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Abstract

In several matching markets, in order to achieve diversity, agents’ priorities are

allowed to vary across available seats of each institution and each institution is let

to choose agents in a lexicographic fashion based on a predetermined ordering of

the seats, called a lexicographic choice rule. Lexicographic choice rules have been

particularly useful in achieving diversity at schools while allocating school seats. We

provide a characterization of lexicographic choice rules, which reveals their distin-

guishing properties from other plausible choice rules. We discuss some implications

for the Boston school choice system. We also provide a characterization of deferred

acceptance mechanisms that operate based on a lexicographic choice structure.
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1 Introduction

Many real-life resource allocation problems involve allocation of objects which are available

in a limited number of identical copies, or a capacity. Choice rules, which are systemic

ways of determining how to ration available copies when demand exceeds the capacity,

are essential in the analysis of such problems. A well-known example is the school choice

problem in which each school has a certain number of seats to be allocated among students.

Although student preferences are elicited from the students, endowing each school with a

choice rule is an essential part of the design process.

Which choice rule to use is not always evident. The school choice literature, starting

with the seminal study by Abdulkadiroğlu and Sönmez (2003), has widely focused on

problems where each school is already endowed with a priority ordering over students, and

the choice rule of a school only needs to be responsive to the given priority ordering, in

which case the choice rule to be used is clear: a responsive choice rule.1 However, when

there are additional concerns such as achieving a diverse student body or affirmative action,

which choice rule to use is non-trivial.

In order to achieve a diverse student body, many school districts have been imple-

menting affirmative action policies, such as in Boston, Chicago, and Jefferson County. The

affirmative action policies that are in use in several school districts reveal that a natural

way to achieve diversity is to allow students’ priorities to vary across a school’s seats, and

to let the school choose students in a lexicographic fashion based on a predetermined

ordering of the seats, which amounts to using a lexicographic choice rule. Although some

properties of lexicographic choice rules have already been discovered in the literature, which

set of properties distinguish lexicographic choice rules from other plausible choice rules has

remained unknown.2 In this study, we follow the axiomatic approach to discover general

principles (axioms) that characterize lexicographic choice rules under variable capacity

constraints, and then explore the implications of our results for school choice and other

resource allocation problems.

In our baseline model, we consider a single decision maker who has a capacity

1In Section 3.1, we discuss responsive choice rules.
2Although lexicographic choice rules are used to achieve diversity in school choice, there are also other

types of choice rules that are used to achieve diversity or affirmative action. Among others, Echenique and
Yenmez (2015a) and Ehlers et al. (2014) study such choice rules.

3



constraint, such as a school with a limited number of seats. The decision maker encounters

(capacity-constrained) choice problems which consist of a choice set (a set of alternatives,

such as students who demand a seat at the school) and a capacity. A (capacity-constrained)

choice rule, at each possible choice problem, chooses some alternatives from the choice

set without exceeding the capacity. Note that across different choice problems, we allow

capacity to vary, since in applications capacity may vary over time (for instance, the number

of available seats at a school may change from year to year) and it may be desirable to use

a choice rule that responds well to changes in capacity.3

Our main focus is on lexicographic choice rules. A choice rule is lexicographic if there

exists a list of priority orderings over potential alternatives such that at each choice problem,

the set of chosen alternatives is obtainable by choosing the highest ranked alternative

according to the first priority ordering, then choosing the highest ranked alternative among

the remaining alternatives according to the second priority ordering, and proceeding

similarly until the capacity is full or no alternative is left. Our main goal is to understand

the characterizing properties of lexicographic choice rules.

In the axiomatic analysis of choice rules, each axiom carries with it a consistency

requirement or specifies a desirable procedural aspect of a choice rule. These axioms

illuminate characteristics of choice rules that may be relevant for the problem, yet may

not be evident from the procedural formulations of the choice rules. We consider the

set of axioms characterizing a choice rule as a justification for using that choice rule,

besides highlighting its distinguishing features from other plausible choice rules. As for the

applications, such as school choice, axiomatic characterizations of choice rules pave the

way for the schools to choose an appropriate rule that fits their policy desiderata expressed

in the form of choice axioms.4

We consider the following three properties of choice rules that have already been

studied in the axiomatic literature.

Acceptance: An alternative is rejected from a choice set at a capacity only if the

capacity is full;

3There are earlier studies in the literature which also formulate choice rules by allowing capacity to
vary. See, among others, Doğan and Klaus (2016), Ehlers and Klaus (2014), and Ehlers and Klaus (2016).

4Echenique and Yenmez (2015a) also follow an axiomatic approach and characterize several choice rules
for a school that wants to achieve diversity.

4



Gross substitutes: If an alternative is chosen from a choice set at a capacity, then it is

also chosen from any subset of the choice set that contains the alternative, at the same

capacity.

Monotonicity: If an alternative is chosen from a choice set at a capacity, then it is

also chosen from the same choice set at any higher capacity.

We introduce a property that requires consistency of the following capacity-wise

revealed preference relation: an alternative is revealed preferred to another alternative at a

capacity if there is a choice set from which the former alternative is chosen over the latter,

whereas with one less capacity both alternatives are rejected from the choice set. We say

that a choice rule satisfies the capacity-wise weak axiom of revealed preference (CWARP)

if the revealed preference relation is asymmetric at each capacity.

CWARP is a counterpart of the well-known weak axiom of revealed preference (WARP)

in the standard revealed preference framework (Samuelson, 1938), where there is no capacity

parameter, and a choice rule chooses exactly one alternative from each choice set. In the

standard framework, an alternative is said to be revealed preferred to another alternative

if there is a choice set at which the former alternative is chosen over the latter. WARP

requires the revealed preference relation to be asymmetric, which in a sense requires

consistency of the choice behavior in responding to changes in the choice set. In our

framework, the preference is revealed not only through the choice at a choice set, but

also through a change in the capacity. Hence, CWARP requires consistency of the choice

behavior in responding to changes in the choice set together with changes in the capacity.

We show that a choice rule satisfies acceptance, gross substitutes, monotonicity,

and CWARP if and only if it is lexicographic: there is a list of priority orderings over

alternatives such that at each problem, the set of chosen alternatives is obtainable by

choosing the highest ranked alternative according to the first priority, then choosing the

highest ranked alternative among the remaining alternatives according to the second priority,

and proceeding similarly until the capacity is full or no alternative is left (Theorem 1).

We also provide an alternative characterization of lexicographic choice rules with

another property that we introduce, called rejection-monotonicity. Rejection-monotonicity

requires that, if the set of rejected alternatives are the same for two choice sets at a

capacity, then at any higher capacity, the set of accepted alternatives that were formerly
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rejected should be the same for the two choice sets. In other words, in case of an increase

in the capacity, rejection-monotonicity requires that the new alternatives that will be

chosen (if any) should not depend on the already accepted alternatives. CWARP together

with acceptance and monotonicity implies rejection-monotonicity. As a corollary to our

Theorem 1, we show that a choice rule satisfies acceptance, gross substitutes, monotonicity,

and rejection-monotonicity if and only if it is lexicographic.

