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Abstract

As search frictions become smaller in the market for a consumer product, buyers
are able to locate and access more sellers per unit of time. In response, sellers choose
to design varieties of the product that are more specialized in order to exploit
differences in the buyers’preferences. I find mild conditions on the fundamentals
under which the decline in search frictions and the increase in specialization have
exactly offsetting effects on the extent of competition in the market. Under these
conditions, price dispersion remains constant over time even though search frictions
are vanishing. Buyer’s surplus and seller’s profit, however, grow at a constant
endogenous rate, as the endogenous increase in specialization allows sellers to cater
better and better to the heterogeneous desires of buyers.
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1 Introduction

I study the effect of declining search frictions on competition, price dispersion and surplus
in a version of the Burdett and Judd (1983) model of the consumer product market where
sellers optimally decide how much to specialize their variety of the product to the desires
of particular buyers. I find that under mild conditions on the fundamentals, the increase
in competition caused by the decline in search frictions is exactly offset by the decrease in
competition caused by the endogenous increase in the specialization of product varieties.
Under these conditions, price dispersion remains constant over time, even though search
frictions become vanishingly small. The buyers’surplus and the sellers’profits, however,
grow over time at a constant rate, as the endogenous increase in specialization allows
sellers to provide more and more value to buyers.

Price dispersion is a well-documented phenomenon. A variety of empirical studies
have shown that the same good is sold at very different prices at the same point in
time by different retailers operating in the same geographical market (see, among many
others, Stigler 1961, Pratt, Wise and Zeckhouser 1979, Galenianos, Pacula and Persico
2012). Price dispersion is sizeable when the notion of a good is as narrow as a UPC
code and becomes larger when the notion of a good is expanded to include different
varieties of the product (see, e.g., Kaplan and Menzio 2015, Kaplan, Menzio, Rudanko
and Trachter 2019). Price dispersion cannot be explained away by unobserved differences
in the amenities provided by different retailers (see, e.g., Sorensen 2000, Kaplan and
Menzio 2015).

The textbook theory of price dispersion is developed in Butters (1977), Varian (1980)
and Burdett and Judd (1983). Because of search frictions, buyers come into contact only
with a subset of sellers. Some buyers do not contact any sellers, some buyers contact only
one seller, and some buyers contact multiple sellers. Hence, an individual seller faces both
buyers who are captive (in the sense that they are not in contact with any other seller)
and buyers who are not captive (in the sense that they are in contact with some other
seller). And when a seller faces both captive and non-captive buyers and cannot price
discriminate between the two groups, the only equilibrium features price dispersion.

The textbook theory of price dispersion predicts that, as search frictions decline and
the fraction of buyers who are not captive increases, competition between sellers should
strengthen, markups should fall, and price dispersion should decline and eventually dis-
appear. These predictions of the theory, though, do not appear to be borne out in
the data. Indeed, online retail does not seem to feature systematically lower markups
nor systematically lower price dispersion than offl ine retail, even though search frictions
are presumably lower online (see, e.g., Brynjolfsson and Smith 2000, Baye, Morgan and
Sholten 2004, Ellison and Ellison 2014). Relatedly, the average coeffi cient of variation
for prices of consumer products found by Pratt, Wise and Zeckhouser (1979) in the late
70’s, the one found by Lach (2002) in 1993, and the one found by Kaplan and Menzio
(2015, 2016) in 2010 are quite close, even though the period between 1979 and 2010 has
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witnessed improvements in information and communication technology that presumably
have lowered search frictions (e.g. Internet access to locate stores, Smartphones with GPS
for directions to stores, etc...).

So why did technological progress—which ostensibly reduced search frictions in the
consumer product market—did not visibly enhance competition between sellers, lower
markups, and drive down the extent of price dispersion? In this paper, I propose an
answer to these questions based the insight, borrowed from Kyiotaki and Wright (1993),
that the extent of product differentiation responds endogenously to the extent of search
frictions. In developing the insight, I build a novel theory of industry dynamics, and a
novel theory of economic growth through market deepening and specialization.1

I consider a dynamic version of Burdett and Judd (1983). On one side of the market
for some product, there is a continuum of infinitely-lived firms. Each firm sells a variety of
the product that is defined by its breadth, i.e. the fraction of buyers that like it. Broader
(i.e. less specialized) varieties are liked by a larger fraction of buyers, but provide those
buyers with lower utility. Narrower (i.e. less specialized) varieties are liked by a smaller
fraction of buyers, but provide those buyers with higher utility. Each firm can pay a
lumpy cost to design a new variety of the product, such that designing more specialized
varieties requires more input than designing less specialized varieties. On the other side of
the product market, there is a constant flow of short-lived buyers with unit demand. Each
buyer searches the market and, as a result, comes into contact with n randomly-selected
firms, where n is Poisson with coeffi cient λt. Each buyer inspects the variety sold and the
price charged by each of the n firms with whom he comes into contact and decide whether
and where to purchase the good. Search frictions decline over time, in the sense that the
buyer’s average number of contacts λt grows at the constant exogenous rate gλ > 0.

I focus on a Balanced Growth Path (BGP) of the product market, i.e. an initial
condition for the state of the market and an associated rational expectations equilibrium
along which endogenous variables grow at some endogenous, constant rate. The crucial
feature of a BGP is that the extent of price dispersion remains constant over time. In
fact, in a BGP, the distribution of prices grows at a constant rate, in the sense that every
quantile of the distribution grows at the same constant rate. Therefore, in a BGP, the
distribution of prices normalized by their average remains constant over time and so does
the extent of price dispersion. I focus on a BGP in the spirit of King, Plosser and Rebelo
(1998). First, the BGP described a situation where improvements in communication and
information technology that lower search frictions have no effect on competition and on
price dispersion, which broadly speaking appears to be the case empirically. Second, the
suffi cient conditions for a BGP identify the properties of the fundamentals that one needs
to relax in order for the economy to be on a non-balanced path, where competition and
price dispersion change over time.

I derive conditions on the fundamentals that are necessary for the existence of a BGP.
1Of course, it could be the case that price dispersion has nothing to do with search frictions in the

first place, a point made in Baye and Morgan (2004).
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Specifically, I show that a BGP might exist only if: (i) the buyer’s utility function has
a constant elasticity alpha with respect to the degree of specialization of the consumed
variety; (ii) the price of the input used by the firm to design a new variety grows at the
same rate as the price of the output; (iii) the quantity of input used by the firm to design a
new variety is a strictly increasing function of the variety’s degree of specialization relative
to the average degree of specialization of varieties in the market. I then show that the
necessary conditions for the existence of a BGP are also suffi cient, as long as a system of
three time-invariant equations in three scalar time-invariant unknowns has a solution.

Why does a BGP exist? As search frictions decline, firms can reach more and more
buyers per unit of time and, for this reason, they find it optimal to design varieties of
the product that are more and more specialized. When the buyer’s utility function is
isoleastic in the degree of specialization of the consumed variety, the firm’s design cost
depends on the relative degree of specialization of the designed variety, and the firm’s
design cost grows at the same rate as the price of output, then firms find it optimal to
increase the degree of specialization of their varieties at exactly the same rate at which
search frictions decline. When this is the case, the probability that a buyer contacts k
firms with a variety that he likes is a random draw from a constant Poisson distribution.
And the firm meets a constant flow of buyers who are in contact with k competitors
whose product they like. For this reason, the extent of competition in the market remains
constant over time and, hence, so does the extent of price dispersion.

While the number of relevant contacts between buyers and firms remains constant, each
contact involves trade of an increasingly specialized variety. For this reason, the buyer’s
average surplus, the firm’s flow profits, the firm’s value and the price distribution all grow
over time. The common growth rate is αgλ, i.e. the rate gλ at which search frictions decline
(and the rate at which specialization increases) multiplied by the elasticity α of the buyers’
utility function with respect to the degree of specialization of the consumed variety. The
mechanism behind growth is related to observations by Adam Smith. Smith argued that
the extent of the market constraints the degree of specialization. Increases in the extent
of the market allow further specialization of production based on technical advantages
or increasing returns to scale and, in turn, engender economic growth. Similarly, here,
search frictions determine the depth of the market. And declining search frictions engender
growth by allowing firms to design products that are better and better tailored to a
particular subset of buyers.

Behind the aggregate behavior of the market, there lie rich industry dynamics. In a
BGP, every firm goes through a common cycle with constant periodicity, although the
beginning of the cycle takes place at a different calendar time for different firms. The
cycle begins with the firm designing a new variety of the product. At that moment in
time, the firm is the best in the market– in the sense that the firm’s variety is the most
specialized, the firm offers the highest surplus to its customers, and the firm’s profit and
value are highest. Over the cycle, the firm loses ground, as more and more competitors
design a new variety of the product and leapfrog the firm. Specifically, when the firm has
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gone through z% of the cycle, the firm’s variety is at the z-th quantile of the specialization
distribution, the firm offers to its customers a surplus at the z-th quantile of the surplus
distribution, the firm’s profit and value are at the z-th quantiles of the profit and value
distributions. The cycle ends with the firm scrapping its variety. At that moment in time,
the firm is the worst in the market.

The key mechanism highlighted in this paper is that declining search frictions induce
firms to develop more specialized varities in order to take advantage of the heterogeneity
in the preferences of different buyers. The decline in search frictions is a pro-competitive
force, as it allows buyers to compare more sellers. The increase in the degree of specializa-
tion of the varieties sold by firms is an anti-competitive force, as it thins out the number
of sellers that are relevant to each buyer. Under mild conditions, the decline in search
frictions and the increase in specialization exactly offset each other, competition remains
constant and so does price dispersion. The idea that lower search frictions tends to in-
crease competition and that higher specialization tends to decrease competition seems
pretty uncontroversial. The idea that lower search frictions triggers higher specialization
is so commonplace to be the subject of best sellers. In “The Long Tail”, Anderson argues
that the Internet has led a proliferation of niche varieties in markets that used to be
dominated by generic varieties. In his words “When you dramatically lower the cost of
connecting supply and demand, it changes the entire nature of the market. [. . . ] Bringing
niches within reach reveals latent demand for non-commercial content”and “The mass
market is turning into a mass of niches.”

