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a b s t r a c t

In most models of diffusion of new products, every individual in the social network is
a potential adopter. When, however, a fraction α of the individuals cannot adopt the
product at any time, the new product percolates (rather than diffuses) in the network,
similarly to movement through porous materials. We obtain explicit expressions for the
fraction of adopters as a function of time, for complete networks, circular networks, D-
dimensional Cartesian networks, small-worlds networks, and scale-free networks. These
expressions show that the complex effect of percolation can be captured by two simple
aggregate effects: Decreasing the market potential by 1 − α, and reducing the peers
effect by (1 − α)k, where k depends on the network type. Hence, percolation of new
products is qualitatively similar to diffusion of new products. In particular, there is no
threshold value at which a phase transition occurs.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion of new products is a classical problem in marketing [1]. The diffusion begins as the new product is introduced
into a market, and progresses through a series of adoption events. The first mathematical model for product diffusion was
formulated in 1969 by Bass [2], and it inspired hundreds of theoretical studies [3]. Unlike epidemiological models, most
of these studies have not been on whether the new product will spread out, but rather on the rate at which it would do
so (e.g., the time to reach 50% of its market potential). Despite the huge body of research on the Bass model, there is still
a limited understanding of the effect of the network structure on the diffusion [4].

The motivation for this study comes from the diffusion of residential rooftop solar PV systems, which received a
considerable interest in recent years [5–8]. Since the key predictor of installing a solar panel is having a neighbor who
already installed one [9,10], the relevant network for solar systems is a two-dimensional Cartesian grid, where each node
corresponds to a residential unit. Diffusion on two-dimensional Cartesian grids was studied in [4]. That study, however,
did not take into account that a considerable fraction (up to 40%) of the residential units are inappropriate for installation
of a solar system (since the roof is too small, it does not get sufficient sunlight, etc.). More broadly, nearly all the literature
on diffusion of new products assumed that everyone in the market is a potential adopter. This is not the case, however,
not only for solar systems, but also for products that can only be adopted by individuals below a certain age, above a
certain annual income, of a certain gender, who own a car, who speak a certain language, etc. In such cases, the product
percolates (rather than diffuses) through the social network.1 The goal of this paper is to study how the change from
diffusion to percolation affects the aggregate adoption of the new product.
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1 The few studies in the literature on percolation of new products used a different modeling approach, and therefore reached very different
conclusions (see Section 1.1).
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Our analysis and simulations show that ‘‘removing’’ a fraction α of the population from participating in the diffusion
process reduces both the market potential and the rate at which this market potential is reached. Specifically, the market
potential decreases by 1−α, and the peers influence parameter q decreases by (1−α)k, where k depends on the network
type, see (1). Hence, the ‘‘removal’’ of nodes does not have a qualitative effect on the aggregate adoption. In particular, in
percolation of new products, there is no threshold value for the product to be successful (i.e., to reach its entire market
potential).

1.1. Literature review

The first quantitative percolation model in marketing was introduced by Solomon et al. [11] and Weisbuch and
Stauffer [12] in order to analyze hits and flops in the movie industry. They considered the diffusion of a new movie
of quality v through heterogeneous individuals that are positioned on a square lattice. A ‘‘hit’’ is reported if there
exists a path of individuals for which ui > v that touches all borders of the lattice, where ui is the preference of
individual i. Otherwise, a ‘‘flop’’ is reported. This percolation model showed the existence of a threshold value for
the movie quality v between hits and flops. Subsequent studies extended this model to higher-dimensional Cartesian
grids [13] and scale-free networks [14]. Learning effects (such as reducing the product price with the cumulative quantity
of units already produced) were added by Hohnisch et al. [15], and by Cantono and Silverberg [16] for percolation of
environmental-friendly energy technologies.

In all of the above quantitative studies of percolation of new products, the agent-based models shared two assumptions:

A1. The diffusion originated from several early buyers (‘‘early birds’’) at time t = 0.
A2. All subsequent adoptions only occurred through peers effect.

These assumptions are common in percolation models, and are used e.g., in epidemiology to model the spread of diseases
in a partially-immunized society (i.e., the Susceptible–Infected (SI) model of epidemics [17]). In agent-based Bass models
of diffusion of new products, however, different assumptions are usually used (see e.g. [4,18,19]):

A1*. Initially (t = 0), all consumers are non-adopters.
A2*. Subsequent adoptions can occur as a result of both peers effect and external influences (mass media,

commercials, etc.).

As discussed in [4,20], this change in the model assumptions has a dramatic effect on the diffusion, even without nodes
removal. Indeed, diffusion in SI-type models depends on global properties of the network (connectivity, size of giant
component, average distance between nodes), whereas diffusion in the Bass model depends on local properties of the
network (e.g., grid dimension). This difference explains, e.g., why the addition of a small-world structure has a large
effect on the spread of epidemics but a negligible effect on diffusion of new products [4].

Hence, in this study we model product percolation using Assumptions A1∗ and A2∗, rather than A1 and A2. Con-
sequently, our results on percolation of new products are very different from those obtained in the previous studies
mentioned earlier. In particular, whereas those studies predicted a threshold for the product to reach its entire market
potential, no such threshold exists in our model.

The rest of the paper is organized as follows. Section 2 presents the percolation model. In Sections 3 and 4 we explicitly
compute the fraction of adopters as a function of time for percolation in complete and circular networks, respectively. In
Sections 5–8, we obtain explicit approximations for percolation in D-dimensional Cartesian, small-world, scale-free, and
next-nearest neighbor networks, respectively. The Discussion in Section 9 focuses on the absence of a phase transition.