Boston school district is one of the school districts that uses lexicographic choice to

achieve a diverse student body and implement affirmative action policies. Boston school

district aims to give priority to neighborhood applicants for half of each school’s seats.

To achieve this goal, the Boston school district has been using a deferred acceptance

mechanism based on a choice structure, where each school is endowed with a “capacity-

wise lexicographic” choice rule, that is, at each capacity, the choice rule lexicographically

operates based on a list containing as many priority orderings as the capacity, yet the

lists for different capacity levels do not have to be related in any way.5 Dur et al. (2013)

provides an analysis of how the order of the priority orderings in the choice rule of a school

may affect the outcome in the Boston school choice context. In Section 4, we consider

a class of capacity-wise lexicographic choice rules discussed in Dur et al. (2013) that are

relevant for the design of the Boston school choice system and show that our analysis

enables us to single out one rule from four plausible candidates.

Besides providing a first axiomatic foundation for lexicographic choice rules, our study

contributes to the literature on allocation mechanisms that are based on lexicographic choice

structures. To illustrate this contribution, in Section 5, we consider the variable-capacity

object allocation model. In that model, Ehlers and Klaus (2016) characterize deferred

acceptance mechanisms where each object has a choice rule that satisfies acceptance, gross

substitutes, and monotonicity.6 We introduce a novel property for allocation mechanisms,

called demand-monotonicity, which is motivated by and intimately related to the rejection-

monotonicity of choice rules. As a corollary to the characterization result by Ehlers

and Klaus (2016), we provide a characterization of lexicographic deferred acceptance

mechanisms (Corollary 4), which are deferred acceptance mechanisms that operate based

5See Dur et al. (2013) for a detailed discussion of Boston’s school choice mechanism.
6Kojima and Manea (2010) consider a setup where the capacity of each school is fixed, and characterize

deferred acceptance mechanisms where each school has a choice rule that satisfies acceptance and gross
substitutes.
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on a lexicographic choice structure.

The paper is organized as follows. In Section 2, we review the related literature. In

Section 3, we introduce and characterize lexicographic choice rules, and also provide a

characterization of responsive choice rules. In Section 4, we discuss some implications for

the Boston school choice system. In Section 5, we highlight an implication of our choice

theoretical analysis for the resource allocation framework: we provide a characterization of

deferred acceptance mechanisms that operate based on a lexicographic choice structure. In

Section 6, we conclude by discussing the main features of our analysis.

2 Related Literature

Several studies investigate choice rules that satisfy path independence (Plott, 1973), which

requires that if the choice set is “split up” into smaller sets, and if the choices from the

smaller sets are collected and a choice is made from the collection, the final result should

be the same as the choice from the original choice set. Since acceptance together with

gross substitutes imply path independence,7 lexicographic choice rules are examples of

path independent choice rules. Aizerman and Malishevski (1981) show that for each path

independent choice rule, there exists a list of priority orderings such that the choice from

each choice set is the union of the highest priority alternatives in the priority orderings.8

Among others, Plott (1973), Moulin (1985), and Johnson and Dean (2001) study the

structure of path independent choice rules. Path independent choice rules guarantee the

existence of stable matchings in the matching context. Chambers and Yenmez (2016) study

path independence in the matching context and its connection to stable matchings.

Although the structure of path independent choice rules have been extensively studied,

the structure of lexicographic choice rules and what properties distinguish them from other

path independent choice rules have not been well-understood. Houy and Tadenuma (2009)

consider two classes of choice rules which are both based on “lexicographic procedures”,

yet different than the ones we consider here. Similar to our setup, choice rules that they

7This is also noted in Remark 1 of Doğan and Klaus (2016), and it follows from Lemma 1 of Ehlers and
Klaus (2016) together with Corollary 2 of Aizerman and Malishevski (1981).

8In the words of Aizerman and Malishevski (1981), each path independent choice rule is generated by
some mechanism of collected extremal choice.
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consider operate based on a list of binary relations.9 Yet, their model does not include

capacity constraints and the lexicographic procedures that operationalize the lists are

different. The only study that considers lexicographic choice rules that we study from an

axiomatic perspective is Chambers and Yenmez (2013).10 They show that lexicographic

choice rules satisfy acceptance and path independence, and they also show that there

are path independent choice rules that are not lexicographic, but they do not provide a

characterization of lexicographic choice rules.

Lexicographic choice rules are used in the Boston School Choice system to favor

neighbourhood students, and Dur et al. (2013) and Dur et al. (2016) analyse how the

order in the priority profile may cause additional biase for or against the neighbourhood

students.11 In Section 4, we discuss implications of our study for the Boston School Choice

system.

Kominers and Sönmez (2016) study lexicographic deferred acceptance mechanisms in

a more general matching with contracts framework (Hatfield and Milgrom, 2005). Their

main focus is on stability and incentive properties of such mechanisms, our focus is on

understanding the characterizing properties of such mechanisms and their underlying choice

structures. Moreover, the structure of the lexicographic choice rules in Kominers and

Sönmez (2016) are different than the ones we consider since their study is in a general

matching with contracts framework. Their framework allows for particular feasibility

constraints, in the sense that some alternatives cannot be chosen together with some other

alternatives, and for that reason their lexicographic choice rules are not fully covered

by our analysis. For instance, the lexicographic choice rules in their setup may violate

“substitutability”, which is a generalization of gross substitutes to the matching with

contracts setup (Hatfield and Milgrom, 2005). Yet, for the school choice aplication where

such feasibility constraints are not binding, the lexicographic choice rules in Kominers and

Sönmez (2016) fall into our setup and covered by our analysis.

Properties for resource allocation mechanisms under variable resources have been

9Houy and Tadenuma (2009) do not start with any assumptions on the list of binary relations. They
separately discuss under which assumptions on the list of binary relations, the resulting choice rules satisfy
certain properties.

10Chambers and Yenmez (2013) is a working paper version of the published version Chambers and
Yenmez (2016). The discussion on lexicographic choice rules is not included in the published version.

11Dur et al. (2013) is an earlier version of Dur et al. (2016).
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widely studied in the literature. A well-known such property is resource-monotonicity,

introduced by Chun and Thomson (1988), and it has been studied in the resource allocation

literature (see, for example, Doğan and Klaus (2016), Ehlers and Klaus (2014), and

Ehlers and Klaus (2016)). A resource monotonicity condition for the deferred acceptance

mechanisms based on choice rules was also studied in Echenique and Yenmez (2015b). A

choice rule is an expansion of another choice rule if, for any choice set, any alternative chosen

by the latter is also chosen by the former. Echenique and Yenmez (2015b), in Theorem

E.1., show that, in the resource allocation framework (see Section 5), each agent weakly

prefers one deferred acceptance mechanism to another deferred acceptance mechanism

based on path independent choice structures if the choice structure of the former is an

expansion of the latter.

