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Abstract

We study a common-value auction in which a large number of identical,
indivisible objects are sold to a large number of ex-ante identical bidders
with unit demand. Bidders are initially uninformed but can acquire infor-
mation from multiple sources that differ in accuracy and cost. We define
a cost-accuracy ratio for each available source of information. The mini-
mum value of this cost-accuracy ratio among all information sources fully
determines the limit price distribution and the information content of the
auction’s price. Information is aggregated if and only if the minimum cost-
accuracy ratio is equal to zero. We also characterize all equilibria of the
auction for posterior separable information costs with a sufficiently rich set
of experiments. In this case, information is aggregated if and only if the cost
function is differentiable at the prior.
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1. Introduction

Trust in markets is partially predicated on the belief that competitive prices
summarize all available information (Fama (1970)). However, theoretical support
for this belief is equivocal. On the one hand, past work shows that the price in
a competitive market or a large common-value auction fully reveals an unknown
state of the world if sufficient information is dispersed among bidders.1 On the
other hand, past work also shows that markets that aggregate dispersed informa-
tion provide no incentive for agents to invest in information (see Grossman and
Stiglitz (1980), Matthews (1984), Pesendorfer and Swinkels (2000), and Jackson
(2003)). Therefore, the informativeness of market prices depends on how the ten-
sion between information acquisition and information aggregation resolves. In this
paper, we study the resolution of this tension in a common-value auction where
bidders can acquire costly information from multiple sources. We provide answers
to the following questions: What is the accuracy of the information chosen by
each bidder? How much information is acquired in aggregate? Is this information
is reflected in the auction price, that is, does the auction price aggregate informa-
tion? How does the information content of the auction price change as the cost of
acquiring information varies?

In the model that we analyze, n players, each with unit demand, simultane-
ously bid on k identical, indivisible objects that are on sale through a uniform-price
auction. The unknown value of the object V ∈ {v0, v1} (or the state) is the same
for all of the bidders. This value is either equal to zero or one and both outcomes
are equally likely. Before participating in the auction, each bidder can acquire
information about the object on sale by choosing an information source (experi-
ment) F from the set of available information sources at a cost equal to C(F ) > 0.
Following the literature on information design, we model each experiment as a
distribution over posteriors that satisfies Bayesian plausibility (see Kamenica and
Gentzkow (2009)). More precisely, a bidder who chooses experiment F draws a
type θ ∈ [0, 1] from the distribution function F and this type is her posterior belief
that the object’s value is equal to one.

We begin our analysis by focusing on the accuracy of the information acquired
by each bidder in a symmetric equilibrium. We define the accuracy of an ex-
periment, A(F ), as the probability of correct optimism minus the probability of
incorrect optimism, or more precisely, A(F ) is given by the difference between the
probability that a bidder draws a posterior that exceeds her prior in state v1, i.e.,

1See Grossman and Stiglitz (1976), Wilson (1977), Radner (1979), Milgrom (1979), and
Pesendorfer and Swinkels (1997).
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1−F (1/2|v1), and the same probability in state v0. In a key result, we show that
the demand for accurate information is shaped by the cost of information and the
extent to which the price diverges from value. More specifically, the payoff to a
bidder from choosing experiment F converges to

Accuracy of experiment F ×Divergence of price from value − C(F )

where the divergence of price from value is given by
∑

i∈{0,1} |vi − E[P |vi]| /4 and
E[P |vi] denotes the expected price in state vi.2 Hence, the value of information is
asymptotically linear in accuracy, and the marginal benefit of accuracy is equal to
the divergence of price from value. In equilibrium, each bidder chooses an infor-
mation source with strictly positive accuracy unless the marginal cost of accuracy
is prohibitively high. However, the accuracy of the experiment chosen converges
to zero as the market grows large. This is because otherwise, the auction price
would converge to value (see Pesendorfer and Swinkels (1997) or Atakan and Ek-
mekci (2021)), leaving no incentive to acquire information. Moreover, each bidder
chooses the accuracy of her information optimally by equating the marginal benefit
of accuracy (i.e., divergence of price from value) with the marginal cost of accu-
racy. Therefore, the divergence of price from value is determined by the marginal
cost of accuracy evaluated at zero as the auction grows large. In fact, we show
that the marginal cost of accuracy at zero is equal to the infimum of C(F )/A(F )

taken over the set of all information sources (the cost-accuracy ratio). Hence, the
divergence of price from value converges to the cost-accuracy ratio as the auction
grows large.

In our main result (Theorem 1), we turn to whether the auction price aggre-
gates information or more precisely, whether an outsider can perfectly identify the
unknown state by only observing the auction price as the auction grows large.
We show that bidders acquire a sufficient amount of information in aggregate to
identify the state and the auction price perfectly aggregates this information if
the cost-accuracy ratio is equal to zero. The argument for this result relies on
our finding that the divergence of price from value converges to the cost-accuracy
ratio. Information is aggregated because the divergence of price from value con-
verges to zero if the cost-accuracy ratio is equal to zero. If, on the other hand, the
cost-accuracy ratio is greater than zero, then the auction price does not aggregate
information. For this case, we use the central limit theorem to derive the limit
price distribution, and we show that the cost-accuracy ratio uniquely determines

2The result we describe in this paragraph motivates our particular definition of accuracy.
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the limit price distribution. We use the price distribution to argue that 1) An out-
side observer could identify the state if she observed the realized bid distribution,
in other words, bidders acquire a sufficient amount of information to identify the
state, 2) The equilibrium price does not reveal the state but is nevertheless an
informative signal about the state, 3) The informativeness of the auction price is
(Blackwell (1953)) decreasing in the cost-accuracy ratio.

Our equilibrium characterization provides further insight into how informa-
tion aggregation can fail. Theorem 1 implies that information aggregation fails
if there are only finitely many information sources.3 In this case, bidders acquire
information from the source with the smallest cost-accuracy ratio with probability
µ > 0 and remain uninformed with the remaining probability for all sufficiently
large n. As the market grows large, the accuracy of the information that any
informed bidder has remains constant, the fraction of bidders who are informed
converges zero, but the expected number of informed bidders converges to infinity.
The equilibrium amount of noise generated by uninformed bids hinders informa-
tion aggregation just enough to incentivize bidders to acquire information from
the source with the smallest cost-accuracy ratio.

Information aggregation can also fail with infinitely many information sources.
We focus on this case by assuming that the set of experiments includes all distri-
bution functions over some non-empty interval. To provide a precise description of
equilibrium behavior, we further assume that the cost of information is posterior-
separable, that is, C(F ) =

∫
c(θ)DF (θ) for some convex function c.4 Under these

assumptions, we show that the price aggregates information if and only if the
function c is differentiable at the prior (θ = 1/2) and we characterize the equilib-
rium type distribution through a differential equation. Our characterization shows
that the support of the equilibrium type distribution is an interval (i.e., the set of
types is infinite) and the type distribution is atomless at θ if and only if c(θ) is
differentiable at θ. Hence, the type distribution features an atom at the prior if
and only if information aggregation fails. Several qualitative insights follow from
these findings: All bidders acquire information, but the accuracy of this informa-
tion converges to zero along equilibrium sequences that aggregate information. In
contrast, a vanishing fraction of bidders acquire relatively accurate information
while all others remain uninformed along equilibrium sequences that fail to ag-
gregate information. As is the case with finitely many information sources, the

3This is because the cost-accuracy ratio is positive with finitely many sources.
4There is a large literature that studies how to model the cost of information and in particular

posterior separable cost of information. See, for example, Sims (2003; 2010), Caplin et al. (2022),
Denti (2022), and Pomatto et al. (2020).
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equilibrium amount of noise generated by uninformed bids incentivizes bidders to
acquire information.

1.1. Related literature. Our paper is closely related to past work that studies
information aggregation in common-value auctions. Prominently, Wilson (1977),
Milgrom (1979), and Pesendorfer and Swinkels (1997) study auctions where all
bidders draw costless signals from the same distribution. Wilson (1977) and Mil-
grom (1979) show that the price aggregates information as the number of bidders
grows large in an auction for a single object if there are arbitrarily precise signals.
The paper most closely related to ours, Pesendorfer and Swinkels (1997), further
shows that information is aggregated under weaker assumptions on the signal dis-
tribution if the number of objects and the number of losers in an auction both
converge to infinity. However, past work also demonstrates that these results are
sensitive to the introduction of information costs. In particular, Matthews (1984)
and Pesendorfer and Swinkels (2000) argue, through examples, that information
aggregation can fail with costly information for reasons similar to Grossman and
Stiglitz (1980). Jackson (2003) further shows that this is a general phenomenon
if agents have access to only a single costly source of information. In contrast to
these papers, we allow agents to acquire information flexibly from a rich set of
experiments. We show that information is aggregated under mild conditions on
the cost of information (posterior separability and smoothness) if the set of experi-
ments is sufficiently rich. Moreover, we provide a necessary and sufficient condition
for information aggregation and quantify the information content of price when
information is not aggregated.

Persico (2000), Bobkova (2021), Kim and Koh (2020; 2022), and Gleyze and
Pernoud (2022) also study information acquisition in auctions. Kim and Koh
(2022) characterizes the unique equilibrium in a first-price independent-private-
value auction for a single object where bidders acquire flexible information. Kim
and Koh (2020)and Gleyze and Pernoud (2022) study a bidder’s incentives to
learn about rivals’ valuations, while Persico (2000) and Bobkova (2021) compare
the incentives to acquire information under different auction formats. In contrast,
our main focus is on information aggregation in uniform-price auctions, and our
equilibrium characterization differs from Kim and Koh (2022) since we study a
multi-object common-value.5

5Costly information acquisition has been studied in other areas of economics also. See, for
example, Bergemann and Valimaki (2002), Crémer et al. (2009), Shi (2012) Bikhchandani and
Obara (2017), Gleyze and Pernoud (2023) in mechanism design, Martinelli (2006) and Gerardi
and Yariv (2008) in voting, Crémer and Khalil (1992) and Szalay (2009) in principal-agent-
settings, Ekmekci and Kos (2020) in signaling games, and Ravid et al. (2022) in bilateral trade.
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The paper is organized as follows: Section 2 formally introduces our model;
Section 3.1 presents our necessary and sufficient condition for information aggre-
gation and derives the limit price distribution when information is not aggregated;
Section 3.2 characterizes equilibrium behavior when the cost of information is pos-
terior separable, Section 3.3 generalizes some of the findings presented in Section
3.2 to more general cost functions, and Section 4 concludes.

2. The Model

We study a sequence of common-value auctions, {Γn}∞bκnc=1, where each auction
has n bidders and bκnc identical objects with κ ∈ (0, 1).6 The object’s value is
a random variable V drawn from the set {v0, v1}. Each bidder has unit demand
and puts value V on a single object and value 0 on any further objects. The value
V (or the state) is common across players but is unknown. The utility of a bidder
who wins a good at price P equals V −P . We set v0 = 0 and v1 = 1, for simplicity.

Bidders are uninformed about the state and share a common prior equal to 1/2.
However, each bidder can purchase information pertaining to the state at a cost.
Bidders have access to a family of experiments F ⊂ ∆ ([0, 1]). Each experiment
F ∈ F is a probability distribution over posterior beliefs θ = Pr{V = v1} that
satisfies Bayesian plausibility, that is,

∫
[0,1]

θdF (θ) = 1/2.7 We denote the cost of
experiment F by C(F ).

In the auction Γn, each bidder privately chooses an experiment F ∈ F and
privately observes her type (posterior) θ ∈ Θ. All bidders simultaneously bid in
the auction after observing their private types. The bκnc highest bidders receive
an object and pay a uniform price P n which equals the bκnc + 1st highest bid.
We denote by Y n(k + 1) the random variable that represents the k + 1st highest
bid in the auction. Hence, the auction price P n is equal to Y n(bκnc+ 1).

2.1. Strategies, Payoffs, and Equilibrium. An experimentation strategy for
player i is a probability measure µi ∈ ∆ (F). Each experimentation strategy µ
induces a distribution over types F (θ;µ) :=

∫
F F (θ)dµ at a cost equal to C(µ) :=∫

F C(F )dµ. The bidding behavior of player i is represented by a distributional
strategy Hi ∈ ∆ (Θ× [0,∞)). The distributional strategy Hi is a probability
measure over type and bid pairs (θ, b) ∈ Θ×[0,∞) (see Milgrom andWeber (1985))
that satisfies Hi([0, θ] , [0,∞)) = F (θ;µi).8 We say that the bid distribution is

6The largest integer not greater than x is denoted by bxc.
7Note that in our formulation instead of working with a signal we work directly with the

posteriors generated by a signal.
8Note that we do not allow bidder i to condition her bidding strategy on the realization of the

experiment in the support of µi. This is without loss of generality because other bidders do not
observe the experiment chosen by bidder i. Hence, allowing for Hi to depend on the realization
would not change the set of equilibrium outcomes.
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monotone if b ∈ supp H(θ) implies that b > b′ for any b′ ∈ supp Hi(θ
′) and

θ′ < θ. A symmetric strategy profile is one in which all players use the same
experimentation strategy µ and the same bidding strategy H. We refer to a
symmetric strategy profile by (µ,H). We focus on Nash equilibria of the game Γ

where each player uses a symmetric strategy (µ,H). We call any subsequence of
symmetric equilibria {µj, Hj}∞j=1 of the auctions {Γnj}

∞
j=1 an equilibrium sequence.

