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Abstract

This paper introduces the space of (lexicographic) `-numbers and uses it to

analyze extensive form games. We provide a simple characterization of sequential

equilibria which does not use sequences of strategy profiles. We use `-numbers

to introduce a new concept of stability, which we call `-stability, and prove the

existence of `-stable outcomes for all extensive form games. We show that stable

outcomes are `-stable when they exist and that, when there is a unique `-stable

outcome, it is the unique stable outcome. Together, our results provide a simple

way to find stable outcomes in practice.
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1 Introduction

Selection criteria and refinements are at the core of the analysis of dynamic games

with incomplete information. Indeed, many Nash equilibria in most dynamic games

of economic interest fail to satisfy basic plausibility requirements, such as sequential

rationality, belief consistency, or robustness to small payoff perturbations or trembles.

A number of different refinements have been suggested to make predictions more

sensible. An important class consists of the limit-based equilibrium concepts, which are

limits of equilibria of versions of the game where strategies are perturbed. Sequential

equilibria, perfect equilibria, trembling-hand equilibria, and strategically-stable sets

∗University of Bonn. Previous versions of this paper were titled “Likelihood Assignments in Exten-

sive Form Games.” fdilme@uni-bonn.de.
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of equilibria are the most prominent examples. A large literature shows that these

equilibrium concepts are theoretically appealing, as they satisfy the aforementioned

and other plausibility requirements (e.g., backwards or forward induction).

In practice, limit-based equilibrium concepts are difficult to use: proving or dis-

proving a given candidate satisfies some refinement typically requires finding both the

right perturbation sequences and limits of corresponding equilibrium strategies, which

is often not feasible in most games. Instead, weaker and less theoretically appealing

selection criteria are often used, such as different versions perfect Bayesian equilibrium,

iterated deletion of weakly dominated strategies, or criteria specific to signaling games

(such as intuitive criterion, D1, divinity, etc).

This paper has three main contributions, aimed at making limit-based equilibrium

concepts easier to use. The first contribution is to construct the space of `-numbers

to represent and simply work with asymptotic likelihoods without the need of using

sequences. The second contribution is to provide a simple characterization of sequential

equilibria in terms of `-numbers. The last contribution is to use the language of `-

numbers to define `-stable outcomes, show they always exist, and prove that satisfy

forward induction and iterated strict dominance. We provide a procedure to obtain

stable outcomes in practice. In a companion paper (Dilmé, 2021), we illustrate the

usefulness of our approach.

We begin by defining the space of (lexicographic) `-numbers, also referred to as

likelihoods, which consists of the set L≡R+×R++, equipped with (a) the lexicographic

order and (b) some simple operations (sum, multiplication, and division). Each `-

number (`r, `p)∈L can be interpreted to represent the class of sequences that converge

to 0 as (n−`
r
`p)n. Hence, each `-number of the form (0, `p) is identified with the real

number `p∈R++. An `-number (`r, `p) with `r>0 is referred to as an infinitesimal, and

it is used to distinguish the likelihood of events with vanishing probability.1

We use the language of `-numbers to generalize the concept of strategy profile. An

`-strategy profile assigns a likelihood to each action, with the condition that the sum of

the likelihoods of the actions available at each information set is 1. Assigning likelihoods

to both histories and information sets is then straightforward, and done through the

usual multiplication and addition of likelihoods of the actions and histories they are

composed of. `-Numbers permit a simple characterization of belief consistency: an

assessment is consistent if and only if it is generated by some `-strategy profile. An

implication is that all consistent assessments can be generated by simple sequences of

strategy profiles, where each action a played with zero probability in the limit is played

with probability (n−λ
r(a) λp(a))n along the sequence, for some (λr(a), λp(a))∈L.

1Our construction can be interpreted as a significanlty simplified version of hyperreal numbers (see

Robinson, 2016, for a review).
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We define an `-equilibrium as an `-strategy profile where the likelihood of an action

is not infinitesimal only if such an action is sequentially optimal. We show that each

`-equilibrium generates a sequential equilibrium, and that each sequential equilibrium

is generated by some `-equilibrium. This characterization eases obtaining sequential

equilibria, as it permits working directly “in the limit” both to determine sequential

optimality and belief consistency.

With the goal of studying stability in mind, we generalize the concept of tremble.

An `-tremble assigns an infinitesimal to each action, and is interpreted as the likelihood

with which players make mistakes under a certain tremble. Paralleling trembling-hand

perfection, an `-equilibrium for a given `-tremble is defined as an `-strategy profile that

assigns a higher likelihood than the `-tremble only to actions which are sequentially-

optimal. We show that `-equilibria for any given `-tremble can be characterized as

limits of ε-perfect (instead of Nash) equilibria of perturbed versions of the game.

In the final part of our analysis, we define and characterize stability using `-numbers.

In the spirit of strategic stability, we say that an outcome is `-stable if, for any `-tremble,

there is some `-equilibrium for the `-tremble with the given outcome. Remarkably, un-

like stable outcomes, `-stable outcomes always exist, even when payoffs are not generic.

In fact, `-stability is shown to be more permissive than stability: when a stable outcome

exists, it is `-stable. The reason is that an outcome is `-stable if and only if, for any

tremble, there is a strategy profile where behavior at any decision point in the game is

optimal approximately optimal (instead of exactly optimal). We show that `-stable out-

comes satisfy strict versions of three important properties of stable outcomes: forward

induction, iterated dominance, and invariance to reordering simultaneous moves.

We finally provide a procedure to obtain stable outcomes in practice. We first show

that, when there is a unique `-stable outcome, such outcome is stable as well. Then, to

prove that a given outcome is the unique stable outcome, it suffices to find an `-tremble

with a unique `-equilibrium. We illustrate the procedure through some examples.

1.1 Related Literature

Since the definition of Nash equilibrium (Nash, 1951), many refinements and selection

criteria have been developed, especially for extensive form games. Perfect equilibrium

(Selten, 1975), sequential equilibrium (Kreps and Wilson, 1982) or stable sets of equi-

libria (Kohlberg and Mertens, 1986), were celebrated for their conceptual simplicity,

universal applicability, and theoretical properties. The difficulty of using them (i.e.,

proving that a given strategy profile satisfies or fails their conditions) have limited their

use in the analysis of concrete games in applications. In practice, less theoretically

appealing concepts are used, such as versions of perfect Bayesian equilibrium (Fuden-

berg and Tirole, 1991b) or, for signaling games, selection criteria such as the intuitive
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criterion and D1 (Cho and Kreps, 1987) or universal divinity (Banks and Sobel, 1987).

The crucial difference between `-stability and stability is that `-stability requires ε-

optimality instead of exact optimality along the perturbation sequence, hence it is less

restrictive and ensures existence for all games. We show that, nonetheless, `-stability

can be used to show stability when a unique `-stable outcome exists.2

Our paper is part of a literature that uses a different approach to study limit-base

equilibrium concepts: characterizing them without explicitly working with sequences.

Most saliently, conditional probability systems (CPSs, see Battigalli, 1996) and lexi-

cographic probability systems (LPSs, see Blume, Brandenburger, and Dekel, 1991 and

Govindan and Klumpp, 2003), have been used to model each player’s belief about the

strategies chosen by the rest of the players in perfect and proper equilibria.34 As we dis-

cuss in detail in Appendix B, using `-numbers simplifies these approaches by retaining

only the largest terms in a CPS or LPS. Studying only the largest terms significantly

lowers the dimensionality of the objects and suffices to characterize consistency of as-

sessments, to evaluate sequential rationality, and to define of stable outcomes. Further-

more, as we will see, `-strategy profiles and `-equilibria do not require global conditions

(such as the “independence property” required for LPSs or CPSs), and can be defined

information set by information set.

The rest of the paper is organized as follows: Section 2 provides the notation for ex-

tensive form games used in the rest of the paper and introduces the space of `-numbers.

Section 3 defines `-strategy profiles and `-equilibria, and uses them to characterize con-

sistent assessments and sequential equilibria. In Section 4, we define `-trembles and

`-equilibria for a given `-tremble, and characterize them in terms of limits of ε-perfect

equilibria. Section 5 defines `-stable outcomes and analyzes their connection to stable

outcomes. Finally, Section 6 provides some examples and Section 7 concludes. Ap-

pendix A contains the omitted proofs, while Appendix B contains an exposition of the

relationship between `-strategy profiles, LPSs and CPSs.

2Our analysis does not consider payoff uncertainty, studied in Fudenberg, Kreps, and Levine (1988).

Recently, Takahashi and Tercieux (2020) have shown that existence of outcomes robust to payoff

uncertainty for generic payoffs. We show that `-stable outcomes are robust to payoff perturbations.

3Our construction does not offer a characterization of perfect or proper equilibria. Nevertheless, recall

that equilibrium paths of perfect and sequential equilibria coincidence for generic payoffs.

4Myerson (1986) introduces conditional probability systems to specify conditional probabilities (or be-

liefs) on zero-probability events, characterizes them as limits of sequences of probability distributions

and uses them to characterize sequential communication equilibria and predominant communication

equilibria (see also Kohlberg and Reny, 1997). Blume, Brandenburger, and Dekel (1991) employ

LPSs to provide a decision-theoretic representation of preferences under lexicographic beliefs, and use

it to characterize (normal-form) perfect and proper equilibria. Similarly, Mailath, Samuelson, and

Swinkels (1997) use LPSs to characterize strategic independence respecting equilibria (SIRE) and

compare them to proper equilibria.
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2 Extensive form games and `-numbers

2.1 Extensive form games

We base our definition of extensive form game on Osborne and Rubinstein (1994),

although we do not follow it exactly.

Definition 2.1. A (finite) extensive form game G = 〈A,H, I, N, u, ρ〉 has the following

components.

1. Actions and Histories: A finite set of actions A and a finite set of sequences

H (or histories) of actions satisfying:

(a) The empty sequence ∅ is a member of H.

(b) If (aj)
J
j=1 ∈ H and J ′ < J then (aj)

J ′
j=1 ∈ H.

A history (aj)
J
j=1 ∈ H is terminal if there is no aJ+1 such that (aj)

J+1
j=1 ∈ H. The

set of terminal histories is denoted T . For any h∈H, we use Ah ≡ {a|(h, a)∈H}
to denote the set of actions available at h (notice that At = ∅ for all t ∈ T .) We

further assume that ∪h∈HAh = A.

2. Information: A partition I of the non-terminal histories, such that for each

information set I ∈I, h∈ I, and a∈Ah, (a) a∈Ah′ if and only if h′∈ I; and (b)

h′′ /∈ I for each h′′>h.5 We use AI to denote the actions available at histories in

I, and Ia is the (unique) information set such that a ∈ AIa .

3. Players: A finite set of players N 63 0 and a function ι : I → {0}∪N assigning

a player to each information set.

(a) Nature: Player 0 is called nature. The function ρ : ∪I∈ι−1(0)A
I → (0, 1] is

such that, for each I∈ ι−1(0), we have
∑

a∈AI ρ(a) = 1.

(b) Payoffs: Each player i∈N has an associated (von Neumann-Morgenstern)

payoff function ui :T→R. For convenience, u0(t)=0 for all t∈T .

(c) Recall: If (aj)
J
j=1∈ I and (aj)

K
j=1∈ I ′ for some K<J and ι(I) = ι(I ′) then,

for any (a′j)
J ′
j=1∈I, there is some K ′<J ′ such that (a′j)

K′
j=1∈I ′.

A strategy (profile) σ maps each action a∈A into a probability σ(a) ∈ [0, 1] satisfying

that
∑

a∈AI σ(a) = 1 for all I ∈I, and σ(a) =ρ(a) for all a with Ia∈ ι−1(0) (note that

a denotes a generic action in the game, not an action profile). We let Σ be the set of

strategy profiles.

5We assume, without loss of generality, that each action only belongs to a unique information set

(otherwise one can rename actions). We use h′′>h to indicate that h′′ succedes h.
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2.2 `-Numbers

In this section, we introduce the space of lexicographic (`-)numbers, or likelihoods,

which will be the basis of our analysis. We discuss their relationship with lexicographic

probability systems (LPSs) and conditional probability systems (CPSs) in Appendix B.

