
Searching Forever After∗

Yair Antler†and Benjamin Bachi‡

October 21, 2019

Abstract

We study a model of two-sided search in which agents’ reasoning

is coarse. In equilibrium, the most desirable agents behave as if they

were fully rational, while, for all other agents, coarse reasoning results

in overoptimism with regard to their prospects in the market. Conse-

quently, they search longer than optimal. Moreover, agents with in-

termediate match values may search indefinitely while all other agents

eventually marry. We show that the share of eternal singles converges

monotonically to 1 as search frictions vanish. Thus, improvements in

the search technology may backfire and even lead to market failure.

1 Introduction

Modern search environments present exciting new opportunities for individuals

who are looking for a partner or a job. For instance, social networks such as

LinkedIn enable employers to recruit new workers faster than ever before.

Mobile applications such as Tinder and Bumble, and online dating sites such

as OkCupid and Plenty of Fish allow individuals to find a partner in the swipe

of a finger.
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Changes in search technologies have reduced search costs and thickened

traditional markets. While the new possibilities may seem exciting at first

glance, some individuals can be overwhelmed by the much larger set of op-

tions. The effort and patience modern search requires can leave participants

frustrated, confused, and exhausted. In particular, according to a survey by

Pew Research Center (2016), “One-third of people who have used online dating

have never actually gone on a date with someone they met on these sites.”1

How can improvements in search technologies harm individuals who are

looking for a partner or a job? Are decision-making biases exacerbated when

markets become thicker and search frictions vanish? To address these and

other questions, we study a model of two-sided matching with frictions and

non-transferable utility. This type of model has proved useful in understanding

decentralized matching markets such as the labor market and the marriage

market.2 In the model, there are two sets of heterogeneous agents, which we

refer to as men and women. These agents are ranked according to a trait,

which we refer to as value. In each period, a share µ of the agents are drawn

and paired with agents of the opposite sex. Each agent then decides whether

to accept the match or not. If both agents accept, they marry and leave

the market while if at least one of them rejects, they separate and continue

searching. We assume that the agents discount the future at a rate δ and

interpret increases in µ and δ as improvements in the search technology as

they allow agents to meet more people at a faster rate.

The traditional matching with frictions literature assumes that agents are

fully rational and correctly predict who will find them acceptable at each

moment in time. Under this assumption, large increases in µ or δ enhance

the agents’ welfare. However, in light of the overwhelmingly large array of

options that are ubiquitous in modern matching markets, it makes sense to

think that participants in these markets use simplified models of the world to

evaluate their prospects.3 Moreover, the full rationality assumption can be a

1Another example is a survey conducted by Hinge (2016), according to which “81% of
its users stated that they have never found a long-term relationship on any swiping app.”

2See Chade, Eeckhout, and Smith, (2017) for a comprehensive review.
3Enke and Zimmermann (2017) provide evidence that individuals neglect correlation
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bit extreme in the contexts of courtship and even job search, where there is

countless evidence of biases and, in particular, overoptimism.

We use the framework of analogy-based expectation equilibrium (Jehiel,

2005) to replace the full rationality assumption with a milder one: players

form correct beliefs over the average probability with which others find them

acceptable. However, they do not take into account the correlation between the

likelihood that a person will agree to marry them and the value obtained from

this marriage. Thus, in equilibrium, players’ beliefs are statistically correct but

coarse. These coarse beliefs can be seen as stemming from using a simplified

model of other players’ behavior or, alternatively, as a limit result of learning

from partial feedback.4

We extend Jehiel’s framework by allowing agents to weigh different histories

not only by the frequencies with which they are reached, but also by the

probabilities with which the outcomes in these histories are observed.5 This

extension is consistent with interpreting the beliefs as stemming from partial

feedback. Specifically, our agents assign lower weights to situations in which

they reject a match and higher weights to situations in which they accept one.

This captures the idea that, after expressing an interest, people often know

whether or not the interest is mutual, but knowing whether a disinterest is

mutual or not is less common. This applies to dating as well as to hiring

situations. For example, an employer is more likely to know whether a job

candidate wants the job if he makes the latter an offer.

We characterize the equilibria of the game and show that, except for a group

of agents at the top of the distribution of values who behave as if they were

fully rational, all other agents are overoptimistic with regard to the prospect

of remaining single and continue to search. The agents’ overoptimism follows

from two reasons: overestimating the value they obtain in a future marriage

(despite knowing the information-generating process) when problems become more complex.
Francesconi and Lenton (2011) find evidence consistent with choice overload in speed dating.

4One plausible interpretation is that agents ignore the fact that highly valued people are
also very selective in order to avoid having to recognize that some individuals are out of
their league (see Bénabou, 2015, for a comprehensive review of motivated beliefs).

5When all histories are equally likely to be observed, our model is equivalent to Jehiel
(2005) and our results remain valid.
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and underestimating the time it will take them to get married.6

What are the implications of this overoptimism? Agents who overvalue the

prospect of remaining single search longer than optimal. In fact, we show that,

in symmetric equilibria, agents with intermediate match values may search

indefinitely and remain single forever. By contrast, agents with lower (respec-

tively, higher) match values eventually marry and leave the market. Thus, the

extent to which overoptimism harms the agents depends on their match values

nonmonotonically.7

We find that search frictions mitigate the negative effect that overopti-

mism has on the agents. In particular, the share of agents who search indefi-

nitely weakly increases when search frictions become less intense and converges

monotonically to 1 when agents become infinitely patient. Intuitively, when

an agent believes that all other agents are equally “achievable,” the greater the

number of agents with high match values (s)he expects to meet in the future,

the more selective (s)he becomes. Eventually, the agent will reject all agents of

her/his caliber as the agent wrongly expects to marry agents with high match

values in the future with sufficiently high probability. Thus, improvements in

the search technology can make the agents too selective to marry.

