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1. Introduction

We model groups interacting through the mediation of leaders, who offer guidance by proposing
a course of action. Our setting is extremely simple: symmetric two-by-two games, with two players.
We label cooperation the action that, if taken by both players, gives a utility higher than if both
players choose the other action.

The novelty of our approach is that a different set of players, called leaders, offer proposals on
the best course of actions to the groups, who then act as followers and take the action proposed
by the chosen leader. Leaders act to influence the outcome of the game among the groups because
their own utility depends on that outcome. The presence of leaders induces a new game between
the leaders. A leader’s utility from action profiles in the underlying game may be identical with
that of a particular group - in which case we call the leader a “group leader” - or it may be an
average of the utilities of the two groups, in which case the leader is a “common leader”. The overall
payoff of a leader is given by this direct utility plus a possible punishment inflicted by her followers;
and the followers inflict their chosen leader a punishment when their realized utility is smaller than
that implicitly promised by the leader. Punishments insure that leaders are accountable to their
promises. Competition among leaders arises if, in addition to group leaders, a common leader is also
present, and followers compare the proposal of their own group leaders with those of the common
leader. This abstract structure provides a model of the role of political mediation in group conflict
in polarized societies, an element that seems essential and so far not well studied.

The issue of polarization and potential conflict among groups has acquired particular relevance
in the period following the second world conflict, as the new post-colonial order emerged. This
development was anticipated in the farsighted book by Furnivall (2014) on the development of
Burmese society after independence, and the conflicts potentially arising in a multi-ethnic society.
Furnivall introduced the key concept of plural society, defined as “comprising two or more elements
or social orders which live side by side, yet without mingling in one political unit”. The concept was
further elaborated by Rabushka and Shepsle (1971): “in the plural society - but not in the pluralistic
society - the overwhelming preponderance of political conflicts is perceived in ethnic terms.” The
authors note that this definition “does not explain why some culturally diverse societies are plural
and others are not. Typically, however, definitions are not called upon to perform such tasks. What
is needed is a theory - a theory, we argue, of political entrepreneurship.” Building this theory is the
main purpose of this paper. Related ideas on polarized society were discussed in Lijphart (1977)
and Fearon and Laitin (1996). Papers providing analytical foundations to this idea include Esteban
and Ray (1994), Esteban and Ray (2011) and Duclos et al. (2004), who construct a general, well
founded measure of polarization. The salience of ethnic conflict, which was the main parameter
marking the transformation from pluralistic to plural society in Rabushka and Shepsle (1971), is
analyzed in Esteban and Ray (2008). These models are tested against data in several follow up
studies (for example in Esteban et al. (2012), which provide support for the theory). In the context
of provision of public goods, a related issue is explored in Alesina et al. (1999); here individuals live
in the same city but have different ethnicity and thus heterogeneous preferences on public good;
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this fragmentation induces inefficiently low provision of public goods.
In the literature on polarized societies we have reviewed so far, groups act directly, with no

intervention of political mediators. But large groups usually interact, particularly in the political
arena, through leaders, so that in large part games between groups are really played by leaders.
Our main contribution here is to provide a simple theoretical framework to analyze how group
interaction is mediated by the rational and self-interested interventions of leaders.

As indicated, in this paper we study a family of underlying two-group games arising from conflict
situations; but we emphasize that the construction of leaders’ games from underlying followers’
games can be implemented for any game, and is of more general interest. In our approach, leaders
have preferences over outcomes (that is action profiles in the underlying group game). A leader
is linked to a group because the leader shares, fully or partially, the utility of the group. This
assumption is related to the idea of citizen-candidates introduced in the context of voting models,
(Osborne and Slivinski (1996), Besley and Coate (1997)). Leaders compete to lead groups with the
purpose of influencing outcomes, by proposing an action profile in the game between groups. Each
group chooses the profile which, if realized, gives them the highest utility, and then implements the
corresponding action of the group. The idea is the same as in Eliaz and Spiegler (2020), where a
representative agent chooses among policy proposals and then selects and implements the one with
the highest expected payoff. The difference here is that the proposers (which we call leaders) are
modeled explicitly and that each of them may address several representative followers at the same
time - just as many as there are groups. Moreover, crucially, the leaders can be made accountable
for their actions. Indeed, if groups end up getting a lower utility than that implicitly promised,
they inflict the leader (or leaders) responsible for the proposal some form of punishment. This
punishment is a simplified form of accountability that binds leaders or politicians (see Ferejohn
(1986), Maskin and Tirole (2004), Besley and Case (1995), Besley (2006)). Thus the interaction
among leaders becomes central to the unfolding of the group conflict, and the underlying games
between groups result in games between leaders. To briefly sum up, in these games leaders make
policy proposals in the form of action profiles, then each group acts according to the proposal of
their choice, and the leaders’ payoff is the utility of the realized play plus the punishments inflicted
for not delivering. We study equilibria of these games, and show that the outcomes of these games
differ substantially from the equilibria of the underlying game.

In summary, we find that the presence of leaders transforms the nature of the underlying game
among groups. The fact that the groups delegate decisions to the chosen leaders implies that the
game that matters is played by leaders. In this model of games played through leaders groups can
achieve cooperative outcomes in games, like the prisoners dilemma, where this is not possible if
they play directly as groups. For cooperation to occur, two conditions must be met. First, there
must be competition among leaders, that is, followers must be able to listen to many sides, and not
just to what their group leaders proposes. Second, there must be accountability : bad proposals of
leaders must be punished by followers, when the realized outcomes are worse than the promised
ones. In a word, the insight offered by this paper is that competing, accountable leaders enable
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groups to achieve cooperation with surprisingly high probability, tending to full probability as the
accountability becomes sufficiently large.

There are other studies where delegation and/or leadership has a role. In the tradition of Barro
(1973) (and Miquel (2007) for an application to divided societies), Baliga et al. (2011) develop
a model of conflict between countries related to our conflict game, (see also Baliga and Sjöström
(2004) and Baliga and Sjöström (2020)). Individuals in the countries (groups) have different payoffs,
and may be hawkish (the aggressive action is dominant) or dovish (the accommodating strategy is
dominant). There are leaders who choose strategies, and citizens retrospectively support or not the
leader, depending on whether the action of the leader was a best response to that of the opponent
from their point of view. The main difference with our approach is that the choice in our model is
made by the citizens, not by the leader; the latter can only influence the choice of the citizens with
their proposals. Also in Dutta et al. (2018) leaders choose strategies, and moreover their utility is
not linked to that of the groups - which is the central feature of the present paper. In the tradition
of games with common agency (Dixit et al. (1997)), Prat and Rustichini (2003) explore the idea
that games among principals can be played through the mediation of agents who receive transfers
conditional on the action chosen, to induce them to play one action rather than another. The setup
is different from the one used here, where the direct utility of leaders and followers may be the same,
and defined on outcomes, with no transfers; though leaders can be punished so their overall payoff
may differ from that of the followers.

The sequel of the paper proceeds as follows. The underlying games of interest are introduced in
Section 2, and it is seen there that they are of four types: Mutual Interest, Stag Hunt, Chicken and
Prisoners Dilemma. The leaders game is defined and illustrated Section 3, and in the subsequent
sections its equilibria are analyzed. We start in section 4 with the case where only group leaders
are active, and in section 5 we introduce the active common leader. Section 6 deals with Mutual
Interest and Stag Hunt, where cooperation is an equilibrium in the underlying game. Sections 7
and 8 concern Prisoners Dilemma and Chicken. The main properties of the leaders equilibria are
described in Section 9. Section 10 examines the relation between these equilibria and the correlated
equilibria of the underlying games. In Section 11 we look at the possibility that group and common
leaders may be punished to different extent. And Section 12 contains concluding comments. Most
proofs are in Appendix.

2. The Underlying Games

We study symmetric games with two players k = 1, 2, interpreted as large homogeneous groups.
Each player has two possible actions, C (cooperation) and F (fight). We assume that if both play
C they get a higher von Neumann-Morgenstern utility than if they both play F . This is just a
labeling convention: if two groups enjoy war more than peace, say in pursuit of honor in battle,
then that is their way of cooperating and get higher utility. Thus we convene that

for k = 1, 2, uk(C,C) > uk(F, F ) (1)
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(where uk is player k’s utility). Using invariance under monotonic linear transformations and (1),
we assume

for both k , uk(C,C) = 1, uk(F, F ) = 0 (2)

so, with λ, ξ ∈ R, the family of games becomes the following:

C F

C 1, 1 ξ, λ

F λ, ξ 0, 0

In summary, we will be considering two-by-two two players games with a specific label attached
to the actions; the label cooperation is chosen to indicate a desirable social outcome, because of
(1). We are examining the conditions on the political structure that, when cooperation is desirable,
make it an equilibrium.

Considering the combination of the two possible inequalities between λ and 1 on the one hand
and ξ and 0 on the other, we have two sets of possible games. One has with λ > 1, so the choice of
F against C of the opponent is better than the choice of C: these are Prisoner’s Dilemma if ξ < 0

and Chicken if ξ > 0. We call these conflict games, because (C,C) is not a Nash equilibrium of the
game. The other set of possible games has λ < 1, so the choice of C against C of the opponent is
better than the choice of F : they are Stag Hunt if ξ < 0 and Mutual Interest if ξ > 0. We call them
cooperation games, because (C,C) is a Nash equilibrium of the game.