Related literature The paper provides a novel explanation for the observation that
declining search frictions do not appear to have reduced price dispersion in the consumer
goods market. There are several papers on the related topic of why price dispersion in
online markets is not lower than in offl ine markets. Ellison and Ellison (2014) consider a
search model of the market for used books, in which buyers have heterogeneous valuation
for a book, sellers have a single copy of the book and they meet buyers sequentially at
some exogenous speed. Price dispersion obtains in equilibrium because different sellers
meet captive buyers at different speed. They show that, when the arrival rate of captive
buyers increases, the highest prices increase (as sellers can sample more buyers within
the same amount of time). When the fraction of non-captive buyers increases, the lowest
prices fall (as the competition for these buyers intensifies). Overall, price dispersion
increases. Translated in the context of a Burdett-Judd model, Ellison and Ellison (2014)
model online markets as markets where the buyer’s valuation is higher and the fraction of
non-captive buyers is higher than in offl ine markets. In my model, the only fundamental
change is the average number of sellers contacted by each individual buyer. Ellison and
Wolitsky (2012) argue that price dispersion need not disappear in online markets because
sellers find it optimal to engage in obfuscation, i.e. actions that make it hard for buyers
to observe a seller’s price. My theory relates to Ellison and Wolitsky (2012) because the
increase in specialization in varieties acts—in a mechanical sense—like obfuscation. Baye
and Morgan (2001) argue that price dispersion need not disappear in online markets if
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the participation to these markets is costly to the sellers. They show that, in equilibrium,
sellers randomize over participating to the online market and, conditional on participating,
they randomize over the posted price.

The paper provides a novel theory of growth, where a deepening of the market allows
firms to develop more specialized product and take advantage of the heterogeneity in the
preferences of different buyers. There are several related theories of Smithian growth,
where economic growth is caused by an increase in the size of the market, increase that
allows production to become more specialized and take advantage of technological differ-
ences across locations or of increasing returns to scale. Kelly (1997) consider an economy
with multiple locations, which are geographically separated. Each location has a tech-
nological advantage in producing a particular intermediate good. When locations are
not connected, each location ineffi ciently produces all intermediates. As more and more
locations become connected, each location specializes in the intermediate good that they
produce most effi ciently. Locay (1990) considers an economy in which market produc-
tion features increasing returns to scale, but home-production avoids agency problems.
He shows that, as the size of the market increases because of e.g. population growth,
production moves from the home to the market and productivity increases. In contrast
to these theories, my theory highlights the role of market depth– the facility with which
buyers meet sellers within a market– in generating economic growth. Since a market can
always grow deeper but cannot expand indefinitely (at least with a fixed population),
my theory generates perpetual growth rather than a growth episode. My theory is also
loosely related to Romer (1990) in the sense that in both theories growth manifests itself
with an increase in the number of varieties.

The notion that market deepening– modelled as a decline in search frictions– leads to
economic growth by leveraging heterogeneity can also be found in Martellini and Menzio
(2020, 2021). Martellini and Menzio (2020, 2021) consider a frictional labor market in the
spirit of Mortensen and Pissarides (1994) where firm-worker matches are heterogeneous
with respect to their quality. They find conditions under which the unemployment, va-
cancy, and the workers’transition rates are constant over time in the face of declining
search frictions, as they appear to be in the data. Under these conditions, they show
that market deepening leads to growth by allowing workers and firms to sort into better
matches. In this paper, I consider a frictional product market in the spirit of Burdett and
Judd (1983). I find conditions under which price dispersion and competition remain con-
stant over time in the face of declining search frictions, as they appear to be in the data.
I then show that, under these conditions, market deepening leads to economic growth
by allowing firms to design more specialized products. The key difference between the
two theories is related to the focus on price dispersion. In a product market analogue of
Martellini and Menzio (2020, 2021), a buyer’s valuation for the variety of a seller would
be a draw from a continuous, unbounded distribution. Given this type of heterogeneity,
the seller would always face a continuous demand, and price dispersion would not obtain
as an equilibrium outcome. In my model, a buyer’s valuation for the variety of a seller is
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a draw from a binary random variable (i.e. like, dislike). Given this type of heterogeneity,
the firm faces a demand that is discontinuous wherever the price distribution has a mass
point and, hence, there must be price dispersion in equilibrium. And, since discrete het-
erogeneity in buyers’valuations is needed to generate price dispersion, sustained growth
can only be achieved by allowing firms to redesign their varieties.

Lastly, the paper provides a novel theory of industry dynamics. The firms in the market
design more specialized products as search frictions decline. Each individual firm follows
an (S, s) cycle, which starts with the design of a new variety and ends with the scrapping
of the variety. The timing of the (S, s) cycle is different for different firms so that the cross-
sectional distribution of varieties evolves in a balanced fashion. Mechanically, the industry
dynamics resembles those in a stationary equilibrium of menu cost model (see, e.g., Caplin
and Spulber 1986, Benabou 1988, Diamond 1993). Substantially, though, the industry
dynamics in menu cost models are driven by inflation and the (S, s) strategy is about
nominal prices, while in my model the industry dynamics are driven by market deepening
and the (S, s) strategy is about specialization of varieties. There are some papers that,
like mine, study the effect of declining trading frictions on the equilibrium of an industry.
Guthmann (2020) studies the industry dynamics in a market where buyers accumulate
information about sellers over time. He shows that prices and markups fall towards the
competitive benchmark. Perla (2019) studies the industry dynamics in a market where
buyers become progressively aware of sellers. He shows that buyer awareness tends to
lower industry markups. In contrast, I show that declining frictions do not necessarily
lower markups when firms can choose the degree of specialization of their variety.

2 Environment and definition of a BGP

In this section, I describe the physical environment of the market for some consumer
product and then I formally define a Balanced Growth Path (BGP).

2.1 Environment

Consider the market for a consumer product that can be produced in different varieties.
On one side of the market, there is a measure 1 of infinitely-lived firms. A firm pays a
lumpy cost Ct(x) to design a variety of the good with breadth x ∈ [0, 1], where x denotes
the probability that an individual buyer likes that particular variety of the good and Ct(·)
is a strictly positive and decreasing function. Varieties with a high x are generic: they
are liked by a large fraction of buyers and they are relatively cheap to design. Varieties
with a low x are niche: they are liked by a small fraction of buyers and they are relatively
expensive to design. I will sometimes refer to 1/x as the specificity of a variety. After
paying the design cost Ct(x), a firm can produce its variety at a constant unit cost, which,
for the sake of simplicity, is assumed to be zero. A firm sets the price pt ≥ 0 of its variety
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at date t taking as given the joint distribution of its competitors over the breadth of their
varieties and their prices.

The design cost function Ct(x) is equal to the price of the input in the design process,
qt, times the quantity of input c(x/X

β
t ), where c(·) is a decreasing function, Xt is the

average breadth of varieties in the market and β ≥ 0 is a coeffi cient capturing production
externalities.2 For β = 0, the breadth of the varieties produced by other firms does not
affect the design cost of an individual firm. For β > 0, a decline in the breadth of the
varieties produced by other firms leads to a decline in the design cost of an individual
firm.

On the other side of the market, there is a flow of short-lived buyers. Specifically, a
measure b·dt of buyers enters the market during each interval of time of length dt. A buyer
demands one unit of the good. A buyer searches the market and contacts n ∈ {0, 1, 2, ...}
firms, where n is the realization of a Poisson distribution with coeffi cient λt. A buyer
observes the variety sold and the price charged by every firm that he contacts and, then,
he decides whether and where to purchase the good. If a buyer purchases a variety of the
good with breadth x at the price p and he likes that variety, he enjoys a utility of u(x)−p,
where u(·) is a strictly positive and strictly decreasing function. If a buyer purchases a
variety of the good with breadth x at the price p and he does not like the variety, he
enjoys a utility of −p. That is, many buyers like a generic variety, but they get little
utility from consuming it. Few buyers like a niche variety, but, if they do, they get more
utility from consuming it. A buyer exits the market whether he purchases the good or
not.

The environment is non-stationary. The number n of firms contacted by a buyer
follows a Poisson distribution with coeffi cient λt, where λt is equal to the average number
of firms contacted by a buyer. I will sometimes refer to 1/λt as the extent of search
frictions. The average number of firms contacted by a buyer λt grows at some constant,
exogenous rate gλ > 0. The growth in the number of firms contacted by a buyer is meant
to capture declining search frictions due to developments in communication technology
that make it easier for buyers to locate sellers (e.g., telephone, mobile phone, Internet,
smart phone, etc. . . ). The price qt of the input used in the design of new varieties grows
at some exogenous rate gq.

Some comments about the environment are in order. First, let me comment on how I
model specialization and product differentiation. I assume that a buyer has a probability
x of liking a variety of the good with breadth x ∈ [0, 1]. If the buyer likes the variety,
he enjoys a utility of u(x) from consuming it. If the buyer does not like the variety,
he enjoys a utility of 0 from consuming it. This highly stylized approach to modelling
specialization and product differentiation is borrowed from Kyiotaki and Wright (1993)

2Venky Venkateswaran noticed that a sensible alternative specification would be to make the quantity
c a function of the ratio between the breadth of the firm’s new variety and the breadth of the firm’s old
variety. I conjecture that a BGP would exist also under this specification, which has the advantage of
not involving any external effects.
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and it is reminiscent of Diamond (1982).

Second, let me comment on how I model production and retailing. I assume that the
same agent (the firm) designs a variety of the product and retails it. The assumption
makes the analysis simple. The assumption, however, is not always realistic, as product
design (choosing the breadth of the variety) and retailing (choosing the retail price) are de-
cisions that are often made by different agents (the producer and the retailer). Moreover,
I assume that every producer/retailer carries only one variety. Again, the assumption
makes the analysis simple even though, in reality, producers have a portfolio of products
and retailers an assortment of varieties.