We represent by PrH the joint probability distribution induced by the sym-
metric strategy H over states of the world, signal and bid distributions, alloca-
tions, and prices. We denote the payoff from submitting a bid equal to b in state
vi, given that all others bidders follow symmetric strategy (µ,H), by uH(b, vi).
Similarly, the expected payoff from a mixed bidding strategy σ ∈ ∆ ([0, 1]) in
state vi is uH (σ, vi) :=

∫
uH(b, vi)dσ (b), and the expected payoff of type θ from

bidding according to σ ∈ ∆ ([0, 1]) is uH(σ, θ) := θuH(σ, v1) + (1− θ)uH(σ, v0).
To simplify notation, when (µ,H) is an equilibrium, we use u instead of uH for
the equilibrium payoff when suppressing the superscript leads to no ambiguity.
Finally, we denote the expected equilibrium payoff for a bidder by U(µ,H) :=∫

Θ
uH(H(θ), θ)dF (θ, µ)− C(µ).

2.2. Information Aggregation and the Information Content of Prices.
Information is aggregated in the auction if the auction’s equilibrium price conveys
precise information about the state of the world to an outsider who only observes
the price. Let P n denote the price in an auction where bidders behave according to
strategy (µn, Hn). If Pr (V = vi|P n = p) is arbitrarily close to one for large n, then
observing a price equal to p reveals that the state is vi to an outsider. The auction
aggregates information if the probability of observing a price that reveals the state
is arbitrarily close to one in both states along any equilibrium sequence. Atakan
and Ekmekci (2021) showed that information aggregates along any equilibrium
sequence if and only if P n converges in probability to V . In light of this result,
we use price converging to value and information aggregation interchangeably.

Definition 1 (Information Aggregation). We say that information is aggregated
if P n → V in probability along every equilibrium sequence and information aggre-
gation fails if there is no equilibrium sequence along which P n → V in probability.

The distribution of an outsider’s posterior upon observing the auction price,
that is, the distribution of the random variable Pr (v1|P ), quantifies the informa-
tion content of the auction price. In cases where information is not aggregated, we
use the following definition to rank price distributions in terms of informativeness.

Definition 2 (Blackwell Monotonicity). For any collection of random prices P (x)

6



indexed by a parameter x ∈ [0, x̄], we say that the Blackwell (1953) informativeness
of the auction price is increasing in x if x > x′ implies that Pr (v1|P (x)) is a
mean preserving spread of Pr (v1|P (x′)), that is, if the distribution over posteriors
induced by observing P (x) is a mean preserving spread of the distribution of
posteriors induced by observing P (x′).

2.3. The Family of Experiments. Recall that any experiment F ∈ F is a
distribution over posteriors that satisfies Bayesian plausibility. If F ∈ F has a
density, then we denote it by f , and Bayes’ rule implies that f(θ|v1) = 2θf(θ) and
f(θ|v0) = 2 (1− θ) f(θ). Throughout the paper, we assume that all the experi-
ments in F are independent conditional on the state, and if two bidders choose
the same experiment F , then they draw types that are independent conditional
on the state. Moreover, we make the following two assumptions on the cost of
information: 1) An uninformative experiment F ◦ that puts all of its mass on be-
lief θ = 1/2 is available for free, and 2) Information is costly, that is, if F 6= F ◦,
then C(F ) > 0. The first assumption allows each bidder to bid in the auction
at no cost. The second assumption is natural in our context since our goal is to
understand whether the auction can incentivize bidders to acquire costly infor-
mation while simultaneously aggregating this information. If this assumption is
not satisfied, then the analysis of Pesendorfer and Swinkels (1997) or Theorem 1
(presented further below) implies that information is aggregated. To ensure that
an equilibrium exists, we assume that the set of experiments F is compact and
the information cost function is continuous in the weak∗ topology.

The cost-accuracy ratio for a particular experiment F ∈ F \ {F ◦} is given by

CAF := C(F )/A(F ),

where A(F ) := F̄ (1/2|v1) − F̄ (1/2|v0) and F̄ (1/2|vi) := 1 − F (1/2|vi).9 We
define the cost-accuracy ratio

CA := infF\{F ◦}CAF

as the smallest such ratio.
In the next section, we will provide more intuition for why we focus on this

particular notion of accuracy. Below we give an economic interpretation of the
cost-accuracy ratio by showing that it is equal to the marginal cost of accuracy

9Note that this ratio is not defined for the uninformative experiment F ◦ as both the numerator
and the denominator is equal to zero.
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evaluated at zero. Define the cost of accuracy as

Ĉ(a) := min
µ∈∆(F)

{
C (µ) : F̄ (1/2|v1;µ)− F̄ (1/2|v0;µ) ≥ a

}
and the marginal cost of accuracy at zero as Ĉ ′ (0) := lim infa→0 Ĉ(a)/a.

Remark 1. The cost-accuracy ratio is equal to Ĉ ′ (0). To see this, note that
Ĉ ′ (0) ≥ CA because Ĉ(a)/a ≥ CA for each a > 0. We now argue that Ĉ ′ (0) =

CA. There are two cases to consider: There is an experiment F ∗ ∈ F \ {F ◦} such
that CA = CAF ∗ . In this case, for each a < A (F ∗) we have

Ĉ(a)

a
≥ C(F ∗)

A(F ∗)
=
µC(F ∗) + (1− µ)C(F ◦)

µA(F ∗) + (1− µ)A(F ◦)

where µ = a/A (F ∗). Therefore, Ĉ ′ (0) = CA. Alternatively, there is no such ex-
periment. In this case, CA = lim infF→F ◦ CAF . However, CAF ≥ Ĉ (A (F )) /A (F )

for each experiment F . Therefore, lim infF→F ◦ CAF = Ĉ ′(0).
3. Main Results

3.1. Information Content of Prices. In this subsection, we first show that
the auction aggregates information if and only if the cost-accuracy ratio is equal
to zero (Theorem 1). We then turn to the cases where information is not aggre-
gated. For this case, we show that the cost-accuracy ratio fully determines the
information content of the auction price and the limit price distribution (Theorem
2). Moreover, the information content of the auction price is Blackwell decreasing
in the cost-accuracy ratio.

We begin with several lemmata that describe equilibrium behavior in the
auction. The game that ensues after bidders acquire information is a standard
common-value auction with a unique symmetric equilibrium (see Pesendorfer and
Swinkels (1997)). In this equilibrium, all players submit a bid equal to 1/2 if the
uninformative experiment is chosen, that is, if F (µ) = F ◦. On the other hand,
if an informative experiment is chosen, then bidding is monotone, atomless, and
involves each player bidding their expected value conditional on the event that
they win an object at a price equal to their bid. The following lemma summarizes
these findings, and further argues that bidders purchase information if the cost of
information is not prohibitively high.

Lemma 1. If CA < 1/4, then F (µ) 6= F ◦, the bid distribution H is monotone,
atomless, and for any type θ and bid b ∈ supp H(θ) we have

b = E[V |Y n−1(bκnc) = b, θi = θ)]

8



in any symmetric equilibrium (µ,H) of Γn.

Proof. We first argue that F (µ) 6= F ◦ when CA < 1/4. Assume to the contrary
that F (µn) = F ◦. Then all players would bid 1/2 and receive an expected payoff
equal to zero in the unique symmetric equilibrium of the auction. The following
strategy is a profitable deviation: Pick experiment F such that CAF < 1/4, bid 1

if θ > 1/2, and bid 0 if θ ≤ 1/2. This strategy delivers the following payoff:

F̄ (1/2|v1)

2
(1− 1/2)︸ ︷︷ ︸

Payoff in state v1

+
F̄ (1/2|v0)

2
(0− 1/2)︸ ︷︷ ︸

Payoff in state v0

−C(F ) =

F̄ (1/2|v1)− F̄ (1/2|v0)

4
− C(F ) > 0

where the strict inequality follows from CAF = C(F )/
(
F̄ (1/2|v1)− F̄ (1/2|v0)

)
<

1/4.
The equilibrium type distribution F (µn) 6= F0 satisfies weak MLRP. Therefore,

the bid distribution is atomless, and bidding is monotone by Pesendorfer and
Swinkels (1997), Lemma 6. Pesendorfer and Swinkels (1997), Theorem 1 further
implies that any bid b ∈ supp Hn(θ) satisfies b = E[V |Y n−1(bκnc) = b, θi =

θ)].

The previous lemma showed that bidders acquire information. Below we fur-
ther argue that the accuracy of this information converges to zero as the auction
grows arbitrarily large.

Lemma 2. Along any equilibrium sequence F (µn) converges in distribution to F ◦.

The intuition is as follows: if F (µn) converges to a distribution other than
F ◦, then the cost of information C(µn) converges to a positive constant, and the
auction price converges to value (see for example, Atakan and Ekmekci (2021),
Lemma 2.2). However, if the price converges to value, then no bidder would be
willing to bear a positive cost of information as the value from winning an object
in the auction converges to zero. Lemma 2 highlights the main tension in the
model: the auction price can only incentivize a small investment in information
as the market grows large.

We now link equilibrium behavior to the equilibrium price by deriving the
expected equilibrium prices in the two states. In the lemma presented below, we
show that the expected profit in state v1 converges to the expected loss in state
v0 as the market grows arbitrarily large.

9



Lemma 3. Along any equilibrium sequence, the expected payoff of each bidder
converges to zero, and we have 1− limE [P n|v1] = limE [P n|v0] .

The reasoning for Lemma 3 is as follows: Lemma 2 implies that almost all
bidders are approximately uninformed, that is, almost all bidders draw a type ar-
bitrarily close to 1/2. Since almost all the bidders are asymptotically uninformed,
there is an uninformed bid that wins with probability converging to one, and the
payoff to this bid converges to (1− limE [P n|v1]) /2 − limE [P n|v0] /2. Similarly,
there is an uninformed bid that loses with probability converging to one, and the
payoff to this bid converges to zero. Since an uninformed type must be indifferent
between these two bids, we find that 1− limE [P n|v1] = limE [P n|v0] .

Lemma 3 allows us to provide some intuition for the measure of accuracy
that we use. Consider a bidder that chooses experiment F and bids according
to her equilibrium strategy. This bidder draws a type θ > 1/2 with probability
F ({θ > 1/2} |vi) in state vi and wins with probability converging to one. This is
because bidding is monotone in θ, and almost all bidders are asymptotically unin-
formed. A similar logic implies that the bidder loses with probability converging
to one if she draws a type θ < 1/2. Therefore, the payoff of this bidder converges
to

F̄ (1/2|v1)

2
(1− limE [P n|v1])− F̄ (1/2|v0)

2
limE [P n|v0]− C(F ).

Rewriting the equation displayed above by using the fact that the expected profit
in state v1 equals the expected loss in state v0 we obtain the following expression,

1

2

(
F̄ (1/2|v1)− F̄ (1/2|v0)

)︸ ︷︷ ︸
Accuracy of F

(1− limE [P n|v1])︸ ︷︷ ︸
Divergence of price from value

−C(F ). (3.1)

Therefore, the limit payoff to choosing experiment F only depends on the experi-
ment’s accuracy A(F ) and the experiment’s cost. Moreover, the marginal benefit
of accuracy equals the divergence of price from value.

Equation (3.1) implies that the marginal benefit of accuracy equals the diver-
gence of price from value. Recall that the marginal cost of accuracy at zero is
equal to the cost-accuracy ratio (Remark 1). Intuitively, a bidder would choose
the accuracy of her information by equating the marginal benefit of accuracy with
the marginal cost of accuracy. The following lemma shows that this intuition is
precise at the limit.

Lemma 4. If CA < 1/4, then 1 − limE [P n|v1] = 2CA along any equilibrium
sequence.

10



We now turn to the argument for Lemma 4. Lemma 3 argued that the equi-
librium payoff of any bidder converges to zero, or equivalently, the limit payoff to
choosing any experiment F ∈ F is at most zero. Therefore, 1 − limE [P n|v1] ≤
2CAF for each F 6= F ◦. Lemma 1 showed that bidders acquire information if
CA < 1/4, that is, C (F (µn)) > 0 for each n. We complete the argument for
Lemma 4 by showing that 1− limE [P n|v1] ≥ 2CA. The intuition is easier to con-
vey if the set of experiments is finite: If 1− limE [P n|v1] < 2CA, then the payoff
from choosing any experiment F 6= F ◦ and therefore the payoff to any experiment
F 6= F ◦ in the support of µn is negative for sufficiently large n. However, since
the set of experiments is finite and F (µn) 6= F ◦ for each n, the expected payoff
of a bidder is negative for all sufficiently large n, leading to a contradiction. The
formal argument is more involved because it also considers the case where the set
of experiments is infinite, and the accuracy of the experiments in the support of
µn converge to zero as n grows large.

