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Abstract

I consider an auction in which one of the bidders is a team consisting of

several individuals. These individuals need to agree on a bid, and on splitting

the payment to the auctioneer if they win the item. Under some conditions,

a unique equilibrium is obtained under either a first-price or a second-price

format. Under more permissive conditions the equilibrium need not be unique,

but the symmetric equilibria of the first-price model are isomorphic to the

symmetric equilibria of the second-price model. The free riding problem which

stems from collective bidding is studied in detail.
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1 Introduction

Works in auction theory assume that bidders are individuals. They can be of many

different kinds—firms, organizations, or persons—but all are subject to the “one bid-

der=one agent” rule. In practice, however, bidding is often decided by groups of
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agents. For example, when a multi-million-dollar firm decides on a bid, the decision

is made by a group of individuals consisting of management, outside experts, or both.

Thus, something is missing from the theory: the theory assumes that bidders are in-

dividuals, whereas in many real-life auctions they are not. My goal in the present

paper is to address this lacuna and take a first step toward the understanding of

auctions with multi-member bidders.

When some bidders are multi-member, bid-decisions involve not only the usual

strategic considerations, but present additional challenges. These challenges may de-

pend on the item being auctioned off, on the relationships between the agents who

place a joint bid, and more. I consider the case where the agents placing a joint bid

are ex ante symmetric, and the item up for sale is, from their standpoint, a public

good; that is, either all of them win the item together, in which case they all enjoy it,

or all lose. Examples of scenarios that fit into this framework range from small-scale

instances, such as bidding on a TV set by a couple of roommates, to larger ones

of a more commercial character. A recent real-world example of an auction with a

multi-member bidder is the Israeli 5G spectrum auction that was carried out in the

year 2020. This auction included several bidders, one of which was multi-member,

comprising three telecommunication companies. The companies needed to decide on

a bidding strategy, and each license they (jointly) won was available for each one of

them to use.1

I consider an auction environment with two bidders: one who is multi-member,

and it comprises n symmetric individuals (players 1 through n) and an additional

bidder who is a single individual (player n + 1, the regular bidder). The two bid-

ders compete in an auction for an indivisible item, and the valuations of all n + 1

individuals are private and independent. From the regular bidder’s standpoint, the

1Disclosure: I was involved in consulting to one of the operators in the 5G auction. The present

paper is not related to this consulting. The models to be developed in the present paper are different

from the 5G auction. The content of the present paper, which was developed exclusively by me,

should not be attributed to anybody but myself.
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auction is an ordinary auction. As for the multi-member bidder, hereafter MUMB,2

the situation looks as follows: given that players’ valuations are (θ1, · · · , θn), if the

MUMB wins the auction the payoff of player i is θi − pi, where pi is the payment he

contributes to cover the item’s cost.3 The MUMB’s decisions are made via a mech-

anism to which players 1 through n send reports. The mechanism consists of a bid

aggregation rule, A, and a cost sharing rule, s; player i sends a report (or bid) bi ≥ 0,

the reports are sent simultaneously, and the bid submitted on behalf of the MUMB

is A(b1, · · · , bn); if the auction is won, the cost is split between the players in pro-

portions (s1(b1, · · · , bn), · · · , sn(b1, · · · , bn)).4 I study several versions of this model,

which differ in the assumptions made on A, s, the auction format, and on outside

competition (i.e., on the regular bidder). I start off with the following version.

The second-price model is such that:

• (I) The auction format is second-price (SPA);

• (II) The bid aggregation rule is the average rule: A(b1, · · · , bn) = 1
n

∑n
i=1 bi;

• (III) Cost sharing is proportional to individual bids: max{b1, · · · , bn} > 0 ⇒

si(b1, · · · , bn) = bi∑n
j=1 bj

.

• (IV) Each MUMB member’s valuation is distributed on [0, 1] according to some

differentiable distribution F ; the regular bidder’s valuation is distributed uni-

formly on [0,M ], where M is large.5

The model has a unique equilibrium. This equilibrium is symmetric. I character-

ize the equilibrium and study its properties. In particular, I describe the relations

2I use “MUMB” and “team” interchangeably.
3The value from not obtaining the item (and not paying anything) is zero.
4Throughout, the word “bid” will be used in several senses. It will be used to denote an individual

bid of player i—namely, his report to the mechanism—and to denote the actual bid (the MUMB’s

bid) that results from the reports. It will also be used to denote the regular bidder’s bid.
5A concrete lower bound on M will be described later. This assumption implies that the team

faces a sufficiently fierce competition. I discuss its importance in Subsection 2.1.
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between the team’s size and the free riding problem that stems from collective bid-

ding.

Next, I consider the first-price model, in which the auction format is first-price

(FPA), but the other assumptions, (II)-(IV), are maintained. Whereas in the second-

price model the regular bidder is assumed to be optimizing—he reports his type

truthfully—under the first-price format things are substantially more complicated.

For this model, I assume that the regular bidder’s bid is uniform over [0,M ]. Thus,

outside competition is given exogenously, and is not modeled as the behavior of an

optimizing agent. Under this assumption, the first-price model has a unique equilib-

rium. This equilibrium is symmetric.

With βSPA and βFPA denoting the equilibrium bid functions for the two formats,

the following holds:

βFPA =
1

2
· βSPA. (1)

This relation is robust, in the sense that it holds under a variety of bid aggregation

and cost sharing rules, not only under the ones described in (II) and (III). I will remark

on this point later on; now, I turn to describing the equilibria that are characterized

when bid-aggregation and cost-sharing are as in (II)-(III).6

Under the second-price format, the equilibrium bid function, βSPA, is continuous

and piecewise linear, identically zero up until some cutoff, and then it becomes linearly

increasing with slope equal to n. The function has this form regardless of the MUMB

members’ type distribution—this distribution only affects the value of the cutoff. This

cutoff plays a key role in the analysis.

For n = 1 the cutoff is zero, hence the bid function is the identity function; that is,

the ordinary SPA’s weak dominance equilibrium is a special case of the current model’s

equilibrium. For n ≥ 2 the cutoff is positive, so there are types to both of its sides.

6To keep this Introduction at a reasonable length, I skip some of these equilibria’s properties;

these can be found in the subsequent sections.
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Types below the cutoff free ride, hoping that their partners will submit sufficiently

large bids, whereas types above the cutoff bid “aggressively”—their marginal bidding

propensity is n. The aggressive bidding of the high types overshadows the low types’

free riding, in the sense that the MUMB’s expected bid is greater than the expected

type (i.e., greater than the expected bid of a participant in the ordinary SPA).

The cutoff is increasing in n, which is intuitive: the more partners one has, the

greater is the incentive to free ride. Moreover, the cutoff converges to one as n→∞.

That is, in the limit, free riding assumes an extreme form, in which all types refrain

from participation. For a given n, the cutoff is sandwiched between two bounds, and

the lower bound is increasing in the type distribution’s expectation. This is intuitive

as well: if a MUMB member believes that each of his partners’ types is expected to

be large, then he also believes that they are likely to place high bids and therefore

there is a high probability that the auction will be won even if he does not contribute.

Despite the fact that free-riding is more of an issue as n gets large, both the MUMB’s

expected bid and its winning probability are increasing in n.

The second-price format facilitates the analysis because it makes it possible to

ignore the regular bidder, as truthful type-reporting is a weakly dominant strategy

for him. This, of course, is not true under a first-price format. In the first-price

model, I maintain the assumption that the regular bidder’s bid is uniform, but there

is no claim that this uniformity is optimal for the regular bidder. Thus, outside

competition is assumed to be given exogenously, and is not part of the equilibrium

analysis.7 Under this assumption, the first-price model has a unique equilibrium.