2.1. Average Welfare Restriction

The real restriction on symmetric games we introduce is that the unilateral deviation from the
best common action profile reduces average welfare, where we take simple average assuming that
the groups have equal size:

for both k, uk(C,C) >
1

2
u1(F,C) +

1

2
u2(F,C) (3)

that is λ+ ξ < 2. Together with ui(C,C) > ui(F, F ) for both players it characterizes games where
average players’ payoff is highest at outcome CC . In this sense these are the games where conflict
is detrimental. With this restriction the games we are studying can be visualized in (λ, ξ) space as
in Figure 1.

2.2. Examples

We now consider some common examples of game families that have been considered in the
literature. These examples, imposing a specific technology used to produce the utility values, carve
out subsets of the space of the two parameters (λ, ξ). In this literature the analysis is usually much
richer and complex than what may appear from the simple form we use here; considering these
classic examples is useful however to put our approach in the perspective of a well known tradition.
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Figure 1: The family of games. Everything is below the λ + ξ = 2 line. To the left of the λ = 1 line: above the
horizontal axis (ξ > 0) there is Mutual Interest and below it there is Stag Hunt; these are the cooperation games. To
the right of λ = 1: above the axis we have Chicken, below it is Prisoners Dilemma; these are conflict games.

1
λ

ξ

PD

Ch

SH

MI

λ + ξ = 2

Conflict over a Public Good

The first example is in the spirit of Esteban and Ray (2011) (see also Esteban and Ray (1994)
and Esteban et al. (2012)) whose focus is on the issue of polarization. Consider a simple model of
conflict between two large identical groups who compete for a public good, which is worth v > 0.
If both compromise each gets v/2. If one group compromises and the other fights the latter wins
(1/2+a)v− c and the loser is left with (1/2−a)v where 0 ≤ a ≤ 1/2 is the degree of polarization; c
is the cost of fighting, which includes both direct costs of effort and monitoring costs associated with
peer pressure and discouragement of free-riding. If both groups fight each has an equal probability
of winning but there is also battle damage bc to each group where b ≥ 0 is the intensity of conflict,
so both get v/2− (1 + b)c.

After normalization this model results in the family of games defined by

λ = 1 +
av/c− 1

(1 + b)
and ξ = 1− av/c

(1 + b)
.

Here λ > 0 and ξ < 1. Note that λ+ ξ = 2− 1/(1 + b), therefore the constraint (3) is satisfied for
all values of the parameters.

The game will be one of mutual interest when the relative mobilization cost c/v is large and a

is small so that c/v > a; in this case compromise is strictly dominant for each group (λ < 1 and
ξ > 0). If c/v < a but the intensity of conflict is large enough that c/v · (1+ b) > a the game is one
of chicken (λ > 1 and ξ > 0). If both c/v and the intensity of conflict b are not too large relative
to a so that c/v < a and (1 + b) · c/v < a the game is a prisoners dilemma (PD , with λ > 1 and
ξ < 0).

Strategic Complements versus Strategic Substitutes

Baliga and Sjöström (2020), see also Baliga et al. (2011), concentrate on strategic complements
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versus strategic substitutes. In Baliga et al. (2011), using our labels C and F , with our interpre-
tation, a player receives a payoff of 0 if they both cooperate, but −d if he cooperates and the other
fights. If a player fights, he pays a cost c for both actions of the other, but receives an additional
utility µ if the other cooperates. Adding c to all entries and then dividing by c the utility matrix
in is our general format, with:

λ =
µ

c
and ξ = 1− d

c
. (4)

They assume µ < d, so (3) holds. Also, if µ/c > 1, then d/c > 1 and so µ/c > 1 implies λ > 1 and
ξ < 0. This is the Prisoner’s Dilemma game. On the other hand, if µ/c < 1 (that is, λ < 1) then

1. if d/c < 1 then ξ > 0 which together with λ < 1 gives the Mutual Interest game;
2. if d/c > 1 then ξ < 0 which together with λ < 1 gives the Stag Hunt game

Remarks

Note that in both examples some values of the pairs (λ, ξ) for each possible type of game are
missing; that is the chosen functional form selects subsets of the possible values. The key difference
between the two is the comparison of the total payoff from on occurrence of fight, u1(F,C)+u2(C,F )

and the joint cooperation u1(C,C): in the first example the first is larger, in the second the opposite
holds. For example, in the case of conflict over a public good we have λ + ξ ≥ 2 − 1/(1 + b) ≥ 1

and so the Stag Hunt game is excluded. On the other hand since in the second example λ+ ξ ≤ 1,
the Chicken game is excluded. The Prisoner’s Dilemma game and Mutual Interest are common to
both, but some values of the parameters are excluded in both cases. The situation is visualized in
Figure 2.

Figure 2: Regions covered in the two examples. The left panel describes the region covered by the ER
parametrization; in that case λ+ ξ ≥ 1 so Stag Hunt and parts of PD and Mutual Interest are excluded. The right
panel depicts the Baliga formulation; in that case λ + ξ ≤ 1 so Chicken and parts of PD and Mutual Interest are
excluded.

λ

ξ
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Ch

SH

MI

λ + ξ = 2

λ + ξ = 1
λ

ξ

PD

Ch

SH

MI

λ + ξ = 2

λ + ξ = 1

3. The Game Between Leaders

Interpreting players as large homogeneous groups we focus on the role of leaders in the collective
decision making process. We take the view that, because groups are large, individual members have
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little incentive to invest informing themselves about the consequences of collective actions, and with
rational ignorance or limited knowledge of causality they instead listen to leaders and follow the
leaders who make them the best offer. We consider two types of leaders: group leaders who have
the same interest as that of a specific group and common leaders who care about both groups.

We now turn to the formal model. There is an underlying game between two groups, as described
in the previous section. There are two groups k ∈ {1, 2}, where each group has a representative
follower. The followers choose actions ak ∈ {F,C}, action profiles being denoted by a ∈ A, and
all group k members receive utility uk(ak, a−k) where −k denote the other group. We assume that
payoffs are distinct:4

for all k, a ̸= a′ implies uk(a) ̸= uk(a
′) (5)

These utility functions give rise to the underlying game.
We now describe the leaders’ game. This game is played by three leaders ℓ ∈ {0, 1, 2}. Each

leader has the same strategy set, which is equal to the set of action profiles, so he can choose sℓ ∈ A.
A profile of leaders’ strategies is s ≡ (sℓ)ℓ∈{0,1,2} ∈ A3. The strategy of a leader is interpreted as his
proposal to the society of a profile of behavior of groups, that may be examined by the followers.

There are two types of leaders. The leaders ℓ ∈ {1, 2} are the leaders of groups 1 and 2

respectively and receive direct utility the same as the group: U ℓ(a) = uℓ(a). Leader ℓ = 0 is a
“common” leader who shares the preferences of both groups, with direct utility U0(a) = (u1(a) +

u2(a))/2. The interpretation is that the group leaders spend all their time with their group, while
the common leader spends half his time with each group.

The followers in group k have the ability to impose a utility penalty that is proportional to
the amount of time the leader spends with that group: for group leaders this is P , while for the
common leader it is P/2. We suppose that each group k considers the proposals from the leaders
who they are credible to them, that is the ones they can punish: both their own leader and the
common leader, but not the leader of the other group. Among the proposals they consider, the
followers choose the one promising them the highest utility. That is, given a strategy profile s of
the leaders, follower k choose the strategy that maximize uk(s

ℓ) over ℓ ∈ {0, k}; this is unique by
assumption (5), although it may be proposed by more than one leader. Denote this by gk(s) ∈ A.
Utility uk(g

k(s)) is the implied promise to group k. Group k then implement their part in the
chosen strategy, that is they play gk(s)k.

Therefore, given a profile of leaders’ strategies s, the implemented action profile will be g(s) ≡(
gk(s)k

)
k=1,2

∈ A. This determines the utility of the groups, uk(g(s)), and the direct utility of the
leaders U ℓ(g(s)).

After actions are implemented and direct utility accrue, followers of group k impose a punishment
to the followed leaders when the obtained utility is strictly less than the one promised implicitly
with the suggested action profile. Precisely, if uk(gk(s)) < uk(g(s)) then group k punishes ℓ ∈ {0, k}
such that sℓ = gk(s), where the punishment is P if ℓ = k and P/2 if ℓ = 0.

4In terms of our parameters this says λ, ξ ̸∈ {0, 1}
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The sum of the direct utility and the punishments obtained as we have just described determine
the payoff of leader ℓ, V ℓ(s), for any strategy profile s. We let 1{c} = 1 if condition c is true and
zero otherwise. Then the payoff of a group leader ℓ = 1, 2 is

V ℓ(s) = U ℓ(g(s))− P · 1{ℓ = k & gk(s) = sℓ & uk(s
ℓ) < uk(g(s))} (6)

and of the common leader

V 0(s) = U0(g(s))− (P/2) ·
∑

k=1,2
1{gk(s) = s0 & uk(s

0) < uk(g(s))}. (7)

We call the game played by the set of leaders indexed by ℓ ∈ {0, 1, 2}, with Sℓ = A and the
utilities V ℓ just defined, a leaders game. It is a finite game, hence an equilibrium in mixed strategies
exists. We are interested in Nash equilibria in weakly undominated strategies of the leaders game.
We call this a leaders equilibrium.

In Section 4 we start by considering the benchmark case where only the two group leaders
are present, and each group only considers the proposal of their own group leader. In this case
there is no competition among leaders, each group just follows their group leader’s proposal. Not
surprisingly, the resulting leaders’ game turns then out to be essentially the same as the underlying
game.