Third, let me comment on how I model the search process. I assume that buyers search
non-sequentially and contact a number n of firms that is distributed as a Poisson with
coeffi cient λt. This specification of the search process guarantees that there is a positive
fraction of buyers who is in contact with a single firm as well as a positive fraction of
buyers who is in contact with more than one firm. As explained in Butters (1977), Varian
(1980) and Burdett and Judd (1983), the coexistence of buyers with one contact and
buyers with multiple contacts is necessary to generate price dispersion in equilibrium.3

When firms sell products that are liked by all buyers (as in Butters 1977, Varian 1980
and Burdett and Judd 1983), the extent of competition in the market is determined by
the fraction of buyers with n contacts, n = 0, 1, 2, . . .. When firms sell products that are
liked by a subset of buyers (as in my model), the extent of competition is determined by
the fraction of buyers who are in contact who are in contact with n-squiggle firms selling
a good that they like, k = 0, 1, 2.... This is where the Poisson assumption comes into
play. Indeed, if n is distributed as a Poisson with coeffi cient λt and the average breadth
of a variety is Xt, then k is distributed as a Poisson with coeffi cient λtXt. Therefore, if
λtXt remains constant over time, the distribution of n-squiggle is constant and, for that
reason, the extent of competition is stable.4

2.2 Definition of a BGP

To formally define a BGP, it is useful to first lay out some definitions and some notation.
The initial state of the market is the cumulative distribution functionH0(x) of the breadth
of the variety of the good sold by different firms. A path for the market is a list of: (i)
policy functions {x`,t, Tt(x), st(x), pt(x)}, where x`,t denotes the breadth of new varieties,
Tt(x) denote the time until a variety with breadth x is scrapped, pt(x) denotes the price
charged by firms with a variety of breadth x, and st(x) ≡ u(x)−pt(x) is the surplus offered
by firms with a variety of breadth x to buyers who like that variety; (ii) value functions

3Menzio and Trachter (2015) show that price dispersion may emerge when all buyers are captive, but
only if some sellers are large.

4The Poisson distribution may not be the only one with the property that the number of relevant
contacts for a buyer is a distribution that depends on λt and Xt only through their product λtXt. Lester,
Visschers and Wolthoff (2015) list other distributions with the same property. I conjecture that a BGP
would also exist for any of those distribution.
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{Rt(x), Vt(x)}, where Rt(x) denotes the flow profit for a firm selling a variety of breadth
x and Vt(x) denotes the value of a firm selling a variety of breadth x; (iii) distributions
{Ft(s), Gt(p), Ht(x)}, where Ft(s) is the fraction of firms offering a surplus non-greater
than s, and Gt(p) is the fraction of firms charging a price less than p. The path for the
market is an equilibrium if the value and policy functions maximize the agents’problems
and the distributions are consistent with the agents’policy and the initial state of the
market. A BGP is an initial state of the market and an equilibrium path associated with
that initial state such that endogenous variables grow at some endogenous, constant rate.

Consider a buyer visiting the market at date t. The buyer comes into contacts with n
firms with probability

λnt
e−λt

n!
, for n = 0, 1, 2, .... (2.1)

The buyer obtains a negative surplus from purchasing any variety of the product that
he does not like, as the utility from consuming such variety is 0 and the disutility from
paying the price p is positive. Hence, the buyer restricts attention to the n firms that sell
a variety of the good that he likes. The probability that buyer contacts k firms that sell
a variety that he likes is given by

∞∑
n=k

λnt
e−λt

n!

n!

k!(n− k)!X
k
t (1−Xt)

n−k, for k = 0, 1, 2, ..., (2.2)

where Xt denotes the average breadth of varieties

Xt =
∫
xdHt(x). (2.3)

The expression in (2.2) is easy to understand. The buyer comes into contact with n ≥ k

firms with probability given in (2.1). Conditional on contacting n firms, the buyer likes
the varieties of k of them with probability Xk

t (1 −Xt)
n−k · n!/ k!(n − k)!. Among these

firms, the buyer purchases the good from the firm that offers him the highest surplus
u(x)− p, as long as this surplus is non-negative.
Next, consider a firm selling a variety of the product with breadth x. During an

interval of time of length dt, the firm meets an average of b0 · dt buyers who do not have
any contact with any other firm whose product they like, where b0 is given by

b0 = b

∞∑
n=1

n
λnt e

−λt

n!
(1−Xt)

n−1

= bλte
−λt

∞∑
n=0

(1−Xt)
nλnt

n!

= b
1

Xt

e−λtXtλtXt.

(2.4)

The firm meets an average of bnλnt exp(−λt)/n! buyers with n contacts, with n = 1, 2, . . ..
One of the buyer’s contacts is the firm. The probability that none of the other n − 1
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contacts sells a product that is liked by the buyer is (1−Xt)
n−1, where Xt is the average

of x in the population of firms. The second line is obtained by collecting λt exp(−λt) in
the first line. The third line is obtained by recognizing that the summation in the second
line is equal to exp(−λt(1−Xt)).

Similarly, during an interval of time of length dt, the firm meets an average of bk · dt
buyers who are in contact with exactly k = 1, 2, . . .. other firms whose product they like,
where bk is given by

bk = b
∞∑

n=k+1

n
λnt e

−λt

n!

(n− 1)!
k!(n− k − 1)!X

k
t (1−Xt)

n−k−1

= bλk+1t e−λt
Xk
t

k!

∞∑
n=0

(1−Xt)
nλnt

n!

= b
1

Xt

e−λtXt
λk+1t Xk+1

t

k!
.

(2.5)

The firm meets an average of bnλnt exp(−λt)/n! buyers with n contacts, with n = k +

1, k + 2, .... One of the buyer’s contacts is the firm. The probability that exactly k of
the other n− 1 contacts of the buyer has a product that he likes is (n− 1)!/[k!(n− k −
1)!]Xk

t (1−Xt)
n−k−1. The second line is obtained by collecting λk+1t Xk

t exp(−λt)/k! in the
first line. The third line is obtained by recognizing that the summation in the second line
is equal to exp(−λt(1−Xt)).

The firm chooses its price, p, so as to maximize its flow profit, taking as given the
number of buyers that it meets and the distribution of its competitors over the breadth
of their varieties and the price that they charge. Since buyers make their purchasing
decision based on the surplus that they are offered by firms whose variety they like, it is
easier to formulate the firm’s pricing problem as choosing the surplus s = u(x)−p offered
to buyers who like the firm’s variety so as to maximize the flow profit, taking as given
the number of buyers that the firm meets, the distribution of competitors over varieties
Ht(x), and the surplus st(x) offered by firms with a variety x.

Formally, the pricing problem of the firm is

Rt(x) = max
s≥0

{ ∞∑
k=0

bkxFt(s)
k

}
(u(x)− s), (2.6)

where Ft(s) is defined as

Ft(s) =

∫
x:st(x)≤s xdHt(x)∫

xdHt(x)
(2.7)

First, let me explain (2.7). The function Ft(s) denotes the probability that a firm offers a
surplus smaller than s to a buyer, conditional on the buyer liking its variety. Next, let me
explain (2.6). The firm meets a flow bk of buyers who are in contact with k other firms
whose product they like. The probability that one of these buyers chooses to purchase
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from the firm rather than from one of the other n competitors is xFt(s)k, where x is the
probability that the buyer likes the firm’s variety, and Ft(s)k is the probability that all of
the other k sellers offer a surplus smaller than s to the buyer. The profit that the firm
enjoys for every unit sold is p, which is equal to u(x)− s.
Expanding the objective function of the firm in (2.6), I obtain

Rt(x) = max
s≥0

{ ∞∑
k=0

b
x

Xt

λtXte
−λtXt λ

k
tX

k
t Ft(s)

k

k!

}
(u(x)− s)

= max
s≥0

{[ ∞∑
k=0

λktX
k
t Ft(s)

k

k!

]
b
x

Xt

λtXte
−λtXt

}
(u(x)− s)

= max
s≥0

{
b
x

Xt

λtXt exp
−λtXt(1−Ft(s))

}
(u(x)− s),

(2.8)

where the third line makes use of the fact that the summation in the second line is equal
to exp(λtXtFt(s)). The search process is such that buyers contact a number n of firms
distributed as a Poisson with coeffi cient λt. Then, buyers choose where to purchase the
good based on which of the n firms’varieties they like, how specialized these varieties are,
and at what price they are sold. This complicated search process leads to the remarkably
simple expression for the profit of the firm in (2.8). Indeed, the profit of the firm is the
same that would obtain if buyers sampled a number k of firms distributed as a Poisson
with coeffi cient λtXt, they liked the firm’s variety with probability x/Xt and other sellers’
varieties with probability 1, and the distribution of the surplus offered by other sellers
was given by Ft(s).

Finally, consider the firm’s product design problem. The present value of profits Vt(x)
for a firm selling a variety of the good with breadth x at date t is given by

Vt(x) = max
T≥0,xn∈[0,1]

∫ T

0

e−ρτRt+τ (x)dτ + e−ρT
[
Vt+T (xn)− qt+T c(xn/Xβ

t+T )
]
. (2.9)

The above expression is easy to understand. At all dates t + τ between t and t + T the
firm sells its existing variety of the good, and enjoys a flow profit of Rt+τ (x). At date
t+T , the firm designs a new variety of the product with breadth xn, pays the lumpy cost
qt+T c(xn/X

β
t+T ), and enjoys the continuation present value of profits Vt+T (xn).

Along a BGP, some variables remain constant over time and some variables growth at
some constant, endogenous rate. Specifically, along a BGP, the distribution Ht of firms
across the breadth of their varieties grows at some constant rate gx, in the sense that
every quantile of the distribution grows at that rate.5 Formally,

Ht(x exp(gxt)) = H0(x). (2.10)

5This definition of balanced growth for a distribution is standard in the recent literature studying
growth in model with heterogeneity (see, e.g., Lucas and Moll 2014, Perla and Tonetti 2014, or Martellini
and Menzio 2020).
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In a BGP, a firm that designs a new variety chooses the breadth x`,t, which grows at the
constant rate gx, and a firm scraps a variety when its breadth reaches xh,t, a cutoff that
also grows at the constant rate gx. That is, in a BGP, an individual firm follows an (S, s)
rule for redesigning its variety of the product, where the (S, s) bands grow at the constant
rate gx. Formally,

x`,t = x`,0 exp(gxt), xh,t = xh,0 exp(gxt), (2.11)

Tt(x) = max{0, log(x/xh,t)/gx}, for x ≥ x`,t. (2.12)

In a BGP, the price charged by a firm with a variety at any fixed quantile of the breadth
distribution grows at some constant rate gp, and the surplus offered by a firm with a
variety at any fixed quantile of the breadth distribution grows at the constant rate gs.
Formally,

st(x exp(gxt)) = s0(x) exp(gst), (2.13)

pt(x exp(gxt)) = p0(x) exp(gpt). (2.14)

Lastly, along a BGP, the present value of profits for a firm with a variety at any fixed
quantile of the breadth distribution grows at some constant rate gV , i.e.