We present our main theorem below.

Theorem 1. The auction Γn has a symmetric equilibrium (µn, Hn) for each n.
Information is aggregated if and only if CA = 0.

Proof. The proof of equilibrium existence is in the appendix. If CA = 0, then
Lemma 4 implies that limE [P n|v1] = 1 and limE [P n|v0] = 0. Therefore, P n

converges in probability to V and information is aggregated. If CA ∈ (0, 1/4) ,

then Lemma 4 implies that limE [P n|V ] 6= V , therefore P n does not converge
in probability to V and thus information is not aggregated. The remaining case
involves CA ≥ 1/4. The proof Theorem 2 in the appendix shows that the price
converges to 1/2 in both states, i.e., the price is uninformative, if CA ≥ 1/4.

We can convey the main implications of this theorem by looking at two distinct
cases.

Case 1: The cost-accuracy ratio is equal to CAF ∗ for some F ∗ 6= F ◦. For
instance, if there are a finite number of experiments in F , then CA = CAF ∗ .
In this case, information is not aggregated because CAF ∗ > 0. Therefore, a
sufficiently rich set of experiments is necessary for information aggregation.

Lemma 4 also provides insights about equilibrium behavior with finitely many
experiments. The equilibrium experimentation strategy entails mixing between
experiment F ∗ and the uninformative experiment for all sufficiently large n. This
is because Lemma 4 and Equation (3.1) together imply that the limit payoff from
choosing any experiment other than F ∗ is negative.
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Case 2: There is an infinite number of experiments in F , but there is no
F ∈ F \{F ◦} with CA = CAF . This implies that CA = lim infF→F ◦ CAF . In this
case, information is aggregated if and only if lim infF→F ◦ CAF = 0. In other words,
the behavior of the cost-accuracy ratio around the uninformative experiment (or
equivalently, the marginal cost of accuracy evaluated at zero) determines whether
information is aggregated if the set of experiments is sufficiently rich. We provide
a detailed analysis of equilibrium behavior for this case in Section 3.2.

We now turn our attention to quantifying the information content of the price
when information is not aggregated. Recall that the information content of the
price is given by the distribution of an outsider’s posterior upon observing the
equilibrium price. Below we show that the distribution of the outsider’s posterior
and the distribution of the equilibrium price coincide at the limit.

Lemma 5. If the price P n converges in distribution to a random variable P along
an equilibrium sequence, then the posterior Pr {v1|P n} converges in distribution to
P also.

This lemma implies that we can simply concentrate on the price distribution
when studying the information content of the auction price. The intuition is
as follows: In equilibrium, a type θ bidder submits a bid equal to her posterior
conditional on the event that she wins an object at a price equal to her bid, that is,
b = Pr {v1|b = Y n−1(bκnc), θ}. The posterior of an outsider upon observing a price
equal to b is given by Pr {v1|b = Y n(bκnc+ 1)}. Comparing the two posteriors,
we find that they differ by the bidder’s type θ and the information that the bidder
won at a price equal to her bid, which appears as a one person difference in
the order statistic calculation. As uninformed bidders set the price, the bidder’s
type adds no information at the limit. Moreover, the one-person difference in the
order statistic calculation also disappears as n grows large. In other words, the
information a bidder uses in determining her bid is the same as the information
an outsider obtains from observing a price that equals this bid.

In order to present our result, we introduce some definitions. For any sequence
of experimentation strategies µn, define

∆ := lim

√
n

(1− κ)κ

(
F̄ (1/2|V = 1;µn)− F̄ (1/2|V = 0;µn)

)
, (3.2)

whenever this limit exists. Recall that F̄ (1/2|V = 1;µn)− F̄ (1/2|V = 0;µn) is the
accuracy of the experiment chosen by each bidder in equilibrium. The constant ∆

is an aggregate measure of the accuracy of the information available in the market,
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asymptotically. For any p ∈ (0, 1), ∆ ≥ 0, and V ∈ {0, 1} let

ζ (p,∆, V ) :=
ln
[

p
1−p

]
∆

+ ∆
1− 2V

2
. (3.3)

Let ∆∗(CA) denote the unique solution (if one exists) to the equation∫
[0,1]

pdΦ (ζ(p,∆, 0)) = 2CA (3.4)

where the integral is taken with respect to p and Φ is the standard normal cumu-
lative distribution function.

Theorem 2. The equilibrium price P n converges in distribution to a random
variable P along any sequence of equilibria.

i. If CA ≥ 1/4, then P = 1/2 and the price is uninformative.

ii. If CA ∈ (0, 1/4), then Pr{P ≤ p|V } = Φ (ζ (p,∆∗(CA), V )) for all p ∈ [0, 1]

and the Blackwell informativeness of the price is decreasing in CA.

Theorem 1 and 2 together fully characterize the limit price distribution. Theo-
rem 1 already covered the case where CA = 0. Theorem 2 provides a closed-form
solution for the limit price distribution if CA < 1/4 and shows that the price is
uninformative if CA ≥ 1/4.

Lemma 5 implies that the posterior log-likelihood ratio of an outsider that
observes the price is given by ln [P/ (1− P )]. Focusing on the distribution of the
posterior log-likelihood ratio instead of the price distribution makes Theorem 2
easier to interpret. A change of variable calculation implies that the log-likelihood
ratio ln [P/ (1− P )] has a normal distribution with means ∆2/2 and −∆2/2 in
states 1 and 0, respectively, and the standard deviation equals ∆ in both states.

The constant ∆, defined in Equation (3.2), measures the aggregate accuracy
of the information dispersed among bidders. If ∆ =∞, then the information dis-
persed among the bidders is highly accurate, and the equilibrium price aggregates
information. Theorem 1 showed that this occurs if and only if CA = 0. Conversely,
if ∆ = 0, then the aggregate accuracy of the information in the market is low, and
the equilibrium price equals 1/2, that is, the price is uninformative. Theorem 2
further argues that this occurs if and only if CA ≥ 1/4. For intermediate values
of ∆ (i.e., ∆ ∈ (0,∞)) the informativeness of the price is increasing in ∆. To see
this, note that the difference in the means of the log-likelihood ratios across the
two states is given by ∆2 while the standard deviation is equal to ∆. Therefore,
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increasing ∆ increases the distance between the two means measured in standard
deviations, i.e., the price becomes more informative.

For each value of ∆, the expected price in state 0 is given by
∫

[0,1]
pdΦ (ζ(p,∆, 0)).

The equilibrium value for ∆ must satisfy E[P |V = 0; ∆] = 2CA by Lemma 4.
Therefore, the equilibrium value for ∆, which we denote as ∆∗(CA), is deter-
mined by Equation (3.4). In the proof of Theorem 2, we show that the expected
price in state 0, given on the left hand side of Equation (3.4), is decreasing in
∆. The expected price is equal to 0 and 1/2, if ∆ = ∞ and ∆ = 0, respectively.
Therefore, the equation has a unique solution if the cost-accuracy ratio is no more
than 1/4, and this solution is decreasing in the cost-accuracy ratio. As the aggre-
gate accuracy of the information in the market as measured by ∆ is decreasing in
the cost-accuracy ratio, the informativeness of the auction price is also decreasing
in the cost-accuracy ratio.

The functional form of the limit price distribution is a consequence of a version
of the central limit theorem, and the intuition is as follows: In state 1, the auction
clears at the κth quantile of the bid distribution with probability converging to
one by the law of large numbers. Consider a bid p whose quantile is z standard
deviations away from the κth quantile of the bid distribution in state 1, where
the standard deviation is given by

√
(1− κ)κ/n. This bid is z + ∆ standard

deviations away from the κth quantile of the bid distribution in state 0. Moreover,
the central limit theorem implies that the posterior likelihood ratio after observing
a price equal to p is given by φ(z)/φ (z + ∆). Therefore, ln (p(z)/ (1− p(z))) =

ln (φ(z)/φ (z + ∆)) = ∆z −∆/2. The limit price distribution is then obtained by
observing that the limit price is less than or equal to p (z) with probability Φ(z)

and Φ(z + ∆) in states 1 and 0, respectively.

3.2. Equilibrium Characterization with Posterior Separable Informa-
tion Costs. In this subsection, we assume that the set of experiments is suf-
ficiently rich, and the cost of information is posterior separable. We show that
information aggregates if and only if the cost function is differentiable at the prior
(Corollary 1) and we derive the equilibrium type distribution for each n (Theorem
3). The type distribution presented in this subsection together with the equilib-
rium bidding strategies presented in Lemma 1 provide a complete characterization
of equilibrium behavior.

We begin by formally defining our two assumptions.

Definition 3. The set of experiments is rich if there exists θ′ < 1/2 and θ′′ > 1/2

such that any Bayesian plausible F ∈ ∆ [θ′, θ′′] is an element of F .
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Note that richness does not require F to contain particularly informative ex-
periments. Rather, richness requires that if a particular experiment is available,
all less informative experiments are also available. In other words, bidders can
flexibly choose the accuracy of their information.

Definition 4. The cost function C : F → R+ is posterior separable if

C(F ) =

∫
[0,1]

c(θ)dF (θ)

for each F ∈ F where c : [0, 1]→ R is a convex function. We say that a posterior
separable cost function is differentiable if c is differentiable.10

Posterior separable cost functions include the mutual information cost function
(see Sims (2003; 2010)), log-likelihood ratio information cost function (see Pomatto
et al. (2020)), and the quadratic information cost function (see Example 1 further
below). A posterior separable cost function satisfies two key properties that we
use in our arguments: 1) It is convex, 2) It is Blackwell monotone, that is, if
experiment F is Blackwell more informative than experiment F ′, then F costs
more than F ’. The cost function C is Blackwell monotone because c is convex.

In the following lemma, we compute the cost-accuracy ratio. In the statement
of the lemma, we denote the left and right derivatives of a convex function c :

[0, 1]→ R by c′−(θ) and c′+(θ), respectively.11

Lemma 6. If the set of experiments is rich and the cost function is posterior
separable, then CA =

(
c′+ (1/2)− c′− (1/2)

)
/4.

Proof. Consider a symmetric binary experiment that generates posteriors q > 1/2

and 1 − q with equal probability. The cost-accuracy ratio of this experiment is
given by

CAq =
c(q)/2 + c(1− q)/2

2q − 1
.

Richness implies that all symmetric binary experiments with q ≤ θ′′ and 1−q ≥ θ′

are in F . Therefore,

CA ≤ lim
q→1/2

c(q)/2 + c(1− q)/2
2q − 1

= lim
q→1/2

c′+ (1/2)− c′− (1/2)

4
.

10Note that this is not the usual definition of differentiability (e.g. Frechet or Gateaux differ-
entiability) for the functional C : ∆ [0, 1]→ R.

11These directional derivatives exist since c is convex.
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For any F ∈ F , we have

CAF =

∫
[0,1]

c(θ)dF (θ)

F̄ (1/2|v1)− F̄ (1/2|v0)

≥

∫ 1/2

0
(θ − 1/2) c′− (1/2) dF (θ) +

∫ 1

1/2
(θ − 1/2) c′+ (1/2) dF (θ)∫ 1

1/2
2θdF (θ)−

∫ 1

1/2
2 (1− θ) dFθ

where the inequality follows because c is convex. Moreover, Bayesian plausibility
implies

∫ 1/2

0
(θ − 1/2) dF (θ) +

∫ 1

1/2
(θ − 1/2) dF (θ) = 0. Therefore,

CAF ≥

(
c′+ (1/2)− c′− (1/2)

) ∫ 1

1/2
(θ − 1/2) dF (θ)∫ 1

1/2
4 (θ − 1/2) dFθ

=
c′+ (1/2)− c′− (1/2)

4
.

Since this is true for each F we have CA ≥
(
c′+ (1/2)− c′− (1/2)

)
/4.

The following corollary establishes a necessary and sufficient condition for in-
formation aggregation for posterior separable cost functions.

Corollary 1. Assume that the set of experiments is rich and the cost function is
posterior separable. Information is aggregated if and only if the cost function is
differentiable at θ = 1/2.

Proof. Lemma 6 showed that 4CA = c′+ (1/2)−c′− (1/2) and therefore information
is aggregated if and only if c′+ (1/2) = c′− (1/2) by Theorem 1.

We now introduce some notation that we need to present our equilibrium
characterization. Let

b(θ) :=
θG(θ|v1)

θG(θ|v1) + (1− θ)G(θ|v0)
,

where

G(θ|vi) :=

(
n− 1

1

)(
n− 2

bκnc − 1

)
f(θ|vi) (1− F (θ|vi))bκnc−1 F (θ|vi)n−1−bκnc.

The function b(θ) is the unique bid that type θ submits if the type distribution
F is atomless, and G(θ|vi) is the density of the bκncth highest out of n signals in
state vi.