3.1. Illustration of underlying and leaders’ games

To illustrate the leaders’ game we take the Prisoner’s Dilemma as underlying game. The 2× 2

payoff matrix of the underlying game is the one on page 4, with λ > 1 and ξ < 0.
Consider the case where the followers compare proposals from own group leader and the common

leader. The 4 × 4 matrix resulting from the common leader playing CC is in Table 1. The three
payoffs in each entry are naturally ordered with the leaders’ index (first common then the other
two).

Table 1: From Underlying to Leaders Game: Common Leader and Group Leader. Prisoners Dilemma is
the underlying game. The table contains the leaders’ payoffs when the common leader plays CC, ordered according
to the the leaders’ index (first common then the other two).

CC FC CF FF

CC 1, 1, 1 1, 1, 1 λ+ξ−P
2 , ξ − P, λ 1, 1, 1

CF 1, 1, 1 1, 1, 1 λ+ξ−P
2 , ξ, λ 1, 1, 1

FC λ+ξ−P
2 , λ, ξ − P λ+ξ−P

2 , λ, ξ 0,−P,−P λ+ξ−P
2 , λ, ξ

FF 1, 1, 1 1, 1, 1 λ+ξ−P
2 , ξ, λ 1, 1, 1

Look for example at the entry (CF,FC), corresponding to leaders’ strategy profile (CC,CF, FC):
all leaders get 1 because for both groups the best proposal comes from the common leader, so both
groups play C, the implemented action is CC, both groups get 1 which was the promised utility,
hence the chosen common leader is not punished and all leaders get 1. Or consider the payoffs when
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the two group leaders play (FC,CC): the first group choose their group leader and play F ; group 2
receives proposal CC from both leaders they listen to and they play C; so the implemented action
profile is FC; group leader 1 gets the promised λ; the common leader and leader 2 are followed by
group 2 and are punished (since the group gets ξ against a higher promise of 1). Note that the
common leader gets direct utility of (λ+ ξ)/2 and a punishment of P/2 (inflicted by group 2).

3.2. Informal Description of the Equilibria

We continue our illustration using the Prisoner’s Dilemma game to provide some intuition for
the structure of the equilibria, and show how cooperation may arise in equilibrium when competition
among leaders and accountability exist.

We begin with the case in which the only leaders are the two group leaders, and each group
only consider proposals by their own leader. The game among leaders is a four-by-four game, with
each action profile of the underlying game a strategy in the leaders’ game; for example, a strategy
for a leader in the leaders’ game is (F, F ), that is “fight on both sides”. The only equilibrium in
this leaders’ game is the strategy profile in which both leaders propose to fight to both groups,
and the outcome is the bad equilibrium of the underlying prisoner’s dilemma.5 It is important to
note that group leaders have to propose, at equilibrium, (F, F ). They cannot, for example, propose
fight for their group and cooperation for the other (that is, (F,C) for the first leader), which would
produce the same outcome, because this would entail ex-post punishment by the followers that
would compare the implicit rosy promise with the realized bad outcome: thus, the anticipation of
future punishment prevents the first leader from sweetening the pill and proposing (F,C). This
truthfulness condition opens the way for the intervention of the common leader, when one is active.

In fact, equilibrium outcomes change if in addition to group leaders there is also a common
leader whose preferences are average of those of the two groups, and whose proposals are considered
by both groups. In this case each group considers the proposals of their leader and those of the
common leader. Clearly, the proposal of “fighting on both sides” by both group leaders is beaten
by the proposal of the common leader of cooperation of both groups, (C,C). But this proposal of
the common leader is in turn easily beaten, for example, by the (F,C) proposal of the first leader
(and (C,F ) by the second). However, as we have already noted, the two group leaders cannot
both play (F,C) and (C,F ) respectively for sure, because they anticipate that these proposal would
produce the bad outcome (with low utility for both groups, a utility they share) and the consequent
punishment imposed by followers. As will be shown, the only equilibrium is then a mixed strategy
one, in which group leaders randomize between “aggressive” play (that is (F,C) for the first leader
and (C,F ) for the second) and conservative play (F, F ); the common leader will mix too, between
proposing cooperation (C,C) and effectively opting out by playing (F, F ).

The probabilities at equilibrium of these various action profiles proposed by the leaders depend
on the parameters, and vary across different equilibria. But when the cost of punishment is large

5It will be shown below that it is true in general that the equilibrium outcomes of the leaders game with only
group leaders are the same as those of the underlying game between the groups.

9



group leaders will want to limit the probability of the aggressive proposals, which may imply costly
punishment, thus leaving room for a winning cooperation proposal (C,C) of the common leader.

4. No Competition among Leaders

We start by studying the case where only group leaders are present, that is where ℓ ∈ {1, 2}, and
each group only considers proposals from their own group leader.6 Without a common leader there
is no competition among leaders - follower k just plays what her group leader recommends. Our
first result says that in this case the outcomes of the leaders game are the same as in the underlying
game. This is actually true for any leaders game, with any number of groups, and even without the
assumption (5). Proving the statement for this more general case requires no additional effort, so
we state it for this case:

Theorem 1. For any leaders game, if each group only considers the proposal of their own group
leader, then at the Nash equilibria of the leaders game the distributions of action profiles chosen by
groups are the same as those induced by the Nash equilibria of the corresponding underlying game.

The proof is in Appendix. Thus, without competition among leaders there are no improvements
over the outcomes of the underlying game.7

5. Games with Common Leader

We now introduce competition among leaders, considering the case in which the group leaders
compete with a common leader. This means that followers consider the proposals of their own
group leader and of the common leader. Having disposed of the no-competition case in the previous
section we examine this case in detail in the sequel of the paper.

Notation. The proposal by group leader k “we play F and they play C” will be denoted by
F kC−k. This is FC for leader 1 and CF for leader 2.

6. The Cooperation Games

We begin with the cooperation games (Mutual Interest and Stag Hunt). From theorem 1 we
know that in the game with only group leaders the equilibrium outcomes are those of the underlying
game, so in the mutual interest game we have efficiency already without a common leader. The
next theorem shows that with a common leader efficiency obtains also in Stag Hunt.

Theorem 2. With a common leader, in the Mutual Interest and Stag Hunt games for any value of
P there is a unique leadership equilibrium, with implemented action profile (C,C).

6The model trivially extends to the case of K groups: just take k, ℓ ∈ {1, 2, . . . ,K} instead of k, ℓ ∈ {1, 2}.
7As the proof shows, the equilibrium strategy profile in the leaders game implementing a Nash equilibrium of the

underlying game is not necessarily unique, but for any equilibrium in the leaders game the induced mixed action
profile in the underlying game is unique.
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Proof. The CC outcome is the most preferred by the common leader and she can guarantee that
outcome by proposing it, because uk(F

k, C−k), uk(F
k, F−k) < 1 so the group leaders best response

to CC by the common leader is to propose C to their group.

7. The Prisoners Dilemma

In this case the leaders’ game can be considerably simplified. For the group leaders, the strategies
CC and CkF−k are weakly dominated by FF . For the common leader, the strategies CF and FC

are then weakly dominated by FF for all P > 0. So the analysis is reduced to the game where the
group leaders only play F kC−k or FF and the common leader plays only CC or FF . In summary,
the game is reduced to a simpler game with three players, each player with two actions. This
simplified game is presented in table 2.

Table 2: The game after elimination of weakly dominated strategies. Left panel: utilities for the choices of the
common leader equal to CC. Right panel: choice of FF .

CC CF FF

FC 0,−P,−P λ+ξ−P
2 , λ, ξ

FF λ+ξ−P
2 , ξ, λ 1, 1, 1

FF CF FF

FC 0,−P,−P 0,−P, 0

FF 0, 0,−P 0, 0, 0

The proof of the above statements is in the appendix, lemmas 9 and 10. Given this it can
be shown that in equilibrium the common leader must play CC with positive probability, and in
symmetric equilibrium the group leaders must play FC with positive probability.

The next theorem states what the equilibria of the leaders’ game are. For P large, equilibrium
is unique and the implemented action profile is either full cooperation or tends to full cooperation.
For small P , the equilibrium is again unique and both groups fight. The proof is in Appendix B.2.

Theorem 3. For P sufficiently low (more precisely P < min{−ξ, λ+ ξ}) there is a unique equilib-
rium outcome, in which both groups fight, and both groups get zero utility. For P sufficiently large
(more precisely P > min{−ξ, λ + ξ}) there is a unique equilibrium outcome, where the probability
of the cooperation outcome is either equal to 1 (if λ < 2) or tends to 1 (if λ > 2).

8. The Chicken Game

The symmetric equilibria of the underlying chicken game survive as leadership equilibria when
there is no common leader (this follows from Theorem 1). And the presence of the common leader
is not sufficient to change this fact:

Theorem 4. The outcomes FC and CF of the underlying game are equilibrium outcomes of the
leaders’ game for all (λ, ξ, P ).

This is proved in Appendix C, Lemma 19. But interesting new possibilities emerge in the
symmetric mixed equilibrium we consider next.
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Theorem 5. There is a mixed strategy equilibrium of the leaders’ game in which the common leader
plays CC with probability tending to 1, as P becomes large, and the group leaders play F kC−k with
probability p and FF with probability 1− p; the value of p tends to 0 as P becomes large.