Vt(x exp(gxt)) = V0(x) exp(gV t). (2.15)

It is important to point out that the balanced growth conditions above guarantee that
the extent of price dispersion remains constant over time. In fact, conditions (2.10) and
(2.14) imply that the price distribution Gt grows at the constant rate gp, in the sense that
every quantile of Gt grows at the rate gp. Since Gt grows at a constant rate along a BGP,
the distribution of normalized prices p/

∫
pdGt(p)– which is the standard way to compare

price distribution across goods or over time– is constant over time and, in this sense, the
extent of price dispersion is constant. Similarly, conditions (2.10) and (2.13) imply that
the surplus distribution Ft grows at the constant rate gs, in the sense that every quantile
of Ft grows at the rate gs.

Before moving on to the existence and properties of a BGP, it is useful to reformulate
the balanced growth condition (2.10). A quantile x of the firm distribution grows at the
rate gx between t and t+dt if and only if Ht(x) is equal to Ht+dt(x exp(gxt)). Analogously,
a quantile x of the firm distribution grows at the rate gx between t and t+ dt if and only
if the measure of firms that are below x at t and above x exp(gxt) at t+ dt is equal to the
measure of firms that are above x at t and below x exp(gxt) at t + dt. Anticipating that
gx is negative, this inflow-outflow condition can be written as

Ht(x)−Ht(x exp(gxdt)) = 1−Ht(xh,t exp(gxdt)), for x ∈ [x`,t, xh,t]. (2.16)

The left-hand side of (2.16) is the measure of firms that are below x at t and above
x exp(gxt) at t + dt. These are the firms with a variety between x exp(gxt) and x. The
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right-hand side is the measure of firms that are above x at t and below x exp(gxt) at
t+ dt. These are the firms that are above xh,t exp(gxdt) and in the next dt units of time
pay the redesign cost and start producing a variety with breadth x`,t+dt. Dividing by dt
and taking limits for dt→ 0, (2.16) becomes

H ′t(x)x = H ′t(xh,t)xh,t, for x ∈ [x`,t, xh,t]. (2.17)

I am now in the position to define a BGP.

Definition 1. A BGP is a path for distributions {Ft, Gt, Ht}, a path for policies {st, pt, x`,t, xh,t},
and a path for values {Vt, Rt} such that:
(i) The policies {st, pt, x`,t, xh,t} are optimal, in the sense that st(x) solves the pricing

problem (2.8) and pt = u(x)−st(x), and x`,t and xh,t solve the design problem (2.9);
(ii) The values Vt and Rt are maxima, in the sense that they are given by (2.8)-(2.9);

(iii) The distributions are consistent with agents’behavior;

(iv) The balanced growth conditions (2.11)-(2.15) and (2.17) are satisfied.

The above definition of a BGP may appear standard, but there are a few points worth
discussing. First, I restrict attention to equilibria in which firms use pure strategies in the
pricing decision, i.e. pt(x) is a function. When firms are identical, the only equilibrium
of the Burdett-Judd competition is such that firms mix over prices. When firms are
heterogeneous and distributed according to an atomless function, as in this paper, the
mixed pricing strategy equilibrium is purified and, hence, the restriction is without loss
in generality. Second, I restrict attention to equilibria in which the surplus distribution
Ft is atomless. This is also without loss in generality as it is straightforward to rule out
equilibria in which Ft has a mass point. Third, I restrict attention to equilibria in which
firms follow a pure (S, s) strategy for the redesign of their varieties. This restriction is
an afterthought in menu cost models (see, e.g., Benabou 1988, 1992, Caplin and Spulber
1986, Caplin and Leahy 1997). Burdett and Menzio (2017, 2018) show, however, that, in
menu cost models with Burdett-Judd competition, there may also/only exist equilibria
in which firms mix with respect to the (S, s) strategy. While, I do not entertain such
equilibria here, it is important to notice that the forces behind randomization on the
(S, s) strategy in Burdett and Menzio (2017, 2018) are not at work here as firms can
adjust prices freely.

3 Necessary Conditions for a BGP

In this section, I derive some restrictions on the fundamentals of the model (i.e. the
buyer’s utility function, the firm’s cost function, the exogenous growth rate of the price of
inputs) that are necessary for the existence of a BGP. These restrictions are the analogue
for our model of the restrictions on the utility function and on the production function that
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King, Plosser and Rebelo (1988) showed to be necessary for the existence of a BGP in the
neoclassical growth model. Along the way, I will derive some properties of endogenous
objects (i.e. the endogenous growth rate of the breadth of varieties, the endogenous
distribution of varieties, etc. . . ) that must hold in a BGP.

3.1 Distribution of varieties

For t = 0, the balanced growth condition (2.17) for the distribution of varieties reads

H ′0(x)x = H ′0(xh,0)xh,0, for x ∈ [x`,0, xh,0]. (3.1)

The expression above is a differential equation for the initial distribution of varieties, H0.
The solution to the differential equation must satisfy the boundary condition H0(x`,0) = 0

because for x < x`,0 the inflow of varieties is zero. The solution to the differential equation
must also satisfy the boundary condition H0(xh,0) = 1 because all varieties x > xh,0 are
scrapped. The unique solution to the differential equation (3.1) that satisfies the two
boundary conditions is

H0(x) =
log x− log x`,0
log xh,0 − log x`,0

. (3.2)

The initial distributionH0 in (3.2) is the only distribution consistent with balanced growth
between date 0 and dt.

Now suppose that the balanced growth (2.17) is satisfied for all τ ∈ [0, t]. If that is the
case, the distribution of varieties at date t is an Ht such that Ht(x) = H0(x exp(−gxt)).
Hence, Ht is given by

Ht(x) =
log xe−gxt − log x`,0
log xh,0 − log x`,0

=
log x− log x`,t
log xh,t − log x`,t

, (3.3)

where the second step makes use of the fact that xh,t = xh,0 exp(gxt) and xl,t = xl,0 exp(gxt).
It is immediate to verify that the distribution Ht in (3.3) satisfies the balanced growth
condition (2.17) at date t and, hence, the distribution grows at a constant rate also be-
tween date t and t+ dt. Moreover, the distribution Ht in (3.3) is the only one satisfying
the balanced growth condition (2.17) at date t.

The above findings establish that, in any BGP, the distribution of varieties Ht must
be log-uniform over the interval [x`,t, xh,t]. Conversely, the distribution of varieties Ht

satisfies the constant growth condition (2.17) only if the initial distribution of varieties
H0 is log-uniform over the interval [x`,0, xh,0] and and the firm’s (S, s) thresholds x`,t and
xh,t grow at the constant rate gx. These findings are closely related to those in Caplin
and Spulber (1986) and Benabou (1988) showing that the only stationary distribution of
real prices in a menu cost model where firms follow a constant (S, s) rule is log-uniform.
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3.2 Firm’s pricing function

The firm’s pricing problem is

Rt(x) = max
s≥0

{
b
x

Xt

λtXt exp
−λtXt(1−Ft(s))

}
(u(x)− s). (3.4)

Following the same arguments as in Burdett and Judd (1983), we can use (3.4) to establish
some equilibrium properties of the Ft distribution. First, the surplus st(x) must belong
to the interval [0, u(x)). In fact, Rt(x) is strictly positive as the firm can offer a surplus
of 0 and sell its product at the price p = u(x) > 0 to the buyers who have not met any
other firm with a product that they like. Since Rt(x) is strictly positive, it follows that
st(x) must be strictly smaller than u(x). Second, the support of Ft must be an interval.
Suppose the support of Ft had a gap between s0 and s1, with s0 < s1. If that were the
case, a firm that offered the surplus s1 could achieve a strictly higher profit by offering
s0 instead, since it would sell the same quantity and enjoys a strictly higher profit per
unit sold. Third, the lower bound on the support of Ft must be zero. Suppose that the
lower bound were strictly positive. If this were the case, a firm that offered the surplus
at the lower bound could achieve a strictly higher profit by offering 0 instead, since it
would sell the same quantity and enjoys a strictly higher profit per unit sold. While the
notation in (3.4) implies a restriction to distributions Ft without mass points, it would be
straightforward to show that the restriction is without loss in generality.

The surplus st(x) offered by a firm is strictly decreasing in the breadth of the firm’s
variety x. To this aim, take any x0 and x1, with x0 < x1, and let s0 denote st(x0) and s1
denote st(x1). Since x1 chooses s1 over s0, it must be the case that

exp(−λtXt(1− Ft(s0))) [u(x0)− s0] ≥ exp(−λtXt(1− Ft(s1))) [u(x0)− s1] . (3.5)

Since x0 chooses s0 over s1, it must be the case that

exp(−λtXt(1− Ft(s1))) [u(x1)− s1] ≥ exp(−λtXt(1− Ft(s0))) [u(x1)− s0] . (3.6)

The above inequalities together imply

[u(x0)− u(x1)] [exp(−λtXt(1− Ft(s0)))− exp(−λtXt(1− Ft(s1)))] ≥ 0. (3.7)

Since u(x0) > u(x1), (3.7) implies that s0 ≥ s1 and, hence, the surplus st(x) offered by
a firm must be weakly decreasing in the breadth of a firm’s variety. Further, the surplus
st(x) must be strictly decreasing, or else the distribution Ft(s) would have a mass point.
These findings are intuitive. The gains from trade between a firm with a broad variety and
an interested buyer are smaller than the gains from trade between a firm with a narrow
variety and an interested buyer. Therefore, firms with a broad variety find it optimal to
offer strictly less surplus than firms with a narrow variety.
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3.3 Buyer’s utility function

The first-order condition for the solution to the firm’s pricing problem is

1 = λtXtF
′
t(st(x))(u(x)− st(x)). (3.8)

The left-hand side of (3.8) is the (per-buyer) cost of a marginal increase in the surplus
offered by the firm, which is given by the decline in profits per sale. The right-hand side
is the (per-buyer) benefit of a marginal increase in the surplus offered by the firm, which
is given by the increase in the number of sales, λtXtF

′
t(st(x)), times the profit per sale,

u(x)−st(x). Condition (3.8) states that the solution to the firm’s pricing problem is such
that the marginal cost and the marginal benefit of an increase in the amount of surplus
offered by the firm are equated.