Theorem 3. Assume that F is rich, the cost function is posterior separable, and
the function c is strictly convex. In any symmetric equilibrium (µ,H), the support
of the type distribution F is an interval

[
θ, θ̄
]
and the type distribution features an
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atom at θ ∈
(
θ, θ̄
)
if and only if the function c is not differentiable at θ. Moreover,

the type distribution satisfies the following differential equation

(1− b(θ))G(θ|v1) + b(θ)G(θ|v0) = c′′(θ) (3.5)

for almost every θ ∈
[
θ, θ̄
]
.

The main qualitative finding of the theorem is that the support of the equilib-
rium type distribution is an interval. In other words, there is a continuum of active
types in equilibrium. Moreover, the type distribution is continuous whenever the
function c is differentiable. Therefore, the type distribution features an atom at
the prior if and only if information aggregation fails.

The theorem also provides a partial characterization of the equilibrium type
distribution through a differential equation (Equation (3.5)). We first give some
intuition for our characterization. At the end of this subsection, we illustrate how
one can solve for an equilibrium using Equation (3.5) through a simple example.

Much of our characterization rests on a key result that shows that any bidder is
indifferent between the equilibrium type distribution F and any other experiment
G ∈ F with finite support that puts probability mass only on types in the support
of the equilibrium type distribution. In other words, if supp G ⊂ supp F , then
U(F,H) = U(G,H). In particular, a bidder is indifferent between F and any
binary experiment that splits the prior into two types θ∗, θ ∈ supp F . To see this,
pick any experiment G ∈ F with supp G ⊂ supp F and consider the following
maximization problem:

max
a∈[0,1]

U ((1− a)F + aG,H) .

This maximization problem is solved at a = 0 because the equilibrium type dis-
tribution F is chosen optimally from F , given that all players use the equilibrium
bidding strategy H in the continuation game. The first-order condition for opti-
mality implies

d

da
U ((1− a)F + aG,H) |a=0 = 0.

Recall that U(F,H) =
∫

Θ

(
uH(H(θ), θ)− c(θ)

)
dF (θ) and therefore

U ((1− a)F + aG,H) = aU (F,H)+(1− a)U (G,H). Calculating this first-order
condition explicitly, we find that U(F,H) = U(G,H).

Let θ̄ and θ denote the upper and lower bounds of the support of the equilibrium
type distribution. We now argue that the type distribution F is strictly increasing
over

[
θ, θ̄
]
, i.e., its support is an interval. Assume to the contrary that there
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are two types θ1 and θ2 in the support of the equilibrium type distribution such
that F is flat over the interval (θ1, θ2). Note that there is an experiment G in
F that puts positive probability only on θ1, θ2, and possibly an additional type
θ∗ ∈ supp F.12 By the argument given above, we know that U(F,H) = U(G,H).
We will construct a type distribution F ′ ∈ F that is Blackwell less informative
than G and consequently cheaper than G. We will then use this type distribution
to show that there is a profitable deviation from an equilibrium where distribution
F is chosen with probability one.

Let b1 denote the highest equilibrium bid submitted by type θ1 and let b2 denote
the lowest equilibrium bid submitted by type θ2. Lemma 1 argued that the bid
distribution is atomless. Moreover, the bid distribution is flat between b1 and b2

because there are no types between θ1 and θ2 and because the bid distribution is
monotone (Lemma 1). Therefore, in state v1 the equilibrium payoff from bid b1 is
equal to the equilibrium payoff from bid b2. Similarly, u(b1, v0) = u(b2, v0).

Consider an alternative type distribution F ′ ∈ F that is identical G except
that F ′ merges the two types θ1 and θ2 into a single type θ̂. More precisely, F ′

generates the posterior θ̂ = (F ({θ1}) θ1 + F ({θ2}) θ2) /F ({θ1, θ2}) with probabil-
ity F ({θ1, θ2}). Note that G is more informative than F ′ therefore C(G) > C(F ′).
However, choosing experiment F ′ and bidding b2 after drawing θ̂ is a profitable de-
viation because u(b2, vi) = u(b1, vi) for i = 0, 1 implies that U(F ′, H) > U(G,H) =

U(F,H).
We will now establish Equation (3.5). Let Gθ,θ denote the binary experiment

that generates posteriors θ and θ ∈ [1/2, θ̄]. Note that U(Gθ,θ, H) = U(F,H) for
each θ ∈ [1/2, θ̄]. Therefore,

d

dθ
U(Gθ,θ, H) = 0.

An explicit calculation gives

U(Gθ,θ, H) =
(u(H(θ), θ)− c(θ)) (1/2− θ) + (u(H(θ), θ)− c(θ)) (θ − 1/2)

θ − θ

and dU(Gθ,θ, H)/dθ = 0 implies that

d

dθ
(u(H(θ), θ)− c(θ))︸ ︷︷ ︸

Marginal Interim Payoff−Marginal Cost

= D, (3.6)

12If 1/2 /∈ (θ1, θ2), then we need the experiment G to put weight on an addition type θ∗ in
order for Bayesian plausibility to be satisfied.
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where D = c(θ) − u(H(θ), θ) is a constant independent of θ. We will now use
Equation (3.6) to show that an atomless type distribution satisfies Equation (3.5).
The argument that establishes that the type distribution is atomless if c is differ-
entiable is in the appendix.

The fact that the type distribution is continuous at each θ ∈
(
θ, θ̄
)
and

Lemma 1 together imply that each type θ submits a unique bid equal to b(θ).
Recall that u(b(θ), θ) = θu(b(θ), v1) + (1− θ)u(b(θ), v0). The envelope theorem,
or equivalently, the fact that b(θ) is chosen optimally in equilibrium, implies that
d
db
uH(b, θ)|b=b(θ) = 0. Therefore, the marginal interim payoff of type θ is equal to

u(b(θ), v1)− u(b(θ), v0). Therefore,

u(θ, vi) =

∫ θ

0

(vi − b(θ′))G(θ′|vi)dθ′.

Moreover, c′(θ) =
∫ θ

0
c′′(θ)dθ because the convex function c is twice differentiable

almost everywhere. Substituting∫ θ
0

(vi − b(θ′))G(θ′|vi)dθ′ for u(θ, vi) and
∫ θ

0
c′′(θ)dθ for c′(θ) in Equation (3.6) we

obtain ∫ θ

0

((1− b(θ′))G(θ′|v1) + b(θ′)G(θ′|v0)− c′′(θ′)) dθ′ = D

for each θ. The righthand side of the expression above is constant, and the identity
must hold for each θ. Therefore,

(1− b(θ))G(θ|v1) + b(θ′)G(θ|v0) = c′′(θ)

for almost every θ.
In what follows, we turn our attention to solving for an equilibrium under the

assumptions of Theorem 3. Equation (3.5), which characterizes the equilibrium
type distribution, can be expressed as a second-order differential equation. How-
ever, solving this differential equation is not, in general, straightforward. We will
illustrate how to derive the equilibrium by focusing on a simple example where
there are two bidders and one object. In this case, Equation (3.5) reduces to the
following expression

f(θ) =
θ2 + (1− θ)2

θ(1− θ)
c′′(θ), (3.7)

because b(θ) = θ2/
(
θ2 + (1− θ)2). Moreover, the type distribution satisfies F (θ̄)−

F (θ) = 1 and Bayesian plausibility
∫ θ̄
θ
θf(θ)dθ = 1/2. Given the density f , the

Bayesian plausibility constraint and F (θ̄)−F (θ) = 1 together uniquely determine
the endpoints of the type distribution’s support (See Kim and Koh (2022) for a
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detailed argument). In the examples below, we explicitly solve for the unique
equilibrium for two alternative specifications of the cost function. For both of
these examples, we assume that F = ∆ ([θ′, θ′′]), where θ′ ≤ 0.38 < 0.62 ≤ θ′′.

Example 1. Suppose that the cost of information is given by the quadratic infor-
mation cost function, i.e., c(θ) = (1/2− θ)2. In this case, c′′(θ) = 2 . Integrating
Equation (3.7) and solving for θ and θ̄ delivers the equilibrium type distribution

F ∗(θ) =


−4θ + 2 ln θ

1−θ + 2.91 if θ ∈ [0.38, 0.62],

0 if θ < 0.38,

1 if θ > 0.62.

Note that θ′ ≤ 0.38 < 0.62 ≤ θ′′ implies that F ∗ ∈ F . In order to find the
endpoints of the support, we used the fact that θ = 1− θ̄ (because the density f
is symmetric around 1/2) and F (θ̄)− F (θ).

Example 2. Suppose that the cost of information is given by mutual information
cost function, i.e., c(θ) = θ ln θ+(1− θ) ln (1− θ) . In this case, c′′(θ) = 1/θ (1− θ)
and therefore

F ∗(θ) =


2θ−1
θ(1−θ) + 0.49 if θ ∈ [0.44, 0.56],

0 if θ < 0.44,

1 if θ > 0.56.

As in the previous example, θ′ < 0.44 < 0.56 < θ′′ implies that F ∗ ∈ F .

3.3. Information aggregation with general cost functions. Corollary 1
provided a necessary and sufficient condition for information aggregation with
posterior separable cost functions. In this subsection, we focus on more general
cost functions and provide two conditions that are together sufficient for informa-
tion aggregation if the set of experiments is rich.

The first condition requires that the cost function be convex with respect to
mixtures with the uninformative experiment in a neighborhood of the uninforma-
tive experiment.

Definition 5. The cost function satisfies non-redundancy if there exists an open
ball around the uninformative experiment N (F ◦) such that C(γF +(1− γ)F ◦) ≤
γC(F ) for each binary experiment F ∈ N (F ◦) ∩ F and γ ∈ [0, 1].

We call this condition non-redundancy because if the experiment F ′ = γF +

(1− γ)F ◦ is more costly than γc(F ), where γ ∈ (0, 1), then no decision-maker
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would choose experiment F ′. This is because a decision-maker can create an
identical distribution over posteriors at a cost equal to γc (F ) by mixing F with
the uninformative experiment. Any posterior separable cost function satisfies non-
redundancy.

We introduce some notation to state the second condition. Given an exper-
iment F , define a new experiment that is obtained by taking two independent
draws from F and denote this experiment by F ⊗ F .

Definition 6. The cost function satisfies ρ-monotonicity if there exists a ball
N (F ◦) and a constant ρ > 1 such that C(F ⊗ F ) ≥ ρC(F ) for each symmetric
binary experiment F such that F ⊗ F ∈ N (F ◦) ∩ F .

The experiment obtained by taking two independent draws from F is more
informative than F . Intuitively, one would then expect F⊗F to cost more than F if
the experiments are correctly priced. The condition introduced above strengthens
this notion of monotonicity by requiring C(F ⊗F )/C(F ) to be uniformly bounded
below by a constant greater than one in a neighborhood around the uninformative
experiment. See Pomatto et al. (2020) for a detailed discussion of these two
conditions.

We now argue that a rich set of experiments, non-redundancy, and ρ-monotonicity
are together sufficient for information aggregation. Choose a symmetric binary
experiment in F that generates posteriors q and 1 − q with equal probability.
The experiment’s likelihood ratio is given by λ := q/(1− q) and we denote this
experiment by F (λ) since its likelihood ratio fully characterizes it. Taking two in-
dependent draws from the experiment F (

√
λ) generates posteriors equal to q, 1/2,

and 1 − q with probabilities x(λ)/2, 1 − x(λ), and x(λ)/2, respectively. In other
words, experiment F (

√
λ)⊗ F (

√
λ) is equivalent to the experiment generated by

picking binary experiment F (λ) with probability x and picking the uninforma-
tive experiment with the remaining probability. Therefore, the cost of experiment
F (
√
λ)⊗F (

√
λ) is equal to the cost of experiment xF (λ) + (1−x)F ◦. The lemma

below establishes a linear bound for the cost of experiment F (
√
λ) in terms of the

cost of F (λ).

Lemma 7. If the set of experiments is rich and the cost function satisfied non-
redundancy and ρ-monotonicity, then

C
(
F
(√

λ
))
≤ x(λ)

ρ
C (F (λ)) .

Proof. The ρ-monotonicity implies that C
(
F (
√
λ)⊗ F (

√
λ)
)
≥ ρC

(
F
√
λ
)
.More-
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over, non-redundancy implies that C (x(λ)F (λ) + (1− x(λ))F ◦) ≤ x(λ)C(F (λ).

Hence, C
(
F (
√
λ)⊗ F (

√
λ)
)
≤ x(λ)C((F (λ)) because

C
(
F (
√
λ)⊗ F (

√
λ)
)

= C (xF (λ) + (1− x)F ◦) .

Therefore, C
(
F
(√

λ
))
≤ C((F (λ))x(λ)/ρ.

The following theorem shows that the two conditions outlined above are suffi-
cient for information aggregation.

Theorem 4. If the set of experiments is rich and the cost function satisfies non-
redundancy and ρ-monotonicity, then information is aggregated along any equilib-
rium sequence.

To prove this theorem, we construct a sequence of binary experiments in F
and we show that the cost-accuracy ratio converges to zero along this sequence.
The fact that information is aggregated then follows from Theorem 1.