This is proven in two theorems in Appendix C. The first, Theorem 21, describes an equilibrium
that exists for small P (P < λ+ξ) in which the common leader plays CC for sure and group leaders
randomize between F kC−k and FF . The probability of F kC−k in this equilibrium is

p̃ =
λ− 1

P + λ+ ξ − 1
.

The second, Theorem 22, describes an equilibrium that exists for larger P (P > λ+ ξ) in which
the common leader randomizes between CC, FC and CF , with the probability of CC tending to 1

as P becomes large, and the group leaders randomize between F kC−k and FF , with the probability
of F kC−k tending to zero as P grows large. In the limit the equilibrium implemented action profile
is CC with probability 1.

9. Properties of the Equilibria for Small and Large P

We summarize here the payoff relevant properties of the leaders equilibria considered so far, as
the punishment size becomes small or large. This concerns the accountability of the leaders, so it is
a central issue in this paper. The statement below follows directly from the various results proved
in appendix on the equilibria.

Theorem 6. For all the leaders equilibria of the games with a common leader considered in the
paper the following holds:

(1) As P → 0 the limit equilibria replicate outcome distributions of equilibria of the corresponding
underlying games.

(2) With the exception of the asymmetric pure equilibria in the Chicken game (see Theorem 4),
as P → ∞ the equilibrium probability of cooperation and average group payoff tend to 1.

Proof. Part (1). In the cooperation games the CC outcome is common to the leaders and the
underlying games equilibria. For the chicken game this is a corollary to Theorem 21. For the
prisoners dilemma this is part 1(a) of Theorem 11.

Part (2). Again in the case of the cooperation games efficiency holds for any P . For the chicken
game this is the last statement of Theorem 22. For the prisoners dilemma the claim follows from
part 2(b) of Theorem 11 because if P → ∞ then q̃ and q̂ tend to 1 and p̃ and p̂ tend to zero.

The content of the result is clear: with competition among leaders brought about by the presence
of a common leader, adequate accountability is necessary and sufficient for efficiency (we discuss
the Chicken exception below). Without punishment, the leaders participation adds nothing to the
underlying game. On the other hand with sufficiently large P - in fact not so large as we shall see
- the outcome becomes not only better, but reaches full efficiency. This is the main message of the

12



present paper: in games where the group conflict is detrimental and the unmediated Nash equilibria
are undesirable, the interaction through competing, accountable leaders enable groups to achieve
cooperation with surprisingly high probability.

The two asymmetric equilibria outcomes in the underlying chicken game survive as leaders
equilibrium implemented action profile for all P . It may come as a surprise that the inefficiency
arising in the chicken game is harder to overcome than the prisoners dilemma. But the fact is that
in the PD equilibrium both groups are badly worse off than in the cooperative outcome, and then
a common leader may come to the rescue; in the chicken pure equilibria on the other hand one
party is relatively well off (possibly better off than in the CC outcome), and when a group acts
aggressively, with or without the mediation of a group leader, neither the other group leader nor a
common leader can do anything to dissuade them.

As we know, at least in the Chicken game, better outcomes than in Nash equilibria may be
reached also through the intervention of an external, uninterested mediator - in the correlated
equilibria of the game. We turn to comparison of leaders and correlated equilibria next. Of course
fixing the (λ, ξ) parameters we already know what happens asymptotically. But as we shall see the
mixed leaders equilibria fare better than the correlated equilibria of the underlying game already
for moderate values of P . What makes the difference is that on the one hand the common leader
is interested in cooperation (her most preferred outcome) and this is therefore what she tends to
propose; and that on the other hand the group leaders are discouraged to make aggressive proposals
by the threat of the punishment that may come as a consequence.

10. Comparison with Correlated Equilibria

The leaders’ game shares some important features with the canonical correlated equilibrium: in
both cases, thanks to a form of mediation, better outcomes than Nash equilibria can obtain; and in
both solution concepts, leaders or the mediator suggest to followers an action profile, and followers
respond.

But the differences are actually deeper than the similarities. In correlated equilibria the single
mediator has no direct interest in the outcome; followers respond strategically to the action suggested
privately to each, by updating the posterior on the action profile played by others, and would never
want to punish the mediator. In the leaders’ game, there are competing leaders with a direct interest
in the outcome, so that their utility is affected by the action of the followers; the latter respond to
the leaders’ suggestions by choosing the best action profile from their point of view, and typically
punish the chosen leaders with positive probability in equilibrium. Most importantly, although
action profiles are implemented by the groups, the strategic interaction is among the leaders, not
by the players of the underlying games.

Nonetheless both solution concepts produce sets of equilibrium action profiles, so the comparison
from the point of view of welfare is of some interest. We take as measurement of welfare the average
utility of players in the underlying game: so we sum the utility of the two groups and ignore the
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welfare of the leaders (which may include punishments). Still we are comparing two sets, and in
the case of the leaders’ game we have an additional parameter to take into account, which is the
punishment. Thus the comparison changes for different values of P . We will call efficient the
outcome where both players in the underlying game get a utility of one.

In this section we show that outcomes leaders game typically dominate correlated equilibria in
average welfare. More precisely, we show that in all games the largest average utility at outcomes of
equilibria of the leaders’ game is larger than the largest utility at correlated equilibrium outcomes.
Call ∆(A) the set of correlated strategies (A is the set of action profiles of the underlying game),
with generic element µ.

The comparison is trivial in the case of the mutual interest game: both solution concepts predict a
unique outcome, and the outcome is efficient. The comparison is also easy for the prisoners dilemma
and the stag hunt game; but the two sets do not coincide, so the comparison is meaningful.

In the prisoner’s dilemma, the outcome predicted by the leaders’ game is unique: it is the
efficient outcome in the limit as P tends to +∞, and the zero utility outcome when P = 0. There
is a unique correlated equilibrium of the underlying game, which is the zero utility outcome. Thus
in this case the leaders’ equilibrium dominates the correlated.

In the stag hunt, the outcome of the leaders’ game is unique, and it is the efficient outcome for
any value of P . The set of correlated equilibria in not a singleton, so we consider the best and worst
possible outcomes. The best outcome for correlated equilibria is the efficient one. Since the set of
utilities in a correlated equilibria is convex, all the values between the best and worst utility are
correlated equilibrium outcomes. The worst correlated equilibrium outcome is the one induced by
the mixed strategies of the underlying game. Thus in this case too the leaders’ equilibrium weakly
dominates the correlated.

In the Chicken game the comparison is more complex, and we turn to it now. For fixed (λ, ξ)

the comparison is straightforward:

Theorem 7. In the Chicken game, given (λ, ξ), the average payoff in any correlated equilibrium
of the underlying game is bounded away from 1, so for large enough P it is lower than the average
payoff in the mixed equilibrium of the leaders game (which goes to 1 as P → ∞, see Theorem 22).

The proof of this is in Appendix D. Before considering the situation with varying parameters we
compare “worst against worst” equilibria. The lowest correlated equilibrium payoff is computed in
Appendix D. As shown in appendix, for small P the Chicken game has a mixed leaders equilibrium
whose payoff is increasing in P , so the lowest occurs for P = 0 where its outcome distribution is
the same as in the mixed equilibrium of the underlying game. The asymmetric outcomes of the
underlying game are leaders equilibrium outcomes as well, so the worst leaders equilibrium is either
the mixed or one of the pure equilibria of the underlying game (whichever is worse). It is proved in
Appendix D that both yield higher payoff than the worst correlated equilibrium.
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10.1. The Size of P

We go back to the “best against best” comparison in the Chicken game removing the restriction
of fixed (λ, ξ), and ask how large P must actually be for the mixed leaders equilibrium to beat the
best correlated equilibrium of the underlying game.

As we mentioned above, for P < λ+ ξ there is a mixed leaders equilibrium where the common
leader plays CC for sure and the group leaders mix between F kC−k and FF with probability p̃ on
the former - we shall refer to it as “the common leader equilibrium” in the sequel. As P crosses a
threshold a little above λ+ξ the mixed leaders equilibrium is the one described in Theorem 22, where
the common leader mixes between CC ,FC and CF and the group leaders mix between F kC−k and
FF with a probability p < p̃ on F kC−k. The average group payoff in this equilibrium is higher
than in the common leader equilibrium.8 Unfortunately, the mixing probability p is the root of a
cumbersome equation, and it is most easily computed numerically for each set of parameters value.
This makes comparisons over varying parameters not convenient. So in the following estimates we
use the common leader equilibrium, which is easier although to our disadvantage.

As shown in Appendix D the highest payoff in the correlated equilibrium is

πcorr (λ, ξ) ≡ ξ + (λ+ ξ) (λ− 1)

ξ + 2(λ− 1)

which of course depends on (λ, ξ); notice that it goes to 1 if λ+ ξ → 2 or λ → 1.
On the other hand, the average group payoff in the common leader equilibrium can be computed

to be
π̃(λ, ξ, P ) ≡ (1− p̃) (1 + p̃(λ+ ξ − 1)) =

P + ξ

(P + ξ + λ− 1)2
· (P + λ(λ+ ξ − 1))

so that fixing α ≤ 1, for each (λ, ξ) there is a threshold that P must reach so that π̃(λ, ξ, P ) = α

- in particular for each (λ, ξ) in the set πcorr (λ, ξ) = α. To put ourselves in the most unfavorable
position, for each α we pick the highest P -threshold in the set πcorr (λ, ξ) = α. Denote this by P (α). 9

By construction, for P > P (α) the average group payoff in the leaders equilibrium is higher than
in any correlated equilibrium with average payoff α. The graph of P (α) is in Figure 3. P (α) ≤ 1

for α ⪅ 0.77; For α = 0.9 this is P (α) = 2.4; for α = 0.99 it is P (α) = 9.75. 10

In conclusion, for parameters in the interior of the chicken region what our computations show
is that typically, for values of P in the same range as the players’ payoffs the leaders equilibrium
yields higher payoff than any correlated equilibrium of the underlying game.

