller certain dollar amount or a chance of receiving a

larger dollar amount. Specifically, we asked whether they would prefer (i) $110 for sure or a 50%

chance of $200, (ii) $210 for sure or a 50% chance of $400, (iii) $110 million for sure or a 50%
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chance of $200 million, and (iv) $210 million or a 50% chance of $400 million. The order in which

the four questions were presented was randomized at the respondent level.

Next, we provided respondents with information about a Mega Millions drawing. We informed

them that the cost of a Mega Millions ticket is $2 and displayed a graphic stating that the next

estimated jackpot was valued at $252 million, with a cash option of $153.9 million. We then

displayed another graphic explaining how Mega Millions is played, the fixed lower prize amounts,

and the odds of winning at each prize level as well as overall. We elicited respondents’ hypothetical

WTP for a ticket in the Mega Millions drawing we described.

Finally, we collected standard demographic information from respondents and asked whether

they had purchased any lottery games with prize drawings (i.e., “any lottery game in which you

pick numbers and win if you match the numbers from a drawing”) in the past 12 months. The

survey concluded with a request for feedback before redirecting respondents back to the Prolific

platform. We excluded 20 respondents because of implausible WTP values of ≥ $50 that seem

more consistent with inattention. These high-WTP respondents were just as risk-averse in all of

the binary gamble decisions as the subjects in our main sample, which is internally inconsistent

behavior that is highly suggestive of these high-WTP responses being “noise.”

F Details of Structural Estimation

F.1 Calibration of Decision Weights

This appendix explores the ability of common probability weighting function parameterizations

to fit the decision weights implied by our empirical estimates. Since our elasticity estimates are

measured at the population level, this calibration considers representative agent calibrations, and

we therefore omit the dependence on type θ. We consider the four common probability weight-

ing function parameterizations discussed in Wakker’s (2010) textbook treatment (see Section 7.2:

“Parametric Forms of Weighting Functions”), and Fehr-Duda and Epper (2012). These are applied

cumulatively as proposed in Tversky and Kahneman (1992), so that the decision weight on the

jackpot is W(π1), the weight on the second prize is W(π1 + π2)−W(π1), and more generally,

Φk = W

 k∑
j=1

πj

−W

k−1∑
j=1

πj

 . (35)

The four candidate parameterizations are:

• Tversky and Kahneman (1992):

W(π) =
πb

(πb + (1− π)b)
1/b

(36)
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• Goldstein and Einhorn (1987):

W(π) =
aπb

aπb + (1− π)b
(37)

• Prelec (1998):

W(π) = (exp (− (− ln(π))a))b (38)

• The “neo-additive” form studied in Chateauneuf, Eichberger, and Grant (2007):

W(π) =

0 if π = 0

b0 + b1π if 0 < π < 1
(39)

Note that in our application, the behavior at π = 1 is irrelevant, since the residual worst-case

outcome is a payoff of zero, with m(0) = 0. When applied cumulatively as in equation (35),

this neo-additive specification takes a particularly simple form with

Φk =

b0 + b1π1 if k = 1

b1πk if k > 1
(40)

Each of the first three specifications features a continuous “inverse S-shape” on the interval [0, 1].

Figure A11, Panel (a), illustrates this shape, plotting the Tversky and Kahneman (1992) and Prelec

(1998) specifications for parameter values previously estimated in the literature, in solid blue and

red.30 (The other displayed parameterizations will be described below.) Panel (b) is constructed

by zooming in on the bottom left corner of Panel (a), in order to display the behavior of these

parameterizations across the very low probabilities relevant for top lottery prizes; the solid red and

blue lines rise so steeply from zero that they are indistinguishable from the vertical axis.

