What Is the Impact of Automation on Employment? New Evidence from France

Philippe Aghion, College de France Celine Antonin, Sciences-Po Simon Bunel, Insee and PSE Xavier Jaravel, London School of Economics

September 12, 2019

The Robots Are Coming

Will They Take All Our Jobs?

Bill Gates

Andrew Yang

Ned Ludd

Aren't Machines Already Everywhere?

Introduction

- Will automation lead to "technological unemployment" (Keynes 1930, Leontief 1952)?
 - Automation can be defined as "class of electro-mechanical devices that are relatively self-operating after they have been set in motion on the basis of predetermined instructions or procedures" (Encyclopaedia Britannica, 2015)
- By definition automation is labor-saving at the task level
 - But could induce productivity gains and need for implementing new tasks (e.g., quality control)
 - Could be labor-augmenting and promote employment/wages at plant level, firm level, industry level or economy-wide

This Paper

- Despite extensive research, employment effects of automation remain debated
 - Industrial robots: Acemoglu-Restrepo 2019, Chiacchio et al. 2019 vs. Michaels and Graetz 2018, Dauth et al. 2019. Koch et al. 2019
 - Automation patents: Webb 2019 vs. Mann and Puttmann 2019
- Industry-level variation in automation makes causal identification challenging

This Paper

- Study automation at plant and firm levels
 - Primary measure exploits fact that common automation technologies operate with electric motors (e.g., robots or conveyors)
 - Linked employer-employee data set covers population of French firms in manufacutring sectors (1994-2015)
- Two research design for causal identification:
 - Event studies exploiting precise timing of adoption of automation technologies across plants (in same firm)
 - Shift-share research design exploiting changes in the productivity of foreign suppliers of machines
- Estimates indicate that increased automation leads to:
 - Increased plant-level and firm-level employment, with elasticities of about 0.3 after 3 years
 - Increased sales, and stable wages and labor share

Roadmap

- **1** Data and Stylized Facts
- event Study
- Shift-Share IV
- Intersection State St

- Ideal data set would provide detailed information on
 - Workers: wages, occupation, tasks
 - Pirms and plants: sales, industry, balance sheet
 - Automation: technology, tasks performed, efficiency, intensity of utilization for each firm/plant

Worker/Firm Data

- Detailed information on workers and firms available from French administrative data (DADS and INSEE databases)
 - Matched employer-employee data covering all plants in private sector from 1994 to 2015

Measuring Automation

- Common automation technologies typically based on electro-motive force, i.e. set in motion using electric motors
 - Automation technologies require motive force / motor action
 - "class of electro-mechanical devices that are relatively self-operating after they have been set in motion on the basis of predetermined instructions or procedures" (Encyclopaedia Britannica, 2015)
- Use detailed records of electricity consumption for motors directly used in production process
 - Assembled by INSEE since 1983; distinguishes between motive power, thermic/thermodynamic uses, and other uses (electrolysis)
 - Focus on motive power to exclude heating, cooling, servers
- Supplement with firm-level data on industrial equipment/machines

Measuring Automation

- Measuring (changes in) automation using consumption of electricity for motive power has several potential advantages and limitations
- Advantages:
 - Covers broad set of automation technologies
 - Available at plant level
 - Possible to measure using intensity of usage, rather than stock of machines
- Limitations:
 - ► Due to variation in efficiency, difficult to draw comparisons across industries and over time ⇒ analysis with industry/time fixed effects
 - ▶ Blends different vintages of automation technologies ⇒ can focus on susbet of industries where modern robots account for large share of motive power (e.g. automobile)

Chemicals

Rubber

Paper

Glass and Ceramics

Food

Stylized Facts

- As a preliminary descriptive exercise, compare path of sales, employment and labor share in plants that increase faster their consumption of electricity for motive power
 - ▶ Top 50% vs. bottom 50%

Employment - Low Skill

Roadmap

Data and Stylized Facts

- event Study
- Shift-Share IV

Distributed Lead-Lag Model

- How to describe employment dynamics as a firm or plant increases its use of electric motors?
 - "Extensive margin" event study not possible given that almost all firms/plant use electric motors in all years
 - Use standard distributed lead-lag model (Stock and Watson 2015)

Distributed Lead-Lag Model

$$L_{it} = \sum_{k=0}^{10} \delta_k^{Lag} \Delta M_{i,t+k} + \sum_{k=-10}^{-1} \delta_k^{Lead} \Delta M_{i,t-k} + \mu_i + \lambda_{st} + \varepsilon_{it}$$

with employment L_{it} , change in electric motor consumption $\Delta M_{i,t}$ and plant F.E. μ_i