3 Capacity-Constrained Lexicographic Choice

Let A be a nonempty finite set of n alternatives and let A denote the set of all nonempty

subsets of A. A (capacity-constrained) choice problem is a pair (S, q) ∈ A×{1, . . . , n} of a

choice set S and a capacity q. A (capacity-constrained) choice rule C : A×{1, . . . , n} → A
associates with each problem (S, q) ∈ A × {1, . . . , n}, a set of choices C(S, q) ⊆ S such

that |C(S, q)| ≤ q. Given a choice rule C, we denote the set of rejected alternatives at a

problem (S, q) by R(S, q) = S \ C(S, q).

A priority ordering � is a complete, transitive, and anti-symmetric binary relation

over A. A priority profile π = (�1, . . . ,�n) is an ordered list of n priority orderings. Let

Π denote the set of all priority profiles.

A choice rule C is lexicographic for a priority profile (�1, . . . ,�n) ∈ Π if for

each (S, q) ∈ A × {1, . . . , n}, C(S, q) is obtained by choosing the highest �1-priority

alternative in S, then choosing the highest �2-priority alternative among the remaining

alternatives, and so on until q alternatives are chosen or no alternative is left. A choice rule

is lexicographic if there exists a priority profile for which the choice rule is lexicographic.

Remark 1. Note that, if a choice rule is lexicographic for a priority profile π = (�1, . . . ,�n),

then it is lexicographic for any other priority profile that is obtained from π by replacing �n

with an arbitrary priority ordering. In that sense, the last priority ordering is redundant.
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We consider four properties of choice rules. The following three properties are already

known in the literature.

Acceptance: An alternative is rejected from a choice set at a capacity only if the capacity

is full. Formally, for each (S, q) ∈ A× {1, . . . , n},

|C(S, q)| = min{|S|, q}.

Gross substitutes:12 If an alternative is chosen from a choice set at a capacity, then it is

also chosen from any subset of the choice set that contains the alternative, at the same

capacity. Formally, for each (S, q) ∈ A× {1, . . . , n} and each pair a, b ∈ S such that a 6= b,

if a ∈ C(S, q), then a ∈ C(S\{b}, q).

Monotonicity: If an alternative is chosen from a choice set at a capacity, then it is

also chosen from the same choice set at any higher capacity. Formally, for each (S, q) ∈
A× {1, . . . , n− 1},

C(S, q) ⊆ C(S, q + 1).

Consider the following capacity-wise revealed preference relation. An alternative

a ∈ A is revealed to be preferred to an alternative b ∈ A at a capacity q > 1 if there

is a problem with capacity q − 1 for which a and b are both rejected and a is chosen

over b when the capacity is q. That is, a is revealed to be preferred to b at q if there

exists S ∈ A such that a, b /∈ C(S, q − 1), a ∈ C(S, q), and b /∈ C(S, q). We introduce the

following property which requires, for each capacity, the revealed preference relation to be

asymmetric.

Capacity-wise weak axiom of revealed preference (CWARP): For each capacity

q > 1 and each pair a, b ∈ A, if a is revealed to be preferred to b at q, then b is not revealed

to be preferred to a at q.

Remark 2. The following is an alternative definition of CWARP, which is formulated in

12Gross substitutes was first introduced in the choice literature by Chernoff (1954). It has been studied
in the choice literature under different names such as Chernoff’s axiom, Sen’s α, or contraction consistency.
In the matching literature, it was first studied and referred to as gross substitutes in Kelso and Crawford
(1982) (substitutability is also a commonly used name in the matching literature). We follow the terminology
of Kelso and Crawford (1982).
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line with the common formulations of WARP-type revealed preference relations in the

literature.

An alternative definition of CWARP: For each capacity q > 1, each pair S, T ∈ A and

each pair a, b ∈ S ∩ T such that [C(S, q − 1) ∪ C(T, q − 1)] ∩ {a, b} = ∅,

if a ∈ C(S, q) and b ∈ C(T, q) \ C(S, q), then a ∈ C(T, q).

Next, we introduce another property that is implied by CWARP together with

acceptance and monotonicity. We invoke the property in the proof of our main result.

Moreover, we believe that the property also has a stand-alone normative appeal. The

property, similar to monotonicity, considers the impact of an increase in the capacity.

Consider a problem and the set of rejected alternatives for that problem. Suppose

that the capacity increases. The property requires that which alternatives among the

currently rejected alternatives will be chosen (if any) should not depend on the currently

accepted alternatives. In other words, if the set of rejected alternatives are the same for

two choice sets, then at any higher capacity, the set of initially rejected alternatives that

become accepted should be the same for the two choice sets.

Rejection-Monotonicity: For each S, S ′ ∈ A and each q ∈ {1, . . . , n− 1},

if R(S, q) = R(S ′, q), then C(S, q + 1) ∩R(S, q) = C(S ′, q + 1) ∩R(S ′, q).

Lemma 1. Suppose that a choice rule satisfies acceptance and monotonicity. If the choice

rule satisfies CWARP, then it also satisfies rejection-monotonicity.

Proof. Let C be a choice rule. Suppose that C satisfies acceptance and monotonicity,

but violates rejection-monotonicity. By violation of rejection-monotonicity, there are

S, S ′ ∈ A and q ∈ {1, . . . , n− 1} such that R(S, q) = R(S ′, q), but C(S, q + 1) ∩R(S, q) 6=
C(S ′, q + 1)∩R(S ′, q). By monotonicity, R(S, q + 1) ⊆ R(S, q) and R(S ′, q + 1) ⊆ R(S ′, q).

By acceptance, |R(S, q + 1)| = |R(S ′, q + 1)|. Then, there exist a, b ∈ R(S, q) = R(S ′, q)

such that a ∈ C(S, q+ 1), b /∈ C(S, q+ 1), b ∈ C(S ′, q+ 1), and a /∈ C(S ′, q+ 1). But then,

a is revealed preferred to b and vice versa, implying that C violates CWARP.

The following example shows that the converse statement of Lemma 1 does not hold,
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that is, there exists a choice rule that satisfies acceptance, monotonicity, and rejection-

monotonicity, but violates CWARP.

Example 1. Let A = {a, b, c, d, e}. Let � and �′ be defined as a � b � c � d � e and

a �′ c �′ b �′ d �′ e. Let the choice rule C be defined as follows. For each problem

(S, q), if d ∈ S, then C(S, q) chooses the highest �-priority alternatives from S until q

alternatives are chosen or no alternative is left;13 if d /∈ S, then C(S, q) chooses the highest

�′-priority alternatives from S until q alternatives are chosen or no alternative is left.