The construction works as follows: Choose a sequence of symmetric binary ex-
periments

{
F
(
λ1/2j

)}∞
j=0

contained in the set of available experiments such that

the first experiment in the sequence, F (λ), is close to the uninformative experi-
ment, that is, λ is close to one. The experiments in the sequence are decreasing
in informativeness and the sequence converges to the uninformative experiment.
Moreover, the accuracy of experiment F (λ1/2j) is equal to

(
λ1/2j − 1

)
/
(
λ1/2j + 1

)
.

Therefore, the accuracy of experiment F (λ1/2j) converges to zero at the order of
1/2j.

The linear bound established in Lemma 7 implies that C(F (
√
λ)) ≤ yC(F (λ)),

where y := x(λ)/ρ. The fact that we chose λ close to one implies that y is a positive
constant strictly less than 1/2. The same logic establishes that

C
(
F (λ1/2j)

)
≤ yC

(
F
(
λ1/2(j−1)

))
for each j > 1. Therefore, proceeding recursively, we find C

(
F (λ1/2j)

)
≤ yjC (F (λ)) .

In other words, the cost of the experiment F
(
λ1/2j

)
converges to zero at the or-

der of yj. This implies that the cost-benefit ratio of experiment F
(
λ1/2j

)
also

converges to zero as j →∞. This is because 1) cost converges to zero at rate yj,
2) the accuracy converges to zero at rate 1/2j, and 3) y < 1/2.

Remark 2. In contrast to Corollary 1, Theorem 4 provides only a sufficient condi-
tion for information aggregation. In fact there are differentiable posterior separa-
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ble cost functions that do not satisfy ρ−monotonicity. Such an example is given
below:

c (θ) =

(θ − 1/2)3/2 if q ≥ 1/2

(1/2− θ)3/2 if q < 1/2

This cost function is differentiable at 1/2 and, therefore, information is aggregated
by Corollary 1. However, it can be readily verified that

lim
F→F ◦

C(F ⊗ F )/C(F ) = 1

for each symmetric binary experiment F . We note that every posterior separable
cost function that has a second derivative at the prior satisfies ρ−monotonicity
and in this example the function c does not have a second derivative at 1/2.

4. Conclusion

Understanding frictions that hinder information aggregation is a central eco-
nomic question studied by a vast literature and costly information is one such
friction. In this paper, we studied information aggregation in a large common-
value auction where information is costly. Our main result provided a necessary
and sufficient condition under which information aggregates. In particular, we
identified the cost-accuracy ratio as the parameter that determines the informa-
tion content of the auction price. Moreover, we argued that the informativeness
of the price is Blackwell decreasing in the cost-accuracy ratio. Our approach al-
lowed us to conclude that information can aggregate in a large market under mild
conditions even when information is costly.

Our characterization of the equilibrium type distribution provided further in-
sights concerning the distribution of information among the bidders in the auction.
In particular, we showed that each bidder acquires a vanishingly small amount of
information in equilibria where information aggregates. In contrast, a vanishing
fraction of bidders acquire substantial information while all other bidders remain
uninformed in equilibria where information does not aggregate.

In this paper, our focus was on the demand for information in a particular
market and we summarized the supply of information by an information cost
function. An interesting avenue for future research is to model the supply of
information explicitly.

A. Appendix

Below we prove Lemma 2 by showing that F (µn) converges in distribution to
F ◦.

Proof of Lemma 2. The facts that bidding is monotone and the bid distribution
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is atomless together imply that P k → V in probability if and only if
lim
√
n
(
F̄ (1/2|v1;µn)− F̄ (1/2|v0;µn)

)
→ ∞ by Atakan and Ekmekci (2021),

Lemma 2.2.
Pick any convergent subsequence F (µn) → F̂ in distribution, which exists by

Helly’s theorem. If F̂ (·) 6= F ◦, then lim
√
n
(
F̄ (1/2|v1;µn)− F̄ (1/2|v0;µn)

)
=∞,

and therefore, P k → V in probability. For each ε > 0, the equilibrium payoff to
strategy (µk, Hk) satisfies the following inequality:

Uk(µk, Hk) ≤ 1

2

1∑
i=0

(
Pr{P k ≤ vi − ε|V = vi}vi + ε

)
− C(µk).

The fact that P k → V in probability implies Pr{P k ≤ vi − ε|V = vi} → 0 for
each ε. Hence, lim supUk(µk, Hk) ≤ − limC(µk), as ε is arbitrary. However,
limC(µk) > 0 because c is continuous and F̂ 6= F ◦. Therefore, equilibrium payoffs
are negative for sufficiently large k, a contradiction.

Below we prove Lemma 3. In particular, we show that 1 − limE[P n|v1] =

limE[P n|v0] along any equilibrium sequence H along which these limits exist.
Subsequently, we will prove that these limits exist along any equilibrium sequence.
In particular, if CB < 1/4, then we show that limE[P n|v0] = CB in Lemma 4. If
CB ≥ 1/4, then we show that 1− limE[P n|v1] = limE[P n|v0] = 1/2 in Theorem
2.

Proof of Lemma 3. Pick a sequence of types θn and bids bn ∈ supp Hn(·|θn) such
that Pr(P n ≤ bn|v0) = ε. Notice that Pr(P n ≤ bn|v0) = ε implies that Pr(P n ≤
bn|v1) ≤ ε because bidding is monotone in θ. Therefore Un(bn|θn) ≤ ε. Consider
an alternative strategy where type θn submits a bid equal to 1. The payoff to this
strategy must be at most Un(bn|θn), that is,

θn (1− E[P n|v1])− (1− θn)E[P n|v0] ≤ ε.

Moreover, Pr(P n ≤ bn|v0) = ε, bn ∈ supp Hn(θn), and F (µn)
D→ F ◦ together

imply that θn → 1/2. Therefore,

1− limE[P n|v1]− limE[P n|v0] ≤ 2εv1

for each ε.
Pick a type θn and a bid bn ∈ supp Hn(·|θn) such thatHn {(θ, b) : (θ, b) ≥ (θn, bn)|v1} =

κ/2. The fact that F (µn)
D→ F ◦ implies that θn → 1/2. Notice that lim Pr(P n ≤
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bn|v1) = 1. MLRP implies that Hn {(θ, b) : (θ, b) ≥ (θn, bn)|v0} ≤ κ/2 for each n.
Therefore, lim Pr(P n ≤ bn|v0) = 1. Moreover,

θn Pr{P n ≤ bn|v1} (1− E[P n|P n ≤ bn, v1])−

(1− θn) Pr{P n ≤ bn|v1}E[P n|P n ≤ bn, v0]→

1− limE[P n|v1]− limE[P n|v0] ≥ 0

establishing the result.

The probability that a particular bid b is pivotal (i.e., Y n(bκnc + 1) = b) can
be approximated using the central limit theorem. If

lim
bκnc − nHn({b′ ≥ b}|vi))√

nκ(1− κ)
= a,

then Bi(bκnc;n,Hn({b′ ≥ b}|vi)) → Φ (a) where Bi denotes the binomial cumu-
lative distribution, that is, the probability of drawing at least bκnc successes out
of n draws where the probability of success is equal Hn({b′ ≥ b}|vi). Moreover, if
we let q = Hn({b′ ≥ b}|vi)), then

bi(bκnc;n, q) =

(
n

bκnc

)
qbκnc(1− q)n−bκnc =

1 + δn(q)√
2πnκ(1− κ)

φ

(
bκnc − nq√
κ(1− κ)n

)
(A.1)

where bi denotes the binomial density; and limn→∞ supq:|nq−bκnc|<nt δn(q) = 0 for
t < 2/3 (see Lesigne (2005, Proposition 8.2)). For any b ∈ [v0, v1] define

zni (b) :=
bκnc − (n− 1)Hn({b′ ≥ b}|vi)√

(n− 1)κ(1− κ)
.

Lemma 8. Pick a sequence of bids and types{(bn, θn)} with bn ∈ supp Hn(·|θn).
Assume that lim zni (bn) = zi < ∞ for i = 0, 1 and lim l(θn) = ρ. For any δ > 0,
there exists an N such that for all n > N we have

(1− δ)φ(z1)/φ(z0) ≤ l(Y n(bκnc+ 1) = bn) ≤ (1 + δ)φ(z1)/φ(z0).

Therefore, l(Y n(bκnc+ 1) = bn)→ φ(z1)/φ(z0).

Proof. A direct computation shows that

l(Y n(bκnc+ 1) = bn) = l(θn)
bi(bκnc;n− 1, Hn({b ≥ bn}|v1))

bi(bκnc;n− 1, Hn({b ≥ bn}|v0))
.
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Eq. (A.1) implies that for any δ > 0, there exists an N such that

(1− δ) φ(zn1 (bn))

φ(zn0 (bn))
≤ bi(bκnc;n− 1, Hn({b ≥ bn}|v1))

bi(bκnc;n− 1, Hn({b ≥ bn}|v0))
≤ (1 + δ)

φ(zn1 (bn))

φ(zn0 (bn))

for all n > N . Our assumption that lim zni (bn) = zi < ∞ and bκnc/(n − 1) → κ

together establish that lim
√
n|Hn({b ≥ bn}|vi)−κ| <∞ for i = 0, 1. The fact that

φ(zni (b)) is a continuous functions of b implies that for any δ > 0, there exists an
N such that for all n > N we have ρ (1− δ)φ(z1)/φ(z0) ≤ l(Y n(bκnc+1) = bn) ≤
ρ (1 + δ)φ(z1)/φ(z0), where ρ = lim l(θn). Moreover, the fact that F (µn)

D→ F ◦

implies ρ = 1.

Lemma 9. Suppose CA < 1/4. Along any equilibrium sequence (Hn, µn) we have

lim inf

√
n

κ (1− κ)

(
F̄ (1/2|v1;µn)− F̄ (1/2|v0;µn)

)
> 0.

Proof. Suppose lim
√
n (F (1/2|v1;µn)− F (1/2|v0;µn)) = 0 along a subsequence,

which, abusing notation, is index again by n. We will argue that P n P→ 1/2 in
both states. However, then the argument provided in Lemma 1 implies that any
bidder can improve upon her equilibrium payoff by deviating to an experiment

CAF = C(F )/
(
F̄ (1/2|v1)− F̄ (1/2|v0)

)
< 1/4

for sufficiently large n leading to a contradiction.
We now argue that lim

√
n (F (1/2|v1;µn)− F (1/2|v0;µn)) = 0 implies that

P k P→ 1/2. Pick a sequence of bids and types{(bn, θn)} with bn ∈ supp Hn(·|θn).
Assume that lim zni (bn) = zi < ∞ for i = 0, 1. Our maintained assumption
lim
√
n (F (1/2|v1;µn)− F (1/2|v0;µn)) = 0 implies that z1 = z0. Therefore,

lim l(Y n(bκnc+1) = bn) = 1 by Lemma 8. However, then bn → 1/2. Moreover, the
price clears at a bid with zi < ∞ with probability converging to one. Therefore,
P n P→ 1/2 in both states.

Lemma 10. Along any equilibrium sequence (µn, Hn), we have limUn(µn, Hn) =

0.

Proof. Pick a type θn ∈ [1/2 − ε, 1/2 + ε] and a bid bn ∈ supp Hn(θn) such that
lim Pr(P n ≤ bn|v1) = 1. The limit payoff for this type is at most 2εv1 because
1 − limE[P n|v1] = limE[P n|v0] and because limE[P n|v1] ≥ 0. Moreover, for any
θ, θ′ ∈ [1/2− ε, 1/2 + ε], b ∈ supp Hn(·|θ), and b′ ∈ supp Hn(·|θ′),

|un(b, θ)− un(b′, θ′)| ≤ 2ε.
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Hence, limun(bn, θ) ≤ 4ε for each θ ∈ [1/2−ε, 1/2+ε], bn ∈ supp Hn(θ).Moreover,
F ([1/2− ε, 1/2 + ε];µn)→ 1 because F (µn)

D→ F ◦. Observing that ε is arbitrary
establishes the result.

Lemma 4 states if CA < 1/4, then limn E[P n|v0] = CA along any equilibrium
sequence H. The argument for this lemma is below.

Proof of Lemma 4. We prove the lemma through two intermediate Lemmata pre-
sented below. The first lemma shows that 2CBF ≥ lim supn E[P n|v0] for all
F ∈ F \ {F ◦} along any equilibrium sequence H. The second lemma argues
that if lim

√
n (F (1/2|v1;µn)− F (1/2|v0;µn)) > 0 along an equilibrium sequence,

then 2CB ≤ lim infn E[P n|v0] along the sequenceH. These two Lemmata together
with Lemma 9 establish that if CB < 1/4, then CB = limn E[P n|v0] along any
equilibrium sequence.

Lemma 11. Along any equilibrium sequenceH, we have 2CAF ≥ lim supn E[P n|v0]

for all F ∈ F \ {F ◦}.