2. Percolation model

We model the diffusion of new products using the discrete Bass model [4]. A new product is introduced at time t = 0
to a market with M consumers. Initially all consumers are non-adopters. If a consumer adopts the product, she remains
so at all later times. The consumers belong to a social network which is described by a graph with M nodes. If j did not
adopt the product by time t , her probability to adopt it in (t, t +∆t) is

Prob
(
j adopts in
(t, t +∆t)

)
=

(
p + q

nj(t)
kj

)
∆t, ∆t → 0, (1)

where nj(t) is the number of adopters connected to j at time t , kj is the degree of node j, p describes the likelihood of j to
adopt the product due to external influences by mass media or commercials, and q describes the likelihood of j to adopt the
product due to internal influences (word of mouth) by her peers. The level of internal influences experienced by j increases
linearly with the number of adopters connected to j, and is normalized by kj, so that regardless of the network structure,
the maximal internal influence that j can experience (when all his peers are adopters) is q. This normalization is justified,
e.g., if individuals have a limited time to spend with their peers (or a limited attention span), so that the more peers one
has, the less time/attention she has for each of them, hence the smaller their individual influences are.

To add the feature that not all members of the social network are potential adopters, we ‘‘remove’’ each node with
probability α from the diffusion process. Thus, a ‘‘removed’’ node remains in the network, but remains a non-adopter at
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all times. The assumption that the probability of an agent to be ‘‘removed’’ from the diffusion process is independent of
her peer group is reasonable for e.g., diffusion of solar systems, where some residential units are physically inappropriate
for installation of a solar system.

This ‘‘nodes removal’’ has two effects:

1. A global effect whereby the expected market potential decreases from M to

Mα := (1 − α)M. (2)

2. A local effect of decreasing the number of potential adopters that are connected to some nodes, namely those which
are connected to ‘‘removed’’ nodes. Since nj(t) < kj for those nodes, the maximal internal influence experienced by
these nodes is strictly below q, see (1).

3. Complete network

We first consider the diffusion on a complete network where all M nodes are inter-connected. This case is conjectured
to serve as an upper bound for all other networks with the same p and q [4]. Recall that when α = 0, the fraction of
adopters as M → ∞ is [21]

lim
M→∞

fcomplete(t; p, q,M, α = 0) = fBass(t; p, q), (3)

where fBass =
1−e−(p+q)t

1+(q/p)e−(p+q)t is the diffusion curve computed by Bass [2]. The effect of nodes ‘‘removal’’ from a complete

network can be explicitly computed, as follows:

Lemma 1. Consider a complete graph with M nodes, from which each node is removed from the diffusion process with
probability α. Then the fraction of adopters as M → ∞ is given by

lim
M→∞

fcomplete(t; p, q,M, α) = (1 − α)fBass(t; p, qα,∞), qα,∞ := (1 − α)q. (4)

Proof. See Appendix A.

Thus, the overall effect of nodes removal on the aggregate diffusion is equivalent to reducing the market potential
from M to Mα , see (2), and reducing the internal influence parameter from q to qα,∞ := (1 − α)q.

4. Circular networks

Next, we consider the other extreme of the ‘‘least-connected’’ network, where the M nodes lie on a circle, such that
each node is connected to its right- and left-neighbors. This case is conjectured to serve as a lower bound for all other
networks with the same p and q [4]. In the absence of nodes removal, the adoption probability (1) reads

Prob
(
j adopts in
(t, t +∆t)

)
=

(
p + q

nj(t)
2

)
∆t, ∆t → 0.

The adoption curve can be calculated explicitly, yielding [4,22]

lim
M→∞

fcircle(t; p, q,M, α = 0) = 1 − e−(p+q)t+ q
p (1−e−pt )

. (5)

To compute the fraction of adopters under nodes removal, we use an analytic tool called the indifference principle. To do
that, we first introduce the notion of influential and noninfluential edges:

Definition 1 (Influential and Noninfluential Edges). Consider a directed network with M nodes (if the network in
undirected, replace each undirected edge by two directed edges). Let Ω ⫋ {1, . . . ,M} be a subset of the nodes, and
let Ωc

= {1, . . . ,M} \Ω be its complement. A directed edge from node s to node t is called ‘‘noninfluential to Ω ’’ if

1. s ∈ Ω , or
2. s ∈ Ωc, t ∈ Ωc , and there is no sequence of directed edges from t to Ω , or
3. s ∈ Ωc, t ∈ Ωc , and all sequences of directed edges from t to Ω go through the node s.

The indifference principle states that when calculating the probability of a set Ω of nodes at time t to consist only of
non-adopters, we can add or delete noninfluential edges without affecting the adoption probability.

Lemma 2 (Indifference Principle [22]). Let SΩ (t) denote the probability that all the nodes in Ω did not adopt by time t in the
discrete Bass model (1). Then SΩ (t) remains unchanged if we remove or add noninfluential edges to Ω .
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Fig. 1. Percolation on a circular network with different values of α (solid line). Dashed line is the explicit expression (6). The two lines are
indistinguishable. Here p = 0.01, q = 0.1, and M = 30,000. (A) α = 0.2. (B) α = 0.4. (C) α = 0.6. (D) α = 0.8.

4.1. Explicit calculation of fcircle

We now apply the indifference principle to calculate limM→∞ fcircle(t; p, q,M, α).