To compare the ability of these functional forms to fit our empirical estimates, our starting

point is equation (5) from the text:

ζk
|ζp|

=
Φk

πk
m′(wk). (41)

We can use our semi-elasticity estimates and our specification of m(·) to compute the decision

weights Φ1 and Φ2 non-parametrically; these correspond to points on the probability weighting

function. For this calculation, we use values for πk and wk that correspond to a current Powerball

ticket (net of income taxes), and we assume m(·) comes from a CRRA utility function, all as

described in Section 5.1. Using our price semi-elasticity estimate from Section 3 of ζp = −0.5150,

30The Tversky and Kahneman (1992, p. 312) specification (solid blue) plots the parameterization with b = 0.61, the
preferred estimate in that paper. The Prelec (1998) specification (solid red) plots the parameterization at preferred
values reported in Wakker (2010): “Ongoing empirical research suggests that the parameters a = 0.65 and b = 1.0467,
giving intersection with the diagonal at 0.32, are good parameter choices for gains.”
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and our prize semi-elasticity estimates of ζ1 = 1.7277 and ζ2 = 0.0837, which we divide by 1 minus

the assumed income tax rate of 0.3 as described in Section 5.1, this calculation implies

Φ1

π1
= 311. (42)

and
Φ2

π2
= 0.39. (43)

Figure A11b plots the points on the probability weighting function W implied by these weights,

(π1,W(π1)) and (π2,W(π2)).

As discussed in Section 3.2, our estimate of ζ2 may be affected by the low salience of variation

in the second prize in California, with the implication that if the second prize were as heavily

advertised as the jackpot, the resulting ζ2 would be higher. This concern rests on the observation

that variation in the second prize (in California) lacks salience; there is no reason to suppose that

the average level of the prize—which is stable across years—is similarly non-salient. Yet the low

level of the second prize (relative to the jackpot) provides information about a natural upper bound

for the elasticity ζ2. Put simply: if the “full salience” semi-elasticity ζ2 were in fact higher than the

(observed) full salience jackpot semi-elasticity ζ1, then lottery administrators could raise demand

at zero cost by reallocating the prize pool away from the jackpot and toward the second prize, while

holding the total ticket expected value constant. Yet despite frequent format revisions, we generally

do not see adjustments in this direction; on the contrary, there is usually a relative reallocation

toward a higher jackpot expected value relative to the second prize. We interpret this trend as

suggestive evidence that the second prize semi-elasticity is weakly lower than the jackpot semi-

elasticity, and thus we plot an alternative value for W(π2) in Panel (b) assuming, as a conservative

upper bound, that ζ2 = ζ1

We are interested in the features of probability weighting function parameterizations which

can match the plotted points in Panel (b). The most straightforward case is the Tversky and

Kahneman (1992) weighting function in equation (36): since this specification has only a single

parameter b, there is a unique parameterization which passes through our estimated W(π1); it is

plotted as the dotted blue line. An immediate observation is that due to the steep slope of the

dotted blue line across low probabilities, it predicts decision weights at π2 that are far higher than

even our upper bound estimate for W(π2).

The red dot-dashed line shows how the failure of the Prelec (1998) class of functions is some-

what different. This two-parameter specification actually can be adjusted to pass through both our

estimates of W(π1) and W(π2). (We use the upper bound in Panel (b); the specification passing

through the lower point estimate is even more extreme.) Although this specification can techni-

cally fit both points, it results in an implausible weighting function beyond these two points. The

extreme nature of this specification can be seen by returning to Panel (a), which also plots this

specification, demonstrating that it places exceedingly low weights on almost the entire interval

[0,1], before rising sharply at high probabilities to reach W(1) = 1. Such a probability weighting
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function would imply that an agent would be unwilling to pay more than $1 for a lottery ticket

that pays out $100 with a probability of 90%. This leads us to conclude that the Prelec (1998)

specification cannot match our results under conventional parameterizations. The two-parameter

Goldstein and Einhorn (1987) parameterization produces results very similar to the Prelec (1998)

specification, and we thus omit it to minimize redundancy.

Other papers have found slightly different estimates of the three inverse S-shape functions than

the ones reported plotted in Figure A11. See, e.g., also, Camerer and Ho (1994), Wu and Gonzalez

(1996), Abdellaoui (2000), and Filiz-Ozbay et al. (2015). However, our arguments above show that

none of these slightly different calibrations of the standard inverse S-shape functions can match our

semi-elasticity estimates.