Consider a firm producing the broadest variety xh,t in the market. Since the lowest
surplus offered by a firm is 0 and the surplus st(x) offered by a firm is strictly decreasing
in x, it follows that st(xh,t) = 0 and, hence,

1 = λtXtF
′
t(0)u(xh,t). (3.9)

The average number of contacts per buyer λt grows at the rate gλ. In a BGP, the average
breadth of varieties, Xt, and the highest breadth of a variety, xh,t, grow at the rate
gx. Moreover, in a BGP, the distribution Ft of surplus grows at the rate gs and, hence,
F ′t(s exp(gst)) is equal to F

′
0(s) exp(−gst). In light of these observations, (3.9) can be

written as
1 = e(gλ+gx−gs)tλ0X0F

′
0(0)u(xh,0e

gxt). (3.10)

Differentiating (3.10) with respect to t gives

0 = (gλ + gx − gs)u(xh,t) + gxu
′(xh,t)xh,t. (3.11)

The expression in (3.11) is a differential equation for the buyer’s utility function u, as xh,t
grows over time at the rate gx. The unique solution to the differential equation is

u(x) = u0

(
1

x

)α
, (3.12)

for some u0 > 0 and α = (gλ+gx−gs)/gx. The expression in (3.12) states that a necessary
condition for the existence of a BGP is that the buyer’s utility is a strictly increasing and
isoelastic function of the degree of specificity 1/x of a variety. It is important to notice
here that the condition α = (gλ+ gx− gs)/gx should not be interpreted as a restriction on
the elasticity of the buyer’s utility function. The correct interpretation of the condition
is that, for an arbitrary elasticity α > 0 of the buyer’s utility function, the growth rate gs
of surplus must equal gλ − (α− 1)gx.

16



3.4 Growth rates

A firm producing a variety with breadth x exp(gxt) offers the surplus st(x exp(gxt)) to its
buyers. Therefore, the optimality condition (3.8) implies

1 = λtXtF
′
t(st(xe

gxt))
(
u(xegxt)− st(xegxt)

)
. (3.13)

The average number of contacts per buyer, λt, grows at the rate gλ. The average breadth
of varieties, Xt, grows at the rate gx. The surplus st(x exp(gxt)) offered by a firm at a
fixed quantile of the breadth distribution grows at the rate gs. The surplus distribution
Ft grows at the rate gs and, hence, F ′t(s exp(gst)) is equal to F

′
0(s) exp(−gst). The utility

u(x exp(gxt)) grows at the rate αgx. In light of these observations, (3.13) can be written
as

1 = e(gλ+gx−gs)tλ0X0F
′
0(s0(x)) (u(x)e

−αgxt − s0(x)egst)
= e(gλ+(1−α)gx−gs)tλ0X0F

′
0(s0(x))

(
u(x)− s0(x)e(gs+αgx)t

)
.

(3.14)

The optimality condition (3.14) must hold for all t. Since the left-hand side of (3.14) is
constant, the right-hand side must be constant as well. The first term on the right-hand
side is constant because we showed that gs must equal gλ− (α−1)gx. The second term on
the right-hand side is constant if αgx + gs is equal to 0 The solution to the two equations
gs = gλ − (α − 1)gx and αgx + gs = 0 is such that the growth rate gx of the breadth of
varieties is equal to −gλ, and the growth rate gs of the surplus offered by firms is equal
to αgλ. That is, in any BGP, the breadth of the varieties produced by firms must fall at
the same rate at which the number of buyer’s contacts grows. Moreover, in any BGP,
the surplus offered by firms to buyers must grow at a rate equal to the rate at which
the number of buyer’s contacts grows multiplied by the elasticity of the buyer’s utility
function with respect to the specificity of a variety.

3.5 Firm’s cost function

The profit for a firm selling a variety at a fixed quantile of the breadth distribution grows
at the rate αgλ. In fact,

Rt(xe
gxt) =

{
b
xegxt

Xt

λtXte
−λtXt(1−Ft(st(x exp(gxt))))

}
(u(xegxt)− st(xegxt))

=

{
b
x

X0

λ0X0e
−λ0X0(1−Ft(s0(x)))

}
(u(x)e−αgxt − s0(x)egst)

= eαgλtR0(x).

(3.15)

The second line uses the fact that the average number of buyer’s relevant contacts, λtXt,
remains constant over time, the buyer’s utility from consuming a variety at a given quantile
of the breadth distribution, u(x exp(gxt)), grows at the rate −αgx, and the surplus offered
by a firm selling a variety at a given quantile of the breadth distribution, st(x exp(gxt)),
as well as the surplus distribution, Ft, grow at the rate gs. The third line uses the fact
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that gx = −gλ and gs = αgλ.

The value of a firm selling a variety at a fixed quantile of the breadth distribution is

Vt(xe
gxt) =

∫ T

0

e−ρτRt+τ (xe
gxt)dτ + e−ρT

[
Vt+T (x`,t+T )− qt+T c

(
X−βt+Tx`,t+T

)]
,

T = log(x exp(gxt)/xh,t)/gx.

(3.16)

In a BGP, the value of a firm selling a variety at a fixed quantile of the breadth distribu-
tion grows at the rate gV and, hence, Vt(x exp(gxt)) equals V0(x) exp(gV t) and Vt+T (x`,t+T )
equals VT (x`,T ) exp(gV t). In a BGP, the profit of a firmRt+τ (x exp(gxt)) equalsRτ (x) exp(αgλt).
In a BGP, the breadth of a new variety x`,t, the breadth of a scrapped variety xh,t, and
the average breadth Xt grow at the rate gx = −gλ. In light of these observations, (3.16)
can be written as

egV tV0(x)

= eαgλt
∫ T

0

e−ρτRτ (x)dτ + e−ρT
[
egV tVT (x`,T )− qT egqtc

(
e−(1−β)gλtX−βT x`,T

)]
,

T = log(x/xh,0)/gx.

(3.17)

Equation (3.17) must hold for all t and, hence, the right-hand side must grow at the
same rate as the left-hand side, i.e. at the rate gV . It is easy to see that the right-hand
side grows at the same rate as the left-hand side only if all terms on the right-hand side
do. The first term on the right-hand side grows at the rate gV only if gV = αgλ. The
second term on the right-hand side grows at the rate gV = αgλ only if

egqtc
(
e−(1−β)gλtX−βT x`,T

)
= eαgλtc

(
X−βT x`,T

)
. (3.18)

The derivative of (3.18) with respect to t is

gqc
(
X−βt+Tx`,t+T

)
− (1− β)gλc′

(
X−βt+Tx`,t+T

)
X−βt+Tx`,t+T = αgλc

(
X−βt+Tx`,t+T

)
. (3.19)

There are two cases to consider. For β 6= 1, equation (3.19) is a differential equation for
the firm’s cost function c, as X−βt x`,t declines over time at the rate gλ(1−β). The unique
solution to the differential equation is

c
( x

Xβ

)
= c0

(
Xβ

x

) αgλ−gq
(1−β)gλ

, (3.20)

for some c0 > 0. For β = 1, equation (3.19) holds if and only if

gq = αgλ. (3.21)

In the first case, the cost function c is strictly decreasing and isoelastic in the relative
specificity of the variety Xβ/x, with an elasticity of (αgλ − gq)/((1 − β)gλ). This is a
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knife-edge case, as there is no reason why the elasticity of the cost function should be
tied to the elasticity α of the utility function. In the second case, the growth rate gq of
the price of the input used by firms in the design of a new variety grows at the rate αgλ,
the growth rate of the price of output. This is not a knife-edge case, as there are natural
reasons why the price of the input used by firms should grow at the same rate as the price
of the output sold by firms (e.g., the input used in the design of varieties is the output of
firms). Therefore, I will focus on the second case.

3.6 Necessary conditions for a BGP

The following theorem summarizes the findings in this section.

Theorem 2. (Necessary conditions for a BGP).

1. A BGP might exist only if:

(a) The buyer’s utility function u(x) has the form u0/x
α for some u0 > 0, α > 0;

(b) The firm’s cost function Ct(x/X
β
t ) has the form qtc(x/Xt), where the input

price qt grows at the rate gq = αgλ and the quantity of input c(x/Xt) is strictly
decreasing in x.

2. If a BGP exists, it must have the following properties:

(a) The distribution of varieties Ht is log-uniform over the interval [x`,t, xh,t], and
x`,t and xh,t decline at the constant rate −gx = gλ;

(b) The distribution of surplus Ft grows at the constant rate gs = αgλ;

(c) The distribution of prices Gt grows at the constant rate gp = αgλ;

(d) The value of a firm producing a variety at a fixed quantile of the Ht distribution
grows at the constant rate gV = αgλ.

Part 1 of the theorem provides restrictions on the fundamentals of the model that
are necessary for the existence of a BGP. The first restriction is that the buyer’s utility
function needs to be isoelastic with respect to the specificity of a variety. The restriction
follows from the fact that– in order for the distribution of surplus to grow at a constant
rate while the specificity of varieties grows at a constant rate– the elasticity of the buyer’s
utility function with respect to the specificity of a variety must be constant over time.
The second restriction is that the price of the input used by a firm to design a variety
must grow at the same rate as the price of the output and that the quantity of input to
design a new variety with breadth x`,t must be constant. The second restriction follows
from the fact that– in order for the value of a firm to grow at a constant rate– the price
of an old variety and the cost of designing a new variety must grow at the same rate.

Part 2 of the theorem provides a characterization of the properties that any BGP must
have. The most important property is that the breadth of the varieties sold by firms in
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the market must decline at the same rate at which the average number of firms contacted
by a buyer increases. This property of a BGP is necessary to guarantee that the extent of
competition in the market remains constant, where the extent of competition is captured
by the number of firms contacted by a buyer who have a product that the buyer likes. As
we shall see in the next section, the property is satisfied because, when search frictions
decline, firms do indeed find it optimal to increase the specificity of their varieties at a
rate that exactly offsets the decline in search frictions.

4 Suffi cient Conditions for a BGP

In this section, I derive suffi cient conditions for the existence of a BGP. I impose the
restrictions on the fundamentals of the model that are necessary for the existence of a BGP
and that are listed in the first part of Theorem 2. I also make use of the characterization of
the necessary properties of the dynamics aggregate variables that must hold in any BGP
and that are listed in the second part of Theorem 2. I show that the optimal policies for an
individual firm conform to the requirements of a BGP, as described in Definition 1. This
step of the analysis is carried out by showing that the problems of an individual firm have
a time-invariant representation. I then show that the dynamics of aggregate variables are
consistent with the policy of an individual firm. In the end, I show that the existence of
a BGP boils down to the existence of a solution to a system of 3 time-invariant equations
in 3 unknown scalars.