Related Literature

This paper is related to the matching with frictions literature (see MacNamara

and Collins, 1990; Burdett and Coles, 1997; Eeckhout, 1999; Bloch and Ryder,

2000; Shimer and Smith, 2000; Chade, 2001; Adachi, 2003; Chade, 2006;

Smith, 2006). This literature focuses on the properties of the induced matching

under various assumptions on the search frictions, payoff from marriage, search

costs, and the ability to transfer utility. One of the most famous results in

this strand of the literature is the “block segregation result,” which holds in

6Agents at the bottom of the value distribution exhibit only one of these biases.
7There is quite a lot of evidence of overoptimism in the context of two-sided search.

For example, Bruch and Newman (2018) show that individuals pursue potential partners
who are, on average, 25% more desirable than themselves. In a broader context, “Dozens
of studies show that people generally overrate the chance of good events, underrate the
chance of bad events and are generally overconfident about their relative skill or prospects.”
(Camerer, 1997).
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our setting when agents’ are sufficiently impatient. For other parameters, we

obtain block segregation at the top of the value distribution, but there are

equilibria with no block segregation in other parts of the distribution.

We relax the full rationality assumption by introducing a modified version

of analogy-based expectation equilibrium (Jehiel, 2005). A related concept,

“cursed equilibrium,” was developed by Eyster and Rabin (2005) for games

of incomplete information. As agents in our model, cursed agents fail to un-

derstand the extent to which other players’ actions depend on their type. In

a related paper, Piccione and Rubinstein (2003) study intertemporal pricing,

where consumers think in terms of a coarse representation of the equilibrium

price distribution.

Our paper is also related to equilibrium models in which agents neglect

selection. Esponda (2008) proposes such a model and shows that agents who do

not account for selection can exacerbate adverse selection problems. In Jehiel

(2018), agents ignore the lack of feedback on non-implemented projects. This

selection neglect leads to overoptimism, as agents form expectations based only

on feedback from implemented projects, which, in expectation, are superior to

non-implemented ones.

In all of the above behavioral models, agents can be viewed as if they

were using a simplified representation of the world to form expectations. For

a comprehensive review of equilibrium models in which individuals interpret

data by means of a misspecified causal model see Spiegler (2019).

In our model, coarse reasoning is manifested in overoptimism, which leads

to over-search. Gamp and Krähmer (2019a) analyze a consumer search model

in which a share of the consumers do not understand the correlation between

a product’s quality and its price. The naive consumers search longer than it is

optimal to find a high-quality product at a low price (even if it does not exist),

which can solve the Diamond paradox. Gamp and Krähmer (2019b) analyze

a consumer search model in which firms choose whether to offer deceptive or

candid products and some of the consumers have a coarse understanding of

the market, in the sense that they cannot distinguish between deceptive and

candid products nor can they infer quality from prices. In their model, the
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naive consumers buy from the first firm they encounter.

While there are quite a few models that relax the full rationality assump-

tion in the context of consumer search, to the best of our knowledge there are

a limited number of papers that relax this assumption in the context of match-

ing with and without frictions. Two exceptions are Eliaz and Spiegler (2013),

who analyze a search and matching model where agents exhibit “morale haz-

ard,” and Antler (2015), who studies a centralized matching problem in which

agents’ preferences are sensitive to the institutional setting.

The rest of the paper proceeds as follows. We present the baseline model

and two benchmark results in Section 2. Section 3 introduces the behavioral

model and its analysis. Section 4 presents two extensions of the model and

Section 5 concludes.

2 The Baseline Model

There is a set of men M and a set of women W, each containing a unit mass

of agents whose values are distributed on the interval [v, v], v > 0 according to

an atomless continuous distribution8 F . We denote the corresponding density

by f and often refer to a man of value v as man v and to a woman of value v

as woman v.

In each period, a measure µ > 0 of men and a measure µ of women

are drawn uniformly at random. These men and women are then randomly

matched with each other. When a pair of agents are matched, they immedi-

ately observe each other’s value and choose whether to accept or reject the

match. If both agents accept, then they marry, exit the market, and are re-

placed by two agents with identical characteristics. If at least one of the two

agents rejects the match, then they separate and return to the market. When

agent v marries agent v′, the latter obtains a payoff of v and the former obtains

a payoff of v′. All agents discount the future at a rate δ < 1 and obtain no

utility when single. Agents maximize their expected discounted payoff given

8In Section 3.4, we discuss the relaxation of the symmetry assumption and its implications
for our results.
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their beliefs on the other agents’ behavior.

We restrict attention to stationary cutoff strategies. A stationary strategy

for agent v, σv(·) : [v, v] → {Y,N}, maps the values of agents on the other

side of the market to a decision whether to accept or reject a match. For each

agent v and profile σ, let Av(σ) be the set of agents who accept a match with

v, let Âv(σ) be the set of agents whom v accepts matches with, and let R̂v(σ)

be the set of agents whom v rejects. We say that agent v uses a cutoff strategy

if there exists âv such that Âv(σ) = {v′|v′ ≥ âv}. When there is no risk of

confusion, we omit the dependence on σ from Âv, R̂v, and Av and identify a

strategy σv with its corresponding cutoff âv.

2.1 Benchmark Results: Full Rationality

In this section, we provide a “rational expectations” benchmark for the analy-

sis. The results in this section follow directly from the analysis in the matching

with frictions literature and therefore we omit their formal proofs.