Finally, we consider the neo-additive parameterization. This weighting function simply cor-

responds to a straight line with a positive vertical intercept (at which the probability weighting

function is discontinuous) passing through the estimated points for W(π1) and W(π2) in Panel (b).

As such, it is readily apparent that this specification can easily match either set of points. Yet it is

also apparent that although our estimate of W(π1) provides a tight estimate of the vertical inter-

cept parameter b0, the uncertainty in our estimate of ζ2 admits a wide range of potential values for

the slope parameter b1. As we show in our structural simulations, the key implications for optimal

lottery design are insensitive to this slope parameter within this wide range of values.

Under our assumption that a constant share χ(θ) of the difference between the decision weight

and objective probability is due to bias, i.e., ΦV
k (θ) = πk + (1 − χ(θ))(Φk − πk), the normative

weights ΦV
k also turn out to have the simple neoadditive form expressed in equation (40) above,

with bV0 (θ) = (1− χ(θ))b0(θ) and b
V
1 (θ) = 1 + (1− χ(θ))(b1(θ)− 1).31

31Assuming instead that bias accounts for a constant share of the total decision weight ΦV
k (θ), rather than a

constant share of the difference ΦV
k (θ) − πk, also produces neoadditive normative weights, with the same bV0 (θ) but

with bV1 (θ) = (1−χ(θ)b1(θ). This specification produces essentially identical simulation results, which is unsurprising
given that the results are not sensitive to assumptions about the bias share on lower prizes, as illustrated by the
specification “All bias on jackpot” in Table 8.
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Figure A11: Probability Weighting Function Parameterizations

(a) Plotted on the Interval [0,1]
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Notes: These figures plot two common parameterizations of common probably weighting functions. The solid
lines correspond to parameter values favored in the prospect theory literature. The dashed lines plot the
parameterizations that match one or both of the probability weighting values consistent with our estimated
demand elasticities. Panel (a) plots these functions across the full range of probabilities from 0 to 1, while
Panel (b) “zooms in” on the bottom left corner of Panel (a), while displaying points motivated by the
elasticity estimates from Section 3 (see text for details).
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F.2 Implementation of Structural Model

This appendix describes implementation details of the structural model described in Section 5.

Equations are written as functions of individual types θ, in order to span the heterogeneous agent

model.

Equation (4) in the text illustrates that once we have specified decision weights Φk(θ) and the

value function m(w; θ), the net-of-price certainty equivalent (in brackets) is a sufficient statistic for

type θ’s lottery demand. That is, any two lotteries with the same net-of-price certainty equivalent

will generate the same demand. We will use this feature repeatedly, so it is useful to formally define

this “net certainty equivalent”:

NCE(L; θ) =
∑
k

Φk(θ)m (wk; θ)− p (44)

In what follows, we calibrate the structural model above for a single representative lottery,

which we then manipulate to find characteristics of the optimal representative lottery. To describe

the model calibration, we proceed in two steps. In Step 1, we demonstrate how this model is exactly

identified by the functional form assumptions in Section 5.1 and by estimates for the following type-

specific parameters:

• s(θ): consumption of a representative lottery,

• sV (θ): debiased consumption of that representative lottery,

• ζ1(θ), ζ2(θ): semi-elasticities of demand with respect to the expected value of the jackpot and

the second prize, generated by (local) variation in the prizes w1 and w2 of the representative

lottery,

• ζp(θ): semi-elasticity of demand with respect to a price change in the representative lottery,

• y(θ): individual expected continuation wealth,

• g(θ): welfare weights.

In Step 2, we describe how we translate our empirical estimates into the necessary estimates of{
s(θ), sV (θ), ζp(θ), ζ1(θ), ζ2(θ), y(θ), g(θ)

}
above, for each representative agent θ in a discretized

grid of types Θ.