- Specification allows for delayed response of employment to increased automation
- Causal interpretation requires $E[\Delta M_{i,t+k} \cdot \varepsilon_{it} | \mu_i, \lambda_{st}] = 0 \forall (t,k)$
 - Leads can be used as a falsification test but cannot rule out potential demand/supply shocks in contemporaneous period
 - Mitigate potential correlated shocks with specifications using industry-year or firm-year F.E., λ_{st}

Employment Dynamics: Average

- Start by documenting employment dynamics across all firms
- Find that employment increases following increased use of machines
 - Elasticity of +0.2 on impact
 - Cumulative response increases further over time, with an elasticity of +0.4 after 8 years
- No pre-trends and magnitudes robust to changes in industry-year controls
 - Implies potential confounding factors must have precisely the same timing as automation and have stronger explanatory power than firm-year fixed effects (Oster 2015)

Employment Dynamics: Heterogeneity?

- Are effects different across skill groups?
- Find no heterogeneity across broad skill groups (high/medium/low)
 - Positive employment response for all, no change in relative wage
 - Suggests no broad effect on inequality
 - However heterogeneous effects could arise within skill groups, depending on set of tasks performed (in progress)

Plant Employment - Medium skill ω Estimated Elasticity -.2 0 .2 .4 .6 4. ω. ' -10 -8 -6 -2 Ż 6 8 10 -4 Year relative to change in electricity consumption for motors Controlling for 4-digit-industry by year F.E.

Additional Results

- Similar results on employment with:
 - Firm-level analysis
 - Alternative definitions of skill groups
 - Industries with large share of IFR robots
- Find no significant change in wages or in labor share

Limitation

- Distributed lead-lag model cannot fully address potential correlated demand/supply shocks
 - When firm grows due to demand or supply shocks unrelated to increased automation, it may decide to increase both employment and automation
 - Turn to IV research design to address this limitation

Roadmap

Data and Stylized Facts

- 2 Event Study
- Shift-Share IV

Shift-Share IV

- Ideal experiment would randomly assign purchasing prices for machines/robots across firms
- Approximate with a shift-share research design, leveraging two components:
 - Variation in the cost of imported machines/robots over time across international trading partners ("shocks")
 - Variation in pre-existing supplier relationships across French firms ("exposure shares")
- Intutively, changes in quality-adjusted price for machines/robots is not observed can be inferred from changes in trade flows
 - French firms are differentially exposed to changes in sector-specific foreign productivity

Shocks

- "Shocks" across trading partners by sectors:
 - ▶ g_n is aggregate change in imports flows of machines/robots from each trading partners (Germany, Italy, Japan, China, etc.) for each 2-digit industry
 - Infer from trade flows that some countries do particularly well in machines/robots supply in specific sectors and periods
 - e.g., Italy for textile in the 1990s, Germany for automobiles in the 2000s, the Netherlands for food products after 2010

Exposure Shares

- "Exposure shares" of French firms:
 - s_{in} is share of trading partner n in firm i's total imports of machines and robots
 - Because of switching costs, French firm more likely to benefit from a trading partner's productivity shock if it has a pre-existing importing relationship with them
 - Contemporaneous shares liable to reverse causality: use shares lagged by 5 years

Shift-Share IV

- Consider changes in employment ΔL_i and changes in motor consumption ΔM_i over a five-year period across firmes indexed by *i*
- We estimate by 2SLS:

$$\begin{cases} \Delta L_i = \beta \Delta Z_i + \gamma X_i + \varepsilon_i \\ \Delta M_i = \alpha \Delta Z_i + \widetilde{\gamma} X_i + \widetilde{\varepsilon}_i \end{cases}$$

with Z_i the shift-share instrument constructed from shocks g_n and (lagged) exposure shares $s_{in} \ge 0$,

$$Z_i = \sum_{n=1}^N s_{in} g_n$$

• Use panel with 5-year periods, 204 trading partners, and 24 2-digit industries

Identification Assumptions

- Standard shift-share IV identification assumptions apply
- Relevance: need supplier relationships to be sufficiently persistent
 - Can check power with first-stage F statistic as usual
 - Can also assess plausibility by documenting stickiness of import relationships

Identification Assumptions

- Exclusion restriction: firms linked to increasingly productive suppliers should not be unobservably different
 - Run falsification test with lagged outcome variable
 - Can express exclusion restriction at firm level or in space of shocks:

$$\left(\frac{1}{I}\sum_{i} z_{i}\varepsilon_{i} \to \stackrel{p}{\to} 0\right) \Longleftrightarrow \left(\frac{1}{N}\sum_{n} \hat{s}_{n}g_{n}\bar{\varepsilon}_{n} \to \stackrel{p}{\to} 0\right)$$

with $\bar{\varepsilon}_n = (\sum_i s_{in} \varepsilon_i) / \sum_i s_{in}$ and $\hat{s}_n = \frac{1}{I} \sum_i s_{in}$