Lemma 3. Consider a circle with M nodes, from which each node is removed from the diffusion process with probability α.
Then the fraction of adopters as M → ∞ is given by

lim
M→∞

fcircle(t; p, q,M, α) = (1 − α)
[
1 − (1 − α)2S(0)

∞
(t;α) − 2α(1 − α)S(1)

∞
(t;α) − α2S(2)

∞
(t)

]
, (6a)

where S(2)∞ (t) = e−pt ,

S(1)
∞

(t;α) = e−(p+ q
2 )t−(1−α) q

2p (e
−pt

−1)
[
1 +

αq
2

∫ t

0

[
e(

q
2 −p)τ+(1−α) q

2p (e
−pτ

−1)
]
dτ

]
, (6b)

and

S(0)
∞

(t;α) = e−(p+q)t
[
1 + q

∫ t

0

[
e(p+q)τ S(1)

∞

(
αe−pτ

+ (1 − α)S(1)
∞

)]
dτ

]
. (6c)

The explicit expression (6) is indistinguishable from agent-based simulations of the discrete Bass model, see Fig. 1. It
shows that f is smooth in α, but is otherwise not very informative. Hence, in Section 5 we obtain an explicit approximation
for the effect of nodes removal, which is intuitive and is also valid for higher dimensions.

Proof. Let Xj(t) denote the state of node j at time t , so that

Xj(t) =

{
1, if j adopted by time t,
0, otherwise, (7)

and let j̃ denote the ‘‘existence’’ of node j, such that j̃ = ‘r ’ if j is removed from the diffusion process, and j̃ ̸= ‘r ’
if j remains. Since the circular network is translation invariant and each node is removed with the same probability
α, then by symmetry, Prob{Xj(t) = 1} is independent of j. Therefore, fcircle(t; p, q,M, α) = Prob{Xj(t) = 1}. Since
Prob{Xj(t) = 1} = Prob{̃j ̸= ‘r ’}Prob{Xj(t) = 1 | j̃ ̸= ‘r ’} and Prob{Xj(t) = 1 | j̃ ̸= ‘r ’} + Prob{Xj(t) = 0 | j̃ ̸= ‘r ’} = 1, we
have that

fcircle(t; p, q,M, α) = (1 − α)(1 − Prob{Xj(t) = 0 | j̃ ̸= ‘r ’}). (8)

By (8) and by the law of total probability, we get

fcircle(t; p, q,M, α) = (1 − α)
(
1 − (1 − α)2 S(0)(t;M, α) − 2α (1 − α) S(1) (t;M, α)− α2S(2) (t;M, α)

)
,

where {S(k)(t;M, α)}2k=0 are the probabilities of node j to remain a non-adopter by time t in a circular network with M
nodes, provided that k of his neighbors are removed.
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Fig. 2. Equivalent networks for the calculation of Prob{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = ‘r ’, j̃ = j̃ + 1 ̸= ‘r ’, j̃ + 2 = ‘r ’}. Solid and

dashed lines correspond to ‘‘influential’’ and ‘‘noninfluential’’ edges to Ω = {j, j + 1}, respectively. We denote by , , and a node
which is removed, removed with probability α, and not removed, respectively. (A) Circular one-dimensional network, under the assumption that
j̃ − 1 = ‘r ’, j̃ = j̃ + 1 ̸= ‘r ’, j̃ + 2 = ‘r ’. The links that emanate from the removed nodes are noninfluential to Ω . (B) The noninfluential links from
j − 1 to j, from j to j + 1, and from j + 1 to j + 2 are deleted.

When both neighbors of j are removed, its evolution equation is given by d
dtS

(2)(t;M, α) = −pS(2)(t;M, α), see e.g.
Fibich et al. [22, eq. (3.8)], subject to the initial condition S(2)(0;M, α) = 1. Therefore, S(2) (t;M, α) = e−pt for all M , and
so

S(2)
∞
(t;α) := lim

M→∞

S(2) (t;M, α) = e−pt . (9)

To derive the evolution equation for S(1)(t;M, α), we assume, without loss of generality, that j̃ − 1 = ‘r ’, and
j̃ = j̃ + 1 ̸= ‘r ’. Following Fibich and Gibori [4, proof of Lemma 8], the evolution equation for S(1)(t;M, α) is given by

d
dt

S(1)(t;M, α) +

(
p +

q
2

)
S(1)(t;M, α) =

q
2
Prob{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = ‘r ’, j̃ = j̃ + 1 ̸= ‘r ’}.

Using the conditional probabilities on the removal of node j + 2 gives
d
dt

S(1)(t;M, α) +

(
p +

q
2

)
S(1)(t;M, α) =

α
q
2
Prob{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = ‘r ’, j̃ = j̃ + 1 ̸= ‘r ’, j̃ + 2 = ‘r ’}

+ (1 − α)
q
2
Prob{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = ‘r ’, j̃ = j̃ + 1 = j̃ + 2 ̸= ‘r ’}.

(10)

By the indifference principle (Lemma 2) we can calculate the probability

Prob{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = ‘r ’, j̃ = j̃ + 1 ̸= ‘r ’, j̃ + 2 = ‘r ’}

from the equivalent network in Fig. 2B. Therefore, by (9),

Prob{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = ‘r ’, j̃ = j̃ + 1 ̸= ‘r ’, j̃ + 2 = ‘r ’} =
(
S(2) (t;M, α)

)2
= e−2pt . (11)

Similarly, we can use the indifference principle to calculate the probability

Prob{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = ‘r ’, j̃ = j̃ + 1 = j̃ + 2 ̸= ‘r ’}

from the equivalent network in Fig. 3B. Therefore,

Prob{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = ‘r ’, j̃ = j̃ + 1 = j̃ + 2 ̸= ‘r ’} = e−ptS(1)(t;M − 1, α). (12)

Plugging (11) and (12) into (10), and taking the limit M → ∞, yield the following ODE for S(1)∞ := limM→∞ S(1)(t;M, α):
d
dt

S(1)
∞

(t;α) +

(
p +

q
2

−
q
2
(1 − α)e−pt

)
S(1)
∞

(t;α) =
q
2
αe−2pt , (13)

subject to the initial condition S(1)∞ (0;α) = 1. The solution of (13) is given by (6b). The derivation of (6c) is similar,
see Appendix C.
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Fig. 3. Equivalent networks for the calculation of Prob{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = ‘r ’, j̃ = j̃ + 1 = j̃ + 2 ̸= ‘r ’}. (A) Circular one-dimensional
network, under the assumption that j̃ − 1 = ‘r ’, j̃ = j̃ + 1 = j̃ + 2 ̸= ‘r ’. (B) The noninfluential links from j − 1 to j, and from j to j + 1 are deleted.
Instead, a noninfluential link that connects nodes j − 1 and j + 1 is added.