Step 1: Model Identification

Value function. We assume that agents have a concave utility function over continuation wealth

W with a constant coefficient of relative risk aversion (CRRA) η:

U(W ) =

ln(W ) if η = 1

W 1−η−1
1−η if η ̸= 1

(45)

98



Online Appendix Lockwood r○ Allcott r○ Taubinsky r○ Sial

See Appendix F.3 below for a discussion of this choice. Our value function m(w; θ) corresponds to

the utility gain from winning a prize w, normalized by one’s local marginal utility of wealth, so that

the decision-weighted gain can be expressed in dollars. For an agent whose non-prize continuation

wealth is y(θ), this value function can be written

m(w; θ) =
U(y(θ) + w)− U(y(θ))

U ′(y(θ))
(46)

=


ln(y(θ)+w)−ln y(θ)

y(θ)−1 if η = 1
1

1−η ((y(θ)+w)1−η−y(θ)1−η)
y(θ)−η if η ̸= 1

(47)

=


y(θ) ln

(
y(θ)+w
y(θ)

)
if η = 1

y(θ)
1−η

((
y(θ)+w
y(θ)

)1−η
− 1

)
if η ̸= 1

(48)

We can also compute the derivative, which proves useful for the calibrations below:

m′(w; θ) =
U ′(y(θ) + w)

U ′(y(θ))
=

(
y(θ)

y(θ) + w

)η

. (49)

Decision weights. To identify decision weights, we can exploit the insight formalized in equation

(5) from the text: decision weights imply a relationship between the relative responsiveness of

demand to prices and prizes, quantified empirically by our estimates of ζp and ζk. Intuitively,

if demand reacts more strongly to variation in the size of the jackpot expected value than to a

change in ticket price (as we find), that is evidence of a high decision weight Φ1 on the jackpot.

Formally, substituting equation (40), with k = 1 and k = 2, into equation (5) gives two equations

which identify the parameters of the neo-additive decision weighting function b0(θ) and b1(θ) from

type-specific estimates of ζ1(θ), ζ2(θ), and ζp(θ):

ζ1(θ)

|ζp(θ)|
=
b0(θ) + b1(θ)π1

π1
m′(w1; θ) ⇒ b0(θ) =

(
ζ1(θ)

|ζp(θ)|
1

m′(w1; θ)
− b1(θ)

)
π1 (50)

ζ2(θ)

|ζp(θ)|
=
b1(θ)π2
π2

m′(w2; θ) ⇒ b1(θ) =
ζ2(θ)

|ζp(θ)|
1

m′(w2; θ)
(51)

By first computing b1 and then b0, we can compute these parameters. Cumulatively applying these

decision weights as in Chateauneuf, Eichberger, and Grant (2007), these parameters fully identify

the certainty equivalent,∑
k

Φk(θ)m (wk; θ) = b0(θ)m (w1; θ) + b1(θ)
∑
k

πkm (wk; θ) , (52)

and they thus fully specify the net certainty equivalent function in equation (44).
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Preference shocks. Equations (3) and (4) imply that the preference shock distribution Fε|θ is

equivalent to specifying a R → R+ function mapping NCE(L; θ) to demand s, which we denote

S(NCE; θ) = Fε|θ [NCE] .

Rather than characterizing Fε|θ directly, we directly characterize the function S(NCE; θ), which

implicitly defines Fε|θ. Here we employ a simple structural assumption: that the semi-elasticity

of demand is constant with respect to changes in NCE, and thus also in price. This assumption

has two appealing features. First, it generates plausible patterns of demand across the range of

variation in our data, in ways that other constant elasticity and semi-elasticity assumptions do not;

see Figure A12 for plots of the structural predictions of both observed demand (thick lines) and

latent debiased demand (thin lines) across variation in price and jackpot expected value for each

type in our model. Second, this assumption implies that the hypothetical change in price required

to induce a debiased consumer to purchase the observed (biased) quantity remains constant across

changes in price and jackpot expected value. That hypothetical price change is equal to the money-

metric bias γ—which plays an important role in our optimal policy formulas—and thus by using

this specification for demand, we ensure that our results are not driven by changes in bias which

are generated by structural functional form assumptions.