We will use `-numbers to represent asymptotic likelihoods with which actions are

played along some sequence of strategy profiles. It will turn out that, for our analysis,

it will be without loss of generality to focus on simple sequences of the form (n−`
r
`p)n,

for some `r ≥ 0 indicating the rate at which the sequence tends to 0, and some `p >

0 indicating a proportional factor. An `-number ` ≡ (`r, `p) will then represent the

(equivalence) class of sequences that tend to 0 as (n−`
r
`p)n; that is,

(xn)n ∈ ` ⇔ lim
n→∞

xn
n−`r `p

= 1 .

We now define simple operations on such equivalent classes.

Definition 2.2. The space of `-numbers is L≡R+×R++ endowed with the following

order and operations for each pair `≡(`r, `p), ˆ̀≡ (ˆ̀r, ˆ̀p)∈L:

1. Order: `> ˆ̀ if either `r< ˆ̀r or `r = ˆ̀r and `p> ˆ̀p.

2. Addition: `+ˆ̀≡
(

min{`r, ˆ̀r} , I`r≤ˆ̀r `p + I`r≥ˆ̀r
ˆ̀p
)
.

3. Multiplication: ` ˆ̀≡
(
`r+ˆ̀r, `p ˆ̀p

)
.

4. Division: `/ˆ̀≡
(
`r− ˆ̀r, `p/ˆ̀p

)
whenever `r ≥ ˆ̀r.

5. Standard part: st(`) ≡ I`r=0 `
p ∈ R+.

We identify each `-number (0, `p)∈L with the real number `p∈R++, so the previous

operations are consistent with the usual addition, multiplication, and division of real

numbers. Also, an `-number `∈L with st(`)=0 (i.e., `r>0) is called an infinitesimal.

To gain some intuition about the operations between `-numbers, fix two `-numbers

`, ˆ̀ ∈ L and let (xn)n ∈ ` and (x̂n)n ∈ ˆ̀ be two sequences. The lexicographic order

indicates which sequence tend to zero fastest. For example, ` > ˆ̀ implies that either

`r< ˆ̀r, hence (xn)n tends to zero at a lower rate than (x̂n)n, or that `r = ˆ̀r and `p> ˆ̀p,

so (xn)n is asymptotically `p/ˆ̀p>1 times (x̂n)n. This implies:

`> ˆ̀ ⇔ lim
n→∞

xn
x̂n

> 1 .

The sum of ` and ˆ̀ is such that (xn+ x̂n)n ∈ `+ ˆ̀. Intuitively, our construction only

preserves the most likely terms: if `r< ˆ̀r, so (xn)n tends to 0 at a slower rate than (x̂n)n,

then (xn+x̂n)n tends to 0 at the same rate as (xn)n, hence `+ˆ̀=`. Multiplication and

division are also simple and intuitive. We then have that, for all operations ?∈{+, ·, /},

(xn?x̂n)n ∈ ` ? ˆ̀ , that is, lim
n→∞

xn?x̂n

n−(`?ˆ̀)r (`? ˆ̀)p
= 1 .

The standard part of an `-number ` is its closest real number: limn→∞ xn = st(`).
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3 `-Strategy profiles and `-equilibria

3.1 `-Strategy profiles and assessments

In this section, we define two important concepts in this paper: `-strategy profiles and

the assessments they generate. Here, and in the rest of the paper, an extensive form

game G is fixed.

Definition 3.1. An `-strategy profile is a map λ :A→L, such that, for each I∈I:

1.
∑

a∈AI λ(a) = 1.

2. If ι(I)=0 then λ(a)=(0, ρ(a)) for all a∈AI .

The set of `-strategy profiles is denoted Λ.

We can interpret an `-strategy profile λ as the limit of a sequence of strategy (σn)n.

For example, we can define the sequence (σn)n as follows: for each n∈N and a∈A,

σn(a) ≡

n−λ
r(a) λp(a) if λr(a)>0,

Mn(λ, Ia)λp(a) if λr(a)=0,
(3.1)

where Mn(λ, Ia) is a factor that ensures that
∑

a′∈Ia σn(a′)=1, and where the subindex

n initialized so that Mn(λ, Ia)≥0 for all n and a (note that limn→∞Mn(λ, Ia)=1). It

is then clear that, for all a∈A, (σn(a))n∈λ(a).

Given an `-strategy profile, we can easily define the likelihood of a history or an

information set as follows. For each history h≡ (aj)
J
j=1∈H and information set I ∈I,

we define (with some abuse of notation)

λ(h) ≡
∏J

j=1 λ(aj) and λ(I) ≡
∑

h′∈I λ(h′) .

The likelihood of a history is calculated in the same way as its probability: multiplying

the likelihoods of the actions that compose it. Similarly, the likelihood of an information

set is the sum of the likelihoods of the histories it contains.6 Using σn(h) and σn(I) to

denote the probabilities of h and I under the strategy profile in (3.1), it is easy to see

that (σn(h))n∈λ(h) and (σn(I))n∈λ(I).

Assessments

We will now relate the concept of `-strategy profile to the standard concept of assessment

(Kreps and Wilson, 1982). Recall that an assessment is a pair (σ, µ), where σ∈Σ is a

6Note that the likelihood of an information set is not affected by the likelihoods of histories which

are infinitely less likely than other histories of the information set. If, for example, I = {h, h′} and

λr(h)<λr(h′) (so h is infinitely more likely than h′), then λ(I)=λ(h)+λ(h′)=λ(h).
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strategy profile, and where µ : H\T→ [0, 1] is a belief system such that
∑

h∈I µ(h)=1

for all I∈I. We can associate an assessment to an `-strategy profile as follows:

Definition 3.2. The assessment generated by λ∈Λ is the assessment (σλ, µλ) defined

by σλ(a)≡st(λ(a)) for all a∈A, and µλ(h)≡st(λ(h)/λ(I)) for all I∈I and h∈I.

Kreps and Wilson (1982) point out that not all assessments are plausible. Inter-

preting µ(h) as the belief that player ι(I) holds about history h∈ I at I, it is natural

to require Bayes consistency if I is on path, and also to require that beliefs are up-

dated consistently off path. An assessment (σ, µ) is consistent if there is a fully-mixed

sequence (σn)n supporting (σ, µ); that is, σn→σ and σn(h)/σn(I)→µ(h) for all I ∈I
and h∈I.

The following result establishes that consistent assessments coincide with assess-

ments generated by `-strategy profiles. Hence, it provides an easy way to generate

consistent assessments without the need of computing limits of strategy profiles.

Proposition 3.1. An assessment is consistent if and only if it is generated by some

`-strategy profile.

Proposition 3.1 establishes that consistent assessments are generated by some `-

strategy profile, and that assessments generated by an `-strategy profile are consistent.

The “if” part of the statement follows from the fact that (σn)n defined in (3.1) supports

(σλ, µλ), so (σλ, µλ) is a consistent assessment.

Proving the “only if” part of Proposition 3.1 is more involved. To see why, we fix

some consistent assessment (σ, µ) and some sequence (σn)n supporting (σ, µ). Note

that the rate of convergence of σn(a) to σ(a) may be very different for different actions

a∈A, and not necessarily through a simple sequence of the form (3.1) for some λ∈Λ.

For example, it could be that

σn(a)=1/ log(n+1), σn(a′)=e−n+e−n
3

, and σn(a′′)=3/ log(n+1) e−n+e−n
2

(3.2)

for three different actions a, a′, a′′ ∈ A. Then, to find an `-strategy profile generating

(σ, µ), we need to assign an `-number to each action in a way that the implied `-numbers

associated to histories represent their relative likelihood according to σn as n→∞. For

example, if h≡(a, a′) and h′≡(a′′) happen to be the only histories in some information

set I≡{h, h′}, then

µ(h) = lim
n→∞

σn(a)σn(a′)

σn(a)σn(a′) + σn(a′′)
=

1

1+3
.

It then must be that

λr(a)+λr(a′) = λr(a′′) and λp(a)λp(a′) = 3−1 λp(a′′) . (3.3)
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Figure 1: (a) Quiche-beer game and (b) an `-strategy profile (in red). The arrows

indicate the actions played under the `-strategy profile, and the numbers in brackets

are the beliefs of player 2 under the assessment generated by the `-strategy profile.

The main difficulty of the construction is that many equations like (3.3) have to hold in

a big extensive form game. Additionally, some inequality conditions must be satisfied,

like for example λr(a)<λr(a′) since limn→∞(σn(a′)/σn(a))=0.

The proof of Proposition 3.1 provides an algorithm that provides, for each sequence

(σn)n supporting some assessment, an `-strategy profile that generates the same as-

sessment. The algorithm overcomes the fact that `-numbers cannot be independently

assigned to actions. For example, a history h′′≡(aj)
J
j=1 with σn(aj)=1/ log(1+n) for all

j is asymptotically infinitely more likely than history h′ defined before, independently

of how large J is. We use the fact that, given that the game is finite, it is enough to

assign a likelihood rate to each aj which is “small enough” so that
∑J

j=1 λ
r(aj)<λ

r(h′′).

Intuitively, the belief system µλ is only determined by the likelihoods of the histories

which are infinitely more likely than the rest of the histories in each information set,

and not the exact speeds at which the likelihoods converge.

Remark 3.1. A corollary of Proposition 3.1 is that the set of simple strategy profiles (i.e.,

of the form (3.1)) is rich enough to generate all consistent assessments. This simplifies

proving or disproving the consistency of an assessment: if an assessment is consistent, it

is supported by some simple strategy profile. There are, however, two main advantages

of using `-strategy profiles. The first is that, unlike simple sequences, `-numbers are

closed to addition. Hence, the likelihood of an information set I, which is the addition

of the likelihoods of its histories, is an `-number as well, while σn(I) is typically a sum

of various terms. The second advantage is that the requirement that the likelihoods

assigned to the actions available at a given information set (condition 1 in Definition 3.1)

imposes no restriction on the actions played with infinitesimal likelihood. Hence, terms

such as Mn(λ, Ia) in equation (3.1), which complicate operating with simple sequences

of strategy profiles, play no role when using `-strategy profiles.

Example 3.1. Figure 1 depicts the beer-quiche game and an `-strategy profile.
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3.2 `-Equilibria and sequential equilibria

In this section, we introduce the concept of `-equilibrium and its relationship to the

concept of sequential equilibrium.

Payoffs and `-equilibria

Before defining optimality, we derive the payoff a player receives from playing a given

action at an information set. Fix an `-strategy profile λ. For each a∈A, we let

u(a|λ) ≡
∑
t∈Ta

st

(
λ(t)

λ(Ia)λ(a)

)
uι(Ia)(t) (3.4)

be player ι(Ia)’s payoff conditional on Ia being reached and a being played, where

T a⊂T is the set of terminal histories that contain a as one of its elements (we omit the

subindex ι(Ia) to ease notation). The term λ(t)/(λ(Ia)λ(a)) in the previous expression

is the likelihood of t conditional on Ia being reached and player ι(Ia) choosing a. Indeed,

for every history h∈ Ia, we have that λ(h)≤λ(Ia). This implies that, since any t∈T a

can be written as (h, a, a1, ..., aJ) for some h∈Ia and some a1, ..., aJ ∈A, we have that

λ(t) = λ(h)λ(a)
∏J

j=1 λ(aj) ≤ λ(Ia)λ(a) .

In fact, it is easy to see that
∑

t∈Ta λ(t) = λ(Ia)λ(a), which implies that∑
t∈Ta

λ(t)

λ(Ia)λ(a)
= 1 .

We proceed by defining the concept of `-equilibrium:

Definition 3.3. λ is an `-equilibrium if st(λ(a)) > 0 implies u(a|λ) ≥ u(a′|λ) for all

a∈A and a′∈Ia. We denote the set of `-equilibria as Λ∗.

An `-equilibrium is an `-strategy profile where the only actions which are played

with positive probability are sequentially optimal, that is, actions that maximize u(·|λ)

among all other actions available at the information set they are available in.