The equilibrium is symmetric, and its bid function, βFPA, satisfies (1). Therefore,

it is piecewise linear and identically zero up until a cutoff—the same cutoff from the

second-price model. Therefore, all the results concerning the cutoff continue to hold

under the first-price format.

7Thus, in the first-price model I make no assumptions on the regular bidder’s type distribution—

this distribution becomes irrelevant given the postulated (and not derived) behavior.
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Next, I turn to a general version of the model, where the bid aggregation and cost

sharing rules are general (i.e., not restricted to be the ones described in (II)-(III))

and where outside competition is distributed according to an arbitrary (differentiable)

distribution, not necessarily uniform. In this general set-up, and under either of the

auction formats, a symmetric equilibrium exists. Qualitatively, it is similar to the

equilibria that were characterized under assumptions (II)-(IV): the bid function is

identically zero on an interval of low types, and then it is positive-valued and strictly

increasing. Under some extra assumptions, the isomorphism between the auction

formats described in (1) continues to hold; specifically, it holds if outside competition

is uniform over a sufficiently large support, the cost-sharing rule is homogeneous of

degree 0, and the bid-aggregation rule is homogeneous of degree 1. However, in the

general set-up, equilibrium need no be unique.

I end the paper with an example for this non-uniqueness where, in addition to a

symmetric equilibrium, there exists an equilibrium in which only one MUMB member

participates in active bidding and everybody else free ride. I call this phenomenon

complete free riding. An equilibrium with complete free riding can be sustained only

if the MUMB members’ types are likely to be large, else the designated abstainers

will find it profitable to intervene by reporting positive bids. In particular, I show

that when the auction format is second-price, complete free riding is impossible if the

type distribution is first-order stochastically dominated by the uniform distribution.

The rest of the paper is organized as follows. Subsection 1.1 reviews the literature.

In Sections 2 and 3 I consider the second- and first-price models under assumptions

(II)-(IV). Section 4 considers the more general version of the models, and Section 5 is

dedicated to complete free riding. Section 6 concludes, and proofs that are omitted

from the main text appear in the appendix.
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1.1 Literature

At a general level, the paper is related to the literature about games that are played

by teams. This literature, however, is almost exclusively experimental.8 A recent

exception is Kim et al. (2021), where a theoretical model of team play is studied. In

that model, all team members enjoy the same payoff, and they only differ in their ex

ante estimate of this payoff. The members’ estimates are aggregated via an exogenous

rule, to produce the team’s action. Thus, there are two important differences with

respect to the present paper. First, in Kim et al. (2021) preferences are common,

whereas here values are private and independent. Second, in Kim et al. (2021) there

is no strategic interaction between team members, whereas here the inter-team inter-

action is what the paper is all about.9

From the existing literature, the model which is closest to the ones studied here

is that of private funding of public goods via a subscription game. In a subscription

game, agents simultaneously make contributions, the public good is provided if the

sum of contributions exceeds the good’s cost, and otherwise the contributions are

refunded.10 An important difference between this game and my setting is that in the

subscription game each agent pays his own contribution when the good is supplied,

so when the good is supplied the sum of payments equals the sum of contributions,

which may exceed the good’s cost.

From the subscription game literature, the work which is closest to the present

paper is by Barbieri and Malueg (2010), in which the public good’s cost is stochas-

8See, e.g., Charness and Sutter (2012) and Kugler et al. (2012). Experimental papers on team

bidding include Cox and Hayne (2006) and Sutter et al. (2009).
9In subsection 2.1 of their paper Kim et al. write: “Because it is a common value problem for

the team, there is an implicit assumption of sincere reporting.” A similar approach is taken in an

earlier paper by Duggan (2001), where groups of players aggregate their actions via social choice

rules, with no strategic issues involved in the aggregation.
10The term “subscription game” is due to Admati and Perry (1991), who studied a complete

information version of this game.
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tic. In their model, valuations are private and independent, and when player i with

valuation vi contributes x and all others follow the strategies {sj(·)}j 6=i, player i’s

expected utility is (vi − x)Pr(x+
∑

j 6=i sj(vj) ≥ c), where c is the stochastic produc-

tion cost. This expression can be re-written as (vi − x)Pr(
x+

∑
j 6=i sj(vj)

n
≥ c̄) where

c̄ ≡ c
n
. That is, the expression can be re-written such that the winning probability,

Pr(
x+

∑
j 6=i sj(vj)

n
≥ c̄), is analogous to the one derived from the the average bid ag-

gregation rule, and the random variable c̄ plays the role of the regular bidder’s bid.

However, cost sharing is substantially different from the one assumed in my setting.11

In the theoretical literature on auctions, the topic of team bidding is understudied.

The literature on collusion can be seen as somewhat relevant, to the extent that the

MUMB is viewed as a cartel. However, it is not a cartel in the ordinary sense of the

word. First, at the conceptual level, the MUMB is an organic unit, not a fictitious

construct the purpose of which is to advance the goals of its individual members. At

the operational level, collusion in one-shot auctions is typically based on transfers

between the colluding agents, which are required because the cartel allocates the won

item to one of its members, and the others need to be compensated for leaving the

auction empty-handed (see, e.g., McAfee and McMillan 1992).12 Here, by contrast,

transfers are not available, and the losers-compensation issue is irrelevant, because

when the MUMB wins the auction, all of its members win together. Another context

in which team members win together or lose together is that of group contests (see,

e.g., Kobayashi and Konishi 2021 and the references therein). There, however, the

focus is typically on moral hazard (members exert unobservable effort), and less on

adverse selection, which is the main focus in the auction setting.

11In Barbieri-Malueg, each person’s contribution (when the good is being supplied) is independent

of the others’ behavior; in my setting—under both SPA and FPA—the individual’s payment does

depend on the others’ behavior.
12In a repeated game, continuation play can substitute for money transfers; see, e.g., Athey and

Bagwell (2001), Skrzypacz and Hopenhayn (2004), and Rachmilevitch (2013).
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2 The second-price model

The model’s description was given in the previous section, in (I)-(IV), and for brevity

I will not repeat it. The valuation, or type, of each player (a MUMB member)

is distributed on [0, 1] according to the cumulative distribution function F , whose

density is f = F ′.13 Types are private and independent.14 The expected type is

E(θ) ≡
∫ 1

0
tf(t)dt. A (pure) strategy for player i is a bid function βi : [0, 1]→ R+. An

equilibrium means a profile of bid functions, (β1, · · · , βn), that forms a Bayes-Nash

equilibrium.

Theorem 1. Suppose that M ≥ 2n2. Then the second-price model has a unique

equilibrium. The equilibrium, (β1, · · · , βn), is symmetric: β1 = · · · = βn = βSPA.

The bid function βSPA is given by:

βSPA(θ) =

 0 if θ ≤ a

nθ − na otherwise,
(2)

where a is the unique solution to:

a =
n− 1

n+ 1
· (
∫ 1

a

tf(t)dt+ aF (a)). (3)

The bid function has this continuous piecewise linear form independent of the

MUMB’s members type distribution.15 Note that for n = 1 the corresponding cutoff

is a = 0, hence the above formulas generalize the dominant strategy equilibrium of

the ordinary SPA. Similarly to the ordinary SPA, the equilibrium is such that no

player pays more than his valuation. To see this, note that the maximum that the

MUMB may end up paying if it wins with the bid
∑
j β

SPA
j (θj)

n
is

∑
j β

SPA
j (θj)

n
, hence

player i’s payment is bounded by
βSPAi (θi)∑
j β

SPA
j (θj)

·
∑
j β

SPA
j (θj)

n
=

βSPAi (θi)

n
= max{0, θi− a}.