Proposition 1 is a classic block segregation result (see, e.g., MacNamara

and Collins, 1990; Coles and Burdett, 1997; Eeckhout, 1999; Bloch and Ryder,

2000; Chade, 2001; Smith, 2006).

Proposition 1 There exist numbers v = v0 > v1 > v2 > ... > vN = v such

that, in the unique equilibrium, every agent v ∈ [vj+1, vj) uses the cutoff vj+1.

Proposition 1 establishes that, in equilibrium, the sets of agents are partitioned

into classes, where agents are said to belong to the same class if they use the

same cutoff strategy. This implies that all agents are accepted by members

of their class and rejected by all members of higher classes. Thus, all agents

marry within their class and no agent remains single forever.

The intuition for the segregation result is as follows. Due to the search

frictions, no agent has a reservation value greater than δv. Thus, there exists a

threshold v1 ≤ δv such that if v ≥ v1, then all agents find agent v acceptable.

Hence, all agents whose value is greater than v1 have the same reservation

value, v1. These agents form the top class and reject matches with agents
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whose value is lower than v1. Thus, the latter agents’ reservation values must

be lower than δv1, which implies a cutoff v2 ≤ δv1 such that agents whose value

is lower than v1 find agents whose value is above v2 acceptable. Agents whose

value is between v1 and v2 form the second class as all of these agents have the

same reservation value, v2. It is possible to complete the class construction

inductively until the entire population of agents is accounted for.

Denote the expected discounted payoff that agent v obtains in equilibrium

by Ûv. We interpret increases in µ and δ as improvements in the search tech-

nology and study their effects on the agents’ welfare. The next result shows

that sufficiently large increases in µ and δ increase the agents’ welfare.

Proposition 2 For every v ∈ [v, v] it holds that Ûv ≤ v. Moreover, Ûv con-

verges to v as δ and µ converge to 1.

The proposition shows that when search frictions vanish, the induced match-

ing converges to the unique stable matching (see Bloch and Ryder, 2000;

Adachi, 2003). This implies that every agent marries another agent with the

same value. Thus, an agent v whose reservation value is lower than v benefits

from a sufficiently large increase in µ and δ. In equilibrium, every agent’s value

is strictly greater than her/his reservation value, except for agents at the lower

bound of a class. Thus, under the rational expectations model, an arbitrarily

large share of the participants are better off when search frictions vanish.

3 Coarse Reasoning in the Matching Market

In this section, we depart from the rational expectations model by assuming

that agents use a simplified model of the world to assess the likelihood of being

accepted as a partner. First, we introduce the behavioral model and establish

the foundation for the analysis. Second, we examine which agents marry in

equilibrium and how the primitives of the model affect the share of agents who

remain single. Finally, we characterize the symmetric equilibria of the game

and show existence by construction.
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3.1 The Behavioral Model

We start by relaxing the assumption that agents have a perfect understanding

of other agents’ strategies. Our agents have a coarse, yet correct, perception

of the other agents’ behavior. They understand the frequencies with which the

other agents are willing to marry them. However, they neglect the correlation

between the other agents’ behavior and the other agents’ value.

Our behavioral model is adapted from Jehiel (2005), who suggests an el-

egant framework that incorporates partial sophistication into extensive-form

games. In this framework, different contingencies are bundled into analogy

classes and the agents are required to hold correct beliefs about the other

agents’ average behavior in every analogy class. These coarse beliefs can stem

from partial feedback about the other agents’ behavior in similar games that

were played in the past. One motivation for the agents’ coarse beliefs is that

obtaining feedback about the aggregate behavior can be easier than gathering

information about the time and context in which each match was accepted or

rejected.

We modify Jehiel’s framework by allowing the agents to weigh different

contingencies not only by the frequencies with which they are reached, but

also by the probabilities with which the outcomes in these contingencies are

observed by the agents. This generalization is consistent with the interpreta-

tion of the agents’ coarse beliefs as stemming from feedback on the behavior in

similar games that were played in the past.9 In our model, the probability of

observing the outcome of a particular contingency is endogenous. Specifically,

we assume that an agent v who accepts a match with an agent w observes w’s

decision (as they marry if w accepts the match) while when v rejects a match

with w, agent v observes w’s decision only with probability α ∈ (0, 1].

When α = 1, agent v’s belief matches the rate at which other agents accept

agent v and our model is equivalent to Jehiel (2005). When α < 1, agents put

smaller weights on situations in which they reject other agents. This captures

courting and hiring situations in which mutual interest is easier to observe than

9Alternatively, the agents may weigh contingencies differently because they think that
some contingencies are more relevant than others.
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mutual disinterest. As we will show later, the model’s results and intuitions

hold regardless of whether α = 1 or α ∈ (0, 1). Varying the value of α allows

us to study how the feedback structure in different markets affects the agents’

marriage decisions.

Formally, each agent v believes that every other agent accepts a match

with v with probability βv. In equilibrium, the probabilities β = (βv)v∈M∪W

are consistent with the actual play in the game and reflect the true probability

with which other agents are willing to accept a match with agent v.

Definition 1 Agent v’s belief βv is said to be consistent with a profile σ if

βv =

∫
Âv(σ)∩Av(σ)

f(x)dx+ α
∫
R̂v(σ)∩Av(σ)

f(x)dx∫
Âv(σ)

f(x)dx+ α
∫
R̂v(σ)

f(x)dx
.(1)

Definition 2 A pair (σ, β) forms an equilibrium if each belief βv is consistent

with σ and each strategy σv is optimal given βv.

Throughout the analysis, we focus on symmetric equilibria, namely, equi-

libria in which women and men with the same value use a symmetric strategy.