Note that C clearly satisfies acceptance and monotonicity. To see that C also satisfies

rejection-monotonicity, let S, S ′ ∈ A and q ∈ {1, . . . , n−1} be such that R(S, q) = R(S ′, q).

If d ∈ S ∩ S ′ or d ∈ A \ (S ∪ S ′), then C(S, q + 1) ∩ R(S, q) = C(S ′, q + 1) ∩ R(S ′, q).

So suppose, without loss of generality, that d ∈ S \ S ′. Since R(S, q) = R(S ′, q), we

have d ∈ C(S). But then, either R(S, q) = ∅ or R(S, q) = {e}. In either case, we have

C(S, q + 1) ∩R(S, q) = C(S ′, q + 1) ∩R(S ′, q). To see that C violates CWARP, note that

C({a, b, c, d}, 1) = {a} and C({a, b, c, d}, 2) = {b}, implying that b is revealed preferred

to c at q = 2. Also, C({a, b, c, e}, 1) = {a} and C({a, b, c, e}, 2) = {c}, implying that c is

revealed preferred to b at q = 2.

Theorem 1. A choice rule is lexicographic if and only if it satisfies acceptance, gross

substitutes, monotonicity, and the capacity-wise weak axiom of revealed preference.14

Proof. Let C be lexicographic for (�1, . . . ,�n) ∈ Π. Clearly, C satisfies acceptance and

monotonicity, and it is already known from the literature that C satisfies gross substitutes

(Chambers and Yenmez, 2016). To see that it satisfies CWARP, let S, S ′ ∈ A, a, b ∈ A,

and q ∈ {2, . . . , n} be such that a is revealed preferred to b at q. Then, there is S ∈ A
such that a, b ∈ R(S, q − 1), a ∈ C(S, q), and b ∈ R(S, q). But then, a �q b. If also b is

revealed preferred to a at q, then by similar arguments we have b �q a, contradicting that

�q is antisymmetric. Thus, the revealed preference relation is asymmetric and C satisfies

CWARP.

Let C be a choice rule satisfying acceptance, gross substitutes, monotonicity, and

CWARP. We first construct a priority profile (�1, . . . ,�n) ∈ Π and then show that C is

13That is, C(S, q) coincides with the choice rule that is “responsive” for �. We discuss responsive choice
rules in Section 3.1.

14Independence of the characterizing properties is shown in Appendix A.
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lexicographic for that priority profile. For each i, j ∈ {1, . . . , n}, let aij denote the j’th

ranked alternative in �i (for instance, ai1 is the highest �i-priority alternative).

To construct �1, first set {a11} = C(A, 1). For each j ∈ {2, . . . , n}, set {a1j} =

C(A\{a11, . . . , a1(j−1)}, 1). To construct �2, consider C(A, 2). By acceptance, |C(A, 2)| = 2.

Since a11 ∈ C(A, 1), by monotonicity, a11 ∈ C(A, 2). Set {a21} = C(A, 2) \ {a11}. For each

j ∈ {2, . . . , n− 1}, set {a2j} = C(A \ {a21, a22, . . . , a2(j−1)}, 2) \ {a11}. Set a2n = a11.

The rest of the priority profile is constructed recursively as follows. For each i ∈
{3, . . . , n}, first set {ai1} = C(A, i) \ {a11, a21, . . . , a(i−1)1} (Note that by monotonicity,

{a11, a21, . . . , a(i−1)1} ⊆ C(A, i) and by acceptance, |C(A, i)| = i). For each j ∈ {2, . . . , n−
i + 1}, set {a2j} = C(A \ {ai1, ai2, . . . , ai(j−1)}, i) \ {a11, a21, . . . , a(i−1)1}. Note that there

are i − 1 rankings yet to be set in �i, which are {ai(n−i+2), . . . , ain}. For each j ∈
{n− i + 2, . . . , n}, set aij = a(j+i−n−1)1 (which assigns the alternatives a11, . . . , a(i−1)1 to

the rankings ai(n−i+2), . . . , ain, respectively).

Now, let (S, q) ∈ A× {1, . . . , n}. Let b1 denote the highest �1-priority alternative in

S, b2 denote the highest �2-priority alternative among the remaining alternatives, and so

on up to bmin{|S|,q}. We show that C(S, q) = {b1, . . . , bmin{|S|,q}}. If min{|S|, q} = |S|, then

by acceptance, C(S, q) = {b1, . . . , b|S|}. Suppose that |S| > q.

The rest of the proof is by induction: we first show that b1 ∈ C(S, q); then, for

an arbitrary i ∈ {2, . . . , q}, assuming that b1, . . . , bi−1 ∈ C(S, q), we show that bi ∈
C(S, q). Let b1 = a1j for some j ∈ {1, . . . , n}. By the construction of �1, b1 ∈ C(A \
{a11, . . . , a1(j−1)}, 1). Then, by gross substitutes and monotonicity, b1 ∈ C(S, q).

Let i ∈ {2, . . . , n}. Assuming that b1, . . . , bi−1 ∈ C(S, q), we show that bi ∈ C(S, q).

Let S ′ be the choice set obtained from S by replacing b1 with a11 (note that nothing

changes if b1 = a11), replacing b2 with a21, . . ., and replacing bi−1 with a(i−1)1. That is, S ′ =

(S \ {b1, . . . , bi−1}) ∪ {a11, . . . , a(i−1)1}. Let q′ = i− 1. Note that {b1, . . . , bi−1} = C(S, q′),

because otherwise, by acceptance, there is a ∈ S such that a ∈ C(S, q′) and a /∈ C(S, q),

which is a violation of monotonicity. Also, by the construction of the priority profile and by

gross substitutes, {a11, . . . , a(i−1)1} = C(S ′, q′). Note that R(S, q′) = R(S ′, q′). By Lemma 1,

C satisfies rejection-monotonicity. Then, by monotonicity and rejection-monotonicity, we

have R(S, q) = R(S ′, q). Since bi ∈ C(S ′, q) by the construction of the priority profile and

by gross substitutes, we also have bi ∈ C(S, q).

13



Corollary 1. A choice rule is lexicographic if and only if it satisfies acceptance, gross

substitutes, monotonicity, and rejection-monotonicity.

Proof. A lexicographic choice rule satisfies acceptance, gross substitutes, and monotonicity

by Theorem 1, and also satisfies rejection-monotonicity by Lemma 1. To see the other

direction, note that in the proof of Theorem 1, we invoked CWARP only to claim that

rejection-monotonicity is satisfied, and therefore the same proof for the if part is valid

when we replace CWARP with rejection-monotonicity.