4.1 Distribution of varieties and surplus

Let x̂ denote the breadth of a variety relative to the most specialized variety in the market,
i.e. x̂ = x/x`,t. I will refer to x̂ as the relative breadth of the variety. Similarly, let x̂` and
x̂h denote the variety with the lowest relative breadth and the variety with the highest
relative breadth in the market, i.e. x̂` = x`,t/x`,t = 1 and x̂h = xh,t/x`,t. In any BGP,
the breadth distribution Ht(x) must be given by (3.3). Therefore, the relative breadth
distribution is

Ĥ(x̂) = Ht(x̂ · x`,t)

=
log(x̂ · x`,t)− log(x̂` · x`,t)
log(x̂h · x`,t)− log(x̂` · x`,t)

=
log x̂− log x̂`
log x̂h − log x̂`

.
(4.1)

The relative breadth distribution is log-uniform over the interval [x̂`, x̂h], and it remains
constant over time.

Let X̂ denote the average relative breadth, which is constant since the average breadth
distribution is time-invariant. Using (4.1), X̂ is given by

X̂ =
x̂h − x̂`

log x̂h − log x̂`
. (4.2)
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Also, let φ denote the buyer’s average number of relevant contacts, i.e. φ = λtx`,tX̂.
In any BGP, x`,t must decline at the same rate at which the average number of buyer’s
contacts increases and hence φ must be constant. Using (4.2), it follows that

φ = x`,0λ0
x̂h − x̂`

log x̂h − log x̂`
. (4.3)

Let ŝ denote the surplus offered by a firm relative to the buyer’s utility from consuming
the most specialized variety in the market, i.e. ŝ = s/(1/xα`,t) which is equal to sx

α
`,t. In

any BGP, the surplus distribution Ft grows at the rate gs = αgλ. Therefore, the relative
surplus distribution is

F̂ (ŝ) = Ft(ŝx
−α
`,t )

= Ft(ŝx
−α
`,0 exp(αgλ)) = F0(ŝx

−α
`,0 ).

(4.4)

Hence, the relative surplus distribution remains constant over time. Also, since the surplus
offered by a firm is strictly decreasing in the relative breadth of the firm’s variety and the
relative breadth distribution is log-uniform over the interval [x̂`, x̂h], the fraction of firms
offering a relative surplus below ŝ(x̂0) is

F̂ (ŝ(x̂0)) =

∫ x̂h
x̂0
x̂dĤ(x̂)∫ x̂h

x̂`
x̂dĤ(x̂)

=
x̂h − x̂0
x̂h − x̂`

. (4.5)

4.2 Firm’s pricing problem

I now demonstrate that the firm’s pricing problem has a time-invariant representation.
The problem for a firm selling a variety with relative breadth x̂ is

Rt(x̂ · x`,t) = max
s≥0

{
b
x̂ · x`,t
Xt

φe−φ(1−Ft(s))
}(

u0
x̂α · xα`,t

− s
)

= max
ŝ≥0

{
b
x̂

X̂
φe−φ(1−Ft(ŝx

−α
`,t ))

}(
u0

x̂α · xα`,t
− ŝ

xα`,t

)

= eαgλx−α`,0 ·max
ŝ≥0

{
b
x̂

X̂
φe−φ(1−F̂ (ŝ))

}(u0
x̂α
− ŝ
)
.

(4.6)

In the first line of (4.6), I make use of the fact that the buyer’s utility is isoelastic with
respect to the specificity of the firm’s variety. In the second line, I change the choice
variable from the surplus s to the relative surplus ŝ = sxα`,t and make use of the fact that
gx = −gλ. In the last line, I make use of (4.4).
Notice that the problem in the last line of (4.6) depends only on the firm’s relative
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breadth x̂ and not on calendar time t, i.e.

r(x̂) = max
ŝ≥0

{
b
x̂

X̂
φe−φ(1−F̂ (ŝ))

}(
u0x̂

−α − ŝ
)
. (4.7)

Denote with ŝ(x̂) the optimal relative surplus that solves (4.7). Since a firm selling a
variety with a constant relative breadth x̂ finds it optimal to offer a constant relative
surplus ŝ(x̂), it follows that the surplus st(x̂ · x`,0 exp(gxt)) offered by the firm is equal
to x−αgλt`,0 ŝ(x̂) and, hence, grows at a constant rate, as required by the definition of a
BGP. Moreover, since the surplus offered by a firm with relative breadth x̂ grows at the
constant rate αgλ and the distribution of relative breadths is stationary, the growth rate
of the aggregate surplus distribution Ft is consistent with the individual behavior of firms.

Next, I solve for the optimal relative surplus ŝ(x̂). The optimality condition for ŝ(x̂)
is

1 = φF̂ ′(ŝ(x̂))
(
u0x̂

−α − ŝ(x̂)
)
. (4.8)

The relative surplus distribution (4.5) implies that F̂ ′(ŝ(x̂)) is equal to−1/ (x̂h − x̂`) ŝ′(x̂).
Therefore, I can rewrite (4.8) as a differential equation for the optimal relative surplus

ŝ′(x̂) = − φ

x̂h − x̂`
(
u0x̂

−α − ŝ(x̂)
)
. (4.9)

The unique solution to the differential equation (4.9) such that ŝ(x̂h) = 0, i.e. such
that the relative surplus offered by a firm with the broadest variety in the market is zero,
is

ŝ(x̂) =
u0

x̂h − x̂`
φ

∫ x̂h

x̂

z−α exp

(
−φ z − x̂`

x̂h − x̂`

)
dz. (4.10)

The optimal surplus offered by a firm is strictly decreasing in the relative breadth of its
variety for all x̂ on the support [x̂`, x̂h] of the equilibrium distribution. Offthe equilibrium,
the optimal surplus offered by a firm selling a variety with relative breadth x̂ < x̂` is ŝ(x̂`).
Indieed, this firm has no incentive to offer surplus above ŝ(x̂`) because it already beats all
of its competitors. Conversely, a firm selling a variety with relative breadth x > x̂h offers
the surplus 0. This firm would like to offer less surplus but doing so would mean having
no customers. Therefore, we have

ŝ(x̂) = ŝ(x̂`), for x̂ ≤ x̂`,

ŝ(x̂) = 0, for x̂ ≥ x̂h.
(4.11)

Lastly, I characterize some properties of the firm’s profit function r(x̂). Substituting
1− F̂ (ŝ(x̂)) with (4.5), I can write r(x̂) as

r(x̂) =

{
b
x̂

X̂
φe
−φ x̂−x̂`

x̂h−x̂`

}(
u0x̂

−α − ŝ(x̂)
)
for x̂ ∈ [x̂`, x̂h], (4.12)

22



and

r(x̂) =


b
x̂

X̂
φ (u0x̂

−α − ŝ(x̂`)) for x < x`,

b
x̂

X̂
φe−φu0x̂

−α for x > xh.

It is easy to show that r(x̂) is strictly decreasing in the relative breadth x̂ if and only if
α > 1. Similarly, if α > 1, it is easy to show that r(x̂) is strictly convex in the relative
breadth x̂. I will assume that α > 1 in what follows.

4.3 Firm’s design problem

I now demonstrate that the firm’s product design problem has a time-invariant represen-
tation. The problem for a with selling a variety with relative breadth x̂ is

Vt(x̂ · x`,t) = max
T,xn

∫ T

0

e−ρτRt+τ (x̂ · x`,t)dτ + e−ρT [Vt+T (xn)− qt+T c (xn/Xt+T )] . (4.13)

I guess and verify that the solution to the functional equation in (4.13) is

Vt(x̂ · x`,t) = eαgλx−α`,0 · v (x̂) . (4.14)

The function v (x̂) in (4.14) is time-invariant and it is defined as

v (x̂) = max
T,x̂n

∫ T

0

e−(ρ−αgλ)τr (x̂egλτ ) dτ + e−(ρ−αgλ)T
[
v(x̂n)− q̂c

(
x̂n/X̂

)]
, (4.15)

in which q̂ denotes the price of the input of the product design expressed as a ratio of the
buyers’utility from consuming a variety with breadth x`,t, i.e. q̂ = qtx

α
`,t.

In order to verify the guess, I substitute (4.15) in (4.14) and obtain

x−α`,t · v (x̂) = max
T,xn

∫ T

0

e−ρτRt+τ (x̂ · x`,t)dτ + e−ρT
[
x−α`,t+Tv (xn/x`,t+T )− qt+T c (xn/Xt+T )

]
= max

T,x̂n

∫ T

0

e−ρτx−α`,t+τr

(
x̂ · x`,t
x`,t+τ

)
dτ + e−ρT

[
x−α`,t+Tv (x̂n)− q̂x−α`,t+T c

(
x̂n/X̂

)]
= x−α`,t ·max

T,x̂n

∫ T

0

e−(ρ−αgλ)τr (x̂egλτ ) dτ + e−(ρ−αgλ)T
[
v (x̂n)− q̂c

(
x̂n/X̂

)]
.

(4.16)
The second line makes use of the fact that Rt+τ (x̂ · x`,t) is equal to x−α`,t+τr(x̂ · x`,t/x`,t+τ )
and that qt+T is equal to q̂x−α`,t+T . The second line also changes the choice variable from
the breadth xn of the new variety to the relative breadth x̂n. The third line makes use of
the fact that x`,t grows at the rate −gλ and, hence, x−α`,t grows at the αgλ. Eliminating
x−α`,t from the left-hand side of (4.16) and from the third line on the right-hand side of
(4.16) verifies the conjectured solution to (4.13).

The product design problem in (4.15) depends only on the relative breadth x̂ of the
variety sold by the firm and not on calendar time. The problem has a simple interpretation.
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The normalized value of a firm selling x̂ is given by the sum between the present value of
the normalized flow of profit between now and date T and the normalized present value
of designing a new variety with relative breadth x̂n at date T . The normalized flow profit
depends only on the relative breadth of the firm’s variety, which grows at the rate gλ.
The normalized present value of designing a new variety depends on x̂n. The effective
rate at which the normalized profits are discounted is ρ−αgλ, where ρ is the rate of time
preference and αgλ is the growth rate of the normalization factor. The firm chooses T
and x̂n so as to maximize its normalized present value of profits. Clearly, the product
design problem in (4.15) is well-defined if and only if the effective discount rate ρ − αgλ
is strictly positive.