5. D-dimensional Cartesian networks

Next, we consider the percolation on D-dimensional Cartesian grids, where each node is connected to its 2D nearest
neighbors. The two-dimensional case is relevant for products that spread predominantly through internal influences by
geographical neighbors, such as residential rooftop solar systems [9,10]. In the absence of node removal, the adoption
probability (1) reads

Prob
(
j adopts in
(t, t +∆t)

)
=

(
p + q

nj(t)
2D

)
∆t, ∆t → 0.

There are no explicit expressions such as (5) or (6) for f (t) on Cartesian grids with D > 1, without or with percolation,
respectively. We can, however, approximate the effect of the percolation parameter α on the aggregate adoption:

Lemma 4. Consider a D-dimensional Cartesian networks with M nodes, from which each node is removed from the diffusion
process with probability α. As M → ∞, the adoption curve depends on the percolation parameter α via the relation

lim
M→∞

fD(t; p, q,M, α) ∼ (1 − α) lim
M→∞

fD(t; p, qα,D,M, α = 0), qα,D := (1 − α)1+1/Dq. (14)

Proof. We provide an informal proof in Section 5.1.

Remark 1. The case of a complete network corresponds to D → ∞. Indeed, as D → ∞, relation (14) reduces to (4).

Approximation (14) is in excellent agreement with the agent-based simulations for 0.2 ≤ α ≤ 0.8 and D = 1, 2, 3,
see Figs. 4–6, respectively. Lemma 4 shows that the complex effect of random node removal on the aggregate diffusion
is equivalent to the following two simple effects:

1. Reducing the market potential from M to Mα , see (2).
2. Reducing the internal influences parameter from q to qα,D := (1 − α)1+1/Dq.

In particular, percolation is qualitatively similar to diffusion, and its dependence on α is smooth.

5.1. Informal Proof of Lemma 4

Following [4], we visualize the diffusion process in the discrete Bass model as an ongoing random creation of external
adopters (‘‘seeds’’). Once created, each seed expands through internal adoptions into a cluster of adopters, and expanding
clusters can merge into larger clusters. In addition, on D-dimensional Cartesian grids, clusters expand, on average, as
D-dimensional circles/balls, whose radii increases linearly with time, i.e.,

Rk(t) ≈ cD q(t − tk), (15)

where Rk and tk are the radius and creation time of the kth cluster, respectively, and cD is a constant that only depends
on the dimension.

Fig. 7 shows a typical expansion of a cluster in a two-dimensional Cartesian network, from which we removed each
node with probability α. Here we placed a single external adopter (seed) at the center at t = 0, and all subsequent
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Fig. 4. Percolation on a 1D grid, as a function of time (solid line). The dashed line is the asymptotic approximation (14). The two lines are nearly
indistinguishable. Here p = 0.01, q = 0.1 and M = 10,000. (A) α = 0.2. (B) α = 0.4. (C) α = 0.6. (D) α = 0.8.

Fig. 5. Same as Fig. 4 with D = 2.

Fig. 6. Same as Fig. 4 with D = 3.
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Fig. 7. Typical evolution of a single cluster in a two-dimensional Cartesian grid, from which each node is removed with probability α. Here black,
white, and yellow pixels correspond to removed nodes, non-adopters, and adopters, respectively.

Fig. 8. Same as Fig. 7, but averaged over 100 simulations. Here, white corresponds to 100% adoption and black to 0% adoption. Removed nodes are
counted as non-adopting.

adoptions were purely internal (i.e., are according to (1) with p = 0 and kj = 4). For sufficiently small α, the cluster
continues to expand as a circle. As α increases, the cluster shape becomes less regular. Once averaged over many clusters,
however, the average cluster shape remains circular even as α increases, see Fig. 8.

For a given cluster volume with radius R, only (1 − α) of its nodes are adopters (the rest are removed nodes).
Therefore, its outward expansion rate due to its boundary adopters is equivalent to that of a cluster with no removed
nodes and a radius of (1 − α)1/DR. In addition, only 1 − α of the non-cluster nodes which are connected to the boundary
adopters are potential adopters. Therefore, the cluster expansion rate reduces by a factor of (1 − α)1+1/D, i.e., Rk(t;α) ≈

cD (1 − α)1+1/Dq(t − tk). In other words, the cluster expansion is given by (15) with q replaced by qα,D := (1 − α)1+1/Dq.
For a given cluster volume, however, only 1 − α of its nodes are adopters. Hence, the result follows.

5.2. Breakdown of approximation (14)

Approximation (14) is based on the assumption that under nodes removal, clusters still grow on average as D-
dimensional balls, albeit at the reduced constant expansion rate qα,D. Since externals seeds are created at the rate of p,
the maximal diameter of an isolated cluster is roughly qα,D

p (once it gets larger, the cluster merges with other clusters).
In addition, when α exceeds some dimension-dependent threshold αc = αc(D), the network breaks into disconnected
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Fig. 9. Same as Fig. 4 with q/p = 100. Here the y axis is f /(1 − α). (A) α = 0.01. (B) α = 0.2. (C) α = 0.8. (D) α = 0.98.

components (see Section 9.1). As α further increases above αc , the size of these disconnected components decreases. Once
their diameter gets below qα,D

p , the isolated clusters cannot grow as assumed, and so approximation (14) breaks down. As
α further increases and approaches 1, however, approximation (14) becomes valid again, since the few remaining nodes
are isolated from each other and so they can only adopt due to external effects, which is consistent with qα,D → 0 as
α → 1 in (14).