To compute demand for an arbitrary lottery L, we first compute the difference in net certainty

equivalent from the status quo lottery L0,

∆NCE(θ) = NCE(L; θ)−NCE(L0; θ). (53)

We then compute demand as

S(NCE; θ) = s(θ) · exp (|ζp(θ)| ·∆NCE) . (54)

Bias. To calibrate bias, and thus normative (debiased) demand, we assume that a constant

share χ of the difference Φk − πk, i.e., the difference between decision weights and expected utility

maximization, is driven by behavioral biases. Therefore we compute the χ(θ) for each agent that

would rationalize a given debiased level of demand ln sV (θ). To do this, note that we can write the

“debiased certainty equivalent” for lottery L as a function of the bias share χ(θ):

NCEV (L, χ(θ); θ) :=
∑
k

(πk + (Φk(θ)− πk) (1− χ(θ)))m (wk; θ)− p

Using the estimate of debiased demand for the baseline lottery, sV (θ), we thus compute the bias

share χ(θ) for each type that satisfies

sV (θ) = S(NCEV (L0, χ(θ))).
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Having thus identified χ(θ), we can then compute normative demand for an arbitrary lottery L as

S(NCEV (L, χ(θ); θ); θ).

Welfare. To compute consumer surplus, and thus welfare, it suffices to show how welfare is

computed for a given type; it is straightforward to aggregate across types by weighting these changes

by the welfare weights g(θ). Here we can make use of the fact that surplus can be measured as the

integral under the Hicksian demand curve, from the point where the quantity demanded is equal to

zero. In this model, there are no income effects, and therefore the Hicksian demand curve is found

simply by varying p in the demand curve we have already derived: S(
∑

k Φk(θ)m (wk; θ) − p; θ).

Therefore we can compute surplus by integrating under this demand curve from the price at which

demand is zero up to the actual price. And since NCE varies one-for-one with price, this is

equivalent to integrating under S from the NCE at which demand is zero. Here we impose the

assumption that quantity demanded falls to zero when NCE = 0, reflecting that we do not expect

positive demand for a lottery that has a price of zero and prizes of zero. Then the integral under

the Hicksian demand curve reflecting welfare from a given lottery L is identical to the integral∫ NCE(L;θ)
x=0 S(x; θ)dx. This provides the perceived utility surplus, based on consumers’ willingness

to pay for lottery tickets. To compute normative utility, we subtract the bias costs χ(θ)
∑

k(Φk −
πk)m(wk) from perceived utility.

Step 2: Estimation of Input Parameters

We now describe how we use our empirical results to arrive at estimates of the parameters s(θ),

sV (θ), ζp(θ), ζ1(θ), ζ2(θ), y(θ), and g(θ) which identify the model.

We assume a baseline CRRA parameter of η = 1, corresponding to log utility of continuation

wealth.

To translate our empirical estimates into the context of this model with a single representative

lottery game, we abstract from the diversity of games in the data and assume that our empirical

estimates (of demand, elasticities, and the other statistics described below) align with those that

would arise from a single lottery game with average attributes. Specifically, we specify a “represen-

tative lottery” with the features of a current Powerball lottery ticket described in Table 1, with a

price of $2 per ticket and a jackpot pool equal to the empirical average of $101 million. To account

for administration and overhead costs, which are typically between 5% and 15% of total lottery

revenues in the U.S., we assume each lottery ticket has an additional cost of $0.20 (see Appendix

Figure A2).

We then specify a discretized type space. Our heterogeneous agent specification employs nine

types, corresponding to the three income bins displayed in Figure 4, with three partitions of agents

within each income bin. A share of agents purchase no lottery tickets (we assume these agents

are expected utility maximizers, for whom Φk(θ) = πk, implying that their demand is zero for any

lottery with a price greater than expected value), while the remaining lottery purchasers are par-

titioned into two groups—above- and below-median consumers—at each income level. Population
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shares and type-specific averages are computed within each partition of the type space.