A choice rule C can be lexicographic for two different priority profiles. Even more,

the priority profile for which a choice rule is lexicographic is never unique. However, if C

is lexicographic for two different priority profiles (�1, . . . ,�n) and (�′1, . . . ,�′n), then for

each pair of alternatives a, b ∈ A, if a �q b and b �′q a for some q ∈ {1, . . . , n}, then either

a or b must be chosen from any choice set (particularly from A) at any lower capacity.

That is, a or b is chosen irrespective of its relative ranking at the q-priority ordering.

To state this observation formally, for each priority ordering � on A and for each

choice set S ∈ A, let �i |S stand for the restriction of �i to S. Let A1 = A, and for each

q ∈ {2, . . . , n}, let Aq = A \ C(A, q − 1).

Proposition 1. If a choice rule C is lexicographic for a priority profile (�1, . . . ,�n), then

C is lexicographic for another priority profile (�′1, . . . ,�′n) if and only if �1=�′1 and for

each q ∈ {1, . . . , n}, �q |Aq =�′q |Aq .

Proof. In the proof of Theorem 1, the priority profile (�1, . . . ,�n) is constructed such that

for each for each q ∈ {1, . . . , n} and each choice set S ∈ A, max(S \ C(S, q − 1),�q) =

C(S, q) \ C(A, q − 1). Now, for each q ∈ {1, . . . , n}, let �∗q=�q |Aq , and Aq stand for the

collection of all nonempty subsets of Aq. Next, define the choice function cq : Aq → Aq

such that for each choice set S ∈ Aq, cq(S) = max{S \ C(A, q − 1),�∗q}. Since C satisfies

gross substitutes, cq also satisfies gross substitutes. It follows that there is a unique priority

ordering �∗q such that cq(S) = max{S \ C(A, q − 1),�∗q}.
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3.1 Responsive Choice

A well-known example of a lexicographic choice rule is a “responsive” choice rule,15 which is

lexicographic for a priority profile where all the priority orderings are the same. Formally, a

choice rule C is responsive for a priority ordering � if for each (S, q) ∈ A×{1, . . . , n},
C(S, q) is obtained by choosing the highest �-priority alternatives in S until q alternatives

are chosen or no alternative is left. Note that C is responsive for � if and only if it is

lexicographic for the priority profile (�, . . . ,�).

Chambers and Yenmez (2013) characterize “responsive” choice rules, but in the

context of “classical” choice problems which do not explicitly refer to a variable capacity

parameter. Formally, a classical choice rule is a function C : A → A such that for each

S ∈ A, C(S) ⊆ S. A classical choice rule is responsive if there exists a priority ordering

� and a capacity q ∈ {1, . . . , n} such that for each S ∈ A, C(S) is obtained by choosing

the highest �-priority alternatives until the capacity q is reached or no alternative is

left. Chambers and Yenmez (2013), in their Theorem 6, show that, a classical choice rule

satisfies acceptance16 and the weakened weak axiom of revealed preference (WWARP) if

and only if it is responsive.17 WWARP was introduced by Ehlers and Sprumont (2008)

and requires that for each pair a, b ∈ A and S, S ′ ∈ A such that a, b ∈ S ∩ S ′ ,

if a ∈ C(S) and b ∈ C(S ′) \ C(S), then a ∈ C(S ′).

To see what Chambers and Yenmez (2013), Theorem 6, implies in our variable capacity

setup, consider the following extension of WWARP to our setup.

Weakened weak axiom of revealed preference (WWARP): For each S, S ′ ∈ A,

q ∈ {1, . . . , n}, and each pair a, b ∈ S ∩ S ′,

if a ∈ C(S, q) and b ∈ C(S ′, q) \ C(S, q), then a ∈ C(S ′, q).

15Responsive choice rules have been studied particularly in the two-sided matching context (Roth and
Sotomayor, 1990).

16A classical choice rule satisfies acceptance if there exists a capacity such that at each choice problem,
an alternative is rejected only if the capacity is reached.

17Chambers and Yenmez (2013), in their Theorem 7, also provide a characterization of choice rules that
are responsive for a known capacity (namely q-responsive choice rules).
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The following Proposition 2 directly follows from Chambers and Yenmez (2013),

Theorem 6.

Proposition 2. A choice rule satisfies acceptance and the weakened weak axiom of revealed

preference if and only if for each q ∈ {1, . . . , n}, there is a priority ordering �q such that

for each S ∈ A, C(S, q) is obtained by choosing the highest �q-priority alternatives until

the capacity q is reached or no alternative is left.

Proposition 2 states that acceptance and the weakened weak axiom of revealed prefer-

ence characterizes “capacity-wise responsive” choice rules, which are responsive for each

capacity, but the associated priority orderings for different capacities may be different. Yet,

a characterization of responsive choice rules in our setup does not directly follow from

Chambers and Yenmez (2013).

We show that, the following extension of WWARP, together with acceptance, char-

acterizes responsive choice rules in our variable-capacity setup. The property, called the

capacity-wise weakened weak axiom of revealed preference (CWWARP), requires that if

an alternative a is chosen and b is not chosen at a problem where they are both available,

then at any problem where they are both available, a is chosen whenever b is chosen.

Capacity-wise weakened weak axiom of revealed preference (CWWARP): For

each S, S ′ ∈ A, q, q′ ∈ {1, . . . , n}, and each pair a, b ∈ S such that a, b ∈ S ∩ S ′ ,

if a ∈ C(S, q) and b ∈ C(S ′, q′) \ C(S, q), then a ∈ C(S ′, q′).

Theorem 2. A choice rule is responsive if and only if it satisfies acceptance and the

capacity-wise weakened weak axiom of revealed preference.

Proof. It is clear that a responsive choice rule satisfies acceptance and CWWARP. Let C be

a choice rule satisfying acceptance and CWWARP. Clearly, CWWARP implies WWARP,

and therefore by Proposition 2, for each q ∈ {1, . . . , n}, there is a priority ordering �q such

that for each S ∈ A, C(S, q) is obtained by choosing the highest �q-priority alternatives

until the capacity q is reached or no alternative is left.

Let (S, q) ∈ A × {1, . . . , n}. If |S| ≤ q, then by acceptance, C(S, q) = S. Suppose

that |S| > q. First note that C(S, q − 1) ⊆ C(S, q), since otherwise, by acceptance, there
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is a pair a, b ∈ S such that a ∈ C(S, q − 1) \ C(S, q) and b ∈ C(S, q) \ C(S, q − 1), which

contradicts CWWARP. Now, consider any pair a, b ∈ R(S, q − 1) such that a ∈ C(S, q)

and b /∈ C(S, q). By CWWARP, for any S ′ ∈ A, b is not chosen over a at (S ′, q), implying

that a has �q-priority over b. But then, for each S ∈ A, C(S, q) is obtained by choosing

the highest �q−1-priority alternatives until the capacity q is reached or no alternative is

left. Since we started with an arbitrary q ∈ {1, . . . , n}, C is a choice rule that is responsive

to �1.