The symmetry in the equilibrium behavior greatly simplifies the notation and

makes the exposition clearer. The key results and intuitions remain valid when

the equilibrium behavior is asymmetric (or when the distributions of men’s and

women’s values are asymmetric). We discuss and explain the minor differences

at the end of this section, after presenting our results.

An agent v who uses a cutoff âv and believes that (s)he will be accepted with

probability βv expects to marry in each period with probability µβv(1−F (âv)).

Due to selection neglect, the agent conditions the expected value of a marriage

only on her/his own cutoff, thus believing it to be
∫
Âv

f(x)xdx

1−F (âv)
. Therefore, the

agent’s (perceived) expected payoff at the beginning of each period is

Uv = µβv(1− F (âv))E[v′|v′ ≥ v] + δ(1− µβv(1− F (âv))Uv.
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Rearranging the above equation yields

Uv =
µβv(1− F (âv))E[v′|v′ ≥ v]

1− δ(1− µβv(1− F (âv))
.(2)

An agent v accept a match with agent w if and only if w ≥ δUv, implying

that âv = δUv. The following lemma uses this equality to establish that, in

equilibrium, agents who are more valued have higher reservation values.

Lemma 1 In equilibrium, âv is weakly increasing in v.

Proof. Let v < v?. The use of cutoff strategies implies that agent v’s opportu-

nity set is a subset of v?’s, that is, Av ⊆ Av? . If agent v? uses agent v’s optimal

cutoff, then βv? ≥ βv, implying that Uv? ≥ Uv. Therefore, this inequality holds

if v? chooses her/his cutoff optimally. Thus, Uv ≤ Uv? , implying that âv? ≥ âv.

The monotonicity of the agents’ cutoffs implies that for every agent v, there

exists an opportunity value, av, such that cl(Av) = {w|w ≤ av}. The use of

cutoff strategies implies that av is weakly increasing in v as well. Next, we use

this concept to understand which agents actually marry in equilibrium.

3.2 Who Marries in Equilibrium?

Under the standard rational expectations model, if both sides of the market

are symmetric, then all agents marry with strictly positive probability.10 In

our model, the agents’ coarse reasoning makes some of them too selective to

marry agents of their own caliber. Thus, it can be that on both sides of the

market there are agents who do not marry at all. The next lemma provides a

condition that will be useful in understanding who these eternal singles are.

Definition 3 Let s(v) be the discounted payoff of an agent whose opportunity

10Even if the market is asymmetric, all agents on at least one side of the market marry
with strictly positive probability.
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value is v and who uses the cutoff v, that is,

s(v) := δ
µ αF (v)

1−(1−α)F (v)
(1− F (v))E[v′|v′ > v]

1− δ(1− µ αF (v)
1−(1−α)F (v)

(1− F (v))
.

Lemma 2 Agent v marries in a symmetric equilibrium if and only if

v > s(v).(3)

Proof. In a symmetric equilibrium, if âv > v, that is, if agent v rejects a match

with another v, then v is accepted only by agents with lower values, implying

that av < v. By the same logic, âv = v implies that av ≥ v and âv < v implies

that av ≥ v. Agent v can marry with strictly positive probability if and only

if âv < av. Thus, agent v marries with strictly positive probability if and only

if âv ≤ v ≤ av, with at least one strict inequality.

Let v > s(v), implying that agent v strictly prefers to marry another v

if âv = v = av. However, âv = v = av cannot hold together with v > s(v)

since, in equilibrium, δUv = âv. This contradiction implies that if av = v,

then âv < v, and because v’s payoff is increasing in av, it follows that âv < v

holds if av < v as well. Since âv < v implies that av ≥ v by definition, we can

conclude that either av = v and âv < v, or av > v and âv ≤ v.

Let v ≤ s(v). Agent v then weakly prefers to reject another agent v if

âv = v = av. Therefore, if av = v, then âv ≥ v, and, by monotonicity, âv > v

for av > v. Since âv > v implies that av < v by definition, we can conclude

that either av = v and âv = v, or av < v which implies âv > v.

Lemma 2 establishes a necessary and sufficient condition for an agent to marry

in symmetric equilibria. Condition 3 implies that given an opportunity value

of v, an agent will strictly prefer marrying agent v to remaining single. An

agent v for whom s(v) ≥ v exhibits a “Groucho Marx” type of behavior, as v

is unwilling to marry agents who are willing to marry v.

In order to understand the intuition for the condition’s necessity, observe

that s(v) is weakly lower than the reservation value of a woman who is accepted
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by men whose value is lower than v and rejected by men whose value is greater

than v. By the monotonicity of the reservation values, whenever man v is

willing to marry woman w, her reservation value is weakly greater than s(v).

Hence, when s(v) > v, woman w prefers remaining single to marrying v and

so v cannot marry in equilibrium.11

To see why Condition 3 is also sufficient, note that in a symmetric equilib-

rium, v will not marry only if all agents whose value is greater than v reject

v (i.e., av ≤ v). Agent v’s reservation value increases in av and so, if v > s(v)

and av ≤ v, then agent v accepts agents whose value is lower than v. As the

agents’ reservation values are monotone in their values, all agents whose value

is lower than v accept v and so v marries in a symmetric equilibrium.

Condition 3 allows us to understand who will marry in equilibrium. As

s(v) is continuous and s(v) = s(v) = 0, agents with extreme match values

always marry in equilibrium while agents with intermediate match values may

search indefinitely. We now use Condition 3 to study the effect of the matching

frictions, µ and δ, and the feedback parameter α on the share of eternal singles

in a symmetric equilibrium.