Proof. Assume to the contrary that there exists an experiment F > 0 such that

2CAF =
2C(F )

F̄ (1/2|v1)− F̄ (1/2|v0)
< lim

n
E[P n|v0]

along some equilibrium sequence. Consider the strategy where a bidder pur-
chases experiment F , bids 1 if θ > 1/2, and bids 0 otherwise. The payoff
from this strategy converges to

(
F̄ (θ|v1)− F̄ (θ|v0)

)
E[P |v0]/2 − c(F ) > 0 be-

cause 1 − limE[P n|v1] = limE[P n|v0] by Lemma 3. However, this contradicts
Claim 10, which showed equilibrium payoffs converge to zero. As this is true for
any convergent sequence {E[P n|v0]}n we have 2CAF ≥ lim supn E[P n|v0] for all
F ∈ F \ {F ◦}.

Lemma 12. Along any equilibrium sequence, if

lim
√
n
(
F̄ (1/2|v1;µn)− F̄ (1/2|v0;µn)

)
> 0,

then
CA ≤ lim inf

n
E[P |v0].

Proof. Pick a subsequence, which abusing notation we index by n, such that
F (µn) 6= F ◦ for each n and limCBF (µn) exists. Note that such a subsequence
exists by assumption and limCAF (µn) ≥ CA. Assume to the contrary of the claim
that limCAF (µn) ≥ CA > lim infn E[P |v0].
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Choose ε > 0. Pick a type θn and a bid bn ∈ supp Hn(θn)

such that Hn {(θ, b) : (θ, b) ≥ (θn, bn)} = κ − ε. Pick a type θ̂n and a bid b̂n ∈
supp Hn(θ̂n) such that Hn

{
(θ, b) : (θ, b) ≥ (θ̂n, b̂n)

}
= κ + ε. The equilibrium

payoff can be expressed as follows

Un(Hn, µn) = ∫ 1

θn

∫ v1

v0

θPr{P n ≤ b|v1} (1− E[P n|P n ≤ b, v1]))

− (1− θ) Pr{P n ≤ b|v0}E[P n|P n ≤ b, v0])dHn(b|θ)dF (θ;µn)

+Hn
({

(θ, b) : θ ∈ [θ̂n, θn), b ≥ b̂n
})

E
[
un(b|θ)|θ ∈ [θ̂n, θn), b ≥ b̂n

]
+

Hn
({

(θ, b) : θ ≤ θ̂n, b < b̂n
})

E
[
un(b|θ)|θ ≤ θ̂, b < b̂n

]
− C(µn) (A.2)

where

E
[
un(b, θ)|θ ∈ [θ̂n, θn), b ≥ b̂n

]
=∫

{(θ,b):θ≤θ̂n,b<b̂n}
θPr{P n ≤ b|v1} (1− E[P n|P n ≤ b, v1]))−

(1− θ) Pr{P n ≤ b|v0}E[P n|P n ≤ b, v0])
dHn

Hn
({

(θ, b) : θ ≤ θ̂, b < b̂n
}) .

Notice that for each (θ, b) ≥ (θn, bn), we have

θPr{P n ≤ b|v1} (1− E[P n|P n ≤ b, v1]))−(1−θ) Pr{P n ≤ b|v0}E[P n|P n ≤ b, v0]) ≤

θPr{P n ≤ b|v1} (1− E[P n|P n ≤ bn, v1]))−(1−θ) Pr{P n ≤ b|v0}E[P n|P n ≤ bn, v0]).

Moreover, Pr{P n ≤ b|v1} ≤ Pr{P n ≤ b|v0} implies

θPr{P n ≤ b|v1} (1− E[P n|P n ≤ bn, v1]))−(1−θ) Pr{P n ≤ b|v0}E[P n|P n ≤ bn, v0]) ≤

θ (1− E[P n|P n ≤ bn, v1]))− (1− θ)E[P n|P n ≤ bn, v0])
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Substituting back into the equation (A.2), we find

Un(Hn, µn) ≤ (1− E[P n|P n ≤ bn, v1]))

∫ 1

θn
θdF (θ;µn)−

E[P n|P n ≤ bn, v0])

∫ 1

θn
(1− θ)dF (θ;µn)+

+Hn
({

(θ, b) : θ ∈ [θ̂, θn), b ≥ b̂n
})

E
[
un(b|θ)|θ ∈ [θ̂, θn), b ≥ b̂n

]
+Pr{P n ≤ b̂n}−C(µn)

Using the facts that
∫ 1

θn
θdF (θ;µn) = F̄ (θn|v1;µn)/2, and

∫ 1

θn
(1− θ) dF (θ;µn) =

F̄ (θn|v0;µn)/2 we obtain

Un(Hn, µn) ≤ F̄ (θn;µn)

(
F n

1

2F̄ (θ;µn)
(1− P n

1 )− F n
0

2F̄ (θ;µn)
P n

0

)
+Hn

({
(θ, b) : θ ∈ [θ̂, θn), b ≥ b̂n

})
E
[
un(b|θ)|θ ∈ [θ̂, θn), b ≥ b̂n

]
+Pr{P n ≤ b̂n}−C(µn)

where F n
i = F̄ (θn|vi, µn) and P n

i = E[P n|P n ≤ bn, vi]. Note that if θ > θ′, b ∈
supp Hn(θ), and b′ ∈ supp Hn(θ′), then un(b′|θ′) ≤ un(b′|θ) ≤ un(b|θ). Moreover,
Hn
({

(θ, b) : θ ∈ [θ̂, θn), b ≥ b̂n
})
≤ 2ε. Consequently,

Un(Hn, µn) ≤ F n
1

2
(1− P n

1 )− F n
0

2
P n

0 +

2ε

F̄ (θn, µn)

(
F n

1

2
(1− P n

1 )− F n
0

2
P n

0

)
+ Pr{P n ≤ b̂n} − C(µn)

=
F n

1 + εn1
2

(1− P n
1 )− F n

0 + εn0
2

P n
0 + Pr{P n ≤ b̂n} − C(µn)

where εni = 2ε
Fn0

F̄ (θn,µn)
. A bidder can always choose experiment F ◦ and submit a

bid equal to bn. The payoff from this strategy is equal to

Pr{P n ≤ bn|v1} (1− P n
1 )− Pr{P n ≤ bn|v0}P n

0

2
.

The fact that F (µn) 6= F ◦ implies that

qn1 (1− P n
1 )− qn0P n

0

2
≤ Un(Hn, µn)

≤ F n
1 + εn1

2
(1− P n

1 )− F n
0 + εn0

2
P n

0 + Pr{P n ≤ b̂n} − C(µn).
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where qni = Pr{P n ≤ bn|vi}. Therefore,

1− P n
1 ≤

qn0 − F n
0 − εn0

qn1 − F n
1 − εn1

P n
0 +

2 Pr{P n ≤ b̂n} − 2c(µn)

qn1 − F n
1 − εn1

.

This in turn implies that

F n
1

2
(1− P n

1 )− F n
0

2
P n

0 ≤

F n
1

2

(
qn0 − F n

0 − εn0
qn1 − F n

1 − εn1
P n

0 +
2 Pr{P n ≤ b̂n} − 2c(µn)

qn1 − F n
1 − εn1

)
− F n

0

2
P n

0

=
(qn0F

n
1 − qn1F n

0 )P n
0

2(qn1 − F n
1 − εn1 )

+ F n
1

Pr{P n ≤ b̂n} − C(µn)

qn1 − F n
1 − εn1

.

Consequently,

Un(Hn, µn) ≤ F n
1

2
(1− P n

1 )− F n
0

2
P n

0 +

2ε

F̄ (θn, µn)

(
F n

1

2
(1− P n

1 )− F n
0

2
P n

0

)
+ Pr{P n ≤ b̂n} − C(µn)

≤ (qn0F
n
1 − qn1F n

0 )P n
0

2(qn1 − F n
1 − εn1 )

+ F n
1

Pr{P n ≤ b̂n} − C(µn)

qn1 − F n
1 − εn1

+

2ε

F̄ (θn, µn)

(
(qn0F

n
1 − qn1F n

0 )P n
0

2(qn1 − F n
1 − εn1 )

+ F n
1

Pr{P n ≤ b̂n} − c(µn)

qn1 − F n
1 − εn1

)
+Pr{P n ≤ b̂n}−C(µn) =

(qn0F
n
1 − qn1F n

0 )P n
0

2(qn1 − F n
1 − εn1 )

+ (qn1 − εn1 )
Pr{P n ≤ b̂n} − C(µn)

qn1 − F n
1 − εn1

+

2ε

F̄ (θn, µn)

(
(qn0F

n
1 − qn1F n

0 )P n
0

2(qn1 − F n
1 − εn1 )

+ F n
1

Pr{P n ≤ b̂n} − C(µn)

qn1 − F n
1 − εn1

)

Individual rationality implies that Un(Hn, µn) ≥ 0. Therefore, dividing the right-
hand side by (F n

1 − F n
0 ) /(qn1 − F n

1 − εn1 ) we find

0 ≤ (qn0F
n
1 − qn1F n

0 ) (P n
0 − vn0 )

2 (F n
1 − F n

0 )
+ (qn − εn1 )

Pr{P n ≤ b̂n} − C(µn)

F n
1 − F n

0

+
2ε

F̄ (θn, µn)

(
(qn0F

n
1 − qn1F n

0 ) (P n
0 − vn0 )

2 (F n
1 − F n

0 )
+ F n

1

Pr{P n ≤ b̂n} − C(µn)

F n
1 − F n

0

)

Notice that F n
1 −F n

0 > 0 because F (µn) 6= F ◦ and qn1 −F n
1 − εn1 > 0 for sufficiently

large n because qn1 converges to one. Further below we will argue that Pr{P n ≤
b̂n}/(F n

1 − F n
0 ) → 0 and (qn0F

n
1 − qn1F n

0 ) /(F n
1 − F n

0 ) → 1. Taking the limit as n
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goes to infinity we find

0 ≤ lim
(P n

0 − vn0 )

2
− lim (1− εn1 )

C(µn)

F n
1 − F n

0

+
2ε

F̄ (θn, µn)

(
lim

P n
0

2
+ limF n

1

Pr{P n ≤ b̂n} − C(µn)

F n
1 − F n

0

)

The fact that ε is arbitrary implies that

0 ≤ limE[P n|v0]− lim
2C(µn)

F n
1 − F n

0

.

However, F n
1 −F n

0 =
∫ 1

θn
2(2θ−1)dF (θ;µn) ≤

∫ 1

1/2
2(2θ−1)dF (θ;µn) = F̄ (1/2|v1;µn)−

F̄ (1/2|v0;µn) because θn ≥ 1/2 for sufficiently large n. Therefore,

0 ≤ limE[P n|v0]− lim
2C(µn)

F̄ (1/2|v1;µn)− F̄ (1/2|v0;µn)
.

We now argue that
√
nPr{P n ≤ b̂n}/

√
n(F n

1 − F n
0 )→ 0.

Note that lim
√
n (F (1/2|v1;µn)− F (1/2|v0;µn)) > 0 by assumption and Pr{P n ≤

b̂n} ≤ e−
( ε
κ+ε)

2
n(κ+ε)

2 by Chernoff’s inequality (see Janson et al. (2011, Theorem
2.1)). Therefore, the facts that

√
nPr{P n ≤ b̂n}/

√
n(F n

1 − F n
0 ) ≤

√
ne−

( ε
κ+ε)

2
n(κ+ε)

2 /
√
n(F n

1 − F n
0 ),

√
ne−

( ε
κ+ε)

2
n(κ+ε)

2 → 0, and
√
n(F n

1 − F n
0 )→ c > 0 together establish the limit.

Finally, we argue that (qn0F
n
1 − qn1F n

0 ) /(F n
1 − F n

0 ) → 1. Chernoff’s inequality

implies that qi = Pr{P n ≤ bn|vi} ≥ 1− e−
( ε
κ+ε)

2
n(κ+ε)

3 . Therefore,(
1− e−

( ε
κ+ε)

2
n(κ+ε)

3

)
F n

1 − F n
0

F n
1 − F n

0

≤ qn0F
n
1 − qn1F n

0

F n
1 − F n

0

≤
F n

1 −

(
1− e−

( ε
κ+ε)

2
n(κ+ε)

3

)
F n

0

F n
1 − F n

0

1− F n
1

e−
( ε
κ+ε)

2
n(κ+ε)

3

F n
1 − F n

0

≤ qn0F
n
1 − qn1F n

0

F n
1 − F n

0

≤ 1 + F n
1

e−
( ε
κ+ε)

2
n(κ+ε)

3

F n
1 − F n

0

.

The fact that
√
ne−

( ε
κ+ε)

2
n(κ+ε)

3 /
√
n (F n

1 − F n
0 )→ 0 establishes the limit.

A.1. Proof of Theorem 1, equilibrium existence. The fact that F is com-
pact in the weak-star topology implies that ∆ (F) is also compact in the weak-star
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topology. For each µ ∈ ∆(F), there is a unique symmetric equilibrium bid distri-
bution HF (µ) by Lemma 1. Moreover, for each b ∈ supp HF (µ)(θ) we have

b = E[V |Y n−1(bκnc) = b, θi = θ)].