We calibrate type-specific estimates of s(θ), sV (θ), y(θ), and g(θ) as follows. We draw our

estimates of lottery consumption in the status quo, s(θ), directly from the reported expenditures in

our survey, reported in Figure 4. To calibrate debiased consumption sV (θ), we interpret the share of

consumption attributable to bias (as estimated in Section 4.3) as the causal effect of bias. Thus for

each individual, we reduce their reported level of consumption by their estimated quantity effect of

bias to arrive at a debiased consumption, which we average within each partition of the type space

to reach sV (θ). To compute net continuation wealth y(θ), we compute the average reported income

(according to our survey) within each partition of the type space. We then convert this into a

measure of net (of tax) income c(θ) using the mapping between gross and net income from Piketty,

Saez, and Zucman (2018). To arrive at continuation wealth, we multiple each type’s net income

by 20, to coarsely represent expected wealth accounting for future earnings for a representative

worker. Following Saez (2002b), we set welfare weights proportional to c(θ)−ν , with ν = 1 in our

baseline specifications, and with robustness checks for ν = 0.25 and ν = 4.

Our estimates of semi-elasticities with respect to price and the jackpot and second prizes,

presented in Sections 3.2 and 3.3, rely on population data, and are not estimated separately across

individuals. We assume these elasticities are homogeneous, with ζp(θ) = ζ̄p for each θ, etc. (It is

straightforward to extend this model to data with heterogeneous elasticity estimates, as they would

simply affect the values of b0(θ) and b1(θ) identified by equations (50) and (51) above.) We divide

prize elasticities by one minus the assumed income tax rate of 30%, to convert these into elasticities

with respect to the net-of-tax prize in the model.

This completes the description of the structural model calibration. Figure A12 illustrates the

behavior of the structural demand model, plotting average simulated monthly demand for lottery

tickets in each income bin in response to variation in the price and the jackpot of the representative

lottery. Thin lines plot the latent “debiased” demand from each type. Several identifying features

of the model are apparent from these plots. The status quo price and jackpot expected value for

the baseline representative lottery ticket are displayed as vertical lines, and the plotted demand

curves intersect these status quo values at the quantities corresponding to the expenditure levels

in each income bin from Figure 4. (Since the representative ticket price is $2, these quantities are

equal to half the level of dollar expenditures.)

The vertical axis of both plots is displayed with a log scale, so that a constant semi-elasticity of

demand with respect to price appears as a constant slope in Panel (a). Our estimate of ζp therefore

controls the slope of these demand curves, which is assumed to be constant across groups.

A ticket price of $1 is shown with a dashed line—this depicts the discretely different price at

which demand is measured prior to the Mega Millions and Powerball price changes described in

Table 1. The model is calibrated so that the difference in demand at the price of $1 vs. the status

quo price of $2 corresponds to our empirical estimate of ζp. Perceived surplus in the status quo

can be understood as the integral under the demand curves in Panel (a) from the status quo price

rightward, to the point where the net certainty equivalent falls to zero.
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Figure A12: Simulated Purchases and Expenditures by Income Bin
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(b) Tickets Purchased varying Jackpot Size
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Notes: This figure plots the simulated average number of tickets purchased in each of three income bins from
our structural model, across different values of the representative lottery ticket price and jackpot. Ticket
purchases are plotted on a log scale, so that Panel (b) illustrates the structural assumption of a constant
semi-elasticity of demand with respect to jackpot expected value across the range of jackpot values in our
data. Latent demand that would obtain if consumers were counterfactually debiased is plotted with thin
lines. (See the discussion in Section 5.1 and Appendix F.2 for additional details.)
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F.3 Curvature of m

The robust stylized fact, first postulated as part of the “fourfold pattern of risk attitudes” by

Tversky and Kahneman (1992), is that individuals are risk-seeking over low-probability gains,

but risk-averse over moderate to high probability gains. This pattern is consistent with typical

probability weighting functions, but not with convex utility functions. To illustrate, we conducted

a supplementary survey with 200 subjects, summarized in Appendix E.3. In this survey, subjects

could choose between a certain prize and an option with a 50 percent chance of a higher prize

that yielded slightly lower expected value than the certain option; thus, choosing the risky option

implies risk-seeking preferences. We find that for gambles on the order of hundreds of dollars,

12 percent of respondents chose the risky option (13 percent among those who purchased a lotto

ticket in the past 12 months), while for gambles on the order of hundreds of millions of dollars, 2

percent of respondents chose the risky option (6 percent among those who purchased a lotto ticket

in the past 12 months). These results are consistent with the fourfold pattern of risk attitudes, and

inconsistent with the convexity conjecture of Friedman and Savage (1948).