Relationship to sequential equilibria

We now relate the concept of `-equilibrium to the well-known concept of sequential

equilibrium, first defined in Kreps and Wilson (1982). They define an assessment (σ, µ)

to be a sequential equilibrium if it is consistent (as defined before) and sequentially

rational, that is, satisfying that for each a∈A:

σ(a)>0 ⇒ u(a|µ, σ)≥u(a′|µ, σ) for all a′∈AIa ,
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where

u(a|µ, σ) ≡
∑

t∈Ta Prµ,σ(t|a)uι(Ia)(t) ,

and where for each t∈T a of the form t=(h, a, a1, ..., aJ) we have

Prµ,σ(t|a) ≡ µ(h)
∏J

j=1 σ(aj) .

The following result illustrates the close connection between sequential equilibria

and `-equilibria.

Proposition 3.2. (σ, µ) is a sequential equilibrium if and only if it is generated by

some `-equilibrium. Hence, an `-equilibrium exists.

Proposition 3.2 exemplifies the usefulness of our approach. Indeed, proving that a

given assessment is a sequential equilibrium is not easy in many applications. The dif-

ficulty typically resides in finding a sequence of fully-mixed assessments that converges

to (σ, µ). Such difficulties have favored the use of equilibrium concepts which are not as

powerful in selecting Nash equilibria, such as perfect Bayesian equilibria (Fudenberg and

Tirole, 1991b). `-Equilibria provide a simple characterization of sequential equilibria:

any `-strategy profile satisfying sequential rationality is a sequential equilibrium.

The first statement of Proposition 3.2 follows from Proposition 3.1, which guarantees

the consistency of generated assessments, and the fact that u(a|λ)=u(a|µλ, σλ), which

makes the second condition in Definition 3.3 equivalent to sequential rationality. The

proof of existence is then trivial: since a sequential equilibrium exists (by Kreps and

Wilson, 1982), and since it is generated by some `-strategy profile (by Proposition 3.1),

such `-strategy profile is also an `-equilibrium.

Example 3.2 (Continuation of Example 3.1). It is easy to see that the `-strategy profile

depicted in Figure 1 (b) is an `-equilibrium, hence generates a sequential equilibrium.

4 `-Trembles and their associated `-equilibria

Our next goal is to study stability using `-numbers. As stability is based on pertur-

bations of the game, we introduce the concepts of `-tremble and `-equilibrium for an

`-tremble in this section. We will show that these concepts are related to the standard

concepts of tremble, trembling-hand equilibria and ε-perfection. Section 5 will use these

concepts and results to define and analyze `-stability.

4.1 `-Trembles and trembles

Recall that a (behavioral) tremble is a sequence (ηn :A→(0, 1])n satisfying that that (i)

limn→∞ ηn(a)=0 for all a∈A, and (ii)
∑

a∈AI ηn(a)≤1 for all I∈I and n∈N. Differently

11



from a strategy profile, each ηn is not required to be a probability distribution when

restricted to a given information set I, and instead we require ηn(a) to be strictly

positive for all a and to converge to 0 as n→∞ (and also that
∑

a∈AI ηn(a)≤1). The

concept of `-tremble is then analogous to the concept of tremble.

Definition 4.1. An `-tremble is a map λ̃ :A→L such that st(λ̃(a)) = 0 for all a∈A.

The set of `-trembles is Λ̃.

In the same way that trembles are not sequences of strategy profiles, the concept of

`-tremble relaxes the conditions that an `-strategy profile satisfies: an `-tremble differs

from an `-strategy profile in that each action is asinged an infinitesimal, and hence

`-trembles are not probability distributions when restricted to the actions available at

a given information set. Trembles and `-trembles are interpreted as representations of

small likelihoods with which players make mistakes.

4.2 `-Equilibria for an `-tremble

We now define and characterize `-equilibria for a given `-tremble. This equilibrium

concept will be the basis of our definition of `-stable ourcome.

Definition 4.2. λ∈Λ is an `-equilibrium for λ̃∈ Λ̃ if, for all I∈I and a∈AI ,

1. Superseding: λ(a)≥ λ̃(a).

2. Optimality: λ(a)>λ̃(a) only if u(a|λ)≥u(a′|λ) for all a′∈AI .

We denote the set of `-equilibria for λ̃ as Λ∗(λ̃).

The concept of `-equilibria for a given `-tremble shares the spirit of trembling-hand

perfect equilibria (Selten, 1975), but focusses on a particular tremble. Our requirement

of “superseding” hints at the interpretation of the `-tremble as an asymptotic proba-

bility of making mistakes: conditional on a given information set being reached, the

likelihood that the corresponding player can assign to an action a can not be lower

than λ̃(a). Unlike the concept of `-equilibrium, we now require sequential optimality

for some actions with infinitesimal likelihood: the ones with a strictly higher likelihood

under the `-equilibrium than under the `-tremble.7 As a result, the set of `-equilibria for

a given perturbation is typically smaller than the set of `-equilibria (see Examples 6.1

and 6.2 below). The following result establishes that, nonetheless, the set of `-equilibria

for some `-tremble coincides with the set of `-equilibria.

7Apart from its use in studying `-stability, the concept of `-equilibrium for a given `-tremble is useful

when there are some particular trembles of economic interest, for example for economic reasons (e.g.,

people with lower financial literacy trembling more frequently in financial decisions).
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Proposition 4.1. An `-strategy profile is an `-equilibrium if and only if it is an `-equi-

librium for some `-tremble; that is, Λ∗=∪λ̃∈Λ̃Λ∗(λ̃).

The “if” part of Proposition 4.1 follows from the observation that each `-equili-

brium λ is an `-equilibrium for the `-tremble λ̃ defined as λ̃(a)≡ λ(a) if st(λ(a)) = 0

and λ̃(a)≡ (1, 1) otherwise. The “only if” part is implied by the fact that, if λ is an

`-equilibrium for some λ̃, then st(λ(a))> 0 only if a is sequentially optimal, but then

this implies λ is also an `-equilibrium.

Relationship to trembling-hand and ε-perfection

In this subsection, we relate the concept of `-equilibrium to the concepts of trembling-

hand and perfect ε-equilibrium. Doing so will be useful to relate the concepts of `-

stability and stability in Section 5.

Definition 4.3. σn∈Σ is an ε-perfect equilibrium for ηn if, for all I∈I and a∈AI ,

1. σn(a)≥ηn(a).

2. σn(a)>ηn(a) only if u(a|σn)≥u(a′|σn)−ε for all a′∈AI .

We use Σ∗ε(ηn) denote the set of ε-perfect equilibria for ηn.

The definition of an ε-perfect equilibrium for a given tremble is similar to the defi-

nition of `-equilibrium for an `-tremble.8 Both concepts require “superseding” (actions

should be played with at least the likelihood specified by the tremble/`-strategy profile)

and “optimality” (actions which are played with a higher likelihood than the tremble

cannot be (ε-)suboptimal). As we will see, the following concept is analogous to the

concept of `-equilibrium for some `-tremble:

Definition 4.4. (σ, µ) is a perfect equilibrium for (ηn)n if there is a sequence (σn)n

supporting (σ, µ), and a sequence (εn)n→0 such that σn ∈ Σ∗εn(ηn) for all n.

The following proposition provides an equivalence result between the concepts of

`-equilibrium for some `-tremble and perfect equilibrium for some tremble.

Proposition 4.2. Let λ be an `-strategy profile. Then, λ is an `-equilibrium for some

`-tremble if and only if (σλ, µλ) is a perfect equilibrium for some tremble.

8Note that we require ε-optimality for the strategy at each information set. Hence, our equilibrium

concept is analogous to contemporaneous perfect ε-equilibria defined in Mailath, Postlewaite, and

Samuelson (2005).
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Trembles associated to `-trembles

While Proposition 4.2 establishes that any `-equilibrium for some `-tremble generates

a perfect equilibrium for some tremble, it does not specify how the `-tremble and the

tremble are related to each other. To relate these objects, it is convenient to first

associate a tremble to each `-tremble.

Definition 4.5. The tremble associated to λ̃∈ Λ̃, denoted (ηλ̃n)n, is defined as ηλ̃n(a)≡
n−λ̃

r(a) λ̃p(a) for all a∈A and n∈N.9

The following results establishes a close relationship between perfect equilibria for

a tremble associated to some `-tremble and `-equilibria for such `-tremble.

Proposition 4.3. (σ, µ) is a perfect equilibrium for (ηλ̃n)n if and only if it is generated

by some `-equilibrium for λ̃. Hence, for each λ̃∈ Λ̃, an `-equilibrium for λ̃ exists.

The “if” part of Proposition 4.3 is proven by assuming that there is an `-equilibrium

λ for λ̃. It then follows that, for all ε>0, σn defined in equation (3.1) is an ε-equilibrium

for ηλ̃n if n is large enough. Note that, in general, σn 6∈Σ∗0(ηλ̃n); that is, σn is not a Nash

equilibrium of a game where players tremble according to ηλ̃n. In fact, it may be that

u(a|σn)<u(a′|σn) for all n but limn→∞(u(a|σn)−u(a′|σn))=0 for some a and a′ in the

same information set, and yet that λ(a)> 0, as u(a|λ) = u(a′|λ) makes a sequentially

rational in the limit.10

Proving the “only if” part in Proposition 4.3 is more involved. Let (σ, µ) be a perfect

equilibrium for (ηλ̃n)n, hence there exists some sequence (σn ∈ Σ∗1/n(η∗n))n supporting

(σ, µ), but such sequence is not necessarily simple (of the form (3.1)). Hence, to find

some `-equilibrium λ for λ̃, we proceed similarly as in the proof of Proposition 3.1, with

the additional constraint that λ(a) = λ̃(a) whenever a is suboptimal. We show that

the methodology developed in the proof of Proposition 3.1 can be adapted to obtain a

`-equilibrium for λ̃. Existence of an `-equilibrium for λ̃ then follows from the fact that,

for each n, there is some σn ∈ Σ∗0(ηλ̃n) (which is a Nash equilibrium of the perturbed

game). Then, taking a subsequence if necessary, (σn)n supports some assessment (σ, µ),

which is a perfect equilibrium for (ηλ̃n)n.

9We let the sequence (ηλ̃n)n begin at an index large enough that
∑
a∈AI ηn(a)≤1 for all n.

10Kreps and Wilson (1982) show that similar considerations apply to the study of sequential equilibria.

In their words, “we require optimality only ‘at the limit,’ while Selten requires optimality approaching

the limit, is what is significant in terms of tractability and mathematical properties.” In fact, it is

not difficult to see that σ is part of a sequential equilibrium if and only if there exist sequences (εn)n

converging to 0 and (σn∈Σ∗εn(0))n completely mixed and converging to σ.
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5 `-Stable outcomes

In this section, we use the definitions and results in Sections 3 and 4 to introduce the

concept of `-stable outcomes, prove their existence and provide characterization results.

5.1 Stable outcomes

We begin recalling the definition of outcome. An outcome o (of G) is a probability

distribution over terminal histories, so o ∈ ∆(T ). Each strategy profile σ generates

a unique outcome oσ, where each (aj)
J
j=1 ∈ T is assigned probability oσ((aj)

J
j=1) =∏J

j=1 σ(aj). Similarly, an `-strategy profile λ generates a unique outcome oλ, where the

probability of each t∈T is oλ(t)≡st(λ(t)). Note that oλ=oσ
λ
.

There are different reasons that make the use of equilibrium outcomes appealing

(compared to using equilibria). First, outcomes fully describe on-path behavior, hence

they constitute the basis for the predictions that a game provides. Even though off-

path behavior is important to determine the optimality of on-path behavior, different

equilibria with the same outcome provide the same predictions. Second, they reduce

spurious multiplicity arising from off-path behavior. Last, but not least, while equilibria

are generally fragile to small perturbations of the game, there are equilibrium outcomes

which are robust to both trembles and payoff perturbations.