IV Results

- Implement shift-share design with baseline set of pre-determined firm controls (turnover, investment, total assets, employment)
- Study sensitivity to additional controls and implement falsification test
- Find positive employment response, with an elasticity of +0.3 to +0.4 across specifications
- Find positive sales response of similar magnitude and no response of average wage, leaving payroll share unchanged

IV Results: Employment

	Δ_5 Employment					
	(1)	(2)	(3)	(4)	(5)	
Δ_5 Motor Cons.	0.341***	0.361***	0.410**	0.276**	0.430***	
	(0.121)	(0.1276)	(0.167)	(0.138)	(0.202)	
First-Stage F	29.3	26	16.8	20.6	17.9	
Industry-year F.E.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Firm Controls		\checkmark	\checkmark	\checkmark	\checkmark	
Lagged Motor Cons.			\checkmark		\checkmark	
Lagged Machines				\checkmark		
Exports					\checkmark	
Ν	29,109	29,109	29,109	29,109	29,109	

Falsification Test

	Lagged Δ_5 Employment					
	(1)	(2)	(3)	(4)	(5)	
Δ_5 Motor Cons.	-0.194	-0.0283	-0.156	-0.233	0.120	
	(0.185)	(0.177)	(0.236)	(0.200)	(0.247)	
First-Stage F	25.8	23.8	15.2	20.1	13.1	
Industry-year F.E.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Firm Controls		\checkmark	\checkmark	\checkmark	\checkmark	
Lagged machines (consumption)			\checkmark		\checkmark	
Lagged machines (balanced sheet)				\checkmark		
Exports					\checkmark	
Ν	17,250	16,609	16,609	16,574	15,641	

IV Results: Sales

	Δ_5 Sales					
	(1)	(2)	(3)	(4)	(5)	
Δ_5 Motor Cons.	0.552***	0.422***	0.498**	0.349**	0.561***	
	(0.148)	(0.148)	(0.197)	(0.164)	(0.197)	
First-Stage F	29.3	26	16.8	20.6	17.9	
Industry-year F.E.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Firm Controls		\checkmark	\checkmark	\checkmark	\checkmark	
Lagged Motor Cons.			\checkmark		\checkmark	
Lagged Machines				\checkmark		
Exports					\checkmark	
Ν	29,109	29,109	29,109	29,109	29,109	

IV Results: Labor Share

	Δ_5 Labor Cost / Sales					
	(1)	(2)	(3)	(4)	(5)	
Δ_5 Motor Cons.	-0.134	-0.00851	-0.0298	-0.00607	-0.0691	
	(0.0944)	(0.0936)	(0.122)	(0.107)	(0.118)	
First-Stage F	29.3	26	16.8	20.6	17.9	
Industry-year F.E.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Firm Controls		\checkmark	\checkmark	\checkmark	\checkmark	
Lagged Motor Cons.			\checkmark		\checkmark	
Lagged Machines				\checkmark		
Exports					\checkmark	
Ν	29,109	29,109	29,109	29,109	29,109	

Robustness

- Similar results with
 - Alternative automation measure from balance sheet data
 - Labor share defined as a share of value added

Roadmap

Data and Stylized Facts

- 2 Event Study
- IV Estimates
- Intersection State St

Extensions

- Heterogeneity across industries, occupations, and types automation technologies
 - Characterize which occupations perform routine tasks
 - Examine differences between robots and other forms of automation
- ② Effect on wages accounting for changes in firm's worker composition
 - Track long-term wage effects using worker panel identifier
- Industry-level impact on concentration and labor share accounting for reallocation/exit
 - Find that firms that automate more have a lower labor share ex ante

Thank you!

OLS: Employment

	Δ_5 Employment					
	(1)	(2)	(3)	(4)	(5)	
Δ_5 Motor Cons.	0.235***	0.207***	0.215***	0.199**	0.211***	
	(0.00637)	(0.00611)	(0.00611)	(0.00608)	(0.00630)	
Industry-year F.E.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Firm Controls		\checkmark	\checkmark	\checkmark	\checkmark	
Lagged Motor Cons.			\checkmark		\checkmark	
Lagged Machines				\checkmark		
Exports					\checkmark	
Ν	30,180	30,180	30,180	30,180	30,180	