In our model, the CRRA parameter shapes WTP for lottery tickets. With more curvature,

the value function m(w) is less sensitive to variation in the jackpot, requiring a higher decision

weight Φ1 to rationalize our empirical estimates of ˆ̄ζ1. This in turn implies more utility from the

jackpot and a higher WTP. CRRA values below 0.8 imply low WTP for the representative lottery

ticket, to the point that if the jackpot declines to the Powerball jackpot reset value, demand falls to

zero. In our baseline specification with CRRA=1, individuals’ average WTP for the representative

lottery ticket conditional on purchase—which must be higher than the $2 ticket price—is $3.35.
On the other hand, a CRRA value of 1.5 implies a much higher WTP of $3.93 for each purchased

ticket. In the short 200-subject supplementary survey described in Appendix E.3, we find that for

a Mega Millions lottery with a $250 million jackpot, participants have a mean and median WTP

of $6.11 (with 95 percent confidence interval ($5.25, $6.97)) and $4.00, respectively. The mean and

median WTP among those who have purchased a lotto ticket in the last 12 months are similar:

$6.22 (with 95 percent confidence interval ($4.52, $7.92)) and $4.00, respectively. These estimates

are in the ballpark of our model’s prediction at a CRRA parameter of 1, and reinforce our claim

that alternative assumptions would deliver implausible predictions about WTP for lottery tickets.

G Optimal Policy from Sufficient Statistics Formulas

From Proposition 1, the under the optimal policy the lottery ticket’s markup over the marginal

cost is γ̄(1+σ)−Cov [g(θ), s(θ)] /|ζ̄p|s̄. We can rearrange this to give an expression for the optimal

lottery ticket price, into which we can substitute estimates for each of the embedded statistics—

computed in the status quo—to get an approximation for the optimal price, provided that these
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statistics do not change very much between our observed economy and the optimum:

p = γ̄(1 + σ)− Cov [g(θ), s(θ)]

|ζ̄p|s̄
+
∑
k

πkwk + o (55)

= 1.12(1 + 0.11)− 0.34

| − 0.5150| × 7.64
+ 0.44 + 0.2 (56)

≈ 1.80. (57)

The first term on the right-hand side of equation (55) is the bias-correction term. We can approx-

imate money-metric bias γ(θ) using our survey data from Section 4.3: we divide each individual’s

amount of consumption attributable to bias by our estimated price semi-elasticity of demand,

γi = τ̂ b̃i/|ζ̄p|. For example, if bias increases consumption by 60 percent and a $1 price increase

reduces consumption by 30 percent, then bias would be γi = 60%/(30%/$1) = $2. ALT formalizes

this approach. This implies an average marginal bias of γ̄ ≈ $1.12 per ticket.32 To estimate the

progressivity of bias correction σ, we combine the bias estimates with each individual’s welfare

weight g(z), computed as described in Section 5.1. This gives σ = 0.11, reflecting the higher bias

among lower-income individuals.

The second term, −Cov[g(θ),s(θ)]

|ζ̄p|s̄
, quantifies the optimal price reduction due to redistributive

concerns. Since lottery spending doesn’t decline much with income, this covariance is small. We

can use this term to quantify the importance of causal income effects, as discussed in Section ??.

Our two estimates of causal income elasticities from Appendix Table A11 suggest that either 82

percent or 275 percent of the downward slope in lottery spending across incomes is attributable

to income-correlated preference heterogeneity, rather than causal income effects.33 Assuming that

these percentages are constant across the income distribution, Proposition C.1 in Appendix C shows

that to account for causal income effects, we should rescale Cov [g(θ), s(θ)] by either 0.82 or 2.75 in

the optimal price formula. But because Cov [g(z), s(z)] is small, these adjustments would change

the optimal price by less than $0.15.
The final two terms in equation (55) reflect the lottery ticket’s marginal cost.