Proposition 3 The share of agents who never marry in a symmetric equilib-

rium weakly increases in δ, µ, and α. Moreover, for any α and µ, this share

converges to 1 as δ converges to 1.

Proof. We can write Condition (3) as

1− δ
δ

v > µ
αF (v)(1− F (v))

1− (1− α)F (v)
E[v′ − v|v′ > v].(4)

Note that an agent for whom (4) does not hold cannot marry in equilibrium.

The LHS of (4) is decreasing in δ and so every agent who cannot marry in

equilibrium under δ cannot do so under any δ′ > δ. Moreover, at the δ = 1

limit, the LHS of (4) goes to 0 such that (4) cannot hold for v ∈ (v, v). Clearly,

the RHS of (4) is increasing in µ and α, which completes the proof.

11When s(v) > v, agent v cannot marry regardless of whether the equilibrium is symmetric
or not.
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Proposition 3 establishes that the share of eternal singles increases when search

frictions vanish and as agents’ obtain better feedback on matches they reject.

What makes the agents so selective when the search frictions vanish? To

understand the intuition, consider an agent v who marries in equilibrium.

Agent v is accepted by (at least) all agents with a value lower than v. No

matter what cutoff strategy v uses, v believes that (s)he will be accepted by

every agent with a probability weakly higher than αF (v). As search frictions

vanish, v expects to encounter more and more agents with high match values

and, therefore, v will never accept an agent of her/his own caliber.

In order to understand the effect of the feedback parameter α, note that

an agent v who marries in equilibrium is accepted by every agent whom v

rejects. The higher α is, the higher agent v’s perceived probability βv is, as v

obtains more “positive feedback” from matches v rejects. When v’s perceived

probability increases, v becomes more selective to the extent that, for large

values of βv, agent v is too selective to marry.

3.3 Overoptimism and Oversearch

In the previous section, we established that some agents in our model may

search indefinitely and never leave the market. This suggests that, in general,

agents may be too selective and search longer than optimal. We now show

that this is indeed the case. While agents who are accepted by everyone are

correct in their predictions and behave as if they were fully rational, all other

agents overvalue their prospects in the market and continue their search longer

than optimal.

Proposition 4 There exists a value v1 < v such that every agent v ≥ v1

behaves as if (s)he were fully rational and every agent v < v1 searches longer

than optimal. Moreover, [v1, v] is the top class in Proposition 1.

Proof. First, consider the agents’ perceived probability of marriage in each

period. Agent v expects to accept a match with probability 1− F (âv) and to
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be accepted in each period with probability

βv =


F (av)−F (âv)+αF (âv)

1−F (âv)+αF (âv)
, if av ≥ âv

αF (av)
1−F (âv)+αF (âv)

, if av < âv.

The correct probability with which agent v is accepted, conditional on v

accepting, is

max{F (av)− F (âv), 0}
1− F (âv)

,(5)

which is lower than βv unless av = v or âv = v.

Second, consider the agents’ expected value from marriage. Agent v marries

an agent whose expected value is E[v′|âv ≤ v′ < av] but believes that (s)he

will marry an agent whose expected value is E[v′|âv ≤ v′ ≤ v]. The latter

value is higher, unless av = v.

Therefore, unless av = v, in which case the agent is correct and behaves

optimally, agent v’s perceived expected payoff, Uv, is higher than the actual

one. Hence, the agent’s cutoff value, âv, is too high as well, since âv = δUv.

This means that the agent searches longer than optimal, given av.

Lastly, note that due to search frictions, there must be agents who are

accepted by all other agents. By the monotonicity of av, there exists a value

v1 such that av = v for v ≥ v1 and av < v for v < v1.

Agents who are accepted by all other agents behave as if they were fully

rational. They correctly predict the time it will take them to marry and

their partner’s expected value. The reason that these agents are unaffected

by selection neglect is that for these agents, there is no selection, namely, all

other agents are equally (non)selective with regard to these agents.

All other agents are affected by their neglect of the fact that agents who are

more valued are also more selective. There are two reasons why this neglect

can make agents search longer than optimal: overestimation of the expected

value of their potential partner in a future marriage and underestimation of

the time it will take them to get married.
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Agents overestimate the expected value of their potential partner because

they believe that all agents are equally achievable and, therefore, they believe

that they are equally likely to marry any agent whom they accept. However,

since agents who are more valued are also more selective, agents either re-

main single forever or marry an agent whose expected value is lower than the

expected value of the matches they accept.

Agents underestimate the time it takes them to get married since they

overestimate the rate of a mutual match acceptance. Recall that our agents

average over all possible partners when they form expectations (on the rate

at which others find them acceptable). They mistakenly include potential

partners that they themselves reject but are accepted by, which raises the

acceptance rate. Our agents also mistakenly include agents they accept but

are rejected by, which lowers the acceptance rate. It turns out that the more

dominant mistake is the first. Hence, our agents include too many observations

in which they are accepted, which induces overestimation of the probability of

marriage in each period.12

3.4 Characterization and Existence

In this section, we focus on the structure and existence of the equilibria of

the model. We construct a symmetric equilibrium in which there is block

segregation. The construction shows that, in general, there are an infinite

number of such equilibria but, by Condition 3, the set of agents who marry

in equilibrium is unique. We conclude this section by relaxing the symmetry

assumption and illustrating the structure and properties of such equilibria.

In constructing the symmetric equilibria, we use the fact that Condition 3

allows us to partition [v, v] into maximal intervals in which either all agents

marry (marriage intervals) or none do (singles intervals). We treat each interval

separately and partition them into a potentially infinite number of classes, in

which all agents share the same reservation and opportunity values.