The study of stable outcomes begins with Kohlberg and Mertens (1986). They show

that the set of Nash equilibria of a game has a finite number of connected components

and, generically in the payoffs, all equilibria in a connected component have the same

outcome.11 Furthermore, also generically in the payoffs, at least one of these outcomes

o is stable: if the game is perturbed (through a small tremble), the resulting game has

an equilibrium outcome which is close to o. In our notation, their result establishes

that, for generic u, there is an outcome o such that, for any tremble (ηn)n, there is a

sequence (σn ∈Σ∗0(ηn))n such that (oσn)n converges to o. Kohlberg and Mertens show

that stable outcomes satisfy backwards induction, iterated dominance, and invariance.

There are two important drawbacks that make using stable outcomes difficult in

practice: existence and tractability. Even in the ideal case where an economist correctly

guesses that a given outcome o is the unique stable outcome of a game of interest,

proving so is difficult in general. S/he has to prove two facts. First, s/he has to prove

“uniqueness” by showing that o is the unique candidate to be a stable outcome. This

can be proven if, for example, s/he (1) is able to find a convenient tremble such that the

set of equilibria of each of the corresponding perturbed games can be computed, and

11We use the usual distance between strategy profiles (sup-norm on RA), the usual distance between

utility functions (sup-norm on RN×T ), and the usual distance between outcomes (sup-norm on RT ).
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(2) show that all sequences of equilibrium outcomes of the perturbed games along the

sequence converge to o.12 Then, the economist has to prove “existence” by showing that

any other tremble has an associated sequence of equilibria with outcomes converging to

o.13 This is, in general, much more difficult to prove, as studying the sets of equilibria

of the perturbed game for an arbitrary tremble is often not feasible. (An alternative

would be characterizing stable sets of equilibria, which exist in all games, but this is

typically equally infeasible.)

5.2 `-Stable outcomes

Here, we provide the concept of `-stable outcome, show its existence for any game,

and characterize its relationship to stable outcomes. In Section 5.3, we provide some

properties of `-stable outcomes and illustrate how they can be use to prove a given

outcome is stable.

Definition 5.1. An outcome o is `-stable if, for each `-tremble λ̃, there is an `-equili-

brium for λ̃ generating o.

The concept of `-stable outcome is analogous to that of stable outcome, now using

`-trembles instead of trembles. The following result establishes that, differently from

stable outcomes, `-stable outcomes exist in all games, with no genericity requirement

on the payoffs. We keep the proof in the main text as it is important and concise.

Proposition 5.1. There is an `-stable outcome.

Proof. For a given utility function û : N → R, we let G(û) be the game defined in

Section 2.1 with utility function given by û instead of u. Let (ûn)n be a sequence of

utility functions converging to u such that, for each n, G(ûn) has a stable outcome

denoted on. Note that, since a stable outcome exists for generic utility functions (by

Kohlberg and Mertens, 1986), a sequence (ûn)n with the previous properties exists.

Taking a subsequence if necessary, assume that (on)n converges to some outcome o. We

will prove that o is `-stable.

Fix some sequence (εn)n↘0 and λ̃∈ Λ̃. For each n′∈N, we let
(
σλ̃n,n′∈Σ∗0(ηλ̃n, ûn′)

)
n

be a sequence of Nash equilibria with outcomes converging to on, which exists by the

stability of on. We now argue that, for each n, there is some jn such that σλ̃n,jn is an

12More generally, for each candidate o′ of being a stable outcome (e.g., outcomes of sequential equilib-

ria), the economist should find a tremble with no outcome sequence converging to o′.

13Many games of interest do not feature generic payoffs. For example, in most reputation and bar-

gaining games, the player’s payoff equals to the discounted payoff of a stage game (at the moment

of agreement for bargaining games), using some discount factor (constant over time, and typically

equal across players). Hence, stable outcomes are typically not guaranteed to exist.
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εn-equilibrium for ηλ̃n (in the game with payoff function u). Superseding is satisfied for

all n, since σλ̃n,jn∈Σ∗0(ηλ̃n, ûjn). Also, for each a∈A with σλ̃n,jn(a)>ηn(a), we have

ûn(a|σλ̃n,jn) ≥ ûn(a′|σλ̃n,jn) for all a′∈Ia.

Hence, if jn is chosen so that ‖u− ûjn‖<εn/2, we have

u(a|σλ̃n,jn) ≥ u(a′|σλ̃n,jn)−εn .

Taking a subsequence if necessary, assume that (σλ̃n,jn)n supports some assessment

(σ, µ). Clearly, (σ, µ) is a perfect equilibrium for (ηn)n with outcome o. By Proposition

4.3, (σ, µ) is generated by some `-equilibrium for λ̃.

Proposition 5.1 is important as it shows that `-stability overcomes an important

drawback of working with stable outcomes in applications: having to prove that they

exist. As we will see, our existence result simplifies finding `-stable outcomes, as they

are often obtained by ruling out other candidates.

Relationship to stable outcomes

Using Proposition 4.3, we can provide the following characterization of `-stable out-

comes in terms of perfect equilibrium outcomes.14

Proposition 5.2. An outcome o is `-stable if and only if, for any λ̃∈ Λ̃, o is a perfect

equilibrium outcome for (ηλ̃n)n.

A first implication of Proposition 5.2 is that the concept of `-stable outcome is not

powerful in selecting equilibria of normal-form games. Such observation follows from

the analysis in Jackson, Rodriguez-Barraquer, and Tan (2012). They first define a

strategy profile σ in a normal-form game to be a trembling∗-hand perfect equilibrium

if, for any tremble (ηn)n, there exist two sequences (εn)n→ 0 and (σn ∈Σ∗εn(ηn))→ σ.

They subsequently show that all Nash equilibria of any finite normal form game are

trembling∗-hand perfect equilibria. An immediate implication is that all Nash outcomes

of a normal form game are `-stable. We will see that, the set of `-stable outcomes in

extensive form games with incomplete information may be significantly smaller than

the set of Nash equilibrium outcomes.15

14Analogously to Definition 4.4, we say that o is a perfect equilibrium outcome for (ηn)n if there is a

sequence (σn)n and a sequence (εn)n↘0 such that σn∈Σ∗εn(ηn) for all n and oσn→o.

15Similarly, Fudenberg and Tirole (1991a) show that, in normal-form games, all and only the outcomes

of Nash equilibria are robust to payoff perturbations. Nonetheless, Takahashi and Tercieux (2020)

show that payoff robustness has a significant selection power in extensive form games.
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A second implication of Proposition 5.2 is that `-stability is a less restrictive concept

than stability. Indeed, the crucial difference between `-stable outcomes and stable

outcomes is the use of ε-perfect equilibria versus the use of Nash equilibria in the

perturbed games. The following corollary establishes that, as a result, the set of stable

outcomes is smaller than the set of `-stable outcomes.

Corollary 5.1. If a stable outcome exists, it is `-stable.

It is clear that the converse of Corollary 5.1 is not true in general: while all games

have `-stable outcomes, some do not have any stable outcome. A sort of converse result

is nevertheless true when there is a unique `-stable outcome. Intuitively, if a game had a

unique `-stable outcome which was not stable, there would be a tremble (ηn)n such that,

for n large enough, no equilibrium of the perturbed game would have an equilibrium

close to o. The proof shows that, similarly as in the proof of Proposition 5.1, we could

then construct an alternative `-stable outcome, contradicting the assumption that o

was the unique `-stable outcome.

Proposition 5.3. If a unique `-stable outcome exists, it is the unique stable outcome.

We end this subsection by pointing that `-stable outcomes are robust not only to

perturbations in the players’ behavior, but also in the player’s payoff. The following is

a generalization of Proposition 5.2.

Proposition 5.4. An outcome o is `-stable if and only if, for any λ̃ ∈ Λ̃ and (un)n

converging to u, there are two sequences (εn)n and (σn ∈ Σ∗εn(ηλ̃n, un))n with oσn → o

(where Σ∗εn(ηλ̃n, un) is the set of εn-equilibria for ηλ̃n in the game with payoffs un :T→RN).

5.3 Obtaining `-stable and stable outcomes

In this section, we provide some properties of `-stable outcomes. As the following

theorem shows, an `-stable outcome satisfies versions of the definitions of invariance,

iterated dominance and forward induction in Kohlberg and Mertens (1986). We keep

the proof of forward induction in the main text as it is simple and intuitive.

Proposition 5.5. Let o be an `-stable outcome.16

1. Forward induction: Assume I∈I is on path of o and a∈AI is such that

max
λ∈Λ∗(o)

u(a|λ) < u(I|o) ,

16In the statement of this proposition, we abuse language by using “equivalent outcomes” without

defining them. Nevertheless, their definition (which depends on each property) is straightforward.
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where u(I|o) is player ι(I)’s payoff under o conditional on I being reached, and

Λ∗(o) is the set of `-equilibria with outcome o. Then, the game where a is elimi-

nated (and all histories following it) has an `-stable outcome equivalent to o.17

2. Iterated strict dominance: If a strictly dominated action is eliminated (and

all histories following it), the resulting game has an `-stable outcome equivalent

to o.

3. Invariance to reordering simultaneous moves: If I ′=I×AI (i.e., I and I ′

are simultaneous), a game where the order of I and I ′ is reversed has an `-stable

outcome equivalent to o.

Proof of “forward induction” (the other properties are proven in Appendix A). Let o be

an `-stable outcome. Let I be an on-path information set and â∈AI provide a payoff

strictly lower than the outcome’s payoff of player ι(I) at I, hence â not played in o. Let

G′ denote the game where â (and all consecutive histories) is eliminated, and A′⊂A\{â}
be its set of actions. Let λ̃′ be an `-tremble of G′, and λ̃r ≡ max{λ̃′r(a′)|a′∈A′}. Define

λ̃ as follows:

λ̃(a) ≡

λ̃′(a) if a∈A′,

(λ̃r+1, 1) otherwise,

for all a ∈ A, and note that λ̃ is an `-tremble of G. Let λ be an `-equilibrium for λ̃

with outcome o (which exists since o is `-stable). We claim that, when restricted to A′,

λ is an `-equilibrium for λ̃′ on G′ with outcome o. Note that, since u(â|λ)< u(I â|o),
we have that λ(â) = (λ̃r +1, 1), which implies that each terminal history containing â

is infinitely less likely than any of the histories not containing â. It is then easy to see

that the `-strategy profile of G′ defined by λ′ ≡ λ|A′ is an `-equilibrium for λ̃′ (in G′)

with outcome o.

It is not difficult to see that an `-stable outcome may fail admissibility, that is,

players may play weakly dominated actions on the path of play. This is not surprising,

since admissibility is known to be incompatible with iterated (strict) dominance. Also,

the “iterated strict dominance” property permits using backwards induction arguments.

Indeed, it follows from Proposition 5.5 that an action which is strictly dominated, or

which is strictly suboptimal in under any `-equilibrium, can be eliminated without

affecting the set of `-stable outcomes. In particular, an extensive form game of complete

information with generic payoffs has a unique `-stable (and hence stable) outcome.

17The result also holds if maxt∈Ta uι(I)(t)<u(I|o), a more restrictive but easier to verify condition.
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Remark 5.1. It is easy to see that forward induction and iterated strict dominance can

be generalized to the same property: an `-stable outcome o remains `-stable if an action

which is strictly dominated under o is eliminated; that is, if a ∈ A such that there is

some a′ ∈AIa with u(a′|λ)>u(a|λ) for all λ∈Λ∗(o) is eliminated. This more general

property is closer to the definition of forward induction in Kohlberg and Mertens (1986,

Proposition 6).

Obtaining `-stable outcomes

Here, we provide some strategies an economist can use to obtain `-stable outcomes.

In many games with asymmetric information, the fact that actions endogenously

signal private information constitutes a main source of equilibrium multiplicity. These

games tend to have a unique stable outcome if some sort of “single-crossing” condition

holds, even when payoffs are not “generic”. In simple signaling games á la Spence

(1973), for example, such stable outcome is the least-costly, fully-separating outcome,

called the Riley outcome (see Riley, 1979). The following corollary of Propositions 5.1

and 5.3 implies that, in such cases, the economist only needs to obtain one “right”

`-tremble to prove that o is the unique `-stable outcome, and hence it is stable:

Corollary 5.2. If there is an `-tremble λ̃ such that there is a unique `-equilibrium

outcome for λ̃, then such outcome is the unique stable outcome.