13In Section 5 I will assume that F is twice differentiable.
14They are also independent of the regular bidder’s type (which is uniform on [0,M ]). The regular

bidder reports his type truthfully.
15The distribution does influence, however, the value of the cutoff a, as seen in (3).
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The equilibrium shares similar features with the one obtained by Barbieri and

Malueg (2010) for their subscription game. Under the assumption of a uniformly dis-

tributed cost (which is analogous to a regular bidder with a uniform valuation), their

equilibrium contribution-function is continuous, and, like βSPA, its graph consists of

two linear segments: the first is flat at the level zero and the second is increasing.

However, whereas the slope of βSPA’s increasing part is n, that of the Barbieri-Malueg

function is independent of the number of players. Another point of similarity is that

the expected bid/expected contribution appear in the cutoff up to which the function

is flat. Finally, when n = 2 the cutoffs of the two models coincide: both equal 3−2
√

2

in this case.

In equilibrium, types below the cutoff a free ride—they refrain from bidding, hop-

ing that their partners’ types be sufficiently large, in which case the auction will be

won (with a high probability), but they will not be asked to contribute. Since the

cutoff a is associated with free riding in this way, one would expect it to depend

positively on n. The following result, which summarizes the relations between n and

the cutoff, shows that this is indeed the case; in its statement, an denotes the cutoff

corresponding to a MUMB of cardinality n.

Proposition 1. The cutoff an satisfies the following:

1. an is strictly increasing in n.

2. limn→∞an = 1.

3. (n−1
n+1

)E(θ) ≤ an ≤ n−1
n

for all n ≥ 1.

The intuition behind the lower bound in part 3 is that if a MUMB member

believes that his partners’ types are expected to be large, then he also believes that

they are likely to place high bids and therefore there is a high probability that the

auction will be won even if he does not contribute.16 For the same reason, one would

16Additionally, the lower bound is increasing in n, and the intuition for that is obvious.
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expect the cutoff to increase under first-order stochastic dominance. To establish this

monotonicity, the following result, which is of independent interest, will be useful.

Proposition 2. Let n = 2. In the second-price model, the equilibrium-expected-utility

of a MUMB member with type θ is:

π∗(θ) =

 2aθ
M

if θ ≤ a

1
M

[1
2
(θ2 − a2) + θa+ a2] otherwise.

(4)

Similarly to the role it plays in βSPA’s formula, the type distribution affects equi-

librium payoffs only through the cutoff a. For a = 0 the formula boils down to

π∗(θ) = θ2

2M
, which is the expected payoff of a participant in an ordinary 2-bidder

second-price auction, whose type is θ and whose opponent’s type is distributed uni-

formly over [0,M ]. Namely, when one plugs the n = 1-cutoff in the n = 2-formula,

the n = 1-payoff obtains.17

Based on Proposition 2, the following result can now be proved.

Proposition 3. Let n = 2 and consider two copies of the second-price model—

one with the type distribution F and one with G, where F first-order stochastically

dominates G. Let az be the cutoff corresponding to z ∈ {F,G}. Then aF ≥ aG.

Proof. Assume by contradiction that aF < aG. Let πz the expected-utility function

under z ∈ {F,G}. Consider θ < aF . By Proposition 2, πF (θ) < πG(θ). Therefore,

the winning probability under F is smaller than the corresponding probability under

G. By the shape of the bid function βSPA, the win-probability under F is:

∫ 1

aF
(t− aF )f(t)dt =

∫ 1

aF
tf(t)dt− aF (1− aF ).

Applying integration by parts to the RHS’s first terms yields that the probability

is 1 − aFF (aF ) −
∫
aF
F (t)dt − aF (1 − F (aF )) = 1 − aF −

∫
aF
F (t)dt. Therefore

1− aF −
∫
aF
F (t)dt < 1− aG −

∫
aG
G(t)dt, hence:

17Note, however, that when n = 2 the cutoff cannot be zero, by part 3 of Proposition 1.
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aG − aF <
∫
aF
F (t)dt−

∫
aG
G(t)dt ≤

∫
aF
G(t)dt−

∫
aG
G(t)dt ≤

∫ aG

aF
G(t)dt,

a contradiction.

Under a strengthening of first-order stochastic dominance, a similar conclusion

obtains for n ≥ 3. This is the content of the following result, in the statement of

which a(F, n) denotes the cutoff when the type distribution is F and the MUMB’s

cardinality is n.

Proposition 4. Let n ≥ 3 and suppose that:

1. F first-order stochastically dominates G;

2.
∫ 1
n−1
n
F (t)dt <

∫ 1
n−1
n
G(t)dt; and

3. a(F, 2) > a(G, 2).

Then a(F, n) > a(G, n).

Types above the cutoff bid aggressively—their marginal bidding propensity is n.

The reason for this behavior is twofold: first, because the bid aggregation rule splits

the individual reports by n; and second, in order to compensate for the possible

presence of free riding partners. It turns out that the high-types effect dominates

the low types’ free-riding, and it becomes more and more pronounced as n increases.

This is the content of the following result, in the statement of which βSPAn denotes

the equilibrium bid function corresponding to a MUMB of cardinality n.

Proposition 5. E(βSPAn ) is strictly increasing in n.18

Note that, a priori, it is not obvious why n should have the aforementioned effect.

On the one hand, bidding becomes cheaper as n increases (increasing an individual

report by ∆ impacts the collective bid only by ∆
n

), but on the other hand the greater

number of partners increases the incentives to abstain.

18Since E(βSPA
1 ) = E(θ), the result implies that E(βSPA

n ) > E(θ) for all n ≥ 2.
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Proof. By (2), E(βSPAn (θ)) = n
∫ 1

a
tf(t)dt− na(1− F (a)), and by (3) this expression

is equal to 2na
n−1

. By (3):

a =
n− 1

n+ 1
(

∫ 1

a

tf(t)dt+ aF (a)),

hence:

2na

n− 1
=

2n

n+ 1
(

∫ 1

a

tf(t)dt+ aF (a)) =
2n

n+ 1
(1−

∫ 1

a

F (t)dt).

The result follows from the fact that the term in the parentheses is increasing in

a.

A related property is that the MUMB’s winning probability increases in n.

Proposition 6. The probability that the MUMB wins the auction is 2na
(n−1)M

.

Proof. With u denoting the random variable which is distributed uniformly over

[0,M ], the above probability is:

Pr(u ≤ 1

n

n∑
i=1

βSPA(θi)) =

∫ M

0

Pr(u ≤ b) · Pr( 1

n

n∑
i=1

βSPA(θi) = b)db =

=
1

M

∫ M

0

bPr(
1

n

n∑
i=1

βSPA(θi) = b)db =

=
1

M
E(

1

n

n∑
i=1

βSPA(θi)) =
E(βSPA(θ))

M
=

2na

(n− 1)M
.