In the one-dimensional case qα,D
p =

(1−α)2q
p and αc = 0 (i.e., the network breaks into isolated intervals for any α > 0).

The lengths of these intervals is geometrically distributed with parameter α, and so the average interval length is 1
α
.

Therefore, approximation (14) breaks down when (1−α)2q
p ≫

1
α
, i.e., when

C1D(α, q, p) := (1 − α)2α
q
p

≫ 1. (16)

To confirm condition (16) numerically, we computed the percolation dynamics for D = 1 and q/p = 100. When α = 0.01,
condition (16) is not satisfied (C1D = 0.98), and approximation (14) indeed holds (Fig. 9A). For α = 0.2 and α = 0.8
condition (16) is satisfied (C1D = 12.8 and C1D = 3.2, respectively), and approximation (14) indeed breaks down (Fig. 9B
and C, respectively). Finally, as α further increases and becomes close to one (α = 0.98), condition (16) is again not
satisfied (C1D = 0.04) and approximation (14) indeed holds again (Fig. 9D).

Condition (16) also explains why for D = 1 and q/p = 10, approximation (14) holds for any α, see Fig. 4. Indeed, since
(1 − α)2α ≤

4
27 for 0 ≤ α ≤ 1, then C1D ≤

40
27 ≈ 1.5.

The situation is similar in higher dimensions. For example, on a two-dimensional square lattice αc ≈ 0.41. Hence,
approximation (14) is valid for α below αc (Fig. 10A), starts to break down for α slightly above αc (Fig. 10b), breaks down
more dramatically as α further increases (Fig. 10C), but improves again as α approaches one (Fig. 10D).

6. Small-world networks

Watts and Strogatz [23] suggested that social networks have a small-world structure, whereby most connections are
local, but there are also some random long-range connections (see e.g. Fig. 11A). They showed that even a small fraction
of long-range connections can lead to a dramatic reduction in the average distance between nodes. As a result, epidemics
spread much faster on networks with a small-world structure.

In Fig. 11B we numerically compute the fraction of adopters in percolation on a circle from which each node is removed
from the diffusion process with probability α = 0.2. We then add 5% random long-range links and repeat this simulation.
The small-world structure has a negligible effect on the diffusion, which is consistent with previous studies [4,20]. Briefly,
this is because a small-world structure affects global properties of the network, whereas diffusion in the Bass model
depends on local properties of the network. See Section 9 for further discussion.

Since the addition of random long-range links has a negligible effect on the diffusion, we can approximate the adoption
curve for this case with (14). This approximation can be somewhat improved if one uses (14) with an ‘‘effective’’ external
parameter p + 0.05qf /3 instead of p, see Fig. 11C. This is because the long-range connections can be considered to be
a sort-of ‘‘external source’’. Each node gets, on average, 0.05 additional connections. Since most nodes get only 1 long-
range connection in addition to its 2 regular connections, and the weights of all the links sum up to q, the weights of the
long-range connections are q/3. Furthermore, these long-range connections originate from other nodes of the network,
and so these connections are ‘‘active’’ with probability f .
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Fig. 10. Same as Fig. 9 with D = 2 and q/p = 20. (A) α = 0.2. (B) α = 0.42. (C) α = 0.7. (D) α = 0.9.

Fig. 11. (A) A circle from which each node is removed with probability α = 0.2, with the addition of 5% long-range random links (dashes). (B)
Percolation on a circle from which each node is removed with probability α = 0.2, with (solid) and without (dashes) the addition of 5% long-range
random links. The two lines are nearly indistinguishable. Here p = 0.01, q = 0.1, and M = 10,000. (C) The solid line is the same as in B. The dashed
and the dotted lines are the analytical approximation (14) with external parameter p and p + 0.05qf /3, respectively.

7. Scale-free networks

Many social networks are believed to be scale-free [17]. We constructed scale-free networks using the Barabási–Albert
(BA) preferential-attachment algorithm [24], in which each new node makesm new links with the existing network nodes,
such that the probability of a new node to connect to node i0 is ki0/

∑
i ki, where ki is the degree of node i. By (1), the

marginal effect of each adopter connected to j is q/kj.
Previously [20], it was observed numerically that the aggregate diffusion on a BA scale-free network with parameter m

is nearly identical to that on a Cartesian network with D = m, i.e.,

fD(t; p, q, α = 0) ∼ f scale-freem=D (t; p, q, α = 0). (17)

For example, diffusion on a scale-free network with m = 2 is nearly identical to that on a 2D Cartesian network (Fig. 12).
This result is very surprising, since apart from having the same average degree of ⟨ki⟩ = 2m = 2D, the degree distributions
of Cartesian and scale-free networks are as far apart as they can be: the fraction of nodes of degree k are [25]

pCartesiank =

{
1, k = 2D,
0, k ̸= 2D, pscale-freek =

{
0, k < m,
2m(m+1)

k(k+1)(k+2) , k ≥ m,
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Fig. 12. (A) Degree distributions of a scale-free network with m = 2 (#) and a 2D network (□). (B) 1D network in which each node is connected
to two neighbors on each side. (C) 2D network with nearest neighbor connections. (D) Diffusion on a scale-free network with m = 2 (solid), on the
two-dimensional Cartesian network (dashes), and on the one-dimensional network (dots). All three networks have the same average degree ⟨ki⟩ = 4.
Here p = 0.01, q = 0.1, and M = 30,000.