As in the rational case, a top class exists and it is possible to construct

12When âv = v, agent v correctly predicts the time it will take her/him to marry as there
is no selection along this dimension.
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a sequence of classes that starts from it. However, unlike in the rational

case (unless δ is sufficiently small), the sequence will not cover [v, v] and will

converge to the highest value v? such that s(v?) = v? instead. That is, the

classes cover only the top marriage interval.

The main challenge in the proof is that, unlike in the top marriage interval

(and unlike in the rational case), in any other interval there is no upper class

from which we can start the construction. Nevertheless, we show that it is

possible to define an arbitrary initial class in the interior of each of these

intervals and construct two unique sequences of classes on each of the initial

class’ sides. The sequences cover the interval and converge to its end points.

Such freedom in defining the initial class implies that there are an infinite

number of equilibria once the partition includes more than one interval. There

is no such freedom in the top marriage interval (or in the rational expectations

model) due to the uniqueness of the upper class.

Formally, by Condition 3, we know that one can partition [v, v] into maxi-

mal intervals in which agents either eventually marry or remain single forever.

We say that L is a marriage interval, if L is a maximal interval such that

s(l) < l for all l ∈  L. An interval L is said to be a singles interval if either

s(l) > l for all l ∈ L, or s(l) = l for all l ∈ L. In the latter case, L is often a

singleton. Denote [l, l] := cl(L).

We say that C = [c, c] is a class if either C = cl({v|âv = c}) = cl({v|av =

c}) or C = cl({v|âv = c}) = cl({v|av = c}). Thus, in each class, the agents

share identical cutoff rules and opportunity values. We refer to classes con-

tained in marriage intervals as marriage classes and to classes contained in

singles intervals as singles classes.

The following lemma is key in establishing that, in equilibrium, if an in-

terval L contains one class, then L is covered by classes.

Lemma 3 In equilibrium, if an interval L contains a class C, then (i) L

contains a unique class C ′ such that c = c′, unless c = v, and (ii) L contains

a unique class C ′′ such that c′′ = c, unless c = v.

Proof. Assume that C is a marriage class and c 6= v. By the definition of a
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class, for any agent v > c, âv ≥ c. Since C is in a marriage interval, lim
v→c+

âv = c.

There exists a unique value ac > c such that lim
v→c+

av = ac for which lim
v→c+

âv = c

is optimal. By the definition of ac and monotonicity, âv = c for any v ∈ (c, ac).

This implies that av = ac for all such v. Therefore, C ′ = [c, ac] is a class.

Assume that C is a singles class and c 6= v. For any v > c, av ≥ c. Since

C is in a singles interval, lim
v→c+

av = c. There exists a unique value âc > c

such that lim
v→c+

âv = âc is optimal given lim
v→c+

av = c. By the definition of âc,

av = c for any v ∈ (c, âc). This implies that âv = âc for all such v. Therefore,

C ′ = [c, âc] is a class.

The proofs for the existence of C ′′ follow the same logic and are omitted

for brevity.

By Lemma 3, if an interval L contains a finite number of classes, then

L = [v, v]. Moreover, an infinite sequence of classes must converge to some v

satisfying s(v) = v. Thus, if cl(L) = [l, l] then either l = v or s(l) = l, and

either l = v or s(l) = l. The next corollary follows immediately.

Corollary 1 If an interval L contains one class, then L is covered by classes.

In equilibrium, there must be two sets of agents, one on each side of the

market, who are accepted by all the other agents. The set of agents who are

accepted by all the other agents on one side of the market must have a common

cutoff strategy, i.e., a joint âv, which, in turn, defines the set of agents who are

accepted by all the other agents on the other side of the market. These two sets

of agents are uniquely determined by the distribution F . Thus, Proposition 4

and Corollary 1 imply the following Corollary.

Corollary 2 In equilibrium, the highest marriage interval is covered by classes

in a unique manner.

If δ is sufficiently low such that s(v) > v for all v, implying that all

agents marry in equilibrium, then Corollary 2 establishes that the equilibrium

is unique. Otherwise, the equilibrium is uniquely defined over the highest

marriage interval.
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In the following proposition, we show, by construction, that an equilibrium

exists. This is established by defining an arbitrary class in each interval (except

the highest) and then covering each interval with additional classes.13 This

construction highlights the fact that the equilibrium is not unique whenever

there is more than one interval. Nonetheless, the set of agents who remain

single in equilibrium is unique.

Proposition 5 A symmetric equilibrium exists.

Proof. For any point v for which s(v) = v, set âv. The following construction

will ensure that av = v as well. By definition, âv = v is optimal given av = v.

In the remainder of the proof, singles intervals are assumed to contain only

agents with s(v) > v.

Let L be a maximal interval that does not contain v or v, and let a ∈ int(L)

and ε ∈ R. Define v = a+ε. Consider v’s discounted payoff, δUv, as a function

of ε, assuming that âv = v and av = a. If L is a marriage interval, then for

ε = 0, δUv < v. For ε = l − a, δUv > l = v ( l’s payoff when al = âl = l is l).

If L is a singles interval, then for ε = 0, δUv > v. For ε = l − a, δUv < l = v

( l’s payoff given al = âl = l is l). In either case, the payoff is continuous in ε

and, therefore, for some ε, δUv = v. Note that v ∈ L.

Consider now the dual exercise: let L be a maximal interval that does not

contain v or v, and let w ∈ L. If L is a marriage interval, consider a ∈ [w, l]

and find a v as in the previous paragraph. For a = w, v < w. For a = l,

v = l > w. If L is a singles interval, consider a ∈ [l, w] and find a v as in the

previous paragraph. For a = w, v > w. For a = l, v = l < w. In either case,

by continuity, there exists an a such that v = w. Note that a ∈ L.