8The reason is that at p̃ the common leader prefers FC and CF to CC ; the group leaders raise the probability of
FF , to the extent that the common leader’s payoff from CC goes up and reaches that from FC and CF (which go
down); in the end the group leader’s payoff is higher, and so the average group payoff.

9The procedure is spelled out in Appendix D.
10The last value is somewhat high, but consider that the correlated payoff is high when the game approaches a

cooperation game (λ → 1) or a game where cooperation is not detrimental (λ+ ξ → 2), in which case conflict is not
too pronounced.
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Figure 3: Graph of P (α). This is the P value above which the mixed leaders equilibrium is higher than any
correlated equilibrium which gives average group payoff equal to α. Higher values of α are harder to beat. P (α) ≤ 1
for α ≤ 0.77; For α = 0.95 this is P (α) = 3.92; for α = 0.99 it is P (α) = 9.75. The dashed horizontal line at height 1
is displayed for convenience.
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11. The Role of Differential Punishment

We have considered so far the hypothesis that the punishment for leaders is the same for group
leaders and for common leaders. In the Prisoners Dilemma, for large enough P the equilibria are the
common leader equilibrium mentioned above and another one where the group leaders again mix
between F kC−k and FF - but with probability p̂ displayed below on F kC−k - and common leader
mixes between CC and FF , with probability q̂ on CC. The probabilities in the latter equilibrium
are

p̂ =
1

P − (λ+ ξ − 1)
, q̂ =

P

P + λ− 1− P+λ+ξ−1
P−(λ+ξ−1)

In the Chicken game for large P the equilibrium is close to the common leader equilibrium so we
consider this one for simplicity in the following discussion.

We now ask how outcomes would differ if the punishments were allowed to be different across
leaders. This thought experiment may clarify which one of the leaders has to be given the appro-
priate incentive. These will turn out to be the group leaders. Specifically, we allow for different
punishments for the group leaders and the common leader, letting P c and P g denote punishments
for common and group leaders respectively.

Theorem 8. Assume that the conditions on P in Theorems 3 and 5, respectively P ≶ min{−ξ, λ+ξ}
and P ≶ λ + ξ, hold for both P cand P g. Then the structure of the mixed equilibria remains the
same, with tilde and hat probabilities given by

p̃ =
λ− 1

P g + λ+ ξ − 1
, q̃ = 1 , p̂ =

1

P c − (λ+ ξ − 1)
, q̂ =

P g

P g + λ− 1− P g+λ+ξ−1
P c−(λ+ξ−1)
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To prove Theorem 8 only minor modifications are needed of the given arguments: in the various
incentive constraints one has to specify which P is involved.11

In both equilibria (q̃, p̃, p̃) and (q̂, p̂, p̂) the average group payoff is given by q(1−p) (1 + p(1− δ)).
It is apparent that in the former only the group leaders punishment matters: p̃ tends to 0 as P g

tends to +∞. In the latter both P g and P c are involved; but it is found by numerical computations
that average group payoff is again increasing in P g, and as P g becomes large it is decreasing in P c.

12. Conclusions and Discussion

We gather here our conclusions, remarks on how we should evaluate our results within the
broader research agenda on diverse societies, and more in general on the study of the relationship
between ruling classes and citizens.

In this paper we have examined how political entrepreneurship can fundamentally alter outcomes
in societies with group conflict. We rely on a model of leadership which may be useful in more general
environments: given an underlying game among players, we construct a game among leaders in which
the leaders’ strategies are action profiles proposed by each leader to the society of players-followers.
Followers choose among the proposals to maximize their utility.

The main insight derived from our model and analysis is that conflict in polarized societies
can be substantially reduced, under appropriate conditions, thanks to the mediation of interested
leaders. The simple existence of leaders by itself cannot accomplish anything useful: the equilibrium
outcomes are the same as in the game with no leaders, unless appropriate conditions are met. Our
analysis has identified two main forces: competition among leaders and accountability. If there is
competition among leaders, then in general cooperation and good outcomes are possible when the
accountability of leaders is sufficiently large. In the limit of high accountability, full cooperation
is realized. Our results seem to temper the bleak picture that may emerges from the literature on
group conflict: a truce among groups in conflict is possible, under appropriate conditions. However,
one has to put this conclusion in the appropriate perspective. Our setup relies on simplifying
assumptions, and some of these assumptions are in contrast with important regularities in political
life.

In the model, leaders share precisely the utility of their constituencies, so their incentives are
perfectly in line with those of the groups. Leaders do not have a political career to pursue, nor
derive utility from being leaders. Leaders cannot profit directly or indirectly on their position. The
common leader in particular is built to share the interests of the society as a whole. Followers, on
their part, make the task of the leaders as easy as possible: they hear what the leaders say, and
take their promises at face value, with the understanding that punishment will follow if the leader
does not deliver. Finally, punishment must be sufficiently high for cooperation to arise.

11For the PD for example we only need to rewrite the preference conditions CC ≽c FF and FC ≽k FF . The
former was (1− p) (1− p(1 + P − (λ+ ξ))) ≥ 0, and becomes (1− p) (1− p(1 + P c − (λ+ ξ))) ≥ 0. And FC ≽k FF
was P ≤ q (P + λ− 1− p(P + λ+ ξ − 1)) and is now P g ≤ q (P g + λ− 1− p(P g + λ+ ξ − 1)) Then the resulting
modifications of the tilde and hat probabilities follow.
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Fortunately, our analysis makes clear the leaders’ role, so it can be taken to provide the best case
scenario for possible positive effects of political mediation in group conflict. Systematic empirical
research will have to decide which are the realistic ranges of the losses voters can impose on leaders.

The behavior of followers in our model is extremely simplified. On the other hand the assumption
of unsophisticated behavior is not so unrealistic: in large and complex societies, understanding the
structure of the payoff from social actions is at the same time very hard (because societies are
complex) and unrewarding (because the action of each player - even when he has acquired enough
information to evaluate the best choice - is in itself irrelevant). Thus a first simple approximation
is to assume, as we do, that followers consider the promised utility, and choose the highest.

A natural extension of the model presented here, in the direction of a more realistic behavior of
followers, is a foundation of their behavior based on a model of information acquisition on relevant
parameters affecting the utility of players. This information is hard to gather, so it is delegated to
leaders or parties, which can do that through costly effort, and then send messages (for example,
political programs) to the entire society. Followers may then interpret the signals sent in the light
of what they know and choose rationally the best action.12

12In a different context, a similar idea is presented in Matějka and Tabellini (2021).
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Appendix A. Proof of Theorem 1

The statement of the theorem is given here in the more general case in which there are K ≥ 2

groups. The definition of the leaders’ game is a natural extension of the one provided for the case
K = 2.

Theorem (Theorem 1 in the text). For any leadership game the outcomes in the underlying game
induced by the the Nash equilibrium of the leadership game are the same induced by the Nash equi-
libria of the underlying game.

Proof. For a mixed strategy σ̂k of leader k we let σ̂k
Ak

the induced distribution on Ak. Our first
claim is that

∀α̂ ∈ NE (UG)∃σ̂ ∈ NE (LG) : ∀k, σ̂k
Ak

= α̂k, (A.1)

where NE(UG) and NE(LG) denote the sets of Nash equilibria of the underlying game and leaders’
game respectively. Consider a mixed action profile α̂ ∈ NE (UG). For any action bk ∈ supp(α̂k)

choose
a−k(bk) ∈ argminc−k∈A−k

uk(bk, c−k). (A.2)

Define now σ̂k as:
σ̂k(a) ≡

∑
ak∈Ak

α̂(ak)δ(ak,a−k(bk))(a). (A.3)

If all leaders j different form k follow the strategy defined in (A.3) then leader k is facing the
probability on A−k given by α̂−k. Consider now a possible strictly profitable deviation τ̂k from σ̂k.
Since by following σ̂k the k leader incurs no punishment cost, the increase in net utility to leader k
from τ̂k is at least as large as the increase in direct utility, and the direct utility is the utility of the
followers. Thus τ̂k would have a marginal on Ak that is a profitable deviation for player k from α̂k

against α̂−k, a contradiction with α̂ ∈ NE (UG).
The second claim is:

∀σ̂ ∈ NE (LG), if α̂k ≡ σ̂k
Ak

, then α̂ ∈ NE (UG). (A.4)

Consider in fact a strictly profitable deviation βk from α̂k of a player k in the underlying game.
Extend βk to a profitable deviation τk in the leaders game of the kth group leader following the
construction in equations (A.2) and (A.3). This deviation would insure for group leader k, the same
utility as βk, which would then be higher than σ̂k, since the direct utility of τk is higher than σ̂k,
and its punishment cost is zero; a contradiction with the assumption that σ̂k is a best response.

Appendix B. Analysis of the Prisoner’s Dilemma

Appendix B.1. Elimination of Weakly Dominated Strategies

We begin with some preliminary Lemmas to eliminate weakly dominated strategies.