Fig. 13. Percolation on scale-free (solid) and Cartesian (dashes) networks with p = 0.01, q = 0.1, and α = 0.2. The two lines are nearly
indistinguishable. (A) m = D = 1. (B) m = D = 2. (C) m = D = 3. (D) m = D = 4.

see Fig. 12A. Of course, one possible explanation could be that diffusion only depends on the average degree. This
explanation, however, is wrong. For example, the diffusion on a 1D circular network in which each node is connected to
two neighbors on each side (Fig. 12B) is slower than on a 2D network with nearest neighbors connections (Fig. 12C), even
though this network has the same average degree as the previous two networks, see Fig. 12D. Thus, the equivalence (17)
of diffusion on Cartesian and scale-free networks is more delicate, and is currently not well understood.

Fig. 13 shows that the surprising equivalence (17) between Cartesian and scale-free networks persists when we remove
each node with probability α, i.e.,

fD(t; p, q, α) ∼ f scale-freem=D (t; p, q, α).

Therefore, by relation (14), f scale−free
m (t; p, q, α) depends on α via the asymptotic relation

f scale-freem (t; p, q, α) ∼ (1 − α)f scale-freem (t; p, qα,m, α = 0), qα,m := (1 − α)1+
1
m q, (18)

as is confirmed numerically in Fig. 14.
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Fig. 14. Same as Fig. 4 on a scale-free network with m = 2 and M = 20,000. The dashed line is the asymptotic approximation (18). The two lines
are nearly indistinguishable.

Fig. 15. (A) 2D Cartesian network with ‘‘long-range’’ diagonal connections (gray). (B)–(E) Same as Fig. 4, when each node is connected to its eight
nearest nodes. Here p = 0.01, q1 = 0.07 and q2 = 0.03. The dashed line is the analytic prediction (19). The two lines are nearly indistinguishable.

8. Beyond nearest-neighbor effects

In diffusion of residential rooftop solar systems, the peers effect of the neighbors who already installed a solar system
on potential adopters decreases with distance, but extends well beyond the next-door neighbor [10]. To allow for such
‘‘long-range’’ influences, we consider a 2D Cartesian network in which node (i, j) is influenced with weight q1/4 by its
four nearest nodes (i, j ± 1) and (i ± 1, j), and with weight q2/4 by its ‘‘further-away’’ four diagonal nodes (i ± 1, j ± 1),
see Fig. 15A. To conform with (1), we impose q1 + q2 = q. Motivated by (14), we test in Fig. 15B whether

f (t; p, q1, q2, α) ≈ (1 − α)f (t; p, q1,α, q2,α, α = 0), qi,α := (1 − α)3/2qi. (19)

The agreement is quite impressive, though not as good as in Fig. 5. This is because the ‘‘long-range’’ diagonal connections
enable the cluster to expand (see Section 5.1) while ‘‘leaving behind’’ isolated regions of potential adopters. The potential
adopters in these regions eventually adopt as well, but the effect of percolation on this ‘‘secondary filling process’’ is not
given by qi,α := (1 − α)3/2qi.

9. Discussion

The main outcome of this study is that at the aggregate level, percolation of new products is qualitatively similar to the
case where everyone in the market is a potential adopter. Specifically, as the fraction α of ‘‘removed’’ nodes increases, the
market potential decreases by (1− α), the external influence parameter p remains unchanged, and the internal influence
parameter q decreases by (1 − α)k, where k = 1 for a complete network, k = 1 + 1/D for D-dimensional Cartesian
networks, and k = 1 + 1/m for scale-free networks with parameter m.
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Fig. 16. Percolation on a D-dimensional Cartesian grid with M = 10,000 nodes, as a function of time. Here p = 0.01, q = 0.1, and 0.95αc (dashes),
αc (solid) and 1.05αc (dots), where αc is the threshold for the existence of a giant component. (A) D = 2, αc ≈ 1−0.593. (B) D = 3, αc ≈ 1−0.3116.

9.1. Absence of a phase transition

A key property of percolation models is the occurrence of a phase transition at a certain critical threshold [e.g.,17,26,27].
For example, the percolation threshold for the existence of a giant component (i.e., a connected component of nodes that
contains a positive fraction of the network nodes) is αc = 0 on a one-dimensional network, αc ≈ 1 − 0.593 ≈ 0.4 on
a two-dimensional square lattice, and αc ≈ 1 − 0.3116 ≈ 0.7 on a three-dimensional cubic lattice. In this study we
showed, however, that the diffusion curves are smooth in α. Therefore, there is no phase transition in percolation of new
products. For example, Fig. 16 shows numerically that on two-dimensional and three-dimensional grids, there are only
minor changes in the adoption curve as α varies between 0.95αc and 1.05αc .

Briefly, a phase transition occurs at αc when the diffusion depends on the network connectivity. This is the case, for
example, in Susceptible–Infected (SI) models of epidemics [17], where the disease starts from several ‘‘infected’’ nodes
(‘‘patients zero’’) that exist at t = 0, and all subsequent infections are purely internal (p = 0), since then for the epidemics
to spread out, at least one ‘‘patient zero’’ should belong to the giant component. Hence, in SI models the size of the giant
component determines the extent to which the epidemics would spread out. Diffusion of new products, however, starts
from numerous ‘‘seeds’’ (external adopters) which are continuously generated in time, see (1), and then expand into
clusters through internal adoptions. Since the diffusion in each connected sub-network is independent, the issue of global
connectivity has a minor influence on the diffusion. Nodes removal can also change the sub-network topology. This change
is gradual, however, and is therefore continuous in α.

The above discussion explains the apparent disagreement between our results and those of previous studies on
percolation of new products [11–16], which reported on a threshold above which the product did not diffuse to its entire
market potential. Indeed, in those studies the diffusion started from one or several initial consumers, and all subsequent
adoptions where purely internal (i.e., as in the SI model). In this study, however, we used the discrete Bass model (1) in
which external adopters are continuously generated in time, which we believe is more appropriate for new products.
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Appendix A. Proof of Lemma 1.