Thus, given any v ∈ L we can find an interval [v, a] ∈ L, such that v is

the optimal cutoff given a, and an interval [â, v] ∈ L, such that â is optimal

given v. Arguments for the existence of an interval of the first type for L not

containing v and an interval of the second type for L not containing v are

similar and omitted for brevity.

13It is also possible to construct equilibria with no classes, except in the highest interval.
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Let L be a maximal interval that does not contain v or v, and let c0 ∈
int(L). For k = 1, 2, ..., let ck be the value for which δUv = ck−1 if âv = ck−1

and av = ck. For l = 1, 2, ..., let cl be the value for which δUv = c−l if âv = l−l

and av = c1−l. Note that both series {ck}k∈N and {cl}l∈N are bounded by

L and monotonic, and hence converging. At the limit, v, it must hold that

v = av = âv. Thus, v ∈ {l, l}. For k ∈ Z, define Ck = [ck, ck+1). Note that the

sets {Ck}k∈Z are disjoint and cover int(L). Set âv = ck for any v ∈ [ck, ck+1),

âl = l, and âl = l

Let L be a maximal interval containing v. Set c0 = v. For any l = 1, 2, ...,

let cl be the value for which δUv = cl−1 if âv = c−l and av = c1−l. In the case of

c−l ≤ v, set c−l = v and stop the process. Define C l = [cl, cl+1) for l = 1, 2, ...

. As in the previous case, the sets {C−l}l∈N are disjoint and cover int(L). Set

âv = c−l for any v ∈ [c−l, c1−l) and âv = c−1.

Let L be a maximal interval containing v but not v. Set c0 = v. For any

k = 1, 2, ..., let ck be the value for which δUv = ck−1 if âv = ck−1 and av = ck.

Define Ck−1 = [ck−1, ck] for any k = 1, 2... . Set âv = c−1 for any v ∈ [ck−1, ck)

and âv = c0.

By construction, for any v in any interval L, if âv = ck for some k, then

av = ck+1. Furthermore, this âv is optimal given av. Thus, an equilibrium

exists.

To conclude, the following proposition summarizes our results:

Proposition 6 Fix µ and α. There exists δ such that:

1. If δ ≥ δ, then (i) there exist an infinite number of symmetric equilibria,

and (ii) there is a set of agents with intermediate match values who do

not marry in any equilibrium.

2. If δ < δ, then (i) there exists a unique equilibrium and (ii) all agents

marry in equilibrium.

For every δ, there exists a top class, C0, that is identical to C0 in the benchmark

case of Proposition 1.
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Comment: Symmetry in the model

Throughout the analysis, we imposed symmetry along two dimensions: we

focused on symmetric equilibria and assumed that the men’s and women’s

values are drawn from identical distributions. These assumptions allowed us

to convey the main messages while keeping the exposition simple. However,

our key insights are not sensitive to these assumptions. Since the implications

of both types of asymmetry are similar, we focus our discussion on the case

where the distributions of values are symmetric but the equilibrium is not.

The condition s(v) ≤ v remains necessary for marriage as, if s(v) > v and

man (woman) v accepts a match with woman (man) w, then all men (women)

whose value is lower than v accept w and so w rejects the match with v.

Moreover, as Proposition 3 shows, s(v) increases in δ, µ, and α. Thus, the key

insights of the paper remain valid.

The main change when we relax the symmetry assumption is that Condi-

tion 3 is no longer sufficient for marriage. As an illustration, let F be such

that s(v) = v for some v and denote that lowest such v by v?. Construct a

symmetric equilibrium as in Proposition 5 and make the following two mod-

ifications: set âv = v? for all women with v ∈ [v, v?] and âv = v for all men

with v ∈ [v, v?]. Note that (1) av = v? for all women with v ∈ [v, v?], which

implies that âv = v? is optimal for these women and (2) av = v for all men

with v ∈ [v, v?], which implies that âv = v is optimal for these men. For all

other agents, the opportunity and reservation values remain as in Proposition

5 and so the profile we described is an equilibrium in which low-valued agents

never marry (unlike in a symmetric equilibrium, in which low-valued agents

do marry).

The equilibrium we constructed highlights a general property: in a sym-

metric equilibrium, agents are partitioned into marriage and singles intervals,

based on whether s(v) ≥ v or s(v) < v in each interval. In an asymmetric

equilibrium, it is possible to turn every marriage interval into a singles inter-

val, except for the top marriage interval. Agents in that interval behave as in

a symmetric equilibrium (as Corollary 2 still applies and these agents’ behav-

ior is pinned down by the top class). Thus, the set of agents who marry in a
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symmetric equilibrium is a superset of the agents who marry in an asymmetric

equilibrium.

4 Extensions

In this section, we modify the baseline model along two dimensions and ex-

amine the implications for our results. First, we consider a model in which

one side of the market consists of fully rational agents while agents on the

other side of the market are boundedly rational. We show that the existence

of the fully rational agents can lead to unraveling. We then focus on a case

where agents obtain no feedback from matches they reject and show that, as in

the previous sections, agents overestimate the value of their potential partner.

However, they do not underestimate the time it will take them to marry. As

a result, agents search longer than optimal but eventually all of them marry.

4.1 One-Sided Full Rationality

Consider a case in which agents on one side of the market are fully rational,

while on the other side of the market the agents’ reasoning is coarse. This

setting corresponds to hiring situations, where workers might be partially so-

phisticated while firms invest more resources in gathering information and

analyzing the market.