As Examples 6.1 and 6.2 below illustrate, an `-tremble that helps proving uniqueness

of an `-stable outcome in signaling games satisfying single-crossing usually involves

“high types” (the types with lowest signaling cost) trembling with a higher likelihood

than low types.

Games not satisfying a single-crossing condition may have multiple `-stable out-

comes. Nevertheless, through one or more `-trembles, the economist may able to re-

duce the set of outcome candidates to some set O†. If all outcomes in O† satisfy a given

property (full/partial separation, delay, etc), then the economist can claim that such

property is “`-stable”, in the sense that all `-stable outcomes satisfy it.

Example 5.1 (Continuation of Example 3.2). We argue that the outcome in Figure 1(b)

is not `-stable using forward induction and iterated strict dominance. If it were to be `-

stable, it would remain `-stable when action bw is eliminated, since the maximum payoff

the weak type can achieve by playing it is lower than her payoff from playing bs under

the outcome. In the game without action bw, action fb is strictly dominated, hence

can be eliminated as well. In the resulting game, the strong type prefers playing bs to

playing qs, contradicting the `-stability of the outcome. Then, the outcome in Figure

1(b) is not `-stable. Since there is only one other outcome of a sequential equilibrium

(where player 1 plays both bs and bw for sure, and player 2 plays nb for sure), this other
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outcome is the unique `-stable outcome (by Proposition 5.1), and hence it is the unique

stable outcome as well (by Proposition 5.3).

6 Examples

In this section, we provide some examples of how to use our results. Due to obvious size

constraints of the current paper, the examples are simple, and other approaches (e.g.,

brute force) could used to obtain stable outcomes. See Dilmé (2021) for an example of

a game where brute force does not work.

Example 6.1 (Continuation of Example 5.1). To show how `-trembles can be used to

contradict the `-stability of an outcome, we now argue that the outcome in Figure

1(b) is not `-stable without using forward induction (as in Example 5.1). To see this,

consider an `-tremble λ̃ where λ̃r(bs)<λ̃r(bw) (that is, player 1 trembles to beer infinitely

more often when she is strong). Let λ be an `-equilibrium for λ̃. If µλb(s, bs)>1/2, then

player 2 does not fight with probability one after beer, but then player 1 has a profitable

deviation if she is strong. Also, µλb(s, bs)≤1/2 only if player 1 finds it optimal to choose

beer when she is weak, but this is clearly suboptimal given that her payoff from doing

so is lower than the payoff from choosing quiche. Hence, there is no equilibrium for λ̃

with the outcome in Figure 1 (b), so it is not `-stable.

Example 6.2 (Signaling). In this example we consider a version of the Spence (1973)

model. Nature first decides the type of player 1, θ∈{L,H}. Then player 1 chooses the

effort e∈ E ≡ {0,∆, 2∆, ..., 1}. Finally, after observing the effort, player 2 decides to

hire, h=1, or not, h=0. The payoffs are

u1(θ, e, h) = h−cθ e and u2(θ, e, h) = h (2 Iθ=H−1) ,

where 1 < cH < cL < 1/∆. For simplicity, we assume 1/cL 6∈ E , and we let e be the

smallest element of E bigger than 1/cL.

We consider the following `-tremble λ̃. The low and high types tremble to all actions

with likelihoods (2, 1) and (1, 1), respectively; that is, λ̃(e|L)=(2, 1) and λ̃(e|H)=(1, 1)

for all e. Player 2 trembles to all actions with likelihood (1, 1); that is, λ̃(h|e) = (1, 1)

for all e and h.

Fix some `-equilibrium λ for λ̃. Let e+ < e be the highest effort such that λ(e|L)>

λ̃(e|L). It must then be that λ(h=1|e)=(0, 1) for all e>e+. Since, for type L, choosing

effort 0 strictly dominates choosing any effort e≥ e, we have that e+<e. It must also

be that

λ(h|e+)− cL e+ ≥ 1− (e++∆) cL ⇒ cL ≥ 1−λ(h|e+)
∆

.
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By the usual single-crossing property, we have that λ(e|H)= λ̃(e|H) for all e<e+. Also,

type H is willing to choose e+ only if cH ≤ 1−λ(h|e)
∆

. Since cH < cL, we have that the

high type chooses e++∆ for sure. Finally, since type L has to assign positive (i.e., no

infinitesimal) likelihood to at least one effort below e+, and since player 2 chooses h=0

if the posterior about the type being H is 0, type L only chooses e= 0 with positive

likelihood (hence, with probability 1). It then follows that

(λ(e|L), λ(e|H), λ(h=1|e)) =



((0, 1), (1, 1), (1, 1)) if e=0,

((1, 1), (1, 1), (0, e cL)) if 0<e<e+,

((2, 1), (0, 1), (0, 1)) if e=e+,

((2, 1), (1, 1), (0, 1)) if e>e+.

Hence, there is a unique `-equilibrium for λ̃. This implies that its outcome (which is

the Riley outcome), is the unique `-stable outcome, and hence it is stable as well.

7 Conclusions

This paper provides three contributions. The first is developing a new language to

analyze limit-based refinements in extensive form games. The `-numbers are simple,

2-dimensional objects, with simple elementary operations. When used to analyze strate-

gies, they permit easily computing relative likelihoods of zero-probability histories.

The second contribution is to use `-numbers to obtain a straightforward characteri-

zation of the set sequential equilibria: it coincides with the set of assessments generated

by sequentially optimal `-strategy profiles. An implication is that simple sequences are

sufficient to generate consistent assessments.

The final contribution is to provide new equilibrium concepts using the language of `-

numbers. Most saliently, we define `-stable outcomes, which are the natural analogous

of stable outcomes using `-numbers. `-Stable outcomes always exist, are easier to

compute, and satisfy desirable properties. We argue that, since an outcome is stable

when it is the unique `-stable outcome, our analysis provides a method to obtain stable

outcomes in practice, which is illustrated through some examples.
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A Omitted Proofs

A.1 Proofs of the Results in Section 3

Proof of Proposition 3.1

Proof. “Only if” part: We begin with a useful representation lemma, that shows that

any finite collection of sequences on (0, 1] can be represented as the product of some

basic sequences.

Lemma A.1 (Representation). Let (σn :A→ (0, 1])n be a sequence. Then, there are

a strictly increasing sequence (jn ∈N)n and a sequence ((q1
n,..., q

K
n )∈RK

++)n, for some

K∈{0, ..., |A|}, such that

1. limn→∞ q
1
jn =0 and limn→∞ q

k
jn/(q

k−1
jn

)γ =0 for all γ∈R and k=2, ..., K.

2. For each a∈A there is a unique α(a)≡(α1(a), ..., αK(a))∈RK such that

lim
n→∞

σjn(a)∏K
k=1(qkjn)αk(a)

∈ R++ .

Proof. We proceed by induction over the number of actions. If there is one action (i.e.,

A={a}) the result is clear: we let (jn)n be strictly increasing and such that (σjn(a))n

is convergent to some σ(a)∈ [0, 1]. If σ(a)> 0 then K ≡ 0, and if σ(a)> 0 then K ≡ 1

and (q1
n)n≡ (σn(a))n. Assume then that |A|> 1 and that the result is true for A\{â},

for some â∈A, and we prove the result is true for A. We use (jn)n and (q1
n, ..., q

K
n )n to

denote the sequences representing (σn :A\{â}→(0, 1])n.

We propose the following algorithm, which follows steps k=K, ..., 1 in descending

order, from K to when the algorithm stops. In each step, the algorithm takes (jkn)n

and (q̃kn∈R++)n from the previous step, where limn→∞ q̃
k
jkn

exists (in R+). We initialize

(for k=K) (jKn )n to be a subsequence of (jn)n such that (σjKn (â))n is convergent, and

(q̃Kn )n ≡ (σn(â))n. The output of the algorithm is a vector α∗ ∈ RK , two sequences (j∗n)n

and (q̃0
n, ..., q̃

K
n )n, and a value k∗ ∈ {0, ..., K} indicating the step where the algorithm

stopped.

Step 1 (a) If lim infn→∞ q̃
k
jkn
/(qk

jkn
)γ = 0 for all γ ∈R, then we set (j∗n)n to be the subse-

quence of (jkn)n, defined as follows:

i. j∗1≡jk1 .

ii. j∗2≡min{jkn>j∗1 |q̃kjkn/(q
k
jkn

)2<1/2} (exists since lim infn→∞ q̃
k
jkn
/(qk

jkn
)2 =0).

iii. ...

iv. j∗m≡min{jkn>j∗m−1|q̃kj∗n/(q
k
jkn

)m<1/m}.
v. ...
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Since limn→∞ q
k
jkn

=0 and limn→∞ q̃jkn/(q
k
jkn

)n=0, it is clear that limn→∞ q̃
k
j∗n
/(qkj∗n)γ =

0 for all γ∈R. We then set k∗≡k; set (q̃k
′
n )n≡(q̃kn)n and α̂k

′
∗ ≡0 for all k′≤k;

and stop.

(b) If the previous case fails, and lim infn→∞(q̃k
jkn

)−1/(qk
jkn

)γ =0 for all γ∈R, then

set (j∗n)n to be a subsequence of (jkn)n such that limn→∞(q̃kj∗n)−1/(qkj∗n)γ =0 for

all γ∈R (which exists by the previous argument); set k∗≡k; set (q̃k
′
n )n≡(q̃kn)n

and α̂k
′
∗ ≡0 for all k′≤k; and stop.

(c) If the previous cases fail and lim infn→∞ q
k
jkn
/(q̃k

jkn
)γ = 0 for all γ ∈ R, then

(jk−1
n )n is set to be a subsequence of (jkn)n such that limn→∞ q

k
jk−1
n
/(q̃k

jk−1
n

)γ =0

for all γ∈R (which again exists by the previous argument), (q̃k−1
n )n = (q̃kn)n,

and α̂k∗≡0; and go to Step 2.

(d) If the previous cases fail, we proceed as follows. Note that it must be that

limn→∞ q̃
k
jkn
∈{0,+∞} (since, otherwise, we would have limn→∞ q

k
jkn
/(q̃k

jkn
)γ =0

for all γ∈R). There are then two sub-cases:

i. Assume first limn→∞ q̃
k
jn = 0. Since case (a) fails, there is some γ∈R++

such that

lim inf
n→∞

q̃k
jkn

(qk
jkn

)γ
> 0 . (A.1)

Let γ1 ≥ 0 be the infimum of the set of values γ such that the previous

inequality holds. Note that, for all γ>γ1, the left-hand side of (A.1) is

+∞; and, if γ < γ1, the left-hand side of (A.1) is 0. We let (jk−1
n )n be

such that q̃k
jk−1
n
/(qk

jk−1
n

)γ1 tends to some limit in R+. Finally, let q̃k−1
n ≡

q̃kn/(q
k
n)γ1 , and αk∗ = γ1; and go to Step 2.

We further prove, for future use, that γ1>0. To see this, assume for the

sake of contradiction that γ1 =0. Then we have that, for all γ>0,

+∞ = lim inf
n→∞

q̃k
jkn

(qk
jkn

)γ
=

(
lim sup

n→∞

qk
jkn

(q̃k
jkn

)1/γ

)−γ
.

That is, defining γ′≡1/γ, we have that for all γ′>0

0=lim sup
n→∞

qk
jkn

(q̃k
jkn

)γ′
≥ lim inf

n→∞

qk
jkn

(q̃k
jkn

)γ′
≥ 0 ⇒ lim inf

n→∞

qk
jkn

(q̃k
jkn

)γ′
=0 .

Since lim infn→∞ q
k
jkn
/(q̃k

jkn
)γ
′

= 0 for all γ′≤ 0 (because both qk
jkn

and q̃k
jkn

tend to 0 as n→0), we reach a contradiction with the assumption that

(c) does not hold.