When we remove j nodes from the diffusion process, where j = 0, . . . ,M , we effectively obtain a complete sub-graph
of size Mj, internal influence pMj = p, and external influence qMj , where

Mj = M − j, qMj = q
(
1 −

j
M − 1

)
. (A.1)

Since each node is removed with probability α, the expected fractional diffusion is

fcomplete(t; p, q,M, α) =

M∑
j=0

(
M
j

)
αj(1 − α)M−jMj

M
fcomplete(t; p, qMj ,Mj, α = 0).
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Let 0 < ϵ ≪ 1. Then

fcomplete(t; p, q,M, α) = I1 + I2, (A.2)

where

I1 :=

∑
ϵ<|

j
αM −1|

0≤j≤M

(
M
j

)
αj(1 − α)M−jMj

M
fcomplete(t; p, qMj ,Mj, α = 0),

I2 : =

∑
|

j
αM −1|≤ϵ

(
M
j

)
αj(1 − α)M−jMj

M
fcomplete(t; p, qMj ,Mj, α = 0)

=

J2(ϵ)∑
j=J1(ϵ)

(
M
j

)
αj(1 − α)M−jMj

M
fcomplete(t; p, qMj ,Mj, α = 0),

and

J1(ϵ) = ⌈αM(1 − ϵ)⌉, J2(ϵ) = ⌊αM(1 + ϵ)⌋. (A.3)

Since all the summands of I1 are positive and smaller than one,

0 ≤ I1 ≤

∑
ϵ<|

j
αM −1|

0≤j≤M

(
M
j

)
αj(1 − α)M−j

≤ 2e−αMϵ2/3, (A.4)

where in the last inequality we used the Chernoff bound [28]. To bound I2 we use the dominance principle Appendix B,
to conclude that as the number of removed nodes increases, the expected number of adopters decreases. Hence, the
series

{
Mjfcomplete(t; p, qMj ,Mj, α = 0)

}M
j=0

is monotonically decreasing in j. Extracting a constant term from the sum and

using Chernoff bound again yields

I2 ≥
MJ2

M
fcomplete(t; p, qMJ2 ,MJ2 , α = 0)

J2(ϵ)∑
j=J1(ϵ)

(
M
j

)
αj(1 − α)M−j

≥
MJ2

M
fcomplete(t; p, qMJ2 ,MJ2 , α = 0)

(
1 − 2e−αMϵ2/3

)
.

(A.5a)

Similarly, using
∑M

j=0

(M
j

)
αj(1 − α)M−j

= 1, one obtains

I2 ≤
MJ1

M
fcomplete(t; p, qMJ1 ,MJ1 , α = 0)

J2(ϵ)∑
j=J1(ϵ)

(
M
j

)
αj(1 − α)M−j

≤
MJ1

M
fcomplete(t; p, qMJ1 ,MJ1 , α = 0). (A.5b)

By (A.2), (A.4), and (A.5),
MJ2

M
fcomplete(t; p, qMJ2 ,MJ2 , α = 0)

(
1 − 2e−αMϵ2/3

)
≤ fcomplete(t; p, q,M, α) ≤

2e−αMϵ2/3
+

MJ1

M
fcomplete(t; p, qMJ1 ,MJ1 , α = 0).

(A.6)

By (A.1) and (A.3), for M sufficiently large,

q̃+(ϵ) := (1 − α(1 − 2ϵ))q ≥ qMJ1 , q̃−(ϵ) := (1 − α(1 + 2ϵ)) q ≤ qMJ2 . (A.7)

By repeated use of the dominance principle (Appendix B), fcomplete(t; p, q,M, α = 0) is monotonically increasing in q. Hence,
(A.6) and (A.7) give

MJ1

M
fcomplete(t; p, q̃−(ϵ),MJ1 , α = 0)

(
1 − 2e−αMϵ2/3

)
≤ fcomplete(t; p, q,M, α) ≤

2e−αMϵ2/3
+

MJ2

M
fcomplete(t; p, q̃+(ϵ),MJ2 , α = 0).

(A.8)

By (A.1) and (A.3),

lim
M→∞

MJ1

M
= 1 − α(1 − ϵ), lim

M→∞

MJ2

M
= 1 − α(1 + ϵ),

lim
M→∞

MJ1 = lim
M→∞

MJ2 = ∞, lim
M→∞

2e−αMϵ2/3
= 0.

(A.9)
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Fig. C.17. Equivalent networks for the calculation of Prob{Xj(t) = 0, Xj+1(t) = 0, Xj+2(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 = j̃ + 2 ̸= ‘r ’, j̃ + 3 = ‘r ’}. Here
Ω = {j, j+1, j+2}. (A) Circular one-dimensional network, under the assumption that j̃ − 1 = j̃ = j̃ + 1 = j̃ + 2 ̸= ‘r ’, j̃ + 3 = ‘r ’. (B) The noninfluential
links from j to j + 1, from j + 1 to j + 2, and from j + 2 to j + 3 are deleted. Instead, a noninfluential link that connects nodes j and j + 3 is added.

Hence, combining (3), (A.8) and (A.9) gives

(1 − α(1 + ϵ))fBass(t; p, q̃−(ϵ)) ≤ lim
M→∞

fcomplete(t; p, q,M, α) ≤ (1 − α(1 − ϵ))fBass(t; p, q̃+(ϵ)).

Letting ϵ → 0 and using (A.7) and the continuity of fBass, see (3), gives the result.