Lemma 9. For group-k leader the strategies CC and CkF−k are weakly dominated by FF .
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Proof. We let k = 1. Fix any profile s−k of the other leaders.
Consider CF first. Suppose that g(CF, s−k)1 = F ; then group 1 must have accepted a proposal

FF or FC by the common leader, so that by playing CF or FF group-1 leader gets the same payoff
(λ or 0, no punishment). Suppose g(CF, s−k)1 = C; then the common leader must have proposed
CF as well and group-1 leader gets ξ < 0, while in this case by proposing FF she gets 0 and no
punishment.

Now consider CC and suppose first g(CC, s−k)1 = F ; then group 1 must have accepted a
proposal FC by the common leader, and therefore CC and FF yield the leader the same payoff.
Suppose g(CC, s−k)1 = C so that her proposal is accepted; the competing offers may have been
CC, CF or FF ; if all other proposals are CC then her payoff does not change if she plays FF ; if
there is a CF or an FF by some ℓ ̸= 1 then group-1 leader is strictly better off by playing FF (she
gets zero, while with CC she gets ξ − P ).

In view of this lemma we may assume that group leader k plays only F kC−k or FF ; we let pk

denote the probability of F kC−k.

Lemma 10. The probability that the common leader plays either CF or FC is zero.

Proof. We do it for CF . This proposal is rejected by group 1 who will play F , and accepted for
sure by group 2 who will play F and punish the common leader. She is better off by playing FF

(strictly if P > 0).

Appendix B.2. Nash Equilibria in Prisoners’ Dilemma

In the previous section we have simplified the leaders’ game when the underlying game is the
prisoners’ dilemma to a three players game, each player with two actions. This simplified game is
reported in table 2 of the main text. Thanks to this simplification, we can describe a strategy profile
of the three players with a vector of the form (q, p1, p2) where q is the probability that the common
leader plays CC ((1 − q) that he plays FF ), and pk the probability that the k group leader plays
FC ((1− pk) that he plays FF ).

The next theorem characterizes the equilibria of the leaders’ game when the underlying game
is the Prisoners’ Dilemma. We first introduce some notation. The pair (q̂, p̂) in (B.1) describes
a pair of mixed strategies in the simplified game (q̂ for the common leader and p̂ for each of the
group leaders). It does not give full cooperation, but the induced outcome tends to cooperation as
P becomes large, because q̂ tends to 1 and p̂ tends to 0.

q̂ ≡ P

P + λ− 1− P+λ+ξ−1
P−(λ+ξ−1)

, p̂ ≡ 1

P + 1− λ− ξ
(B.1)

The equation (B.2) defines a different pair of mixed strategies (actually pure for the common leader);
note that p̃ tends to 0 as P becomes large.

q̃ = 1 , p̃ ≡ λ− 1

λ− 1 + P + ξ
(B.2)
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Finally, the inequality (B.3) links the three parameters together, and decides (see the last point
in theorem 11) whether the equilibrium as P becomes large is B.1 or B.2.

ξ + (λ− 1)(λ+ ξ) > (λ− 2)P (B.3)

We can now present the theorem:

Theorem 11. In the leaders’ game with prisoners’ dilemma underlying game:

1. If P < λ+ ξ:
(a) If P < −ξ the equilibria are all (q, 1, 1) for any q ∈

(
P
−ξ , 1

]
;

(b) If P > −ξ the equilibria are (1, p̃, p̃) and the set {(1, 1, 0), (1, 0, 1)}
2. If P > λ+ ξ:

(a) If P < −ξ the equilibria are all (q, 1, 1, ) for any q ∈
(

P
−ξ , 1

]
, and the set

{(q, p̂, p̂) : min{−P

ξ
,

P

P + λ− 1
} < q < max{−P

ξ
,

P

P + λ− 1
}};

(b) If P > −ξ:
i. if the inequality (B.3) holds, then the equilibria are (q̃, p̃, p̃);
ii. if the inequality (B.3) does not hold, then the equilibria are (q̂, p̂, p̂);

Proof. The proof follows from consideration of the cases examined in section Appendix B.3.

We turn to the proof of theorem 3:

Proof. The proof follows from theorem 11. As P becomes small, the only relevant case is 1.(a), in
which both P < −ξ and P < λ+ξ. In this case the two group leaders play FC and CF respectively
for sure, so the outcome in the underlying game is (F, F ) for sure.

As P becomes large, the only relevant case is 2.(b), in which both P > λ + ξ and P > −ξ. In
this case the nature of the equilibrium is decided by the inequality B.3. Note that whether this
equality holds or not for large P depends on whether λ is smaller or larger than 2.

Appendix B.3. Analysis of Equilibria in PD

We will identify all the equilibria in the game; the analysis is organized considering three possible
cases for the value of q, namely q = 0, q = 1 and then q ∈ (0, 1). We concentrate on the interesting
cases in which the relevant inequalities among combinations of parameters hold strictly.

Equilibra with q = 0

Lemma 12. If P > 0, there is no equilibrium with q = 0

Proof. If the common leader sets q = 0 then the leaders’ game is the bottom panel of table 2
(ignoring the common leader’s utility). This game has a unique Nash Equilibrium in dominant
strategies in which both group leaders play FF . At this profile of acions of group leaders, CC

yields 1, and FF yields 0, to the common leader, hence setting q = 1 is the best response.
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Equilibra with q = 1

In the first lemma we deal with the case of small P :

Lemma 13. If ξ < −P then there is a unique equilibrium with q = 1, with (q, p1, p2) = (1, 1, 1).

Proof. Since λ > 1 and ξ < −P , if q = 1 we see from table 2 that the action FC is dominant for
the first group leader CF for the second). When group leaders play the action profile (FC,CF )

then both CC and FF give utility 0 to the common leader, hence (1, 1, 1) is the only equilibrium
with q = 1.

Lemma 14. If ξ > −P :

1. There are two equilibria where group leaders play pure strategies: (q, p1, p2) ∈ {(1, 0, 1), (1, 1, 0)}
if and only if λ+ ξ − P > 0.

2. There is an equilibrium where group leaders play a mixed strategy if and only if:

ξ + (λ− 1)(λ+ ξ) + (2− λ)P > 0. (B.4)

The mixed strategy is p̃ in equation (B.5).

Note that, for fixed λ and ξ as P becomes large the equilibria as in lemma 14 fail to exist, and
also equilibria as in case (1) of lemma 13 fail to exist, and the same for the equilibria in case (2)
of the same lemma when λ > 2. In summary equilibria with q = 1 exist for P large if and only if
λ < 2.

Proof. If ξ > −P then at q = 1 the game among group leaders has three equilibria, the two pure
strategies (FF,CF ), (FC,FF ) and a mixed one with:

p1 = p2 =
λ− 1

λ− 1 + P + ξ
≡ p̃ (B.5)

Note that λ > 1 and our assumption that ξ > −P insure that p̃ ∈ (0, 1).
We first consider the possible equilibria where group leaders play pure strategies:

1. If λ + ξ − P > 0 then there are two equilibria, (q, p1, p2) = (1, 0, 1), (1, 1, 0). This follows
because CC gives λ+ξ−P

2 , while FF gives 0 to the common leader.

2. If λ + ξ − P < 0 then there are no equilibria (1, p1, p2) with pi ∈ {0, 1}, because in this case
the utility to the common leader from CC is lower than the one from FF .

We then consider the the possible equilibria where group leaders play a mixed strategy. At any
mixed strategy profile (p, p), with p ∈ (0, 1) of the group leaders the common leader gets

(1− p)2 + 2p(1− p)
λ+ ξ − P

2

which is larger than 0 (hence CC better than FF ) if and only if (B.4) holds.
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Equilibra with q ∈ (0, 1)

To set up the analysis we assume that the common leader is playing q and compare the corre-
sponding expected payoff from FC and FF for group leader in the two cases: group leader plays
CF and FF (thus, four comparisons overall). In the first case FC is better than CC if and only if

q > −P/ξ (B.6)

In the second case FC is better than CC if and only if

q >
P

P + λ− 1
(B.7)

In lemmas 15 and 16 we consider the two extreme possible cases for q:

Lemma 15. There is no equilibrium with 0 < q < min{−P
ξ ,

P
P+λ−1}.

Proof. The condition on q implies that the action FF is dominant for both group leaders, and so
for any such q the payoff to the common leader at the best response of the group leaders from CC

is 1, and from FF is zero, so no q ∈ (0, 1) can be part of an equilibrium.

Lemma 16. There is an equilibrium with any q such that max{−P
ξ ,

P
P+λ−1} < q < 1, of the form

(q, 1, 1).

Of course the set of such q’s may be empty; this is the case when P is large.

Proof. The condition on q implies that FC for group leader 1 (CF for 2) is dominant. At this
best response (FC,CF ) of the group leaders, both CC and FF give a payoff of 0, hence any q (in
particular any satisfying that condition) is part of an equilibrium of the form described.

Next we consider the intermediate cases for the values of q. At these values of q the game with
qexpected payoffs of group leaders has three equilibria, two pure strategies and one mixed. We deal
with pure strategies in lemma 17.

Lemma 17. 1. P
P+λ−1 < q < −P

ξ then there is no equilibrium with pi ∈ {0, 1} (that is, with
group leaders playing pure strategies)

2. For any value −P
ξ < q < P

P+λ−1 , there is an equilibrium in pure strategies for group leaders
of the form (q, 1, 1).