Estimating the degree of inefficiency caused by collective bidding is a natural issue

to address. The above probability can shed light, if only as a rough proxy, on how

severe the issue can be. Specifically, consider the case where n = M = 2 and F is

uniform. Then, under an efficient allocation, the probability that the MUMB wins

the item is 1
2
; according to Proposition 6, the probability that it obtains the item is

2a, which, is this case, is about 1
3
.
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2.1 The role of outside competition

The requirement that M be sufficiently large is imposed in order to guarantee that

each bid-increase by a MUMB member increases the probability of winning, no matter

the partners’ types. When that is not the case, the objective faced by a MUMB

member changes significantly relative to the large-M case. To illustrate, consider

n = 2 and suppose that M > 0 is small enough, so that if player 1 reports x and

θ2 exceeds some value—call this value θ(x)—the MUMB wins for sure. Then, the

objective faced by type θ1 of player 1, given that player 2 follows some monotonic

reporting function β̃, is to maximize the following expression over x ≥ 0:

1

M

∫ θ(x)

0

x+ β̃(t)

2
·(θ1−

x

x+ β̃(t)
· x+ β̃(t)

4
)f(t)dt+

∫ 1

θ(x)

[θ1−
xM

2(x+ β̃(t))
]f(t)dt. (5)

The first-order condition associated with this objective is a differential equation

that depends on F non-trivially, and for which I have no closed-form solution. Similar

to the equilibrium bid function β, the function β̃ is identically zero on an interval

that starts at the origin and ends at some cutoff, but to the right of this cutoff β̃

is non-linear. The function β stems from a more tractable optimization because the

largeness of M implies that θ(x) ≥ 1 for every x a player may report in equilibrium,

hence the second term in (5) disappears.

The requirement M ≥ 2n2 is a sufficient to guarantee that, no matter how the

equilibrium looks like, it necessarily has the property that any bid-increase by a

MUMB member increases the winning probability. Thus, M ≥ 2n2 is sufficient for

equilibrium uniqueness. However, for the equilibrium from Theorem 1 to exit, a

smaller bound on M can be assumed. Specifically, for this equilibrium to exist it

is sufficient and necessary that M ≥ n(1 − a), where a is given by (3). This is

because a sufficient and necessary condition for the existence of this equilibrium is

that β(1) ≤M , and β(1) = n(1− a).
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3 The first-price model

Consider now the first-price model. For this model, I assume that the regular bidder

submits a uniform bid over [0,M ]; that is, the regular bidder is not considered to

be an optimizing agent, but is merely taken as representing some exogenously given

outside competition.

Theorem 2. Suppose that M ≥ n2. Then, the first-price model has a unique equilib-

rium. The equilibrium, (β1, · · · , βn), is symmetric: β1 = · · · = βn = βFPA. The bid

function βFPA is equal to 1
2
· βSPA, where βSPA is the equilibrium bid function of the

second-price model. That is, βFPA is given by:

βFPA(θ) =

 0 if θ ≤ a

n
2
θ − n

2
a otherwise,

where a is the unique solution to (3).

Since the cutoff is the same under both formats, the results concerning the cutoff—

Propositions 1, 3, and 4—continue to hold under the first-price format. Since βFPA =

1
2
· β, a counterpart of Proposition 5 continues to hold as well. Payoffs, however, are

not the same.19

Theorems 1 and 2 do not extend to general formats; in particular, it is not true

that given any standard auction format, the MUMB bid function is piecewise linear

with a graph that consists of two segments. For example, it is easy to check that

under the all-pay format, if outside competition is given by a uniform bid then each

MUMB member’s best-response is to bid zero.

19Conditional on winning when the MUMB members’ valuations are (θ1, · · · , θn) the expected

payment is the same under either format, but the winning probability is smaller under SPA.
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4 Generalizations

The main limitation of the analysis in the two previous sections, is that it requires

very specific assumptions in order to be applicable. I now set to relax them.

Let the general first- (second-) price model denote the model from Sec. 2/3,

except that s and A are not confined to (II)-(III) and outside competition is not

necessarily uniform; instead, the following more permissive assumptions are made.

Outside competition is a stochastic bid on [0,M ], distributed according to H. Each

si is strictly increasing in i’s report, A is weakly increasing in each individual report,

and A(b′1, · · · , b′n) > A(b1, · · · , bn) when (b′1, · · · , b′n) > (b1, · · · , bn). Also, s and A are

symmetric and differentiable a.e., and for each number r > 0 there exists a report

such that when a MUMB member sends it, the collective bid is at least r. Finally,

taking M > A(r̄, · · · , r̄) for a large enough r̄ implies that under any profile of reports

that the MUMB members may report in equilibrium, their probability of winning is

smaller than one.

The following results show that a symmetric equilibrium exists, and, qualitatively,

it is similar the ones characterized in the previous sections.

Theorem 3. In the general second-price model, a symmetric equilibrium exists. The

equilibrium bid function, β, is identically zero on an interval of the form [0, a) and

strictly increasing on (a, 1], for some a > 0.

Theorem 4. In the general first-price model, a symmetric equilibrium exists. The

equilibrium bid function, β, is identically zero on an interval of the form [0, a) and

strictly increasing on (a, 1], for some a > 0.

None of these results makes a claim for uniqueness, let alone characterization.

However, under some additional conditions, a further result obtains: the symmetric

equilibria of the two models are isomorphic, in the sense of (1).

Theorem 5. Suppose that s is homogeneous of degree 0 and A is homogeneous of

degree 1. Then, there exists an M∗ such that if M ≥M∗ and outside competition is a

16



uniform bid over [0,M ], then β is a symmetric equilibrium bid function in the general

second-price model if and only if 1
2
· β is such a function in the general first-price

model.

The class of team-mechanisms to which Theorem 5 applies includes a variety of

economically-plausible ones. For example, it covers the cases where A(b1, · · · , bn) =

c
∑n

i=1 bi for any c > 0, and A(b1, · · · , bn) = λmin(b1, · · · , bn)+(1−λ)max(b1, · · · , bn)

for any λ ∈ [0, 1]. As for cost-sharing, the rule si(b1, · · · , bn) =
bρi∑n
j=1 b

ρ
j

is 0-homogeneous

for any ρ.

5 Complete free riding

The following result shows that under the conditions of Theorem 5, the equilibrium

need not be unique.20

Proposition 7. Suppose that:

1. The auction format is second-price;

2. 3f(x) ≤ 2F (x) + 2xf(x) + xf ′(x);

3. E(θ) ≥ 3
4
;

4. Cost sharing is proportional, namely as in (III).

5. The bid aggregation rule A is the maximum rule: A(b1, · · · , bn) = max{b1, · · · , bn}.

Then there exists, in addition to a symmetric equilibrium, an equilibrium in which

one MUMB member reports his type truthfully and every other member reports zero

independent of his type.

20The result is for the second-price model, but it can be adapted to the first-price format as well.
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Requirements 2 and 3 mean that the type distribution is sufficiently convex. For

example, these requirements are satisfied by F (t) = tα for α ≥ 4. Under sufficient

convexity, the designated bidder’s type, and therefore his bid, is likely to be large,

which sustains the others’ incentives to abstain. Additionally, if a free rider contem-

plates a deviation, then he faces the following concern: if the deviated-to report is

lower than the designated bidder’s report, then it will not change the allocation, but

make the deviator pay a positive amount instead of zero.

Call an equilibrium as above—one in which everybody, with the exception of a

single individual, abstains—an equilibrium with complete free riding. As just noted,

complete free riding depends on the MUMB members’ beliefs: a free rider has to

believe that the designated bidder is likely to have a large enough type in order in-

centive him (the free rider) to keep quite and send a zero report. Therefore, if types

are, stochastically, low, complete free riding cannot occur. This is formalized in the

following result, which applies to a general class of bid aggregation and cost shar-

ing rules, and holds for multiple forms of outside competition and for any n. The

auction-format, however, is required to be second-price.21

Proposition 8. Assume the general second-price model. Suppose that the regular

bidder’s type is distributed according to the differentiable distribution H, defined on

[0,M ] for some M ≥ 1. Then, if F is first-order stochastically dominated by the uni-

form distribution, then there does not exist an equilibrium with complete free riding.