A natural question is whether the existence of the fully rational agents on

one side of the market alleviates the problem of oversearch or not. The next

result shows that not only is the answer to this question negative, but, in

fact, the share of eternal singles is greater when one side of the market is fully

rational.

Proposition 7 Suppose that every v ∈ W is fully rational and assume that

s(v?) > v? for some v? < v. In equilibrium, all women whose value is lower

than v? never marry.

Proof. Observe that Lemma 1 still applies (to both sides of the market).

Consider woman v?. If she accepts a man ṽ, then every woman whose value
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is lower than v? accepts man ṽ and so δUṽ ≥ s(v?) > v?. Thus, man ṽ rejects

woman v?. It follows that woman v? cannot marry in equilibrium. Hence,

no man ever accepts woman v?, as otherwise she could deviate to accept that

man. By monotonicity, no man ever accepts a woman w < v?.

Proposition 7 shows that even rational agents who are fully aware of the bound-

edly rational agents’ overselectiveness may find themselves forever single. In

fact, compared to the case where W contains boundedly rational agents, fewer

women marry when all women are fully rational (as, when women are only par-

tially sophisticated, women at the bottom of the value distribution do marry).

The intuition for Proposition 7 is as follows. Fully rational agents react

to the overselectiveness of agents on the other side of the market by lowering

their own standards. If agents of their own caliber reject them, they turn

to lower-valued agents (unlike boundedly rational agents who do not expect

difficulty in matching with agents of their own caliber). The fully rational

agents’ lower standards raise the standards of lower-valued boundedly rational

agents, thereby exacerbating the problem: the low-valued boundedly rational

agents become even more overoptimistic as they are accepted by higher-valued

rational agents and refuse to marry these agents as well. This process leads to

unraveling as, eventually, higher-valued women will accept all men while even

the lowest-valued man will be unwilling to marry them.

4.2 No Feedback from Rejected Matches (α = 0)

Our agents estimate the acceptance likelihood of a potential match by observ-

ing, and averaging over, agents they both reject and accept. In this section, we

consider the extreme case in which agents do not observe whether agents they

reject accept them or not. In other words, agents form their expectation solely

by observing the acceptance rate of agents they accept themselves. Formally,

in this section we assume that α = 0. Thus,

βv =

∫
Âv(σ)∩Av(σ)

f(x)dx∫
Âv(σ)

f(x)dx
=
max{F (av)− F (âv), 0}

1− F (âv)
.(6)
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Note that βv is the correct average probability that agents whom v finds

acceptable accept v in return. Thus, there is no selection neglect along the

probability dimension.

At this point, a conceptual issue may arise: how should an agent form a

belief about the behavior of agents they reject and never observe? We follow

the leading example in Esponda (2008) and assume that agents extrapolate

from the data they do observe in equilibrium and believe that the agents they

reject find them acceptable with probability14 βv.

An agent who marries in equilibrium, has a perceived expected payoff of

Uv =
µ[F (av)− F (âv)]E[v′|v′ ≥ v]

1− δ(1− µ[F (av)− F (âv)])
.(7)

When α = 0, agents may still overestimate the value of a potential marriage

as they think that other agents are equally achievable. The selection neglect

along the value dimension makes them overselective and leads them to search

longer than optimal.

An agent who does not marry in equilibrium obtains a correct perceived

payoff of 0. The next result shows that this cannot happen in equilibrium: even

though most agents suffer from selection neglect, overvalue the prospect of

remaining single, and search longer than optimal, all agents eventually marry

and there is block segregation.

Proposition 8 Fix α = 0. There exists a unique equilibrium in which all

agents marry and the block segregation result holds. In this equilibrium, there

is a value v1 < v such that every agent v ≥ v1 behaves as if (s)he were fully

rational and every agent v < v1 searches longer than optimal.

The proof of Proposition 8 is by construction and follows the same logic

as in previous proofs: there exists a unique upper class (identical for any α).

Additional classes are then constructed in a unique manner. As the proof

follows directly from Corollary 2, it is omitted.

14Our subsequent results do not rely on this assumption.
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The key difference between the case of α = 0 and that of α > 0 is the lack

of eternal singles in the former case. When there is no selection neglect along

the probability dimension, if there were an “eternal single” v, then v would

conclude that (s)he will marry with probability 0. Thus, v would adjust âv to

v and accept matches with all agents, which would lead v to marry.

5 Concluding Remarks

We studied a model of two-sided search with nontransferable utility and agents

who use a coarse model of the world to assess their prospects. We found that

the most desirable agents behave as if they were fully rational while all the

other agents overvalue the option of remaining single. This problem is most

severe for agents with intermediate match values, who, if the search frictions

are not too intense, search indefinitely.

Throughout the analysis we assumed that agents who marry obtain the

value of their spouse or, in Burdett and Coles’ (1997) words, “Looking in the

mirror to admire one’s own pizzazz does not increase utility.” While this is

natural in some contexts, there is some complementarity between partners in

other contexts. The main results and intuitions of the paper hold in some set-

tings in which partners complement each other (e.g., when the payoff function

is multiplicatively separable, as analyzed in Eeckhout, 1999). In fact, as long

as agents who are more valued are also more selective (which is necessary in

any form of assortative mating) our qualitative results hold.15

A key insight of this paper is that when agents are not fully rational, tech-

nological advancement that thickens markets and allows agents to search faster

can make them worse off. The improvements in the search technology exac-

erbate the agents’ biases and increase their overselectiveness. This insight is

particularly important in designing modern search environments where agents

may be overwhelmed by the wide variety of possibilities, which can lead them

to use simplified models of the world.

15To see this, note that the structure of Condition 3, which is the cornerstone of our
analysis, depends only on the monotonicity of the agents’ reservation values.
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