Proof. For the first case, consider for example the profile (FF,CF ) (the other is (FC,FF )). In this
case CC gives λ+ξ−P

2 , and FF gives 0. Considering only the cases in which the inequalities holds
strictly, it follows that the best response of the common leader to this strategy profile of the group
leaders is either q = 0 or q = 1, hence not in the open interval (0, 1).

For the second case, note that with value of q in that range with the strategy profile (FC,CF ),
both CC and FF give zero to the common leader, hence (q, 1, 1) with any q in the range is an
equilibrium. Instead, the other possible equilibrium with q-expected payoffs has CC giving value 1
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to the common leader, and FF giving 0, hence no equilibrium with the q component in the open
interval (0, 1) can exist.

Lemma 18. An equilibrium with min{−P
ξ ,

P
P+λ−1} < q ≤ min{max{−P

ξ ,
P

P+λ−1}, 1} exists, with a
mixed strategy (q̂, p̂, p̂) defined in equations B.8 and B.10 below.

Proof. For q to be part of an equilibrium, the common leader has to be indifferent between CC and
FF which is true if and only if:

p =
1

P + 1− λ− ξ
≡ p̂ (B.8)

The indifference for group leader 1 (for example) between FC and FF requires:

−pP + (1− p)(qλ− (1− q)P ) = pqξ + (1− p)q

which is rewritten as:
p =

P + λ− 1− P/q

P + λ+ ξ − 1
≡ f(q) (B.9)

Combining equations B.8 and B.9 we conclude that an equilibrium with q in the range exists if
both f(q) = p̂ and

min{−P

ξ
,

P

P + λ− 1
} < q < max{−P

ξ
,

P

P + λ− 1
}.

and since f(−P
ξ ) = 1 and f( P

P+λ−1) = 0 with f strictly increasing, there is unique q̂ in the given
range such that

f(q̂) = p̂. (B.10)

it is easy to check that this q̂ is indeed the value in equation (B.1).
Note that for P large, max{−P

ξ ,
P

P+λ−1} = −P
ξ > 1, hence in this case we must check whether

an equilibrium exists with P
P+λ−1 < q < 1. Since f( P

P+λ−1) = 0, we now compare compare
f(1) = λ−1

P+λ+ξ−1 and p̂; so a solution exists if and only if λ−1
P+λ+ξ−1 > 1

P+1−λ−ξ ; this in turn is
equivalent to:

(λ− 2)P > λ(ξ + λ− 1) (B.11)

.
So if λ > 2 we have an interior equilibrium for large values of P . In the other case (that is,

λ < 2) we have f(q) < p̂ for all P
P+λ−1 ≤ q ≤ 1, and the equilibrium is (1, p̃, p̃) with p̃ introduced

earlier in equation (B.5).

Appendix C. Analysis of the Chicken Game

Appendix C.1. The Pure Strategy equilibria

We describe here symmetric equilibria, so we formulate the lemma focusing on one outcome,
(F,C). The same statement holds for the outcome (C,F ).
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Lemma 19. In the Chicken game the outcome (F,C) of the underlying game is an equilibrium
outcome of the leaders’ game for all (λ, ξ, P ).

Proof. We write BRℓ(a0, a1, a2) the best response of leader ℓ to the profile (a0, a1, a2). The proof
has three parts, for ℓ ∈ {0, 1, 2}:

FC ∈ BRℓ(FC,FC, FC) (C.1)

So in each step we proceed from the assumption that the other leaders are playing (F,C) and
consider the best response of the leader under consideration. We then examine the expected utility
from the different possible choices of the leader under consideration, and claim that conclude that
his best response is (F,C).

Consider first ℓ = 2. Given a1 = a0 = (F,C), group 1 will choose F no matter what the other
leader offers, because this is the largest utility it can receive, and group 2 has the proposal (F,C)

of the common leader. Considering the possible choices of a2: (C,C) gives a utility ξ − P (because
ξ < 1, so group 2 will follow leader 2 , but the outcome then will be (λ, ξ) rater than the implicit
promise (1, 1) of leader 2, and hence leader 2 will be punished. (C,F ) gives a utility −P (group
2 will follow leader 2 and play F but the outcome is then (0, 0) and so leader 2 gets the 0 utility
and the punishment because the realized 0 is smaller than the promised λ). (F,C) gives a utility ξ

(because both common leader and leader 2 promise the same utility profile). Finally, (F, F ) gives
a utility ξ (because the associated utility vector is (0, 0), and common leader is promising ξ). Our
claim follows.

Consider next ℓ = 0. We proceed noting that a1 = a2 = (F,C), and thus group 1 is choosing F .
(C,C) gives a utility of λ+ξ−P

2 (because group 1 will choose F, following the group leader, while
group 2 will choose C, following the common leader, expecting utility 1 rather than the ξ proposed
by the group leader. Thus the outcome is (F,C), thus the common leader direct gets utility λ+ξ

2 ,
and group 2 punishing the common leader). (C,F ) gives a utility of −P/2 (because group 1 will
follow leader 1, and group 2 will follow the common leader and play F expecting λ. Thus the
outcome is (F, F ) and average utility of groups equal to 0 and punishment of common leader by
group 2. (F,C) gives a utility of λ+ξ

2 (because all leaders are proposing the same action profile).
(F, F ) gives a utility of λ+ξ

2 (because the proposal of the common leader will be ignored).
Consider finally ℓ = 1. Assuming a0 = a2 = (F,C), we note that group 1 is considering the

utility λ from the common leader (with choice C), and group 2 is considering the utility ξ from
both common leader and group leader 2. Group 1 is choosing F , following the common leader, no
matter what group leader 1 is going to propose. The choice a1 = (F,C) gives leader 1 a utility of λ
(group 1 is choosing F , because this is then the only proposal they receive, and group 2 is choosing
C); but λ is the largest possible utility, hence (F,C) is a best response of group leader 1.

The next lemma shows that different degrees of communications between groups and leaders
does not alter this conclusion:

Lemma 20. In the Chicken game the outcome (F,C) of the underlying game is an equilibrium
outcome of the leaders’ game for all (λ, ξ, P ) and for all γ functions.
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Proof. We adopt the formulation in which all leaders formulate a proposal, and the γ function only
selects a special subset of the proposal that each group observes. So there is in each case a vector
(s0, s1, s2) of proposals, one from each leader. In the case γ1 = {0, 1}, group 1 observes (s0, s1),
whereas in γ1 = {0, 1, 2} group 1 observes (s0, s1, s2), and so on.

Consider the pure strategy equilibrium (FC,FC, FC) identified, in the case γ(1) = {0, 1}, in
lemma (19). Consider now the same pure strategy profile, but in the game where γ(1) = {0, 1, 2},
and consider the best response of leader 2. We claim that his best response in the same in the games
with the two different γ functions. In fact, the expected utility from the choice of each strategy
profile leader 2 can take is the same in both games, since the other two leaders in the pure strategy
profile are taking the same strategy. Hence the strategy profile (FC,FC, FC) is an equilibrium
irrespective of the γ function.

Theorem 21. For P ≤ λ+ ξ or 2λ+ ξ ≤ 3 there is an equilibrium where the common leader plays
CC for sure, and the group leaders play F kC−k with probability p̃ and FF with probability 1 − p̃,
with p̃ as defined in B.2.

Proof. The utility matrix when the common leader plays CC is the following:

CC FC CF FF

CC 1, 1, 1 1, 1, 1 λ+ξ−P
2 , ξ − P, λ 1, 1, 1

CF 1, 1, 1 1, 1, 1 λ+ξ−P
2 , ξ, λ 1, 1, 1

FC λ+ξ−P
2 , λ, ξ − P λ+ξ−P

2 , λ, ξ 0,−P,−P λ+ξ−P
2 , λ, ξ

FF 1, 1, 1 1, 1, 1 λ+ξ−P
2 , ξ, λ 1, 1, 1

Consider first a group leader, given the others’ strategies: if she plays FF he gets

pξ + 1− p = 1− p(1− ξ)

while if she plays FC she gets

−pP + (1− p)λ = λ− p(λ+ P )

so indifference between FF and FC holds if and only if:

p =
λ− 1

λ− 1 + ξ + P
= p̃.

This is smaller than 1 because ξ > 0. For a group leader proposing C cannot improve utility, since
C is proposed by the common leader already. And indeed as we see from the utility matrix CF

yields the same utility as FF and CC is weakly worse.
Consider now the common leader. The reduced utility matrix when she plays CC is this

CF FF

FC 0,−P,−P λ+ξ−P
2 , λ, ξ

FF λ+ξ−P
2 , ξ, λ 1, 1, 1
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so by playing CC she gets
(1− p) (1 + p(λ− 1 + ξ − P )) .

This value is strictly positive because it is easily verified that at p = p̃ one has 1+p(λ−1+ξ−P ) > 0.
From the reduced utility matrix in the case in which the common leader plays FF :

CF FF

FC 0,−P,−P 0,−P, 0

FF 0, 0,−P 0, 0, 0

we see that FF gives zero, less than CC.
Consider lastly the utility from playing FC . The utility matrix is

CF FF

FC −P/2,−P,−P λ+ξ
2 , λ, ξ

FF −P/2, 0,−P λ+ξ
2 , λ, ξ

so her utility is

p2(−P/2)− p(1− p)(P − (λ+ ξ))/2 + (1− p)2(λ+ ξ)/2

Thus the common leader prefers CC to FC if the following difference is positive:

p2P + p(1− p) ((λ+ ξ)− P ) + (1− p)2(2− (λ+ ξ))

so for P ≤ λ + ξ this is certainly positive for any (ξ, λ) pair in the chicken region. Consider next
P > λ + ξ. As P → ∞, since p̃ → 0 and p̃P → λ − 1 the limit of the above difference is easily
computed to be (1/2) (3− 2λ− ξ), which is positive for 2λ+ξ ≤ 3. We now show that for 2λ+ξ ≤ 3

the above difference is strictly positive for all P > λ+ ξ. Neglecting the 1/2 factor we can re-write
it as

2p2 (1 + P − (λ+ ξ))− p(P + 4− 3(λ+ ξ)) + 2− (λ+ ξ) .