Denote as x̂` the relative breadth of a new variety that solves (4.15). Notice that
x̂` is independent of calendar time t, since it solves a time-invariant problem, and it is
independent of the relative breadth of the firm’s variety x̂, since it maximizes the firm’s
continuation value which is independent of x̂. Therefore x̂` is just a constant. Since x̂` is
a constant, the breadth of a new variety created at date t is simply x̂` · x`,t, which grows
at the constant rate −gλ. Denote as T (x̂) the time when the firm scraps its variety that
solves (4.15). It is easy to see that T (x̂) is such that x̂ exp(gλT (x̂)) equals some x̂h, where
x̂h is a constant. Since x̂h is a constant, a variety is scrapped at date t if its breadth is
x̂` · x`,t, which grows at the constant rate −gλ. The two thresholds for the firm’s problem
grow at the constant rate −gλ, as required by the definition of a BGP. Moreover, given an
initial distribution H0 that is log-uniform over [x`,0, xh,0], the growth rate of the aggregate
breadth distribuiton Ht is constant and equal to −gλ.
The first-order condition for x̂` is

−q̂c′
(
x̂`/X̂

)/
X̂ = −v′(x̂`). (4.17)

The left-hand side of (4.17) is the cost from designing a marginally narrower variety, as
c(x̂/X̂) is a strictly decreasing function. The right-hand side of (4.17) is the benefit from
designing a marginally narrower variety. The marginal cost and the marginal benefit must
be equal at the optimal relative breadth x̂. For an appropriate choice of c(x̂/X̂), (4.17)
is not only necessary for optimality but also suffi cient.

The first-order condition for T (x̂) is

r(x̂h) = (ρ− αgλ)
[
v(x̂`)− q̂c

(
x̂`/X̂

)]
. (4.18)

The left-hand side of (4.18) is the benefit of scrapping the old variety an instant later,
which is given by the flow profit r(x̂h). The right-hand side of (4.18) is the cost of scrapping
the old variety an instant later, which is given by the firm’s value from producing a new
variety with relative breadth x̂`, v(x̂`), net of the cost of producing a variety x̂`, q̂c(x̂`/X̂),
annuitized by the effective discount rate ρ− αgλ. Since r(x̂) is strictly decreasing in x̂, it
follows that (4.18) is not only necessary but also suffi cient for optimality.
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It is useful to derive a continuous-time Bellman equation for v(x̂). For all x̂ > x̂h and
dt > 0 small, v(x̂) is equal to

v(x̂) = r(x̂)dt+ e−(ρ−αgλ)dtv(x̂egλdt). (4.19)

Subtracting v(x̂) exp(−(ρ− αgλ)dt) from both sides of the equation, dividing by dt, and
taking limits for dt→ 0, one recovers the standard continuous-time Bellman equation

(ρ− αgλ) v(x̂) = r(x̂) + v′(x̂)x̂gλ. (4.20)

The left-hand side of (4.20) is the annuity value of the normalized present value of profits
for a firm selling a variety with relative breadth x̂. The first term on the right-hand side is
the instantaneous normalized flow profit of the firm. The second term on the right-hand
side is the change in the firm’s normalized present value of profits, which is due to the
fact that the relative breadth of the firm’s variety grows at the rate gλ.

4.4 Suffi cient conditions for a BGP

The existence of a BGP boils down to the existence of a solution to a system of three
equations: the first-order condition (4.17) for the relative breadth of a new variety, the
first-order condition (4.18) for the relative breadth of a scrapped variety, and the condition
(4.15) for the normalized value of a firm with a newly designed variety. These three
equations have three unknowns: the buyer’s average number of relevant contacts, φ, the
relative breadth of a scrapped variety, x̂h, and the normalized value of a firm with a
newly designed variety, v(x̂`). Note that x̂` is not an unknown because it equals 1 by
construction. If a solution to the system of three equations in three unknows exists, then
a BGP exists as demonstrated in the previous pages.

The first-order condition (4.17) for the relative breadth of a new variety can be written
as

r(x̂`) = (ρ− αgλ)v(x̂`)− q̂c′
(
x̂`

X̂

)
x̂`gλ

X̂
, (4.21)

where r(x̂`) is given by (4.12), X̂ is given by (4.2), and q̂ is given by

q̂ = q0
φ

λ0

log x̂h − log x̂`
x̂h − x̂`

. (4.22)

To obtain (4.21), I substitute out v′(x̂`) using the continuous-time Bellman equation in
(4.20). To obtain (4.22), I use the definition of q̂ as q0xα`,0 and then substitute out x`,0
using the definition of φ in (4.3). Intuitively, condition (4.21) is an equation that requires
φ to be such that an individual firm finds it optimal to design a variety x̂, given that the
relative breadth distribution is log-uniform over the interval [x̂`, x̂h] and the normalized
value of a firm with a newly designed variety is v(x̂`).
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The first-order condition (4.15) for the relative breadth of a scrapped variety is

r(x̂h) = (ρ− αgλ)
[
v(x̂`)− q̂c

(
x̂`/X̂

)]
, (4.23)

where r(x̂h) is given by (4.12), X̂ is given by (4.2), and q̂ is given by (4.22). Intuitively,
condition (4.23) is an equation that requires an individual firm to find it optimal to scrap
its variety when its relative breadth reaches x̂h, given that the distribution of relative
breadths is log-uniform over the interval [x̂`, x̂h] and the normalized value of a firm with
a newly designed variety is v(x̂`).

The firm’s value from selling a variety with relative breadth x̂` is

v (x̂`) =

∫ log(x̂h/x̂`)/gλ

0

e−(ρ−αgλ)τr (x̂`e
gλτ ) dτ + (x̂h/x̂`)

− ρ−αgλ
gλ

[
v(x̂`)− q̂c

(
x̂`/X̂

)]
,

(4.24)
r(x̂` exp(gλτ)) is given by (4.12), X̂ is given by (4.2), and q̂ is given by (4.22). The
expression above is derived from (4.15). I first use the fact that the firm finds it optimal
to scrap a variety with relative breadth x̂` after log(x̂h/x̂`)/gλ units of time. I then use
the fact that the firm finds it optimal to design a new variety with relative breadth x̂`.
The expression in (4.24) is an equation that requires v(x̂`) to be equal to the normalized
present value of profits enjoyed by a firm following the optimal product design strategy,
given that the relative breadth distribution is log-uniform over the interval [x̂`, x̂h].

I am now in the position to state the suffi cient conditions for the existence of a BGP.

Theorem 3. (Suffi cient conditions for a BGP) A BGP exists if:

a. The buyer’s utility function u(x) has the form u0/x
α for some u0 > 0, α > 1;

b. The firm’s cost function Ct(x/X
β
t ) has the form qtc(x/Xt), where the input price qt

grows at the rate gq = αgλ and the quantity of input c(x/Xt) is strictly decreasing
in x and such that v(x̂)− qc(x̂/X̂) is quasi-concave;

c. The discount rate ρ is greater than αgλ;

d. The system of equations (4.21), (4.23)-(4.24) admits a solution with respect to φ,
x̂h and v(x̂`).

The suffi cient conditions for the existence of a BGP are more stringent than the
necessary conditions. The elasticity α of the buyer’s utility u function is required to be
greater than 1 so as to guarantee that the necessary condition for the optimal choice of the
relative breadth of a scrapped variety is also suffi cient. The firm’s design cost function c
is required to be such that the product design problem is quasi-concave to guarantee that
the necessary condition for the optimal choice of the relative breadth of a new variety is
also suffi cient. The discount rate ρ is required to be greater than αgλ to guarantee that
the firm’s value function is well-defined. The system of equations (4.21), (4.23) and (4.24)
are required to have a solution only because I was unable to prove analytically that there
always is one. The diffi culty in solving the system of equations is that the firm’s optimal
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choices for x̂` and x̂h depend in a complicated way on the boundaries of the breadth
distribution x̂` and x̂h and, hence, proving that the optimal choices can be lined up with
the boudaries is diffi cult. In all my numerical examples, though, I did find a solution.

Let me provide some intuition for the existence of a BGP. As search frictions decline,
firms meet more and more buyers per unit of time and, for this reason, they choose to
design varieties of the product that are increasingly specialized. When the buyer’s utility
function is isoelastic with respect to the specificity of a variety, the firm’s design cost is a
function of the specificity of a variety relative to the market average, and the cost grows
over time at the rate αgλ, then firms find it optimal to increase the specificity of their
varieties at exactly the same rate at which search frictions decline. When the increase
in the specificity of product varieties exactly offsets the decline in search frictions, the
probability that a buyer meets n firms selling a variety that he likes remains constant
and, hence, the extent of competition among firms remains constant. For this reason, the
price distribution, the buyer’s surplus and the firm’s value all grow along a balanced path
at a common, constant rate.

5 Aggregate and Industry Dynamics

In this section, I describe some of the key properties of a BGP. In section 5.1, I describe
the aggreate dynamics of the market along a BGP. In section 5.2, I describe the dynamics
of individual firms along a BGP. At the aggregate level, the main findings are that, while
declining search frictions do not generate any decline in price dispersion or any increase in
volume, they do contribute to economic growth. At the industry level, the main finding
is that every individual firm goes through the same cycle, which starts with the firm at
the top of the market and ends with the firm at the bottom.

5.1 Aggregate dynamics

The initial distribution of firms across the breadth of their varieties is log-uniform over the
interval [x`,0, xh,0], where x`,0 is given by φ(log x̂h − log x̂`)/λ0(x̂h − x̂`) and xh,0 is given
by x̂h · x`,0. Firms scrap the variety of the product that they are selling when its breadth
is reached by the cutoff xh,t, where xh,t declines at the rate gλ. Firms design new varieties
of the product with a breadth of x`,t, where x`,t declines at the rate gλ. As a result, the
breadth distribution falls over time at the constant rate gλ. That is, the products sold on
the market become more and more specialized, and they do so at a rate that is exactly
equal to the rate at which search frictions decline.