∑
k πkwk is the

net-of-income-tax expected payout of prizes, which we set to reflect the current Powerball format

32Specifically, we assume a homogeneous price semi-elasticity, so that γ̄ =
E[γ(θ)ζ̄ps(θ)]

ζ̄ps̄
. To align with the approach in

the structural model and to limit the effect of extreme outliers, we compute this and the other statistics in this section
by first collapsing our data into the three levels of income and three income-conditional levels of consumption (non-
consumers, below-median, and above-median) and then compute population-weighted averages and covariances. Our
survey measures expenditures, which must be converted into a measure of quantity s(θ) to compute the covariances
in equation (55); we use p = $2. The covariance terms in which s(θ) appears are divided by the mean of s(θ), so the
results are insensitive to the price used for this conversion. By the same token, although these results are computed
using total lotto spending for s(θ), they are not sensitive to instead using just spending on Powerball, since that
effectively amounts to rescaling the numerator and denominator in equation (55) by the same factor.

33Causal income effects plus between-income preference heterogeneity must sum to the observed cross-sectional
profile of spending in Figure 4. Thus our causal income elasticity of −0.02 accounts for 18 percent of the cross-sectional
income elasticity (−0.111) reported in Appendix Table A11, implying that the remaining 82 percent is attributable
to preference heterogeneity. Our alternative causal income elasticity of 0.194 suggests that causal income effects have
the opposite sign of the cross-sectional profile—i.e., lotteries are a normal good—implying that the preference for
lotteries is declining steeply enough with income as to more-than-offset the positive causal income effects.
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in Table 1, reduced by the 30 percent income tax rate. o is the overhead cost, which we assume is

10 percent of the current $2 price, following the discussion in Section 1.

This calculation gives an optimal price of $1.80, which is close to the current Powerball ticket

price of $2. The estimate of money-metric bias matters a lot for the optimal price: the corrective

term γ̄(1 + σ) is about $1.20, and so the optimal ticket price would be significantly lower in the

absence of bias.

Similarly, we can use Proposition 1 to estimate the optimal jackpot amount. We rearrange

equation (11) to isolate the jackpot expected value from the summation on the left-hand side, and

we use the fact that the average cost of a ticket rises one-for-one with a change in the jackpot

expected value, implying ∂C
∂a = s̄, where a = π1w1 is the jackpot expected value. This gives the

following result:

π1w1 = −γ̄(1 + σ1) +
κ̄− ρ̄+ Cov [g(θ), κ(θ)− ρ(θ)]− s̄

ζ̄1s̄
+ p−

K∑
k=2

πkwk − o (58)

= −1.12(1 + 0.11) +
36.61− 20.57 + (−0.61)− 7.64

2.47× 7.64
+ 2− 0.22− 0.2 (59)

≈ 0.75. (60)

The key new terms for this calculation are κ̄, the average monthly willingness-to-pay to increase

the jackpot expected value by $1 (through an increase in the prize, w1), and ρ̄, the average portion

of that WTP that is driven by bias. From Section ??, κ̄ = −ζ̄1/ζ̄p · s̄ = $36.61 per month. To

estimate ρ̄, we assume that the normative share of WTP for a higher jackpot is equal to (p− γ)/p,

i.e., the normative share of WTP for a lottery ticket for the marginal consumer. This average

normative share among lottery purchasers is 0.75, and the average normative WTP for a higher

jackpot is ρ̄ ≈ $20.57 per month. γ̄ and σ are computed as before, but weighting individuals by

demand responses to jackpot expected value changes, rather than price changes.34 ζ̄1 is the net-of-

tax jackpot semi-elasticity, computed as our estimate of the jackpot semi-elasticity from column 2

of Table 3a divided by one minus the income tax rate.

Using these values to compute equation (59), the optimal net-of-tax jackpot expected value is

$0.75, higher than the current average Powerball net-of-tax jackpot expected value of $0.22.

34Specifically, we assume a homogeneous prize semi-elasticity, so that γ̄ = E[γiζ̄1si]

ζ̄1s̄
.
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