Given acceptance, to better highlight the gap between WWARP and CWWARP, we

introduce the following property. The property requires that the choice from a choice set at

a given capacity should not change if the choice is made in two steps: first, choosing at a

lower capacity, and then choosing from among the remaining alternatives at the remaining

capacity.

Composition up: For each S ∈ A and q, q′ ∈ {1, . . . , n} such that q′ > q,

C(S, q′) = C(S, q) ∪ C(S \ C(S, q), q′ − q).

Proposition 3. Let C be a choice rule satisfying acceptance. The choice rule C satisfies

the capacity-wise weakened weak axiom of revealed preference if and only if it satisfies the

weakened weak axiom of revealed preference and composition up.

Proof. Suppose that C satisfies CWWARP. Then, it clearly satisfies WWARP. Suppose

that S ∈ A and q, q′ ∈ {1, . . . , n} are such that q′ > q and

C(S, q′) 6= C(S, q) ∪ C(S \ C(S, q), q′ − q).

Then, by acceptance, either there exist a, b ∈ A such that

a ∈ C(S, q) \ C(S ′, q′) and b ∈ C(S ′, q′) \ C(S, q)

or there exist a, b ∈ A such that

a ∈ C(S \ C(S, q), q′ − q) \ C(S ′, q′) and b ∈ C(S ′, q′) \ C(S \ C(S, q), q′ − q).

In either case, we have a contradiction to CWWARP. Hence, C satisfies composition up.
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Suppose that C satisfies WWARP and composition up. Let S, S ′ ∈ A, q, q′ ∈
{1, . . . , n}, and a, b ∈ A be such that a, b ∈ S ∩S ′ , a ∈ C(S, q), and b ∈ C(S ′, q′) \C(S, q).

Suppose that a /∈ C(S ′, q′). If q = q′, we have a contradiction to WWARP. Suppose, without

loss of generality, that q′ > q. Since a ∈ C(S, q), by composition up, a ∈ C(S, q′). Since

b /∈ C(S, q), by composition up, b /∈ C(S, q′). But then, a ∈ C(S, q′), b ∈ C(S ′, q′)\C(S, q′),

and a /∈ C(S ′, q′), which is a contradiction to WWARP. Hence, C satisfies CWARP.

Corollary 2. A choice rule is responsive if and only if it satisfies acceptance, the weakened

weak axiom of revealed preference, and composition up.

The following example shows that, without acceptance, CWWARP does not imply

composition up.

Example 2. Let A = {a, b, c}. Let � be a priority ordering. Let C be the choice rule such

that, for each problem (S, q), C(S, q) is a singleton consisting of the �-maximal alternative

in S if q ∈ {1, 3}; and C coincides with the choice rule that is responsive for � when q = 2.

Note that C violates acceptance since it chooses a single alternative from any choice set

when the capacity is 3. Moreover, C clearly satisfies CWWARP but violates composition

up.

4 Implications for School Choice in Boston

In the Boston school choice system, for each school there are two different priority orderings:

a walk-zone priority ordering, which gives priority to the school’s neighborhood students

over all the other students, and an open priority ordering which does not give priority to

any student for being a neighborhood student. The Boston school district aims to assign

half of the seats of each school based on the walk-zone priority ordering and the other half

based on the open priority ordering.

To better understand what the Boston school district wants to achieve and how it can

be achieved, let us consider the following class of choice rules that is larger than the class

of lexicographic choice rules. We say that a choice rule is capacity-wise lexicographic

if, at each capacity, the rule operates based on a list containing as many priority orderings

as the capacity. Unlike a lexicographic choice rule, the lists for different capacity levels are

not necessarily related.
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Now, the Boston school district’s objective can be achieved with a capacity-wise

lexicographic choice rule such that, at each capacity, the associated list consists of only

the walk-zone priority ordering and the open priority ordering, and the absolute difference

between the numbers of walk-zone and open priority orderings in the list is at most one.

We formalize this property as follows.

Let �w and �o be walk-zone and open priority orderings. We say that a capacity-

wise lexicographic choice rule satisfies the Boston requirement for (�w,�o) if for each

capacity q, the associated list of priority orderings (�1, . . . ,�q) is such that

i. for each l ∈ {1, . . . , q}, �l∈ {�w,�o},
ii. difference between the number of �w-priorities and �o-priorities is at most one, i.e.∣∣∣∑q

i=1 1�w(�i)−
∑q

i=1 1�o(�i)
∣∣∣ ≤ 1.18

Now, it turns out that the following class of capacity-wise lexicographic choice rules

are the only rules satisfying our set of properties together with the Boston requirement for

(�w,�o).

Proposition 4. A capacity-wise lexicographic choice rule satisfies acceptance, gross sub-

stitutes, monotonicity, the capacity-wise weak axiom of revealed preference, and the Boston

requirement for (�w,�o) if and only if it is lexicographic for a priority profile (�1, . . . ,�n)

such that

i. for each l ∈ {1, . . . , n}, �l∈ {�w,�o},
ii. for each l that is odd, �l=�w if and only if �l+1=�o.

Proof. By Theorem 1, a choice rule satisfying the properties must be lexicographic. The

rest is straightforward.

Dur et al. (2013) analyses the School Choice problem in Boston and four plausible

choice rules stand out from their analysis, one of which is currently in use in Boston

(Open-Walk choice rule). Dur et al. (2013) compare the below four choice rules in terms of

how much they are biased for or against the neighbourhood students. We will compare the

four choice rules with respect to our set of choice rule properties.

181x(y) is the indicator function which has the value 1 if x = y and 0 otherwise.
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1. Walk-Open Choice Rule: At each capacity, the first half of the priority orderings in

the list are the walk-zone priority ordering and the last half are the open priority

ordering.

2. Open-Walk Choice Rule: At each capacity, the first half of the priority orderings in

the list are the open priority ordering and the last half are the walk-zone priority

ordering.

3. Rotating Choice Rule: At each capacity, the first priority ordering in the list is the

walk-zone priority ordering, the second is the open priority ordering, the third is the

walk-zone priority ordering, and so on.

4. Compromise Choice Rule: At each capacity, the first quarter of the priority orderings

in the list are the walk-zone priority ordering, the following half of the priority

orderings in the list are the open priority ordering, and the last quarter are again the

walk-zone priority ordering.

To be precise, let us introduce the following procedures to accommodate the cases

where the capacity is not divisible by two or four.

• Walk-Open Choice Rule: If the capacity q is an odd number, the first q+1
2

are the

walk-zone priority ordering.

• Open-Walk Choice Rule: If the capacity q is an odd number, the first q+1
2

are the

open priority ordering.