Note finally, also for future use, that using similar arguments and that

case (c) fails, we have that there exists some γ2>0 such that lim infn→∞ q
k
jkn
/(q̃k

jkn
)γ =
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+∞ for all γ > γ2 and lim infn→∞ q
k
jkn
/(q̃k

jkn
)γ = 0 for all γ < γ2. For all

γ>γ1 we have that

+∞=lim inf
n→∞

q̃k
jkn

(qk
jkn

)γ
=

(
lim sup

n→∞

qk
jkn

(q̃k
jkn

)1/γ

)−γ
≤
(

lim inf
n→∞

qk
jkn

(q̃k
jkn

)1/γ

)−γ
.

Hence, we have γ >γ1 implies 1/γ <γ2; that is, γ1≥ 1/γ2. Similarly, if

γ<γ1, we have

0 = lim inf
n→∞

q̃k
jkn

(qk
jkn

)γ
=

(
lim inf

n→∞

qk
jkn

(q̃k
jkn

)1/γ

)−γ
.

Now we have that γ<γ1 implies 1/γ>γ2, that is, γ1≤1/γ2. Overall, we

have γ1 =1/γ2.

ii. Assume now limn→∞ q̃
k
jkn

= +∞. We proceed analogously, where now γ1

is the supremum of the set of values γ such that inequality (A.1) holds.

The rest holds equivalently.

Step 2 If k>1 then replace k by k − 1 and go to Step 1. If k = 1 then set (j∗n)n ≡ (j0
n)n

and k∗≡0, and stop.

(End of the algorithm, the proof of Proposition 3.1 continues.)

Define (q∗n)n ≡ (q̃0
n)n. We note first that

q∗n = q̃0
n =

q̃1
n

(q1
n)α1

∗
=

1

(q1
n)α1

∗

q̃2
n

(q2
n)α2

∗
= ... =

σn(â)∏K
k=1(qkjn)αk∗

. (A.2)

We note also that, for all k>k∗, it must be that

lim
n→∞

qkj∗n
(q̃k−1
j∗n

)γ
= 0 for all γ∈R. (A.3)

Indeed, k>k∗ means that both cases 1(a) and 1(b) in the algorithm do not hold for k. If

case 1(c) holds for k, then it is clear that limn→∞ q
k
j∗n
/(q̃k−1

j∗n
)γ = 0 for all γ∈R. Assume

then case 1(d) holds for k, and that limn→∞ q̃
k
j∗n

=0 (the case where limn→∞ q̃
k
j∗n

=+∞ is

analogous). Assume then, for the sake of contradiction, that there is some γ ∈R such

that

0 < lim sup
n→∞

qkj∗n
(q̃k−1
j∗n

)γ
= lim sup

n→∞

(qkj∗n)1+γ γ1

(q̃kj∗n)γ
, (A.4)

where we used that q̃k−1
n ≡ q̃kn/(q

k
n)γ1 in case 1(d). If 1+γ γ1 = 0, then it must be

that γ < 0 (since γ1> 0), but then equation (A.4) does not hold because both qkj∗n and
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(q̃k−1
j∗n

)−γ tend to 0. Alternatively, if 1+γ γ1>0, then it must be that γ>0 for equation

(A.4) to hold, and hence

0 < lim sup
n→∞

(qkj∗n)1+γ γ1

(q̃kj∗n)γ
=

(
lim inf

n→∞

q̃kj∗n
(qkj∗n)(1+γ γ1)/γ

)−γ
.

By the definition of γ1, this implies that (1+γ γ1)/γ ≤ γ1, which is a contradiction.

Finally, if 1+γ γ1<0, then it must be that γ<0 (since γ1>0), and hence we have

0 < lim sup
n→∞

(qkj∗n)1+γ γ1

(q̃kj∗n)γ
=

(
lim sup

n→∞

q̃kj∗n
(qkj∗n)(1+γ γ1)/γ

)−γ
=

(
lim inf

n→∞

qkj∗n
(q̃kj∗n)γ/(1+γ γ1)

)1+γ γ1

.

By the definition of γ2 (in Step 1(d) of the algorithm), we have that γ/(1 + γ γ1)<γ2 =

1/γ1, which is again a contradiction.

To conclude the proof, note that there are three possibilities:

1. If limn→∞ q
∗
j∗n
∈R++ (and so k∗=0) then we have that (j∗n)n and (q1

n, ..., q
K
n )n are

the desired sequence (by (A.2) we have that the second property of the statement

holds for â for α(â)=α∗).

2. If limn→∞ q
∗
j∗n

= 0 then (j∗n)n and

(q1
n, ...., q

k∗

n , q
∗
n, q

k∗+1
n , ..., qKn )n

are the desired sequences. Indeed, in this case, the algorithm ends in one of the

following two cases. In the first cases, the algorithm ends because k∗=0. In this

case, since (q∗n)n = (q̃0
n)n, we have limn→∞ q

1
j∗n
/(q∗j∗n)γ = 0 for all γ∈R (by equation

(A.3) at k = 1). In the second case, the algorithm ends at Step 1(a) for some

k∗>0. Nevertheless, in this case, for all γ∈R,

lim
n→∞

q∗j∗n
(qk

∗
j∗n

)γ
= 0 and, if k∗<K, lim

n→∞

qk
∗+1
j∗n

(q∗j∗n)γ
= 0 .

The first equality holds from the algorithm ends at Step 1(a) for k∗, while the

second equality holds because (q∗n)n = (q̃k
∗
n )n (and using equation (A.3) again,

now at k=k∗+1).

3. If limn→∞(q∗j∗n)−1 = 0 then, proceeding as in the previous case, it is easy to see

that (j∗n)n and

(q1
n, ...., q

k∗

n , (q
∗
n)−1, qk

∗+1
n , ..., qKn )

are the desired sequences.
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(End of proof of Lemma A.1, proof of Proposition 3.1 continues.)

Fix a consistent assessment (σ, µ) and a sequence of fully mixed strategies (σn)n with

corresponding beliefs (µn)n (obtained using Bayes’ rule) converging to it. Let (jn)n and

(q1
n,..., q

K
n )n be two sequences with the properties in the statement of Lemma A.1 for

σn. We then have that, for each action a∈A, there exist some unique α0(a)∈R++ and

α(a)∈R such that

lim
n→∞

σjn(a)

α0(a)
∏K

k=1(qkjn)αk(a)
= 1 .

Similarly, it follows that, for each history h=(a1, ..., aJ) ∈ H, we have

lim
n→∞

Pr(h|σjn)(∏J
j=1α

0(aj)
) ∏K

k=1(qkjn)αk(h)
= 1 ,

where α(h) ≡
∑J

j=1α(aj).

For each M ∈ R++, we define

q̂M,n ≡
(
q1
n/M, q2

n/M
2, ...., qKn /M

K
)

and

α̂M(a) ≡
(
M α1(a),M2 α2(a), ....,MK αK(a)

)
.

For each M , we define the `-strategy profile λM assigning, to each action a ∈ A, the

value

λM(a) ≡
(∑K

k=1 α̂M,k(a), α0(a)
)
. (A.5)

We now argue that, if M is large enough, then for all histories h, h′∈H,

lim
n→∞

σjn(h)

σjn(h′)
=


λp
M(h)/λp

M(h′) if λr
M(h)=λr

M(h′),

0 if λr
M(h)<λr

M(h′),

∞ if λr
M(h)>λr

M(h′).

(A.6)

To see this, we first define k(α̂) ≡ max({0}∪{k|α̂k 6=0}) for each α̂∈RK . We then note

that, if M is large enough, the left-hand side of expression (A.6) is α0(h)/α0(h′) if and

only if α̂M(h)= α̂M(h′), in which case λr
M(h)=λr

M(h′). If, instead, λr
M(h)<λr

M(h′) for

large M then it must be that

k(α̂M(h))<k(α̂M(h′)), or k(α̂M(h))=k(α̂M(h′)) and α
k(α̂M (h))
M (h)<α

k(α̂M (h′))
M (h′),

which by the second property in Lemma A.1 implies the left-hand side of expression

(A.6) is 0. Analogous arguments imply that, if λr
M(h)>λr

M(h′) and M is large enough,

then the left-hand side of expression (A.6) is +∞.
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The previous arguments imply that, if M is large enough then, for two histories

h, h′∈I, equation (A.6) holds, which implies that (σ, µ) is generated by λM , and hence

the “Only if” part of the statement is proven.

“If” part: The arguments in the main text show that, if λ is an `-strategy pro-

file, then the sequence defined in equation (3.1) supports (σλ, µλ), hence the proof is

completed.

Proof of the Proposition 3.2

Proof. Fix first some `-equilibrium λ. The standard “one-period deviation principle”

implies that (σλ, µλ) is a sequential equilibrium if and only if for all I∈I and a, a′∈AI

such that σλ(a) > 0 we have u(a|σλ, µλ)≥ u(a′|σλ, µλ). Note also that, for all a ∈ A,

σλ(a)> 0 if only if λr(a) = 0, and also u(a|σλ, µλ) = u(a|λ). This implies that (σλ, µλ)

sequential equilibrium.

Now fix some sequential equilibrium (σ, µ). Let λ be such that (σλ, µλ) = (σ, µ)

(note that, by Proposition 3.1, λ exists). That λ is an `-equilibrium follows from the

fact that, for any I ∈I and a∈ I, we have λr(a) = 0 if and only if σλ(a)> 0, that is, if

and only if u(a|σλ)≥maxa′∈AI u(a′|σλ), which implies u(a|λ)≥maxa′∈AI u(a′|λ).

A.2 Proofs of the Results in Section 4

Proof of Proposition 4.1

Proof. The proof follows from the arguments in the main text.

Proof of Proposition 4.2

Proof. “Only if” part: Assume λ is an `-equilibrium for λ̃. Define (σn)n as in (3.1).

Note that σn(a)=ηλ̃n(a) for all n whenever λr(a)>0 (recall Definition 4.5). For each n,

we let εn≥0 be the minimum epsilon such that σn∈Σ∗εn(ηλ̃n). Given that (σλ, µλ) is a

sequential equilibrium supported by (σn)n, it follows that εn → 0, and hence (σλ, µλ)

is a perfect equilibrium for (ηλ̃n)n.

“If” part: Assume there is a sequence (σn)n supporting (σλ, µλ), and two sequences

(εn)n ↘ 0 and (ηn)n, such that σn ∈ Σ∗εn(ηn) for all n. It is clear that (σλ, µλ) is a

sequential equilibrium. Therefore, by Propositions 3.2 and 4.1, λ is an `-equilibrium

for some `-tremble.
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Proof of Proposition 4.3

Proof. We divide the proof into four steps:

Step 1. An auxiliary result. We begin by proving a useful result:

Lemma A.2. Let λ be an `-equilibrium for λ̃. Define, for each κ, γ > 0,

(λrκ,γ(a), λpκ,γ(a)) ≡ (κλr(a), γλ
r(a) λp(a)) ∀a∈A

and

(λ̃rκ,γ(a), λ̃pκ,γ(a)) ≡ (κ λ̃r(a), γλ̃
r(a) λ̃p(a)) ∀a∈A .

Then, λκ,γ is an `-equilibrium for λ̃κ,γ.

Proof. We first note that λκ,γ is an `-strategy profile. The reason is that conditions

1 and 2 in Definition 3.1 are trivially satisfied since, whenever λ(a) = 0, we have

λκ,γ(a)=λ(a). It is also clear that λκ,γ supersedes λ̃κ,γ (in the sense of Definition 4.2).