Claim 1. If µ′ converges to µ in distribution, then F (µ′) converges to F (µ) in
distribution and HF (µ) converges to HF (µ) in distribution.

Proof. For each x ∈ (0, 1), let b(x, µ) be such thatHF (µ)({b′ ≤ b(x, µ)} |v1) = x, let
y(x, µ) = HF (µ)({b′ ≤ b(x, µ)} |v0) and let θ(x, µ) = inf {θ′ : F (θ′|v1) ≥ x}. The
equilibrium bidding strategy implies that

b(x, µ)

1− b(x, µ)
=

θ(x, µ)2

(1− θ(x, µ))2

(1− x)k−1 xn−k−1

(1− y(x, µ))k−1 y(x, µ)n−k−1

If µn → µ, then θ(x, µn)→ θ(x, µ). This is because θ is the xth quantile of F (µn)

and if F (µn) → F (µ) in distribution, then the quantiles also converge. Notice
that

y(x, µn) =

∫ x

0

(1− θ(z, µn)

θ(z, µn)
dz.

Therefore, if µn → µ,then y(x, µn) → y(x, µ). Hence, b(x,µn)
1−b(x,µn)

→ b(x,µ)
1−b(x,µ)

, com-
pleting the proof.

For each µ ∈ ∆ (F), let

u(θ, µ) := max
b
θ

∫ b

0

(1− p)dHF (µ) (p|v1)− (1− θ)
∫ b

0

pdHF (µ) (p|v0)

and for each (µ̂, µ) ∈ ∆ (F)×∆ (F) let

U(µ̂, µ) :=

∫
F

∫
[0,1]

u(θ, µ)dF̂ (θ)dµ̂(F̂ ).

Claim 2. The function u is continuous in θ and continuous in µ in the weak-
star topology. Moreover, the function U is continuous in both arguments in the
weak-star topology.

Proof. The properties of u follow from Berge’s maximum theorem. The properties
of U follow from the continuity of u.

Define the correspondence Γ : ∆ (F)→ ∆ (F) as follows

Γ(µ) = arg max
µ̂∈∆(F)

U(µ̂, µ).
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This correspondence is upper-hemi continuous and compact valued by Berge’s
maximum theorem. This is because ∆ (F) is compact and U is continuous in the
weak-star topology. Moreover, Γ is also convex valued since U is a linear function
of µ̂. Therefore, Γ has a fixed-point µ∗ ∈ F by Glicksberg’s fixed point theorem.
The information acquisition strategy µ∗ together with the equilibrium bidding
distribution HF (µ∗) comprises a symmetric equilibrium for the auction.

A.2. Proof of Theorem 2.

Lemma 13. If

√
n
(
F̄ (1/2|v1;µn)− F̄ (1/2|v0;µn)

)√
κ(1− κ))

→ ∆ ∈ (0,∞),

then P n D→ P , P is atomless with support [0, 1], and distribution function Pr{P ≤
p} = Φ (ζ (p,∆)) for all p ∈ [0, 1].

Proof. For any p ∈ (0, 1), we will argue that

lim zn0 (p) = ζ (p,∆, 0) =
ln
[

p
1−p

]
∆

+
∆

2
.

Pick a sequence of types {θn} such that p ∈ Hn(·|θn). Pick a subsequence
along which lim zn0 (p) exists and denote the limit point by z. We have p =

E[V |Y n−1(bκnc) = p, θi = θn)] for each n. Moreover, if z ∈ (−∞,∞), then
θn → 1/2 by Lemma 8. Therefore, if lim zn0 (p) = z, then lim zn1 (p) = z − ∆

because bidding is monotone and because θn → 1/2.
Lemma 8 implies that

limE[V |Y n−1(bκnc) = p, θi = θn)] =

φ(z−∆)
φ(z)

1 + φ(z−∆)
φ(z)

.

Therefore,

p =

φ(z−∆)
φ(z)

1 + φ(z−∆)
φ(z)

.

Solving for z we obtain

z =
ln
[

p
1−p

]
∆

+
∆

2
= ζ (p,∆, 0)

proving that lim zn0 (p) = ζ (p,∆, 0) and therefore lim zn1 (p) = ζ (p,∆, 1).
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Note that Pr{P n ≤ p|vi} = Pr{Y n(k + 1) ≤ p|vi}. The central limit theorem
implies that for each ε > 0, there exists an N such that

Φ (ζ (p,∆, 0))− ε ≤ Pr{Y n(k + 1) ≤ p|v0} ≤ Φ (ζ (p,∆, 0)) + ε

for all n > N . As ε is arbitrary we find that lim Pr{Y n(k + 1) ≤ p|v0} →
Φ (ζ (p,∆, 0)). Similarly, lim Pr{Y n(k + 1) ≤ p|v1} → Φ (ζ (p,∆, 1)) .Therefore,

lim Pr{Y n(k + 1) ≤ p|V } = Φ (ζ (p,∆, V ))

for each p ∈ [v0, v1].

Let λ = p
1−p and notice that λ = Pr {V = v1|P = p} /Pr {V = v0|P = p}, that

is, λ is the relative likelihoods of the two states conditional of observing a price
equal to p. Rearranging we obtain p = λ

1+λ
.Therefore,∫ v1

v0

pdΦ (ζ (p,∆, 0)) =

∫ ∞
0

λ

1 + λ
g(λ;−∆2

2
,∆)dλ

where g(λ;µ, σ) denotes the density function for a lognormal distributionG(λ;µ, σ)

with location parameter µ and scale parameter σ.

Lemma 14. If CA ≤ 1/4, then the equation

2CA =

∫ ∞
0

λ

1 + λ
g(λ;−∆2

2
,∆)dλ

has a unique solution ∆∗(CA) that is decreasing in CA. If CA = 0, then ∆∗(CA) =

∞, and if CA = 1/4, then ∆∗ = 0. If CA > 1/4, then CA exceeds the righthand
side of the equation for every ∆ ≥ 0, i.e., the equation has no solution.

Proof. If ∆̂ > ∆, thenG(λ;−∆2

2
,∆) second order stochastic dominatesG(λ;−∆̂2/2, ∆̂).

This follows from the property that a lognormal distribution G(µ, σ) second order
stochastically dominates another lognormal G(µ̂, σ̂) if (i)µ > µ̂; (ii) σ < σ̂; and
(iii) µ+ σ2

2
≥ µ̂+ σ̂2

2
(see Levy (1973)).

The function f(λ) = (λv1 + v0) / (1 + λ) is an increasing, strictly concave func-
tion of λ. Therefore, second order stochastically dominance implies that if ∆̂ > ∆,
then∫ ∞

0

(
λv1 + v0

1 + λ
− v0

)
g(λ;−∆2

2
,∆)dλ >

∫ ∞
0

(
λv1 + v0

1 + λ
− v0

)
g(λ;−∆̂2

2
, ∆̂)dλ,

that is, the expression is increasing in ∆.
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Note that if ∆ = 0, then E [P |v0] = 1/2 and if ∆ → ∞, then E [P n|v0] → 0

(see the proof of Lemma 2). Therefore, the equation 2CA = E [P |v0] has a unique
solution ∆∗(CA) and this solution is decreasing in CA if CA ≤ 1/4 and the
equation has no solution if CA > 1/4.

Lemma 15. If CA < 1/4, then Pr{P ≤ p|V } = Φ (ζ (p,∆∗(CA), V )) for all
p ∈ [0, 1]. If CA ≥ 1/4, then P n converges is probability to 1/2.

Proof. We prove this lemma by looking at two distinct cases. Note that F̄ (1/2|v1;µn)−
F̄ (1/2|v0;µn) ≥ 0 for each n. Therefore, either we have
lim inf

√
n
(
F̄ (1/2|v1;µn)− F̄ (1/2|v0;µn)

)
> 0 or we have

lim
√
n
(
F̄ (1/2|v1;µn)− F̄ (1/2|v0;µn)

)
= 0.

Case 1. Suppose lim inf
√
n
(
F̄ (1/2|v1;µn)− F̄ (1/2|v0;µn)

)
> 0. Pick any

limit point ∆ > 0 of the sequence. Then Lemmata 11 and 12 together imply that
limE[P n|v0] = 2CA along this sequence. Therefore,∫ 1

0

pdΦ (ζ (p,∆, 0)) = 2CA.

Lemma 14 this equation has a unique solution ∆∗ proving that the sequence also
has a unique limit point. Therefore, the unique price distribution is given by
Φ (ζ (p,∆∗(CA), V )).

Case 2. If lim
√
n
(
F̄ (1/2|v1;µn)− F̄ (1/2|v0;µn)

)
= 0, then Lemma 9 implies

that P n → 1/2.
If CB < 1/4, then lim inf

√
n
(
F̄ (1/2|v1;µn)− F̄ (1/2|v0;µn)

)
> 0 by Lemma

9. Therefore, the result follows from Case 1.
If CB ≥ 1/4, then we will argue below that

lim
√
n
(
F̄ (1/2|v1;µn)− F̄ (1/2|v0;µn)

)
= 0. Therefore, the result follows from

Case 2.
Assume to the contrary that lim inf

√
n
(
F̄ (1/2|v1;µn)− F̄ (1/2|v0;µn)

)
> 0.

Then, the limit price distribution is given by Φ (ζ (p,∆∗(CB), V )),
lim
√
n
(
F̄ (1/2|v1;µn)− F̄ (1/2|v0;µn)

)
= ∆∗(CB) > 0, and

∫ 1

0
pdΦ (ζ (p,∆∗, 0)) =

2CA as shown in Case 1. However, Lemma 14 implies that the equation∫ 1

0
pdΦ (ζ (p,∆, 0)) = 2CA does not have a positive solution ∆ if CA ≥ 1/4 leading

to a contradiction.

Lemma 16. For each ∆, let G(∆) denote the price distribution . If ∆ > ∆′, then
G(∆) is a mean preserving spread of G (∆′). Therefore, Lemma 5 informativeness
of the price is decreasing in CA.
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Proof. Note that
∫ 1

0
xdG(x) =

∫ 1

0
xdG′(x). G is a mean preserving spread of G′ if

and only if
∫ x

0
G(y)dy ≥

∫ x
0
G′(y)dy at each point x where G(x)−G′(x) = 0. Let

x be a point where G(x)−G′(x) = 0. Integrating by parts implies that∫ x

0

G(y)dy = xG(x)−
∫ x

0

yg(y)dy∫ x

0

G(y)dy = xG(x)−
∫ x

0

g(y|v1)

g(y|v1) + g(y|v0)

g(y|v1) + g(y|v0)

2
dy∫ x

0

G(y)dy = xG(x)− G(x|v1)

2

Therefore, if G(x) = G′(x), then∫ x

0

G(y)dy −
∫ x

0

G′(y)dy =
G′(x|v1)−G(x|v1)

2
.

Let z(x) and z′(x) denote the values according to P and P ′. If z(x) < z′(x), then
z(x)−∆ < z′(x)−∆ < z′(x)−∆′. However,

G(x) =
Φ(z(x)) + Φ(z(x)−∆)

2
< G′(x) =

Φ(z′(x)) + Φ(z′(x)−∆′)

2

which is a contradiction. Hence, z(x) ≥ z′(x). This implies that G(x|v0) =

Φ(z(x)) ≥ G′(x|v0) = Φ(z′(x)). However, G(x) = G′(x) now implies thatG′(x|v1) ≥
G(x|v1) which is the inequality that we were trying to show. The fact that ∆∗(CA)

is decreasing in CA completes the argument.

A.3. Proof of Theorem 3. We begin with some preliminary definitions. Given
a symmetric equilibrium (µ,H),

u(θ, vi) = K

∫ 1

0

(

∫ b

0

(vi − b) (1−H(b|vi))bκnc−1H(b|vi)n−1−bκncdH(b|vi))dH(b|θ),

where K =
(
n−1

1

)(
n−2
bκnc−1

)
. In words, H(θ) is the equilibrium bidding strategy

for type θ and u(θ, vi) is the equilibrium payoff of type θ in state vi from using
the equilibrium strategy H(θ). If θ is a continuity point of the equilibrium type
distribution F , then Lemma 1 implies that H(b|θ) puts probability one on the bid
b(θ). Given that we are working with distributional strategies, H(b|θ) is not well
defined for any θ /∈ supp F . For such types θ, define H(b|θ) such that H({b =

b(θ)}|θ) = 1.
Fix an equilibrium (µ,H) and let F denote the equilibrium type distribution.
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Convexity of C implies that

C(µ) = C(F ) =

∫
c(θ′)dF (θ′).

Pick any binary experiment Gθ,θ∗ ∈ F that generates posterior θ with proba-
bility q (θ, θ∗) and θ∗ with probability 1 − q(θ, θ∗). Bayesian plausibility implies
that

q(θ, θ∗) :=
1/2− θ∗

θ − θ∗
∈ [0, 1].