21The proof’s main argument shows that if a complete-free-riding-profile is considered as a putative

equilibrium, then a player who is supposed to abstain but has a large enough type finds the following

deviation profitable: it is profitable for him to send an arbitrarily large report r, given which the

regular bidder will lose for sure. Under the second-price format, the price payed upon a deviation

is the regular bidder’s expected type, but in the first-price case the price can be arbitrarily high,

which renders the deviation non-profitable.
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6 Conclusion

I end the paper with two comments. First, I have focused on a single team (MUMB).

Studying interactions among multiple MUMBs is a line for future investigation. In a

model with multiple MUMBs but no regular bidders, the MUMB bid functions would

not look like the ones derived in the present paper; in particular, segments of types

who bid zero would be impossible in equilibrium. To see this, consider a model with

two MUMBs, each with at least two members, and no regular bidders. It is impossible

that within each MUMB all members follow a bid function which is zero on a segment

of low types, because then every low enough type would have an incentive to deviate

to a positive bid: such a deviation would cause a jump in the winning probability,

but only a negligible increase in the expected payment.22

Second, there is the mechanism design question: given a type distribution F and

a number of MUMB members n, what mechanism maximizes the expected sum of the

members’ payoffs? This is a challenging question, different from typical mechanism

design questions. In a typical mechanism design set-up, the designer needs to select an

allocation rule and a payment rule, subject to incentive and participation constraints.

The allocation and payments are separate from one another. Here, by contrast,

they are not. To see this, consider the rule that gives the item to the MUMB with

certainty. Clearly, it cannot be implemented with zero payments, because of outside

competition. The presence of the regular bidder creates a feasibility constraint that

links payoffs to allocation, in a way that has no counterpart in the classical mechanism

design set-up.

22In the two-MUMB case, there does not exist an equilibrium in which in one MUMB the bid

function has the piecewise linear form studied here while the members of the other MUMB follow a

continuous, strictly increasing function. This result appears in an earlier draft of the paper.
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Appendix

Proof of Proposition 1 :

1. Equation (3) can be written as G ≡
∫ 1

a
tf(t)dt − a − ( 2a

n−1
) + aF (a) = 0.

Let us view n as a continuous, rather than discrete, variable. By the implicit func-

tion theorem, he sign of the derivative ∂a
∂n

is the same as that of −[∂G
∂n

]/[∂G
∂a

]. Since

∂G
∂n

= −2a( 1
n−1

)′ > 0 and ∂G
∂a

= −1− 2
n−1

+ F (a) < 0, the result follows.

2. Let a∗ ≡ limn→∞an. Equation (3) implies a∗(1 − F (a∗)) =
∫ 1

a∗
tf(t)dt, or

a∗ = E(θ : θ ≥ a∗). Therefore a∗ = 1.

3. This is clear for n = 1, so suppose n ≥ 2.

Lower bound: It follows from (3) that:

a · (n+ 1

n− 1
) =

∫ 1

a

tf(t)dt+ aF (a) =

=

∫ 1

a

tf(t)dt+ a

∫ a

0

f(t)dt >

∫ 1

a

tf(t)dt+

∫ a

0

tf(t)dt = E.

Upper bound: Since (3) has a unique solution23, and since at a = 0 the RHS of (3)

exceeds the LHS, it is enough to show that at a = n−1
n

the reserve inequality holds.

This inequality is equivalent to 1
n
> 1

n+1
· (
∫ 1

a
tf(t)dt + aF (a)), which holds because∫ 1

a
tf(t)dt+ aF (a) < 1.

Proof of Proposition 3 : Note that equation (3) can be written as a = n−1
n+1
· (1 −∫ 1

a
F (t)dt), hence:

a(F, n)− a(G, n) =
n− 1

n+ 1
· (
∫ 1

a(G,n)

G(t)dt−
∫ 1

a(F,n)

F (t)dt). (6)

At n = 2 the LHS is positive, by assumption. Therefore, if a(F, n) ≥ a(G, n) then

23The uniqueness proof appears in Lemma 3’s proof, in the appendix.
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there exists an n∗ ∈ [2, n] such that a(F, n∗) = a(G, n∗). Plugging n∗ into (6) makes

the LHS zero but the RHS positive—a contradiction.

Lemma 1. Let (β1, · · · , βn) be an equilibrium. Then each βi is weakly increasing.

Proof. Let p (resp. p′) and t (resp. t′) be the wining probability and expected

payment of types θi (resp. θ′i) when they send their equilibrium bids, where θi > θ′i.

If bi(θ
′
i) > bi(θi), then p′ > p and t′ > t. Incentive compatibility implies:

pθi − t ≥ p′θi − t′,

and

p′θ′i − t′ ≥ pθ′i − t.

Rearranging these inequalities yields t′ − t ≥ θi(p
′ − p) and t − t′ ≥ θ′i(p − p′).

Summing the rearranged inequalities yields 0 ≥ (p′−p)·(θi−θ′i) > 0—a contradiction.

Lemma 2. Suppose that M ≥ 2n2. If (β1, · · · , βn) is an equilibrium, then
∑n
i=1 βi(θi)

n
≤

M for all (θ1, · · · , θn).

In words, Lemma 2 says that any bid-increase by a MUMB member increases the

probability that the MUMB will win the auction.

Proof. By Lemma 1, it suffices to prove that βi(1) ≤ M . Assume by contradiction

that there exists an i such that βi(1) > M . Therefore, when type θi = 1 submits his

equilibrium report, the resulting bid of the MUMB is at least M
n

, which means that:

(i) if the MUMB wins, the expected price (conditional on winning) is at least M
2n

, and

(ii) the share of the price for which i is responsible is at least 1
n
. Thus, the price that

i pays conditional on winning is at least M
2n2 ≥ 1, which is impossible.

Lemma 3. Suppose that M ≥ 2n2. If (β1, · · · , βn) is an equilibrium, then β1 = · · · =

βn = β, where β satisfies (2)− (3).
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Proof. Let (β1, · · · , βn) be an equilibrium. Let I be the set of players who follow

a non-null bidding strategy. That is, I ≡ {i : βi(θi) > 0 for some θi}. Obviously,

I 6= ∅. By Lemma 2, for each i ∈ I the function βi is positive-valued on (ai, 1], where

ai ≡ inf{θi : βi(θi) > 0}.

I argue that |I| > 1. To see this, assume by contradiction that I is a singleton, and,

w.l.o.g, that 1 /∈ I. When type θ1 reports r, his payoff, conditional on (θ2, · · · , θn) =

(t2, · · · , tn), is24:

1

M
·
r +

∑
i∈I,i 6=1 βi(ti)

n
· (θ1 −

r

r +
∑

i∈I,i 6=1 βi(ti)
·
r +

∑
i∈I,i 6=1 βi(ti)

2n
) =

=
1

M
· [(
r +

∑
i∈I,i 6=1 βi(ti)

n
)θ1 −

r2

2n2
−
r
∑

i 6=1 βi(ti)

2n2
].