We are assuming P > λ + ξ so the first term is positive; and we now show that the remaining
part is positive as well, which inserting p̃ becomes

[2− (λ+ ξ)] [λ− 1 + ξ + P ] > (λ− 1) (P + 4− 3(λ+ ξ)) .

This is found to be equivalent to

P (3− 2λ− ξ) > 2(λ− ξ − 1)− (λ+ ξ)(2λ− ξ − 2)

so since 3− 2λ− ξ it suffices to show that the right member is negative, equivalently (λ+ ξ)(2λ−
ξ − 2) > 2(λ− ξ − 1); this in turn can be checked to simplify to 2(λ− 1)2 > ξ(ξ − λ) which is true
since ξ < 1 < λ implies ξ − λ < 0.
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It may be useful to state the following

Corollary. For P = 0 the outcome distribution of the above equilibrium is the same as in the mixed
equilibrium of the underlying game.

Proof. For P = 0 we have p̃ = p(F ) where p(F ) is the probability of F in the mixed equilibrium of
the underlying game. Then the claim follows because in the leaders equilibrium: the probability of
FF is p̃2; outcomes FC and FF have probability p̃(1− p̃); and CC has probability (1− p̃)2. Given
p̃ = p(F ) this is as in the mixed equilibrium of the underlying game.

We next state and prove the result concerning equilibrium in the case P > λ+ ξ and 2λ+ ξ > 3.
Recall that the difference utility from CC minus utility from FC is

(1/2)
[
p2P − p(1− p) (P − (λ+ ξ)) + (1− p)2(2− (λ+ ξ))

]
We re-write this as

(P + 1− (λ+ ξ)) p2 − [P/2− 1 + (3/2) (2− (λ+ ξ))] p+ (2− (λ+ ξ))/2 (C.2)

Theorem 22. For each pair (ξ, λ) with 2λ+ ξ > 3 there is a P (ξ, λ) > λ+ ξ such that for P ≤ P

the equilibrium in the previous theorem still exists. For 2λ+ ξ > 3 and P > P the mixed leadership
equilibrium can be described as follows. There is a p(P ), 0 < p(P ) < p̃ such that the group leaders
play FC with probability p(P ) and FF with probability 1− p(P ); the common leader plays CC with
probability q and FC and CF with probability (1− q)/2 each, with (writing p for p(P ))

q =
ξ + (1 + p)P

2λ+ ξ − 2− 2p (λ+ ξ − 1) + P (1− p)
< 1.

As P → ∞ we have p(P ) → 0 and q → 1.

Proof. It is clear from the proof of the previous theorem that for each pair (ξ, λ) with 2λ + ξ > 3

there is a P (ξ, λ) > λ+ ξ such that for P ≤ P that equilibrium still exists (because for P ≤ λ+ ξ it
is positive for any (ξ, λ) pair). Precisely, P (Γ) is the value at which for p = p̃ the function in (C.2)
as a function of P is zero. Note that in this function, for fixed P > λ + ξ the coefficient of p2 is
positive; the function is positive at p = 0, and the derivative there is

2p(P + 1− (λ+ ξ))− [P/2− 1 + (3/2) (2− (λ+ ξ))]|p=0

=− (3/2) (2− (λ+ ξ))− P/2 + 1 = −(1/2) [3 (2− (λ+ ξ)) + P − 2] < 0

because P > λ+ ξ whence

3 (2− (λ+ ξ)) + P − 2 > 3 (2− (λ+ ξ)) + (λ+ ξ)− 2 = 2 (2− (λ+ ξ)) .

At p = 1 the value is P/2 > 0 so both roots are less than 1 (incidentally, the smaller one becomes
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smaller as P grows larger, in fact it goes to zero). For each P > P (Γ) the function is negative at
p = p̃ (by construction). Define p(P ) to be the root of (C.2) on the left of p̃; so 0 < p(P ) < p̃ < 1.
By construction for p = p(P ) we have CC ∼c FC ∼c CF .

We let p to be the p(P ) defined above. Consider a group leader. If she plays FF she gets (in
square brackets what the common leader plays)

q (1− p(1− ξ)) + (1− q)/2 (λ+ ξ − pλ)

while by playing FC she gets: (note that q + (1− q)/2 = (1 + q)/2)

((1 + q)/2) [λ− p(λ+ P )]− ((1− q)/2)P

so she is indifferent if
((1 + q)/2) [λ− p(λ+ P )]− (1− q)/2)P.

This simplifies to

q =
ξ + (1 + p)P

2λ+ ξ − 2− 2p (λ+ ξ − 1) + P (1− p)
,

and it can be checked that q < 1 if and only if p < p̃, which is true by construction. This ends the
equilibrium argument, since in this case it is apparent that no leader has a profitable deviation.

Finally, as P → ∞ we have p(P ) → 0 since p(P ) < p̃ and p̃ → 0; and given this it is immediate
that q → 1.

Appendix D. Proof of statements in Section 10

We consider first the case of the best correlated equilibrium. The incentive compatibility con-
straints in the definition of correlated equilibria have the value µ(FF ) appearing in the two inequal-
ities µ(a)(λ − 1) ≥ µ(FF )ξ, with a ∈ {FC,CF} (these are the inequalities corresponding to the
communication of the action F ). On the other hand, the value µ(FF ) does not appear in the total
welfare sum; thus in any solution µ̂ of the maximization of total welfare over the set of correlated
strategies, necessarily µ̂(FF ) = 0, that is:

µ̂(CC) + µ̂(CF ) + µ̂(FC) = 1. (D.1)

Adding the incentive compatibility constraint of the first and second player upon communication
of the C action we obtain:

(µ̂(FC) + µ̂(CF ))ξ ≥ 2µ̂(CC)(λ− 1) (D.2)

From (D.1) and (D.2) we conclude that the total probability on the two non cooperation action
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profiles FC and CF is bounded below:

µ̂(FC) + µ̂(CF ) ≥ 2(λ− 1)

2(λ− 1) + ξ
(D.3)

In summary, the best correlated equilibrium is:

µ̂(CC) =
ξ

ξ + 2(λ− 1)
, µ̂(FC) = µ̂(CF ) =

λ− 1

ξ + 2(λ− 1)
, µ̂(FF ) = 0 (D.4)

with average utility:
ξ + (λ+ ξ)(λ− 1)

ξ + 2(λ− 1)
(D.5)

Since λ+ ξ < 2 this is clearly less than 1.

We next turn to “worst against worst” comparison. An argument analogous to the one above
can be applied to determine the worst correlated equilibrium, µ, which is:

µ(CC) = 0, µ(FC) = µ(CF ) =
ξ

2ξ + λ− 1
, µ(FF ) =

λ− 1

2ξ + λ− 1
(D.6)

with average utility:
(λ+ ξ)ξ

2ξ + λ− 1
(D.7)

The mixed equilibrium in the underlying game is seen to yield payoff

λξ

λ− 1 + ξ

while the asymmetric pure equilibria give of course (λ + ξ)/2. Either of the two may yield lowest
payoff, but both are easily verified to be higher than in the worst correlated equilibrium. Indeed:
the mixed equilibrium is better than the worst CE if λξ

λ−1+ξ > ξ(λ+ξ)
λ−1+2ξ , that is if 1 > ξ. and the

asymmetric beats it if (λ+ ξ) (λ− 1) > 0. This proves the claim in the text.
For the sake of completeness we compare mixed and asymmetric equilibria of the underlying

chicken game. Asymmetric better than mixed if

λξ

λ− 1 + ξ
<

λ+ ξ

2
(D.8)

This is equivalent to λ >
1+
√

1+4ξ(1−ξ)

2 but ξ(1− ξ) ≤ 1/4, so (D.8) is equivalent to:

1 +
√

1 + 4ξ(1− ξ)

2
≤ 1 +

√
2

2
≈ 1.207

so we conclude that for λ ≥ 1.207 asymmetric beats mixed for all ξ; for 1 < λ < 1.207 it depends
on ξ; for λ = 1 mixed beats asymmetric for all 0 < ξ < 1.
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Lastly we spell out the procedure used to compute P (α) in Section 10.1. The level set πcorr (λ, ξ) =

α describes a curve
ξ(λ, α) =

(2α− λ) (λ− 1)

λ− α
.

We insert the function ξ = ξ(λ, α) describing the α level set of the correlated utility, so that the
equation π̃(λ, ξ(λ, α), P ) = α implicitly defines a P (λ, α); then for each given α we compute the
highest such P over λ in the level set πcorr (λ, ξ(λ, α)) = α. It is seen that in fact P (α) corresponds
to the point λ = 2α, ξ = 0 in the correlated payoff α-level set. Then the inequality π̃(λ, ξ, P ) > α

becomes
P

(P + 2α− 1)2
· (P + 2α(2α− 1)) > α

which is seen to be equivalent to

P > (2α− 1)

√
α

1− α
.
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