At date t, a firm selling a variety with breadth x̂ · x`,t offers to its customers a surplus
of st(x̂ · x`,t) equal to ŝ(x̂)x−α`,0 exp(αgλt), where ŝ(x̂) is given by (4.10). The function ŝ(x̂)
is strictly decreasing in x̂ and such that ŝ(x̂h) = 0. Since a firm selling a variety with
breadth x̂ · x`,t is at a constant quantile of the breadth distribution and since the surplus
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st(x̂ · x`,t) offered by such a firm grows at the rate αgλ, the surplus distribution Ft grows
at the rate αgλ.

At date t, a firm selling a variety with breadth x̂ · x`,t charges to its customers a price
of pt(x̂ · x`,t) equal to p̂(x̂)x−α`,0 exp(αgλt), where

p̂(x̂) = u0x̂
−α − ŝ(x̂). (5.1)

It is easy to verify that the function p̂(x̂) is such that p̂′(x̂) = 0 implies p̂′′(x̂) > 0. There-
fore, p̂(x̂) may be strictly decreasing in x̂, strictly increasing in x̂, or strictly decreasing
over some interval [x̂`, x̂c] and strictly increasing over the interval [x̂c, x̂h]. Irrespective of
the shape of p̂(x̂), the price distribution Gt grows at the constant rate αgλ, since a firm
selling a variety with breadth x̂ · x`,t is at a constant quantile of the breadth distribution
and the price charged by such a firm grows at the constant rate αgλ. Also irrespective of
the shape of p̂(x̂), the price distribution Gt is non-degenerate because p̂′(x̂) = 0 implies
p̂′′(x̂) > 0.

At date t, a firm selling a variety with breadth x̂ · x`,t trades with b(x̂) buyers, where

b(x̂) = b
x̂

X̂
φ exp

[
−φ x̂− x̂`

x̂h − x̂`

]
. (5.2)

It is easy to verify that the function b(x̂) is such that b′(x̂) = 0 implies b′′(x̂) < 0. Therefore,
n(x̂) may be strictly decreasing in x̂, strictly increasing in x̂, or strictly increasing over
some interval [x̂`, x̂c] and strictly decreasing over the interval [x̂c, x̂h]. Irrespective of the
shape of n(x̂), the distribution of sales across firms remains constant over time, as the
relative breadth distribution is constant over time.

Three aggregate properties of the BGP are worth highlighting. First, note that price
dispersion remains constant in the face of declining search frictions. The price distribution
Gt(p) is non-degenerate and grows at the constant rate αgλ. Hence, the distribution
of normalized prices– i.e. prices divided by the average price– is non-degenerate and
remains constant over time. In this sense, the extent of price dispersion remains unchanged
even though search frictions become smaller and smaller. Intuitively, the extent of price
dispersion remains constant because the exogenous decline in search frictions, which tends
to increase in the extent of competition between firms, is undone by the endogenous
increase in the specificity of the varieties of the product sold by firms.

Second, note that trade volume remains constant in the market, despite declining
search frictions. Indeed, since a firm sells a quantity of output that only depends on the
relative breadth of its variety and the relative breadth distribution is constant, it follows
that trade volume remains constant over time. There is a simple intuition for this finding.
On the one hand, the exogenous decline in search frictions increase the probability that
a buyer locates a firm and the number of firms that he locates. On the other hand, the
endogenous increase in the specificity of the varieties on the market lowers the probability
that a firm has a variety of the product that the buyer likes to consume. In a BGP, these
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two opposing forces exactly offset each other.

Third, note that, while declining search frictions do not enhance competition nor in-
crease volume, they do lead to economic growth. Indeed, the aggregate surplus captured
by buyers as well as the aggregate profits enjoyed by firms grow over time at the rate αgλ,
i.e. the rate gλ at which search frictions decline multiplied by the elasticity α of the buy-
ers’utility function with respect to the specificity of the variety consumed. The economic
growth generated by declining search frictions is related to Smithian growth. The view of
Adam Smith is that the geographical extent of the market determines how much produc-
tion can be specialized to exploit technological differences, input availability, or increasing
returns to scale etc. . . As a result, as the size of the market increases, specialization in-
creases and so does productivity. Here, declining search frictions cause a deepening of the
market and, in response to such deepening, firms can design more specialized products.
Specialization, in turn, leads to growth by exploting the heterogeneity in the preferences
of different buyers. The key difference between Smithian growth and the type of market
deepening growth illustrated in this paper is that the former is bounded by geography
and population (a market can only expand so much), while the latter is not bounded by
geography and population (a market can always grow deeper).

Lastly, it is useful to discuss the notion of price dispersion in the model. In the model,
price dispersion is defined at the level of a good, where the notion of a “good”is defined
by the collection of all the products sold in the market where buyers search. Given this
notion of a good, the model generates price dispersion that remains constant over time.
Yet, the varieties of sold by different firms are not identical, as they differ with respect
to their degree of specialization. Therefore, a sensibly narrower definition of a good is
the collection of all the varieties with a breadth in some interval [x/(1 + ε), x(1 + ε)] for
some ε > 0. Also for this narrower definition of what a good is, the model still generates
price dispersion that remains constant over time. It is only when a good is defined in its
narrowest sense– i.e. varieties with the same specificity that appeal to the same subset of
buyers– that the model generates no price dispersion. However, this is an artifact of the
assumption that there is a continuous distribution of breadths. Indeed, if breadths were
a discrete set, the model would generate price dispersion even among identical varieties.

I summarize the aggregate properties of a BGP in the theorem below.

Theorem 4. (Aggregate dynamics in a BGP). In any BGP:

a. The breadth distribution Ht declines at the constant rate −gx = gλ, and is log-
uniform over the interval [x`,t, xh,t], with x`,t = x`,0 exp(gxt), xh,t = xh,0 exp(gxt),
φ/λ0 · (log x̂h − log x̂`)/(x̂h − x̂`) and xh,0 = x̂h · x`,0.

b. The surplus function is st(x̂ · x`,t) = ŝ(x̂)x−α`,0 exp(αgλt), with ŝ(x̂) given by (4.10).
The surplus distribution Ft grows at the constant rate gs = αgλ.

c. The price function is pt(x̂ · x`,t) = p̂(x̂)x−α`,0 exp(αgλt), with p̂(x̂) given by (5.1). The
price distribution Gt is non-degenerate and grows at the constant rate gp = αgλ.
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The distribution of normalized prices, p/Et[p], is non-degenerate and constant over
time.

d. Aggregate buyers’surplus and firms’profits grow at the constant rate αgλ.

5.2 Industry dynamics

As the market aggregates grow at a constant rate, individual firms repeatedly go through
cycles of length T = log(x̂h/x̂`)/gλ. The nature of the cycle is identical at every repetition
and for every firm, but the timing of the cycles is different for different firms.

A cycle begins when the firm designs and starts selling a new variety of the product.
At this moment in time, the variety of the firm is the most specialized in the market, since
it has a relative breadth of x̂` which is the lower bound on the support of the relative
breadth distribution Ĥ. The surplus offered by the firm to its customers is the highest
among all of its competitors, as the relative surplus ŝ(x̂) is a strictly decreasing function
of x̂. The firm’s flow profit and the firm’s value are also the highest among all the firm’s
competitors, as the normalized profit r(x̂) and the normalized value v(x̂) are both strictly
decreasing functions of x̂. Hence, at the beginning of its cycle, the firm is the best in
the market. The firm has the most specialized variety, it offers the highest surplus to its
customers, it makes the highest profits, and it has the highest value.

Over the course of the cycle, the firm loses ground relative to the competition. The
relative breadth of the firm’s variety increases over the cycle, as more and more competi-
tors redesign their product and leapfrog the firm. Specifically, after τ units of time since
the beginning of the cycle, the firm’s variety is at the Ĥ(x̂` exp(gλτ)) = τ/T quantile of
the relative breadth distribution. Over the cycle, the surplus offered by the firm decreases
relative to the one offered by the competitors, as the firms who redesign their product
offer higher surplus to their customers. Specifically, after τ units of time since the begin-
ning of the cycle, the firm is at the 1− Ĥ(x̂` exp(gλτ)) = T/τ − 1 quantile of the surplus
distribution. Over the cycle, the flow profit and the value of firm decline relative to the
competition. Specifically, after τ units of time since the beginning of the cycle, the firm
is at the T/τ − 1 quantile of both the profit and value distributions.
After T units of time since the beginning of the cycle, the firm is the worst in the

market. The firm produces the least specialized variety, since the variety has now a
relative breadth of x̂h, which is the upper bound on the support of the relative breadth
distribution Ĥ. The firm offers to its customers a relative surplus of ŝ(x̂h) = 0, which
is the lowest surplus among all its competitors .The firm’s profit and the firm’s value
are both the lowest among all the firm’s competitors. It is at this moment in time that
the firm finds it optimal to scrap its variety, pay the lumpy cost, and design a new, more
specialized variety of the product. The firm’s cycle comes to an end and a new one begins.

I summarize the aggregate properties of a BGP in the theorem below.
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Theorem 5. (Industry dynamics in a BGP) In a BGP, every firm goes through the same
cycle of length T = log(x̂h/x̂`)/gλ.

a. The cycle begins with the firm designing a new variety with breadth x`,t;

b. Over the cycle, the firm rises linearly from the bottom to the top of the breadth
distribution, and the firm falls linearly from the top to the bottom of the surplus
distribution, profit distribution and value distribution;

c. The cycle ends with the firm scrapping its variety and paying the redesign cost.

6 Conclusions

The central observation in this paper is that, as search frictions decline in the market for
some consumer product, firms have an incentive to design more specialized varieties of
the product because they are more likely to find buyers in their niche. While the decline
in search frictions tends to increase the extent of competition in the market, by allowing
buyers to locate and access more firms per unit of time, the increase in specialization tends
to lower the extent of competition, by lowering the probability that the firm contacted by
the buyer has a variety of the product that the buyer likes. These two countervailing effect
exactly offset each other under relatively mild conditions on the buyer’s utility function
over varieties that are more or less specialized, and the firm’s cost function for designing
new varieties. When the two countervailing effects exactly offset each other, the extent of
competition in the market remains constant. As a result, price dispersion and markups
remain constant. The buyer’s surplus and the firm’s profits however grow over time at a
constant rate as the increase in specialization allows firms to cater better and better to
the heterogeneous desires of different buyers.
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