Clearly, the objective is independent of M , so to ease the notation I assume, in

what follows, that M = 1. Therefore, when type θ1 reports r, his expected payoff is:

(
r +

∑
i∈I,i 6=1 E(βi)

n
)θ1 −

r2

2n2
−
r
∑

i∈I,i 6=1 E(βi)

2n2
. (7)

The derivative of this expression w.r.t r is:

θ1

n
− r

n2
−

∑
i∈I,i 6=1 E(βi)

2n2
. (8)

If I = {j∗} for some j∗ 6= 1, then this j∗ plays an ordinary second-price auction

against the regular bidder, and therefore sends the report nθj∗ ; therefore,
∑

i∈I,i 6=1 E(βi) =

E(βj∗) = nE. Therefore, at θ1 = 1 and r = 0 the above derivative is equal to

1
n
− E

2n
> 0, which implies that 1’s bidding function is non-optimal for all large

enough types of player 1. Therefore, |I| > 0.

Suppose that 1 ∈ I. For θ1 > a1, the first-order condition is:

θ1

n
− r

n2
−

∑
i∈I,i 6=1 E(βi)

2n2
= 0.

24This payoff formula applies regardless of the cardinality of I.
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The condition is satisfied at r = β1(θ1), hence:

β1(θ1) = nθ1 −
1

2
·
∑

i∈I,i 6=1

E(βi). (9)

The analogous formula holds for any other i ∈ I. Therefore, the following holds

for each i ∈ I:

βi(θi) =

 0 if θi < ai

nθ1 − 1
2
·
∑

j∈I,j 6=i E(βj) if θ1 > a1

Consider type ai. This type is indifferent between bidding zero and bidding βi(ai).

This type’s expected payoff from bidding zero is ai times the probability of winning:

ai · (
∑
j∈I,j 6=i E(βj)

n
). The expected utility from bidding βi(ai) is

βi(ai)+
∑
j∈I,j 6=i E(βj)

n
· (ai−

βi(ai)
2n

). The indifference condition is:

ai · (
∑

j∈I,j 6=i E(βj)

n
) =

βi(ai) +
∑

j∈I,j 6=i E(βj)

n
· (ai −

βi(ai)

2n
),

or:

βi(ai) · (ai −
βi(ai)

2n
) = (

∑
j∈I,j 6=i E(βj)

2n
) · βi(ai).

I argue that βi(ai) = 0. To see this, note that if βi(ai) > 0 then the above equation

implies ai− βi(ai)
2n

=
∑
j∈I,j 6=i E(βj)

2n
, which implies βi(ai) = 2βi(ai), and therefore βi(ai) =

0.

It therefore follows that the following holds for all i ∈ I:

βi(θi) =

 0 if θi < ai

nθi − nai if θi ≥ ai,

where nai = 1
2
·
∑

j∈I,j 6=i E(βj).

Note that E(βi) =
∫ 1

ai
(nt− nai)f(t)dt = n

∫ 1

ai
tf(t)dt− nai(1− F (ai)); therefore:
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∑
j∈I,j 6=1

E(βj) = n
∑

j∈I,j 6=1

{
∫ 1

ai

tf(t)dt− ai(1− F (ai))} = 2na1,

or:

∑
j∈I,j 6=1

{
∫ 1

ai

tf(t)dt− ai(1− F (ai))} = 2a1.

Since |I| > 1, assume, w.l.o.g, that 2 ∈ I. Then:

∑
j∈I,j 6=2

{
∫ 1

ai

tf(t)dt− ai(1− F (ai))} = 2a2.

I argue that a1 = a2. To see this, assume by contradiction, w.l.o.g, that a1 > a2.

Therefore, the above equations imply:

∫ a1

a2

tf(t)dt− a2(1− F (a2)) + a1(1− F (a1)) = 2(a1 − a2).

At a1 = a2 both sides are equal to zero; the derivative of the LHS w.r.t. a1 is

1 − F (a1) ≤ 1 and that of the RHS is 2, hence a1 = a2 is the unique solution, in

contradiction to a1 > a2. It follows that there exists an a such that ai = a for all

i ∈ I, and therefore all bid functions coincide; the equilibrium bid function, β, is

given by:

β(θ) =

 0 if θ < a

nθ − na if θ ≥ a,

where a = n−1
2n
· E(β), or E(β) = 2na

n−1
. This condition can be written as:

E(β) =

∫ 1

a

(nt− na)f(t)dt = n

∫ 1

a

tf(t)dt− na(1− F (a)) =
2na

n− 1
,

or:

∫ 1

a

tf(t)dt = a · (n+ 1

n− 1
)− aF (a).

24



Note that a = 0 the LHS exceeds the RHS, and at a = 1 the converse holds;

therefore, a solution, a, exists. To see that it is unique, assume by contradiction that

there exists a b 6= a such that:

∫ 1

b

tf(t)dt = b · (n+ 1

n− 1
)− bF (b).

Suppose, w.l.o.g, that b > a. The above equations imply
∫ b
a
tf(t)dt = (a − b) ·

(n+1
n−1

) − aF (a) + bF (b). At b = a both sides are equal to zero, the derivative of the

LHS w.r.t b is bf(b) and that of the RHS is −(n+1
n−1

) +F (b) + bf(b) < bf(b), hence the

solution is unique.

Finally, it remains to show that |I| = n. To see this, assume by contradiction that

|I| = k < n and let i be such that i /∈ I. For θi = 1 and r = 0, the (counterpart of

the) derivative (8) is 1
n
− kE(β)

2n2 > 1
n
− E(β)

2n
. Since E(β) = 2na

n−1
, the RHS of the last

inequality is equal to 1
n
− a

n−1
. Thus, to complete the proof it is enough to show that

a < n−1
n

. This is indeed the case, because of Proposition 1.

Proof of Theorem 1: By Lemma 3, if (β1, · · · , βn) is an equilibrium, then βi = β

for all i and (2) − (3) hold. Conversely, consider β such that (2) − (3) hold. The

arguments from Lemma 1’s proof establish that this is an equilibrium; for types θ > x

the FOC is satisfied at r = β(θ) and for types θ < x not participating is optimal,

because the derivative of their objective function w.r.t. r is negative.

Proof of Proposition 2: Consider first θ ≤ a. The probability that he wins the auction

is 1
M

∫ 1

a
(t − a)dt = 1

M
[
∫ 1

a
tf(t) − a(1 − F (a))] = 1

M
[3a − aF (a) − a + aF (a)] = 2a

M
.

Consider now θ > a. His expected utility is:

F (a)

2M
(θ2 − a2) +

∫ 1

a

[(
2θ + 2t− 4a

2M
)(θ − 2θ + 2t− 4a

4
· 2θ − 2a

2θ + 2t− 4a
)]f(t)dt.

Simplifying this expression yields 1
M

[1
2
(θ2 − a2) + θa+ a2].
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Proof of Theorem 2: Verifying that the aforementioned profile is an equilibrium is

easy, so I only prove uniqueness. Suppose that (βFPA1 , · · · , βFPAn ) is an equilibrium.

Let I be the set of players who follow a non-null bidding strategy. For each i ∈ I the

function βFPAi is positive-valued on (ai, 1], where ai ≡ inf{θi : βFPAi (θi) > 0}.