• Compromise Choice Rule: If the capacity q is not divisible by four, let q = q′ + k

for some q′ that is divisible by 4 and some k ∈ {1, 2, 3}. If k = 1, let the first q′

4
+ 1

orderings be the open priority ordering, the following q′

2
orderings be the open priority

ordering, and the last q′

4
orderings be the open priority ordering. If k = 2, let the

first q′

4
+ 1 orderings be the open priority ordering, the following q′

2
+ 1 orderings be

the open priority ordering, and the last q′

4
orderings be the open priority ordering. If

k = 3, let the first q′

4
+ 1 orderings be the open priority ordering, the following q′

2
+ 1

orderings be the open priority ordering, and the last q′

4
+ 1 orderings be the open

priority ordering.

Note that all of the above rules satisfy the Boston requirement for (�w,�o). It is clear

from Proposition 4 that the Rotating Choice Rule satisfies acceptance, gross substitutes,

monotonicity, and the CWARP. We show that the other three rules violate CWARP while

all the four rules satisfy monotonicity.

20



We first show that each one of the four rules satisfies monotonicity. In fact, we show

that a larger class of choice rules satisfies monotonicity.

Let π = (�1, . . . ,�q) and π′ = (�′1, . . . ,�′q+1) be priority lists of size q and q + 1,

respectively. We say that π′ is obtained by insertion from π if there exists k ∈
{1, . . . , q + 1} such that �′l=�l for each l < k, and �′l=�l−1 for each l > k. Note that

when π′ is obtained by insertion from π, a new priority ordering is inserted into the list of

priority orderings in π, by keeping relative order of the other priority orderings in the list

the same. It is possible that the new ordering is inserted in the very beginning or in the

very end of the list.

Proposition 5. Let C be a capacity-wise lexicographic choice rule. The choice rule C is

monotonic if for each q ∈ {2, . . . , n}, the priority list for q is obtained by insertion from

the priority list for q − 1.

Proof. Let (S, q) ∈ A×{1, . . . , n− 1}. Let π = (�1, . . . ,�q) be the list for capacity q. Let

a ∈ C(S, q). Suppose that, in the lexicographic choice procedure, a is chosen at the t’th

step, i.e. a is chosen based on �t.

Let π′ = (�′1, . . . ,�′q+1) be the list for capacity q + 1. Note that π′ is obtained by

insertion from π. Let k ∈ {1, . . . , q + 1} be such that �′l=�l for each l < k, and �′l=�l−1

for each l > k.

Now, consider the problem (S, q + 1). If t < k, clearly a is still chosen at the t’th

step of the lexicographic choice procedure and thus a ∈ C(S, q + 1). Suppose that t ≥ k.

The rest of the proof is by induction. First, suppose that t = k. Note that at Step k of

the choice procedure for the problem (S, q + 1), the choice is made based on the inserted

priority ordering and at Step k + 1, the choice is made based on �t. Then, a is either

chosen at Step k, or at Step k + 1, the set of remaining alternatives is a subset of the set

of remaining alternatives at Step t of the choice procedure for (S, q) where a is chosen, in

which case a is still chosen. Thus, a ∈ C(S, q + 1).

Now, suppose that t > k and each alternative that is chosen at a step t′ < t of the

choice procedure at (S, q) is also chosen at (S, q + 1). Then, a is either chosen before step

t+ 1 of the choice procedure for (S, q+ 1), or at Step t+ 1, the set of remaining alternatives

is a subset of the set of remaining alternatives at Step t of the choice procedure for (S, q)

where a is chosen, in which case a is still chosen. Thus, a ∈ C(S, q + 1).
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It is easy to see that each of the four choice rules satisfies the insertion property, which

yields the following corollary.

Corollary 3. Each one of the four rules satisfies acceptance, gross substitutes, and

monotonicity.

Proof. Each rule is capacity-wise lexicographic (lexicographic for a given capacity) and

therefore satisfies acceptance and gross substitutes. Monotonicity follows by Proposition 5.

Proposition 6. Among the four rules, only the rotating choice rule satisfies the capacity-

wise weak axiom of revealed preference and only the rotating choice rule is lexicographic.

Proof. Consider (�1, . . . ,�n) ∈ Π such that the first priority ordering in the list is �w, the

second is �o, the third is �w, and so on. The rotating choice rule is clearly lexicographic

for (�1, . . . ,�n). Moreover, by Theorem 1, it satisfies CWARP. We will show that each of

the other three choice rules violates CWARP.

Walk-Open Choice Rule: Let A = {a, b, c, d, e}. Let �w be defined as a �w b �w c �w d �w

e and �o be defined as e �o b �o d �o c �o a. Note that C({a, c, d, e, 2}) = {a, e} and

C({a, c, d, e, 3}) = {a, c, e}, and therefore c is revealed preferred to d at q = 3. Moreover,

C({a, b, c, d, 2}) = {a, b} and C({a, b, c, d, 3}) = {a, b, d}, and therefore d is revealed

preferred to c at q = 3, implying that C violates CWARP.

Open-Walk Choice Rule: Can be shown by interchanging the orderings for �w and �o in

the previous example.

Compromise Choice Rule: Let A = {a, b, c, d, x, y}. Let �w be defined as a �w b �w c �w

d �w x �w y and �o be defined as b �o c �o y �o x �o d. Note that C({a, b, c, x, y, 3}) =

{a, b, c} and C({a, b, c, x, y, 4}) = {a, b, c, x}, and therefore x is revealed preferred to y at

q = 4. Moreover, C({a, b, d, x, y, 3}) = {a, b, d} and C({a, b, d, x, y, 4}) = {a, b, d, y}, and

therefore y is revealed preferred to x at q = 4, implying that C violates CWARP.

Remark 3. Note that the particular procedures we introduced to accommodate the cases

where the capacity is not divisible by two or four are not crucial for the proof of Proposition 6.

For the other procedures (for example, for the walk-open choice rule, the extra priority
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when the capacity is odd can alternatively be set to be the open priority ordering), the

examples in the proof can simply be modified to show that CWARP is still violated.

Our analysis shows that if CWARP is deemed desirable, then the rotating choice rule

should be selected since it is the only choice rule among the four plausible alternatives that

satisfies CWARP.

5 Implications for Resource Allocation

Let N denote a finite set of agents, |N | = n ≥ 2. Let A be the collection of all nonempty

subsets of N . Let O denote a finite set of objects. Each agent i ∈ N has a complete,

transitive, and anti-symmetric preference relation Ri over O ∪ {∅}, where ∅ is the null

object representing the option of receiving no object (or receiving an outside option). Given

x, y ∈ O ∪ {∅}, x Ri y means that either x = y or x 6= y and agent i prefers x to y. If

agent i prefers x to y, we write x Pi y. Let R denote the set of all preference relations

over O ∪ {∅}, and RN the set of all preference profiles R = (Ri)i∈N such that for all i ∈ N ,

Ri ∈ R.