Appendix B. Dominance principle

In the heterogeneous Bass model, if j did not adopt by time t , her probability to adopt in the time interval (t, t+∆t) is

Prob
(
j adopts in
(t, t +∆t)

)
=

(
pj +

∑
i̸=j

qi,jXi(t)
)
∆t, ∆t → 0, (B.1)

when Xi(t) is the state of consumer i, see (7), pj describes the likelihood of j to adopt the product due to external influences,
and qi,j describes the likelihood of j adopting the product due to internal influences by i, provided that i had already
adopted the product.

Lemma 5 (Dominance Principle [22]). Consider the heterogeneous Bass model (B.1) on networks A and B with M nodes, with
external parameters {pAi } and {pBi }, and with internal parameters {qAi,j} and {qBi,j}, respectively. If

pAj ≤ pBj for all j and qAi,j ≤ qBi,j for all i ̸= j,

then fA(t) ≤ fB(t) for 0 ≤ ∞.

Appendix C. Derivation of (6c)

Following again [4, proof of Lemma 8], the evolution equation for S(0)(t;M, α) is given by
d
dt

S(0)(t;M, α) + (p + q)S(0)(t;M, α) =
q
2
Prob{Xj−1(t) = 0, Xj(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 ̸= ‘r ’}

+
q
2
Prob{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 ̸= ‘r ’}.

By symmetry, both terms on the right-hand side are equal, and so
d
dt

S(0)(t;M, α) + (p + q)S(0)(t;M, α) = qProb{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 ̸= ‘r ’}.

Using the conditional probabilities on the removal of node j + 2 gives
d
dt

S(0)(t;M, α) + (p + q)S(0)(t;M, α) =

αqProb{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 ̸= ‘r ’, j̃ + 2 = ‘r ’}

+ (1 − α)qProb{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 = j̃ + 2 ̸= ‘r ’}.

(C.1)

By (12) and a symmetry argument,

Prob{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 ̸= ‘r ’, j̃ + 2 = ‘r ’} = e−ptS(1)(t;M − 1, α). (C.2)
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Fig. C.18. Equivalent networks for the calculation of Prob{Xj(t) = 0, Xj+1(t) = 0, Xj+2(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 = j̃ + 2 = j̃ + 3 ̸= ‘r ’}. Here
Ω = {j, j + 1, j + 2}. (A) Circular one-dimensional network, under the assumption that j̃ − 1 = j̃ = j̃ + 1 = j̃ + 2 = j̃ + 3 ̸= ‘r ’. (B) The noninfluential
links from j to j + 1 and from j + 1 to j + 2 are deleted. Instead, a noninfluential link that connects nodes j and j + 2 is added.

Lemma 6.

lim
M→∞

Prob{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 = j̃ + 2 ̸= ‘r ’} =
(
S(1)
∞

(t;α)
)2
. (C.3)

Proof. Let ψ(t;M) := Prob{Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 = j̃ + 2 ̸= ‘r ’}. Following [4, proof of Lemma 8], we
obtain

d
dt
ψ(t;M) + (2p + q)ψ(t;M) =

q
2
Prob{Xj−1(t) = 0, Xj(t) = 0, Xj+1(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 = j̃ + 2 ̸= ‘r ’}

+
q
2
Prob{Xj(t) = 0, Xj+1(t) = 0, Xj+2(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 = j̃ + 2 ̸= ‘r ’}.

By symmetry, both terms on the right-hand side coincide, and so
d
dt
ψ(t;M) + (2p + q)ψ(t;M) =

qProb{Xj(t) = 0, Xj+1(t) = 0, Xj+2(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 = j̃ + 2 ̸= ‘r ’}.

Using the conditional probabilities on the removal of node j + 3 yields
d
dt
ψ(t;M) + (2p + q)ψ(t;M) =

αqProb{Xj(t) = 0, Xj+1(t) = 0, Xj+2(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 = j̃ + 2 ̸= ‘r ’, j̃ + 3 = ‘r ’}

+ (1 − α)qProb{Xj(t) = 0, Xj+1(t) = 0, Xj+2(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 = j̃ + 2 = j̃ + 3 ̸= ‘r ’}.

(C.4)

By the indifference principle,

Prob{Xj(t) = 0, Xj+1(t) = 0, Xj+2(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 =j̃ + 2 ̸= ‘r ’, j̃ + 3 = ‘r ’} =

e−2ptS(1) (t;M − 2, α) ,
(C.5a)

and

Prob{Xj(t) = 0, Xj+1(t) = 0, Xj+2(t) = 0 | j̃ − 1 = j̃ = j̃ + 1 = j̃ + 2 = j̃ + 3 ̸= ‘r ’} = e−ptψ(t;M − 1), (C.5b)

see Figs. C.17 and C.18, respectively. Plugging (C.5a) and (C.5b) into (C.4), leads to the ODE
d
dt
ψ(t;M) + (2p + q)ψ(t;M) = αqe−2ptS(1) (t;M − 2, α)+ (1 − α)qe−ptψ(t;M − 1). (C.6)

We claim that

lim
M→∞

ψ(M, t) =
(
S(1)
∞

(t;α)
)2
. (C.7)

Indeed, taking the limit M → ∞ in (C.6) and substituting (C.7) yields the ODE (13) for S(1)∞ (t;α). Since in addition
limM→∞ ψ(0,M) = 1 = S(1)∞ (0, α), the result follows.
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Hence, taking the limit M → ∞, and combining (C.1), (C.2) and (C.3), gives the following ODE for S(0)∞ :=

limM→∞ S(0)(t;M, α):
d
dt

S(0)
∞

(t;α) + (p + q) S(0)
∞

(t;α) = qS(1)
∞

(t;α)
(
αe−pt

+ (1 − α)S(1)
∞

(t;α)
)
.

The solution of the ODE, subject to the initial condition S(0)∞ (0;α) = 1, is given by (6c).
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