I argue that |I| > 1. To see this, assume by contradiction that I is a singleton, and,

w.l.o.g, that 1 /∈ I. When type θ1 reports r, his payoff, conditional on (θ2, · · · , θn) =

(t2, · · · , tn), is25:

1

M
·
r +

∑
i∈I,i 6=1 β

FPA
i (ti)

n
· (θ1 −

r

r +
∑

i∈I,i 6=1 β
FPA
i (ti)

·
r +

∑
i∈I,i 6=1 β

FPA
i (ti)

n
) =

=
1

M
· [(
r +

∑
i∈I,i 6=1 β

FPA
i (ti)

n
)θ1 −

r2

n2
−
r
∑

i 6=1 β
FPA
i (ti)

n2
].

Clearly, the objective is independent of M , so to ease the notation I assume, in

what follows, that M = 1. Therefore, when type θ1 reports r, his expected payoff is:

(
r +

∑
i∈I,i 6=1 E(βFPAi )

n
)θ1 −

r2

n2
−
r
∑

i∈I,i 6=1 E(βFPAi )

n2
. (10)

The derivative of this expression w.r.t r is:

θ1

n
− 2r

n2
−

∑
i∈I,i 6=1 E(βFPAi )

n2
. (11)

If I = {j∗} for some j∗ 6= 1, then this j∗ plays an ordinary first-price auction

against the uniformly-distributed regular bidder, and therefore sends the report n
2
θj∗ ;

therefore,
∑

i∈I,i 6=1 E(βFPAi ) = E(βFPAj∗ ) = n
2
E. Therefore, at θ1 = 1 and r = 0 the

above derivative is equal to 1
n
− E

2n
> 0, which implies that 1’s bidding function is

non-optimal for all large enough types of player 1. Therefore, |I| > 0.

Suppose that 1 ∈ I. For θ1 > a1, the first-order condition is:

25The assumption M ≥ n2 implies an analog of Lemma 2, hence the payoff formula applies. Note

that the formula applies regardless of the cardinality of I.
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θ1

n
− 2r

n2
−

∑
i∈I,i 6=1 E(βFPAi )

n2
= 0.

The condition is satisfied at r = βFPA1 (θ1), hence:

βFPA1 (θ1) =
n

2
θ1 −

1

2
·
∑

i∈I,i 6=1

E(βFPAi ). (12)

The analogous formula holds for any other i ∈ I. Therefore, the following holds

for each i ∈ I:

βFPAi (θi) =

 0 if θi < ai

n
2
θ1 − 1

2
·
∑

j∈I,j 6=i E(βFPAi ) if θ1 > a1

Consider type ai. This type is indifferent between bidding zero and bidding

βFPAi (ai). This type’s expected payoff from bidding zero is ai times the probabil-

ity of winning: ai · (
∑
j∈I,j 6=i E(βFPAi )

n
). The expected utility from bidding βFPAi (ai) is

βFPAi (ai)+
∑
j∈I,j 6=i E(βj)

n
· (ai − βFPAi (ai)

n
). The indifference condition is:

ai · (
∑

j∈I,j 6=i E(βFPAi )

n
) =

βFPAi (ai) +
∑

j∈I,j 6=i E(βFPAi )

n
· (ai −

βFPAi (ai)

n
),

or:

βFPAi (ai) · (ai −
βFPAi (ai)

n
) = (

∑
j∈I,j 6=i E(βFPAj )

n
) · βFPAi (ai).

I argue that βFPAi (ai) = 0. To see this, note that if βFPAi (ai) > 0 then the above

equation implies ai− βFPAi (ai)

n
=

∑
j∈I,j 6=i E(βFPAj )

n
, which implies βFPAi (ai) = 2βFPAi (ai),

and therefore βFPAi (ai) = 0.

It therefore follows that the following holds for all i ∈ I:

βFPAi (θi) =

 0 if θi < ai

n
2
θi − n

2
ai if θi ≥ ai,
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where n
2
ai = 1

2
·
∑

j∈I,j 6=i E(βFPAj ).

Note that E(βFPAi ) = 1
2

∫ 1

ai
(nt− nai)f(t)dt = n

2

∫ 1

ai
tf(t)dt− n

2
ai(1− F (ai)).

Therefore:

∑
j∈I,j 6=1

E(βFPAj ) =
n

2

∑
j∈I,j 6=1

{
∫ 1

ai

tf(t)dt− ai(1− F (ai))} = na1,

or:

∑
j∈I,j 6=1

{
∫ 1

ai

tf(t)dt− ai(1− F (ai))} = 2a1.

Since |I| > 1, assume, w.l.o.g, that 2 ∈ I. Then:

∑
j∈I,j 6=2

{
∫ 1

ai

tf(t)dt− ai(1− F (ai))} = 2a2.

By the same argument given in the proof of Theorem 1, a1 = · · · = an. Therefore,

the equilibrium bid function, βFPA, is given by:

β(θ) =

 0 if θ < a

n
2
θ − n

2
a if θ ≥ a,

where a = n−1
n
· E(βFPA), or E(βFPA) = na

n−1
. This condition can be written as:

E(βFPA) =
1

2

∫ 1

a

(nt− na)f(t)dt =
n

2

∫ 1

a

tf(t)dt− n

2
a(1− F (a)) =

na

n− 1
,

or:

∫ 1

a

tf(t)dt = a · (n+ 1

n− 1
)− aF (a).

By Theorem 1, this equation has a unique solution—the cutoff from the second-

price model. By the argument from Theorem 1’s proof it also follows that |I| = n.
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I now turn to proving Theorems 3 and 4. In either one, existence of a symmetric

equilibrium follows from Reny (2011), and the fact that the equilibrium bid function

is weakly increasing follows from standard arguments (see Lemma 1); it remains to

show that, under either auction format, low enough types bid zero.

Proof of Theorem 3: Assume the general second-price model. Let β be the symmetric

equilibrium bid function, and suppose that all j 6= i follow this function. When player

i with type θ sends the report r, his expected utility is:

∫
{H(A(r, β−i(t−i)))θ − si(r, β−i(t−i)

∫ A(r,β−i(t−i))

0

th(t)dt}f−i(t−i)dt−i.

The derivative of this expression w.r.t r is:

∫
{h(A(r, β−i(t−i)))·A1(r, β−i(t−i))·θ−

∂

∂r
[si(r, β−i(t−i)

∫ A(r,β−i(t−i))

0

th(t)dt]}f−i(t−i)dt−i.

At θ = 0 this derivative is −
∫
{ ∂
∂r

[si(r, β−i(t−i)
∫ A(r,β−i(t−i))

0
th(t)dt]}f−i(t−i)dt−i <

0.

Proof of Theorem 4: The arguments are identical to those give in the proof of The-

orem 3, except that that are applied to the expected utility
∫
{H(A(r, β−i(t−i)))θ −

si(r, β−i(t−i)A(r, β−i(t−i))}f−i(t−i)dt−i

Proof of Theorem 5: Make the theorem’s assumptions and let β be the bid function

of a symmetric equilibrium in the second-price model. Assume by contradiction that

1
2
· β is not a symmetric equilibrium function in the first-price model. Then there

exists a player i, a type θ and a bids x such that:
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∫
A(x,

1

2
β−i(t−i)) · [θ − si(x,

1

2
β−i(t−i)) · A(x,

1

2
β−i(t−i))]f−i(t−i)dt−i >

>

∫
A(

1

2
β(θ),

1

2
β−i(t−i))·[θ−si(

1

2
β(θ),

1

2
β−i(t−i))·A(

1

2
β(θ),

1

2
β−i(t−i))]f−i(t−i)dt−i =

=
1

2

∫
A(β(θ), β−i(t−i)) · [θ − si(β(θ), β−i(t−i)) ·

A(β(θ), β−i(t−i))

2
]f−i(t−i)dt−i ≥

≥ 1

2

∫
A(2x, β−i(t−i)) · [θ − si(2x, β−i(t−i)) ·

A(2x, β−i(t−i))

2
]f−i(t−i)dt−i =

=

∫
A(x,

1

2
β−i(t−i)) · [θ − si(x,

1

2
β−i(t−i)) · A(x,

1

2
β−i(t−i))]f−i(t−i)dt−i,

26

which is a contradiction. The analogous considerations establish the implication

in the other direction.