It is only left to prove that λκ,γ(a)> λ̃κ,γ(a) for a∈A only if u(a|λκ,γ)≥ u(a′|λκ,γ)
for all a′∈AIa . Since, for all a∈A, λκ,γ(a)>λ̃κ,γ(a) if and only λ(a)>λ̃(a), it is enough

to show that (σλκ,γ , µλκ,γ ) = (σλ, µλ). It is clear that σλκ,γ = σλ. Note now that, for a

history h≡(aj)
J
j=1,

λκ,γ(h) =
(∑J

j=1 λ
r
κ,γ(aj),

∏J
j=1 λ

p
κ,γ(aj)

)
=
(
κ
∑J

j=1 λ
r(aj), γ

∑J
j=1 λ

r(aj)
∏J

j=1 λ
p(aj)

)
=
(
κλr(h), γλ

r(h) λp(h)
)
.

It is then clear that µλκ,γ =µλ. It then follows that λκ,γ is an `-equilibrium for λ̃κ,γ.

(End of the proof of Lemma A.2. Proof of Proposition 4.3 continues.)

Step 2. “Only if” part of the second statement. We now prove that, if λ is an

`-equilibrium for λ̃, then there is a sequence (σn)n supporting (σλ, µλ), and a sequence

(εn)n↘0 such that σn∈Σ∗εn(ηλ̃n) for all n. For each a∈A, we define σn(a) as in equation

(3.1). Fix some ε> 0. It is clear that σn is a strategy profile, and that it satisfies the

first condition of the definition of ε-equilibrium for ηn (Definition 4.3). Now, let a∈A
be such that σn(a)>ηn(a). This only happens if λ(a)>λ̃(a), which requires that

u(a|λ) ≥ u(a′|λ) for all a′∈AIa ,

since λ is an `-equilibrium for λ̃. Since u(a|λ)=limn→∞ u(a|σn), we have that

lim
n→∞

(
u(a|σn)−u(a′|σn)

)
≥ 0 .
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Therefore, for each a′∈AI , there exists some na,a′ such that

u(a|σn) ≥ u(a′|σn)−ε for all n>na,a′ .

We let n be the maximum na,a′ across all I, a∈I with λ(a)>λ̃(a), and a′∈I. It is then

clear that, for all n>n, σn is an ε-equilibrium for ηλ̃n. Standard arguments imply that

a sequence (εn)n↘0 such that σn∈Σ∗εn(ηλ̃n) for all n.

Step 3: “If” part of the second statement. We now fix some assessment (σ, µ)

and assume it is a perfect equilibrium for (ηλ̃n)n for some λ̃. We will show that (σ, µ) is

generated by some `-equilibrium for λ̃.

Let (σn)n be a sequence supporting (σ, µ), and (ε̂n)n↘0 be such that σn ∈ Σ∗ε̂n(ηλ̃n)

for all n. Let (jn)n and (q1
n, ..., q

K
n )n be some sequences satisfying the properties in

the statement of Lemma A.1 for (σn)n. Hence, for any a ∈A, there are some unique

α0(a)∈R++ and α(a)∈R, such that

lim
n→∞

σjn(a)

α0(a)
∏K

k=1(qkjn)αk(a)
= 1 .

The arguments after Lemma A.1 show that, for any M large enough, λM defined in

equation (A.5) is such that (σλM , µλM ) = (σ, µ). Nevertheless, there is no guarantee that

λM is an `-equilibrium for λ̃. We now show that λM can be conveniently transformed

using Lemma A.2 so that it becomes an `-equilibrium for λ̃.

Let A† be the set of actions in a∈A satisfying that σn(a)>ηn(a) for infinitely many

n. It is clear that, if a∈A†, then

u(a|σ)≥u(a′|σ) for all a′∈AIa .

There are two cases:

1. If A† 6=A then we proceed as follows. Let â be some action in A\A†. Then, for

each M , we choose κM and γM so that λM,κM ,γM (â) = λ̃(â), where we use Lemma

A.2 to define

λM,κM ,γM (a) ≡
(
κM
∑K

k=1 αk(a)/Mk, (γM)
∑K
k=1 αk(a)/Mk

α0(a)
)

for all a∈A. It then follows that λM,κM ,γM (â′) = λ̃(â′) for all â′∈A\A†. Indeed,

from Definition 4.5, we have

ηn(â′) =
λ̃p(â)

λ̃p(â)λ̃r(â′)/λ̃r(â)
ηn(â)λ̃

r(â′)/λ̃r(â) .

Hence, we have α(â′) = (λ̃r(â′)/λ̃r(â))α(â), and so

λr
M,κM ,γM

(â′) = (λ̃r(â′)/λ̃r(â))λr
M,κM ,γM

(â′) .
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Similarly,

λp
M,κM ,γM

(â′) = (λ̃p(â′)/λ̃p(â))λp
M,κM ,γM

(â′) .

Also, by the same arguments as the ones used after Lemma A.1, it must be that

λM,κM ,γM (a)≥ λ̃(a) for all a∈A if M is large enough. It then follows that λM,κM ,γM

is an `-equilibrium for λ̃.

2. If A† =A then note that λM is a `-equilibrium. Using κ large enough, we have

that λM,κ,1(a)≥ λ̃(a) for all a. Then, since u(a|λM,κ,1) = u(a′|λM,κ,1) for all a∈A
and a′ ∈ AIa , λM,κ,1 an `-equilibrium for λ̃.

Step 4: Proof of existence. We now fix some `-tremble λ̃, and we prove an `-equi-

librium for λ̃ exists. For each n∈N, we take some σn∈Σ∗0(ηλ̃n). It is clear that each σn

is an ε-equilibrium for all ε>0. Taking a subsequence if necessary, we assume that the

sequence of assessments implied by (σn)n converges to some assessment (σ, µ) (that is,

(σn)n supports (σ, µ)). The proof is then concluded using Step 2 of the proof.

A.3 Proofs of the Results in Section 5

Proof of Proposition 5.1

See the proof in the main text.

Proof of Corollary 5.2

Proof. The proof is immediate from the definition of `-stable outcome and Proposition

5.1.

Proof of Proposition 5.2

Proof. “Only if” part. Assume first o is an `-stable outcome. Fix some λ̃. We want

to prove that there are two sequences (εn)n↘0 and (σn∈Σ∗εn(ηλ̃n))n such that oσn → o.

Let λ be a `-equilibrium for λ̃ such that oλ = o (which exists since o is `-stable).

Let then (σn)n defined as in equation (3.1). It is clear that σn(a) ≥ ηλ̃n(a) for all n,

and that σn(a) > ηλ̃n(a) only if u(a|λ) ≥ u(a′|λ) for all a′ ∈ AIa . It then follows that,

since u(a|σn) → u(a|λ) as n → ∞, there exists a sequence of (εn)n ↘ 0 such that

(σn∈Σ∗εn(ηλ̃n))n such that oσn → o.

“If” part. Assume now that o is such that there is some perfect equilibrium (σ, µ)

for (ηλ̃n)n with outcome o, for some λ̃∈ Λ̃. By Proposition 4.3, there is an `-equilibrium

for λ̃ such that which generates (σ, µ), and hence has outcome o. The proof is then

concluded.
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Proof of Corollary 5.1

Proof. Let o be a stable outcome. Assume, for the sake of contradiction, that o is not

`-stable. Let λ̃ be such that there is no `-equilibrium for λ̃ with outcome o. Let (σn∈
Σ∗0(ηλ̃n))n be a sequence such that the corresponding sequence of outcomes converging to

o (note that such sequence exists because o is stable). Taking a subsequence if necessary,

assume that (σn)n supports some assessment (σ, µ), and note that the outcome of (σ, µ)

is o. Since σn∈Σ∗ε(η
λ̃
n) for all ε > 0, Proposition 4.3 implies that there exists some `-equi-

librium for λ̃ generating (σ, µ), and hence with outcome o, which is a contradiction.

Proof of Proposition 5.3

Proof. Assume that o is the unique `-stable outcome and, for the sake of contradiction,

assume that it is not stable. Note that there is no stable outcome different from o, since

otherwise such an outcome would also be `-stable by Corollary 5.1. Hence, it must be

that o is not a stable outcome.

Let (η̂n)n be a tremble such that there is no sequence (σn∈Σ∗0(η̂n))n with outcomes

converging to o (which exists since o is not stable). Let (um)m be a sequence converging

to u such that there is a stable outcome on,m of G(η̂n, um) for each n and m. Assume

that, for each n, (on,m)m converges to some outcome on, which is an equilibrium outcome

of G(η̂n, u). Taking a subsequence if necessary, assume that (on)n converges to some

outcome o′, which is necessarily different from o. Let (mn)n be a sequence such that

(on,mn)n converges to o′.

Fix now some λ̃∈ Λ̃ and, for each j∈N, a sequence (σnj ∈ Σ∗0(ηλ̃n, G(η̂j, umj)))n with

outcomes converging to oj,mj , where Σ∗0(ηλ̃n, G(η̂j, umj)) is the set of equilibria of the

game G(η̂j, umj) where players tremble according to ηλ̃n (note that (σnj)n exists since

oj,mj is a stable outcome of G(η̂j, umj)). We define (jn)n recursively as follows:

1. For n=1, let j1 be the smallest such that σ1j1 ∈ Σ∗1(ηλ̃1 ).

2. For each n>1, let jn>jn−1 be such that σnjn ∈ Σ∗1/n(ηλ̃n).

Let σn≡σnjn for all n∈N. It is clear that the sequence of outcomes of (σn)n converges

to o′. Let finally (nk ∈N)k be strictly increasing and such that (σnk)k generates some

assessment (σ, µ). An analogous argument as the one used in the proof of Proposition

4.3 implies that there exists some λ∈Λ∗(λ̃) such that (σλ, µλ)=(σ, µ), and hence oλ=o′.

Since the argument can be applied to any λ̃∈ Λ̃, we conclude that o′ is `-stable, which

is a contradiction. Hence, o is stable.

Proof of Proposition 5.4

Proof. The proof is analogous to the proof of Proposition 5.2.
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Proof of Proposition 5.5

Proof. 1. Forward induction: The proof is in the main text.

2. Iterated strict dominance: The argument is analogous the proof of part 1.

3. Invariance to reordering simultaneous moves: Let I, I ′∈I be such that I ′=I×AI .
For each terminal history (a1, ..., aJ)∈T , define

T (a1, ..., aJ) ≡

(a1, ..., aj+1, aj, ..., aJ) if aj∈AI for some j,

(a1, ..., aJ) otherwise.

Let G′ be a game coinciding with G but replacing T by T (T ), and also replacing

H, I, and ι accordingly.

We now fix some `-stable outcome o of G, and we will show that the outcome

analogous to o in G′, denoted o′≡o(T −1), is also `-stable. To see this, fix some `-

tremble λ̃∈ Λ̃, and let λ be an `-equilibrium for λ̃ with outcome o. We argue that

λ is also an `-equilibrium for λ̃ in G′, and has outcome o′. This result follows from

the observation that the optimality requirement in the definition of `-equilibrium

for λ̃ (second condition in Definition 4.2) is equivalent to require that λ(a)>λ̃(a)

only if û(a|λ)≥ û(a′|λ) for all a′∈AIa , where

û(a|λ) ≡
∑
t∈Ta

λ(t)

λ(a)
uι(Ia)(t) ,

instead of using u(a|λ) defined in equation (3.4). Since û(a|λ) is independent of

whether I and I ′ are reversed or not, it follows that λ is also an `-equilibrium for

λ̃ in G′.
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B Relationship to LPSs and CPSs

In this section, we shed light on the link between, on one hand, `-strategy profilesand

(i) lexicographic probability systems (LPSs) and (ii) conditional probability systems

(CPSs), as they have also been used to characterize consistent assessments.

B.1 Lexicographic Probability Systems

We first relate `-strategy profiles and LPSs. We follow an approach similar to Govindan

and Klumpp (2003); that is, we consider LPSs over each set of individual strategies.

Such construction is easier to use than that in Blume, Brandenburger, and Dekel (1991),

where LPSs are over the space of strategy profiles, which has not finite representation

and requires additional conditions to ensure that players randomize independently.

In a normal-form game, Govindan and Klumpp define an LPS as a finite sequence

of mixed strategies. To simplify the exposition, we introduce the concept of behavior

LPS as a sequence of behavior strategies.