Consider the following optimization problem:

max
a∈[0,1]

U((1− a)F + aGθ,θ∗ , H).

This maximization problem is solved at a = 0 because F is chosen optimally by
each bidder in equilibrium. Optimality of F also implies that

d

da
U ((1− a)F + aGθ,θ∗ , H) |a=0 ≤ 0

for each θ ∈ [0, 1].

Claim 3. We have d
da
U ((1− a)F + aGθ,θ∗ , H) |a=0 = 0 and therefore U (Gθ,θ∗ , H) =

U (F,H) for each θ, θ∗ ∈ supp F .

Proof. Pick an experiment Gi ∈ F such that 0 < F (supp Gi) < 1 and

Gi(A) =

∫
A
dF (θ)

F (supp Gi)

for every Borel setA ⊂ [0, 1]. For any suchGi we have U ′ ((1− a)F + aG,H) |a=0 =

0. This is because (1) if U ′ ((1− a)F + aGi, H) |a=0 > 0, then U ((1− a)F + aGi, H)−
U(F,H) > 0 for all a sufficiently small, contradicting that F is optimal; (2) if
d
da
U ((1− a)F + aGi, H) |a=0 < 0, then F+a (F −Gi) ∈ F for all a < F (supp Gi)

and U (F + a (F −Gi) , H)−U(F,H) > 0 for all sufficiently small a, again a con-
tradiction.

Pick any sequence of such experiments Gi converging in the weak-star topology
to the binary experiment Gθ,θ∗ for θ, θ∗ ∈ supp F . The fact that

d

da
U ((1− a)F + aGi, H) |a=0 = 0
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for each i along the sequence implies that

d

da
U ((1− a)F + aGθ,θ∗ , H) |a=0 = 0

for each θ, θ∗ ∈ supp F . The equality U (Gθ,θ∗ , H) = U (F,H) follows
because U ((1− a)F + aGθ,θ∗ , H) = (1− a)U (F,H) + aU (Gθ,θ∗ , H).

Claim 3 implies that

q(θ, θ∗) (u(θ)− c(θ)) + (1− q(θ, θ∗)) (u(θ∗)− c(θ∗)) = U (F,H) (A.3)

for θ, θ∗ ∈ supp F .

Claim 4. The support of the equilibrium type distribution is an interval.

Proof. On the way to a contradiction assume that the type distribution is flat
over an interval [θ1, θ2] with θ1, θ2 ∈ supp F . Let b̄ (θ1) = max suppH(θ1), that is,
b̄ (θ1) is the highest bid in the support of type θ1, and let b (θ2) = min suppH(θ2).
The fact that F is flat on [θ1, θ2] and the fact that bidding is atomless and mono-
tone implies that u(b, vi) = u(b̄ (θ1) , vi), for any b ∈

[
b̄ (θ1) , b (θ2)

]
, in other

words, any type θ ∈ [θ1, θ2] is indifferent between bid b̄ (θ1) and any other bid
b ∈

[
b̄ (θ1) , b (θ2)

]
. We will prove the result by studying two mutually exclusive

cases: 1) the type 1/2 ∈ (θ1, θ2), and 2) the type 1/2 /∈ (θ1, θ2).
Suppose that 1/2 /∈ (θ1, θ2). Without loss of generality further suppose that

θ2 ≤ 1/2 and pick θ∗ ∈ supp F with θ∗ > 1/2.13 For any θ ∈ [θ1, θ2], consider the
binary experiment Gθ,θ∗ . Substituting for q(θ, θ∗) in the first order condition with
respect to Gθ,θ∗ (Claim 3) and setting ui := u(b̄ (θ1) , vi) we obtain:

c(θ) ≥ u0 + θ (u1 − u0) +
θ − 1/2

1/2− θ∗
(u(θ∗)− c(θ∗))− θ − θ∗

1/2− θ∗
U (F,H) (A.4)

for all θ ∈ [θ1, θ2] and with equality for θ = θ1, θ2. The righthand-side of Inequality
(A.4) is affine and can be expressed as c(θ) ≥ θD + E for all θ ∈ [θ1, θ2] and
c(θi) = θiD+E for i = 1, 2, where D and E are constants independent of θ. Pick
θ̂ = λθ1 + (1− λ) θ2 where λ ∈ (0, 1) . Note that λc(θ1) + (1− λ) c(θ2) = θ̂D +E.
Convexity of c implies that c(θ̂) < λc(θ1) + (1− λ) c(θ2) = θ̂D+E. However, this
contradicts Inequality (A.4), which requires c(θ̂) ≥ θ̂D + E.

13This assumption is without loss because if instead θ1 ≥ 1/2, we can choose θ∗ ∈ supp F
with θ∗ < 1/2 and proceed as in the argument.
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Assume that 1/2 ∈ (θ1, θ2). Pick binary experiment Gθ1,θ2 . Note that θ1, θ2 ∈
supp F . Therefore, Claim 3 implies that

q(θ1, θ2) (θ1u1 + (1− θ1)u0) + (1− q(θ1, θ2)) (θ2u1 + (1− θ2)u0)

= q(θ1, θ2)c(θ1) + (1− q(θ1, θ2)) c(θ2) + U (F,H) .

Bayesian plausibility implies that θ1q(θ1, θ2) + (1− q(θ1, θ2)) θ2 = 1/2. Using this
identity to rewrite the first order condition we obtain

u1 + u0

2
− U (F,H) = q(θ1, θ2)c(θ1) + (1− q(θ1, θ2)) c(θ2).

Similarly, the first order condition with respect to the uninformative experiment
F ◦ implies

u1 + u0

2
− U (F,H) ≤ c(1/2).

Therefore, c (1/2) ≥ q(θ1, θ2)c(θ1) + (1− q(θ1, θ2)) c(θ2) contradicting the strict
convexity of c.

Given an equilibrium type distribution F , let θ = min supp F and θ̄ = max supp F .
For each θ ∈

[
θ, θ̄
]
, not equal to 1/2, define a binary experiment Gθ,θ∗ as the ex-

periment that generates posteriors θ and

θ∗ :=

θ if θ > 1/2,

θ if θ < 1/2,

with probabilities q(θ, θ∗) and 1− q(θ, θ∗). Note that θ, θ∗ ∈ supp F and therefore
the first order condition with respect to Gθ,θ∗ holds with equality for all θ ∈

[
θ, θ̄
]
.

Claim 5. We have
u(θ, v1)− u(θ, v0) = c′(θ) +D (θ∗) , (A.5)

at every θ ∈ supp F where c is differentiable.

Suppose that θ is a continuity point of F . Note that u(θ) = θu(θ, v1) +

(1− θ)u(θ, v0). The fact that each type chooses its bid optimally (or, equivalently
the envelope theorem) implies that

θ
d

dθ
(u(θ, v1)) + (1− θ) d

dθ
(u(θ, v0)) = 0.

Therefore, u′(θ) = u(x, v1) − u(x, v0). To see this, define u(θ′|θ) = θu(θ′|v1) +

(1− θ)u(θ′|v0) for any θ′ ≥ θ. Note that u(θ′|θ) is maximized at θ′ = θ because
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type θ could always deviate to a bid submitted by type θ′. Therefore, u′(θ|θ) = 0.
Alternatively, θ is a discontinuity point of F . In this case, we will show that

u′+(θ) = limθ′↓θ u(θ′, v1)− u(θ′, v0) and u′−(θ) = limθ′↑θ u(θ′, v1)− u(θ′, v0). Recall
that b̄ (θ) = max suppH(θ). In this case, the envelope theorem again implies that

θ lim
θ′↓θ

u(b̄ (θ) , v1)− u(b̄ (θ′) , v1)

θ − θ′
+ (1− θ) lim

θ′↓θ

u(b̄ (θ) , v0)− u(b̄ (θ′) , v0)

θ − θ′
= 0.

Therefore, u′+(θ) = limθ′↓θ u(θ′, v1) − u(θ′, v0). The argument for u′−(θ) is analo-
gous.

For each θ, θ′ ∈ (1/2, θ̄) we have U (Gθ,θ∗ , H) = U (Gθ′,θ∗ , H) = U (F,H) by
Claim 3. Therefore, 1/2−θ∗

θ−θ∗

u(θ)− c(θ) =
U (F,H)

q(θ, θ∗)
+ (c(θ∗)− u(θ∗))

(1− q(θ, θ∗))
q(θ, θ∗)

u(θ′)− c(θ′) =
U (F,H)

q(θ′, θ∗)
+ (c(θ∗)− u(θ∗))

(1− q(θ′, θ∗))
q(θ′, θ∗)

Taking the difference of the two equations and substituting in for q(θ, θ∗) we obtain

u(θ)− c(θ)− (u(θ′)− c(θ′))
θ − θ′

=
U(F,H) + (c(θ∗)− u(θ∗))

1/2− θ∗
.

Since this is true for each θ and θ′ ∈ (1/2, θ̄), we find that

d

dθ
(u(θ)− c(θ)) =

U(F,H) + (c(θ∗)− u(θ∗))

1/2− θ∗

The fact that c is convex implies that the left and right derivative of this function
exists. Therefore,

u′+(θ) = c′+(θ) +
U(F,H) + (c(θ∗)− u(θ∗))

1/2− θ∗
,

u′−(θ) = c′−(θ) +
U(F,H) + (c(θ∗)− u(θ∗))

1/2− θ∗
.

Rewriting, we obtain u(θ, v1)− u(θ, v0) = c′(θ) +D (θ∗) at any θ where c is differ-
entiable.

Claim 6. The type distribution does not have an atom at θ ∈
(
θ, θ̄
)
if and only if

c(θ) is differentiable at θ.

Proof. The function u(θ, v1) − u(θ, v0) is discontinuous at θ ∈
(
θ, θ̄
)
, or equiva-
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lently, u′+(θ) 6= u′−(θ) if and only if the type distribution has an atom at θ by
Lemma 1. The claim now follows because Equation (A.5) shows that u(θ, v1) −
u(θ, v0) is equal to c′(θ) plus a constant.

The convex function c is twice continuously differentiable almost everywhere by
Alexandrov’s Theorem. Therefore, the type distribution is continuous at almost
every θ ∈

(
θ, θ̄
)
and

u(θ, vi) =

∫ θ

0

(vi − b(θ′))G(θ′|vi)dθ′.

Taking the derivative of Equation (A.5) with respect to θ we find

(1− b(θ))G(θ|v1) + b(θ)G(θ|v0) = c′′(θ)

for almost every θ, proving the theorem.

A.4. Proof of Theorem 4. Pick a ball N (F ◦) ⊂ F where non-redundancy
and ρ-monotonicity hold. Let F denote any binary experiment in N (F ◦) that
generates posteriors in {1− q, q} with equal probability and let λ := q/(1−q) < 1

denote this experiment’s likelihood ratio. Consider another binary experiment
F1 ∈ F with likelihood ratio

√
λ. Note that F1 ∈ N (F ◦) .

The experiment F1 ⊗ F1 generates posterior likelihood ratios (1/λ, 1, λ) with

probabilities (x/2, 1− x, x/2) , where x(λ) = (1 + λ) /
(

1 +
√
λ
)2

. This distribu-
tion over posteriors is equivalent to the experiment (1−x(λ))F ◦+x(λ)F and there-
fore F1⊗F1 ∈ N(F ◦). Non-redundancy implies that C(F1⊗F1) ≤ x(λ)C(F ) and
ρ-monotonicity implies that C(F1⊗F1) ≥ ρC(F1). Therefore, c(F1) ≤ x(λ)c(F )/ρ.

Similarly, if we take F2 to denote the binomial experiment with likelihood ratio
λ1/4 we find that

C(F2) ≤ x(
√
λ)c(F1)/ρ ≤ x(λ)C(F1)/ρ,

where the last inequality follows from the fact that x(λ) is increasing in λ. There-
fore, C(F2) ≤ (x(λ)/ρ)2C(F ) and proceeding recursively we obtain C(Fj) ≤
(x(λ)/ρ)j C(F ) for any binary experiment F ∈ N(F ◦) and binary experiment
Fj with likelihood ratio λ(1/2)j .

We now choose a particular binary experiment F̂ ∈ N(F ◦) with likelihood
ratio λ sufficiently close to one such that 2x(λ)/ρ < 1. We can indeed pick λ in
this way because ρ > 1 by assumption, x(1) = 1/2, and x(λ) is continuous. Note
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that F̄ (1/2|v1)− F̄ (1/2|v0) = λ− 1. Therefore,

CAF̂j ≤ C(F̂ )
(x(λ)/ρ)j

λ(1/2)j − 1
.

Taking the limit as n→∞, we find

CA ≤ C(F̂ ) lim
j

(x(λ)/ρ)j

λ(1/2)j − 1
= C(F̂ ) lim

j

(x(λ)/ρ)j ln (x(λ)/ρ)

λ(1/2)j ln(1/2) lnλ (1/2)j
= lim

j

(
2x(λ)

ρ

)j
= 0.

However, CA = 0 implies that information is aggregated.
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