Proof of Proposition 7: W.l.o.g suppose that n = 2.27 Let player 2 be the active

member who bids θ2, as he would have done in an ordinary IPV second-price auction.

I will show that, given this behavior of player 2, it is optimal for player 1 to refrain

from bidding, no matter his type.

To see this, consider the case where player 1 sends the report x. Conditional on a

particular value of θ2 that satisfies θ2 < x, player 1’s expected utility is x
M

(θ1− x
2
· x
x+θ2

);

given a particular θ2 that satisfies θ2 > x, the utility is θ2
M

(θ1 − θ2
2
· x
x+θ2

). Therefore,

player 1’s expected utility from reporting x is:

1

M

∫ x

0

x(θ1 −
x

2
· x

x+ θ2

)f(θ2)dθ2 +
1

M

∫ 1

x

θ2(θ1 −
θ2

2
· x

x+ θ2

)f(θ2)dθ2.

I will show that the maximal type, θ1 = 1, finds it optimal to refrain from bidding.

That is, the following holds for all x > 0.

Consider first x ≤ 1. Here, the following needs to be proved:

27This assumptions is w.l.o.g because of the bid aggregation rule and the cost sharing rule, both of

which are insensitive to the number of players; in other words, sustaining the profile as equilibrium

for n = 2 implies sustainability for any n.
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1

M

∫ x

0

x(1− x

2
· x

x+ θ2

)f(θ2)dθ2 +
1

M

∫ 1

x

θ2(1− θ2

2
· x

x+ θ2

)f(θ2)dθ2 ≤
E

M
.

Thus, in this case it is enough to show that:

∫ x

0

x(1− x

2
· x

x+ θ2

)f(θ2)dθ2 +

∫ 1

x

θ2f(θ2)dθ2 ≤
∫ 1

0

θ2f(θ2)dθ2,

or:

∫ x

0

x(1− x

2
· x

x+ θ2

)f(θ2)dθ2 ≤
∫ x

0

θ2f(θ2)dθ2.

The above is implied by the following (θ2 is the denominator is replaced by x):

∫ x

0

x(1− x

4
)f(θ2)dθ2 ≤

∫ x

0

θ2f(θ2)dθ2.

This inequality holds as equality at x = 0, hence it is enough to show that the

derivative of its RHS w.r.t x is greater than the one of the LHS:

∫ x

0

(1− x

2
)f(θ2)dθ2 + x(1− x

4
)f(x) ≤ xf(x),

or:

4

∫ x

0

(1− x

2
)f(θ2)dθ2 ≤ xf(x).

Again, this is true when x = 0, so it is enough to prove the ordering of derivatives:

−2F (x) + 4(1− x
2
)f(x) ≤ f(x) + xf ′(x), or 3f(x) ≤ 2F (x) + 2xf(x) + xf ′(x), which

holds by assumption.

Now consider a deviation to x > 1. What needs to be proved is that:∫ 1

0

x(1− x2

2(x+ θ2)
)f(θ2)dθ2 ≤ E,

so it is enough to establish
∫ 1

0
x(1− x2

2(x+1)
)f(θ2)dθ2 ≤ E. It is easy to check that the

integrand, x− x3

2(x+1)
, is smaller than 3

4
.
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It needs to be shown that this expression is maximized at x = 0, namely that the

following holds for all x ∈ [0, 1]:28

∫ x

0

θα−1
2 [xθ1 −

x3

2(x+ θ2)
]dθ2 +

∫ 1

x

θα2 [θ1 −
xθ1

2(x+ θ2)
]dθ2 ≤

∫ 1

0

θ1θ
α
2 dθ2.

The LHS is bounded from above by:

∫ x

0

θα−1
2 [xθ1 −

x3

2(1 + θ2)
]dθ2 +

∫ 1

x

θα2 [θ1 −
xθ1

2(1 + θ2)
]dθ2 =

=
xα+1

α
θ1 + (

1− xα+1

α + 1
)θ1 −

∫ x

0

θα−1
2

x3

2(1 + θ2)
dθ2 −

∫ 1

x

θα2
xθ1

2(1 + θ2)
dθ2 ≤

≤ xα+1

α
θ1 + (

1− xα+1

α + 1
)θ1 −min{x3, xθ1}

∫ 1

0

θα2
2(1 + θ2)

dθ2.

Therefore, it is enough to prove that:

xα+1

α
θ1 + (

1− xα+1

α + 1
)θ1 −min{x3, xθ1}

∫ 1

0

θα2
2(1 + θ2)

dθ2 ≤
∫ 1

0

θ1θ
α
2 ,

or:

xα+1

α
θ1 + (

1− xα+1

α + 1
)θ1 −min{x3, xθ1}

∫ 1

0

θα2
2(1 + θ2)

dθ2 ≤
θ1

α + 1
.

Therefore, it is enough to prove that:

θ1x
α+1

α(α + 1)
+

θ1

α + 1
− min{x3, xθ1}

4

∫ 1

0

θα2 dθ2 ≤
θ1

α + 1
,

or:

4θ1x
α+1

α
≤ min{x3, xθ1}. (13)

If x3 < xθ1 then (13) becomes 4θ1x
α−2 ≤ α; otherwise, it becomes 4xα ≤ α. In

either case, the desired inequality is satisfied if α ≥ 4.

28Because of the bid aggregation rule, x > 1 is clearly not optimal.
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Proof of Proposition 8: Make the proposition’s assumptions, and assume by contra-

diction that there exists an equilibrium with, w.l.o.g, βi ≡ 0 for i = 1, · · · , n− 1.

Let φ(θ) be such that A(0, · · · , 0, φ(θ)) = θ. Clearly, player n’s best-response is

to bid according to the function φ(.). Now, consider, w.l.o.g, player 1’s. His expected

payoff in this equilibrium is θ1 ·
∫ 1

0
H(t)f(t)dt.

Let r̄ denotes a bid that results in sure winning for the MUMB if it is submitted

by one of its members, regardless of the behavior of the other members. Therefore,

when the maximal type reports r̄ his expected utility is:

∫ 1

0

{1− s1(r̄, t)

∫ M

0

zh(z)dz}f(t)dt.

Therefore, in order to show that θ1 = 1 has a profitable deviation, it suffices to

show that:

∫ 1

0

{1− s1(r̄, t)

∫ M

0

zh(z)dz}df(t) >

∫ 1

0

H(t)f(t)dt.

Applying integration by parts to the RHS, it follows that the above inequality is

equivalent to:

1− s̄1 ·
∫ M

0

zh(z)dz > 1−
∫ 1

0

F (t)h(t)dt,

where s̄1 is the expected value of s1. Since M ≥ 1 and s̄1 ∈ (0, 1) it is enough to

show that:

1−
∫ 1

0

zh(z)dz ≥ 1−
∫ 1

0

F (t)h(t)dt,

or
∫ 1

0
F (t)h(t)dt ≥

∫ 1

0
zh(z)dz, which holds because F is first order stochastically

dominated by the uniform distribution.

Acknowledgments will appear in the paper’s final version.
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