Definition B.1. A (full-support) behavior LPS (profile) is a finite sequence of strategy

profiles σ̂ ≡ (σj)K̂k=0, for some K̂∈Z+, such that, for all a∈A, there is some k such that

σk(a)>0. We use K̂(a) to denote min{k|σk(a)>0}.

As Govindan and Klumpp point out, (σk|I)K̂k=1 can be interpreted as a collection

of theories of players N\{ι(I)} about player i(I)’s strategy, ordered in decreasing like-

lihood. Using this interpretation, we can define the assessment generated by some

behavior LPS σ̂ by assigning, to each action a and each history (aj)
J
j=1 in some infor-

mation set I, the following probability and belief:

σ(a) = σ0(a) and µ((a)Jj=1) =

0 if K̂((aj)
J
j=1)>K̂(I),

CI
∏J

j=1 σ
K̂(aj)(aj) if K̂((aj)

J
j=1)=K̂(I),

(B.1)

where K̂((aj)
J
j=1) =

∑J
j=1 K̂(aj) and K̂(I) = minh∈I K̂(h), and where CI is the constant

that keeps µ|I a probability distribution. In words, the strategy profile in the assessment

generated by the LPS coincides with the primary theory about each player’s strategy,

and the belief at a given information set is derived by the most likely theory from the

LPS conditional on the information set being reached.

The following result illustrates the relationship between `-strategy profiles and (be-

havior) LPSs:

Proposition B.1. Let (σk)K̂k=0 be a behavior LPS. Then, the `-strategy profile λ(a) ≡
(K̂(a), σK̂(a)(a)) for all a∈A generates the same assessment.
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Proof. We first show that λ is an `-strategy profile. To see this note that, for each

information set I, if a ∈ AI is in the support of σ0|AI , then K̂(a) = 0, and if a ∈ AI

is not in the support of σ0|AI , then K̂(a) > 0. It then follows that
∑

a∈AI λ(a) =

(0,
∑

a∈AI σ
0(a)) = 1.

We proceed by showing that the behavior LPS and λ have the same outcome. It is

clear that they generate the same strategy profile, since σ(a)=σ0(a)=st(λ(a))=σλ(a).

Take then some information set I and history h∈I. Recall that

λ((aj)
J
j=1) =

∏J
j=1 λ(aj) =

(∑J
j=1 K̂(a),

∏J
j=1 σ

K̂(aj)(aj)
)
,

and also that

λ(I) =
∑

h∈I λ(h) =
(
λr(I),

∑
h∈I|λr(h)=λr(I) λ

p(h)
)
.

Since λr(h)= K̂(h) and λr(I)= K̂(I) for all h∈H and I ∈I, it is clear that µ(h)=0 if

and only if µλ(h)=0. If, alternatively, K̂(h)=K̂(I) (and so λr(h)=λr(I)), then

µ((a)Jj=1) =

∏J
j=1 σ

K̂(aj)∑
h∈I|λr(h)=λr(I) λ

p(h)
= st

(
λ((a)Jj=1)

λ(I)

)
= µλ((a)Jj=1) ,

hence the result holds.

Proposition B.1 is illustrative of how an `-strategy profile retains the information

necessary to determine the likelihood of each action, which is given by its likelihood in

the most likely theory where it is played with positive probability. This information is

sufficient to determine the consistency and sequential optimality of assessments, as it

permits assessing the relative likelihood of any two histories.

In applications, especially in extensive-form games, using LPSs to study behavior

may require high values for K̂, diminishing their usefulness. Still, as we argued, most of

the components of an LPS are not necessary to determine the incentives of the players

in the game. As a result, the reduced dimensionality of `-strategy profiles (R2 |A| instead

of R(K̂+1) |A| in a behavior LPS), their additive and multiplicative properties, and the

fact that they can be defined in each information set independently, make them easier

to work with in applications.18

B.2 Conditional Probability Systems (CPS)

A different approach to model consistent behavior is through the use of conditional

probability systems, like Battigalli (1996), or relative probabilities, like Kohlberg and

18Note that Govindan and Klumpp (2003) use LPSs to characterize perfect equilibria. Nevertheless,

their analysis requires using induced lexicographic beliefs for each player (which plays a similar role

as the “independence property” for CPSs), which add a significant degree of intractability as they

are (K̂ (|N |−1))-dimensional objects. Nevertheless, as we indicate in footnote 3, the equilibrium

paths of perfect and sequential equilibria coincidence for generic payoffs.
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Reny (1997). In this section we focus on the relationship of between conditional proba-

bility systems and `-strategy profiles. To simplify the exposition, we assume that nature

does not take any action.

Let S ≡ {s∈AI |s(I)∈AI ∀I ∈ I} be the set of pure strategies. Battigalli (1996)

defines conditional probability system (CPS) on the set of pure strategies S to be a map

P : 2S×(2S\∅) → [0, 1] such that for all S1 ∈ 2S\∅ we have that P (·|S1)∈∆(S1), and

for all S1, S2, S3⊂S,

S1⊂S2⊂S3 implies P (S1|S3) = P (S1|S2)P (S2|S3). (B.2)

To ensure that a CPS is consistent with independent randomizations, Battigalli defines

the following property: a CPS P satisfies the independence property if, for any partition

{I ′, I ′′} of I and any two sets S ′1×S ′′1 , S ′2×S ′′2 ∈ AI
′×AI′′ , we have

P (S ′1×S ′′1 |S ′2×S ′′1 ) = P (S ′1×S ′′2 |S ′2×S ′′2 ) .

Our definition is slightly different than Battigalli’s in that we define the independence

property over behavior pure strategies instead of pure strategies (that is, we allow

different information sets of the same player to be in different elements of the partition

{I ′, I ′′} of I). In our context of an extensive form game with a focus on behavior

strategies, this is without loss of generality, since each player randomizes independently

in each of her information sets. Finally, Battigalli defines a strategic extended assessment

as a triple (σ, µ, P ), where (σ, µ) is an assessment and P is a CPS satisfying

µI(h) = P
(
S(h)

∣∣S(I)
)

and σ(a) = P
(
{s∈S(Ia) | s(Ia)=a }

∣∣S(Ia)
)

(B.3)

for all I∈I, h∈I and a∈A, where S(h≡(aj)
J
j=1) is the set of elements s∈S such that

s(Iaj)=aj for all j (that is, h is on path of s), and S(I)≡∪h′∈IS(h′).

Now fix some `-strategy profile λ. For any element s∈S we define, with some abuse

of notation, its likelihood as λ(s)≡
∏

I∈I λ(s(I)). Also, for a given set S1⊂S, we use

λ(S1) to denote
∑

s∈S1
λ(s). Finally, the conditional probability system generated by λ,

denoted P λ, as

P λ(S1|S2) ≡ st

(
λ(S1 ∩ S2)

λ(S2)

)
for all S1, S2 ⊂ S with S2 6= ∅ . (B.4)

The following result illustrates the connection of `-strategy profilesand CPS:

Proposition B.2. For each `-strategy profile λ, P λ satisfies the “independence prop-

erty” and (P λ, µλ, σλ) is a strategic extended assessment.

Proof. It is clear that P λ satisfies (B.2). To see that P λ satisfies the independence

property, consider a partition {I ′, I ′′} of I and S ′1×S ′′1 , S ′2×S ′′2 ⊂AI
′×AI′′ . Then, note
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that

P λ(S ′1×S ′′1 |S ′2×S ′′1 ) =
P λ
(
(S ′1×S ′′1 ) ∩ (S ′2×S ′′1 )

)
P λ(S ′2×S ′′1 )

=
P λ
(
(S ′1∩S ′2)×S ′′1

)
P λ(S ′2×S ′′1 )

=
(
∑

s′∈S′1∩S′2
λ(s′)) (

∑
s′′∈S′′1

λ(s′′))

(
∑

s′∈S′1∩S′2
λ(s′)) (

∑
s′′∈S′′1

λ(s′′))
=
λ(S ′1∩S ′2)

λ(S ′2)

does not depend on S ′′1 , where λ is naturally extended to AI
′

and AI
′′
.19 Hence, P λ

satisfies the independence property. To prove that (P λ, µλ, σλ) is a strategic extended

assessment, notice that, for any history h≡(aj)
J
j=1,

∑
s∈S(h)

λ(s) =

( J∏
j=1

λ(aj)

)( ∏
I 6∈{Iaj |j=1,...,J}

∑
a∈AI

λ(a)︸ ︷︷ ︸
=1

)
= λ(h) . (B.5)

Similarly, we have ∑
s∈S(I)

λ(s) =
∑
h∈I

∑
s∈S(h)

λ(s) = λ(I) . (B.6)

As a result, using the definitions of (µλ, σλ) (Definition 3.2) and P λ (equation (B.4)), the

first condition in equation (B.3) holds. To prove that the second condition in equation

(B.3) holds, fix an action a∈A. Using S(a) to denote {s∈ S(Ia) | s(Ia) = a }, and an

argument similar to the one used to obtain equations (B.5) and (B.6), we have∑
s∈S(a)

λ(s) = λ(a)
∑
h∈Ia

λ(h) . (B.7)

Then, the second condition in equation (B.3) holds, and the proof is done.

Corollary 3.1 in Battigalli (1996) shows that an assessment (µ, σ) is consistent only

if there is some CPS P satisfying the independence property such that (µ, σ, P ) is an

strategic extended assessment. Proposition B.2 provides us with one of such CPSs: it

is the one generated by an `-strategy profile that generates (µ, σ).

CPSs and relative probabilities are difficult to use in applications. One reason is their

high dimensionality (22|S|, in most games much higher than the set of `-trembles, which

is 2 |A|). Furthermore, the requirements that a given CPS satisfies the independence

property or that a given pair assessment-CPS is a strategic extended assessment may

be difficult to verify, given the large number of equations they entail.

Remark B.1. Kohlberg and Reny (1997) use the assessment of an “outside observer”

to characterize the relative probability of any |N |-tuple of (normal-form game) pure

19For example, λ(s′)≡
∏
I∈I′ λ(s(I)) for each s′∈AI′ , and λ(S′)≡

∑
s′∈S′ λ(s′) for each S′⊂AI′ .
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Figure 2: Tree from Example B.1.

strategies of the players. Our construction can also be interpreted as generating, for

each pair of histories of the extensive form game, an outside observer’s assessment about

their relative likelihood. In fact, Proposition 3.1 shows that it is indeed the case: if

(µn, σn)n is a sequence of fully-mixed assessments converging to some assessment (µ, σ)

if and only if there is an `-strategy profile λ that generates (µ, σ), and satisfies20

∀h, h′∈H, lim
n→∞

Pr(h|σn)

Pr(h′|σn)
=


0 if λr(h)>λr(h′),

λp(h)/λp(h′) if λr(h)=λr(h′),

∞ if λr(h)<λr(h′).

(B.8)

Example B.1. Consider Figure 2, which is and example of how the independence prop-

erty is not sufficient to guarantee consistency. Consider a CPS characterized by P (zn|zn′) =

0 for all n > n′. We illustrate how the use of `-strategy profiles simplifies showing that,

while P satisfies the independence property, it is not part of a sequential equilibrium.21

Indeed, if P was part of a sequential equilibrium, there would exist some `-strategy

profile λ generating it. Then, we would have λr(M) = λr(l) = 0 (because λr(z1) = 0).

Also, since λr(z2)<λr(z3) and λr(z4)<λr(z5), we have λr(R)<λr(m) and λr(r)<λr(L).

Finally, since λr(z7)<λr(z8), we have that λr(L)+λr(m)<λr(R)+λr(r), which is a clear

contradiction.

20In the same way that different sequences supporting a given consistent assessment give different limit

relative probabilities between histories, different `-strategy profilesgenerating the same assessment

may also differ on the relative probability they assign to different histories. Still, in all of them, (B.8)

holds whenever h and h′ belong to the same information set.

21Our figure corresponds to Figure 2 in Battigalli (1996) and to Figure 7 in Kohlberg and Reny (1997).

In both cases, showing that P is not part of a sequential equilibrium is involved because requires

using sequences of positive (product) probabilities.
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