An allocation problem with capacity constraints, or simply a problem, consists of

a preference profile R ∈ RN and a capacity profile q = (qx)x∈O∪{∅} such that for each

object x ∈ O, qx ∈ {0, 1, . . . , n} and q∅ = n so that the null object has enough capacity to

accommodate all agents. Let P denote the set of all problems. Given a problem (R, q) ∈ P ,

an object x is available at the problem if qx > 0.

Given a capacity profile q = (qx)x∈O∪{∅}, an allocation assigns to each agent exactly

one object in O ∪ {∅} taking capacity constraints into account. Formally, an allocation

at q is a list a = (ai)i∈N such that for each i ∈ N , ai ∈ O ∪ {∅} and no object x ∈ O ∪ {∅}
is assigned to more than qx agents. Let M(q) denote the set of all allocations at q.

Given an allocation a = (ai)i∈N , a preference profile R, and an object x ∈ O ∪ {∅},
let Dx(a,R) = {i ∈ N : x Pi ai} denote the demand for x at (a,R), which is the set of

agents who prefer x to their assigned object.
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5.1 Lexicographic Deferred Acceptance Mechanisms

A mechanism is a function ϕ : P →
⋃

qM(q) such that for each allocation problem

(R, q) ∈ P , ϕ(R, q) ∈M(q). For mechanisms, we introduce a new property, called demand-

monotonicity. To introduce demand-monotonicity, consider a problem in which there is

only one available object. Next, suppose that the capacity of the object is increased. Now,

some of the agents who initially did not receive the object may receive it, that is, some

agents may receive the object due to the capacity increase. Demand monotonicity requires

that the set of agents who receive the object due to the capacity increase does not depend

on the set of agents who initially receive the object. In other words, for two problems

with a common capacity, if the demands for the only available object are the same, then

whenever the capacity of the object increases, the sets of agents who receive the object

due to the capacity increase should be the same for the two problems.

Formally, for each x ∈ O, let 1x be the capacity profile which has 1 unit of x

and nothing else. A mechanism ϕ satisfies demand-monotonicity if for each pair of

problems (R, q) and (R′, q) and each object x ∈ O, if for each y ∈ O \ {x}, qy = 0 and

Dx(ϕ(R, q), R) = Dx(ϕ(R′, q), R′), then Dx(ϕ(R, q + 1x), R) = Dx(ϕ(R′, q + 1x), R′).

A lexicographic choice structure C = (Cx)x∈O associates each object x ∈ O with

a lexicographic choice rule Cx : A×{1, . . . , n} → A. Next, we present the lexicographic

deferred acceptance algorithm based on C. For each problem (R, q) ∈ P, the

algorithm runs as follows:

Step 1: Each agent applies to his favorite object in O. Each object x ∈ O such that qx > 0

temporarily accepts the applicants in Cx(Sx, qx) where Sx is the set of agents who applied

to x, and rejects all the other applicants. Each object x ∈ C such that qx = 0 rejects all

applicants.

Step r ≥ 2: Each applicant who was rejected at step r − 1 applies to his next favorite

object in O. For each object x ∈ C, let Sx,r be the set consisting of the agents who applied

to x at step r and the agents who were temporarily accepted by x at Step r − 1. Each

object x ∈ O such that qx > 0 accepts the applicants in Cx(Sx,r, qx) and rejects all the

other applicants. Each object x ∈ O such that qrx = 0 rejects all applicants.

The algorithm terminates when each agent is accepted by an object. The allocation where

each agent is assigned the object that he was accepted by at the end of the algorithm is

24



called the C-lexicographic Deferred Acceptance allocation at (R, q), denoted by DAC(R, q).

Lexicographic deferred acceptance mechanisms: A mechanism ϕ is a lexicographic

deferred acceptance mechanism if there exists a lexicographic choice structure C such that

for each (R, q) ∈ P , ϕ(R, q) = DAC(R, q).

Proposition 7. Each lexicographic deferred acceptance mechanism satisfies demand-

monotonicity.

Proof. Let C = (Cx)x∈O be a lexicographic choice structure. Let (R, q), (R′, q) ∈ P and x ∈
O be such that for each y ∈ O\{x}, qy = 0 and Dx(DAC(R, q), R) = Dx(DAC(R′, q), R′) =

T . Let Cx be lexicographic for the priority profile (�1, . . . ,�n) ∈ Π. Let S(R) and

S(R′) be the sets of agents who prefer x to ∅ at R and at R′, respectively. It is easy to

see that DAC(R, q) = Cx(S(R)), DAC(R′, q) = Cx(S(R′)), and T = S(R) \ Cx(S(R)) =

S(R′) \ Cx(S(R′)). Let i ∈ T be the agent who is highest ranked according to �qx+1 in

T . Clearly, DAC(R, q′) = DAC(R, q) ∪ {i} and DAC(R′, q′) = DAC(R′, q) ∪ {i}. Hence,

Dx(DAC(R, q′), R) = Dx(DAC(R′, q′), R′) = T \ {i}.

Ehlers and Klaus (2016), in their Theorem 3, characterize deferred acceptance mecha-

nisms based on a choice structure satisfying acceptance, gross substitutes, and monotonicity,

with the following properties of mechanisms: unavailable-type-invariance (if the positions

of the unavailable types are shuffled at a profile, then the allocation should not change);

weak non-wastefulness (no agent receives the null object while he prefers an object that

is not exhausted to the null object), resource-monotonicity (increasing the capacities of

some objects does not hurt any agent), truncation-invariance (if an agent truncates his

preference relation in such a way that his allotment remains acceptable under the truncated

preference relation, then the allocation should not change), and strategy-proofness (no

agent can benefit by misreporting his preferences).19

Theorem 3. (Ehlers and Klaus, 2016) A mechanism is a deferred acceptance mechanism

based on a choice structure satisfying acceptance, gross substitutes, and monotonicity if and

only if it satisfies unavailable-type-invariance, weak non-wastefulness, resource-monotonicity,

truncation-invariance, and strategy-proofness.

19See Appendix B for the formal definitions of the properties.
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Corollary 4. A mechanism is a lexicographic deferred acceptance mechanism if and only

if it satisfies unavailable-type-invariance, weak non-wastefulness, resource-monotonicity,

truncation-invariance, strategy-proofness, and demand-monotonicity.

Proof. The following notation will be helpful. For each x ∈ O, let Rx be a preference

relation such that x is top-ranked and ∅ is second-ranked. For each S ∈ A that is nonempty,

let Rx
S be a preference profile such that for each i ∈ S, Ri = Rx, and for each j /∈ S, Rj

top-ranks ∅. For each x ∈ O and l ∈ {0, . . . , n}, let lx denote the capacity profile where x

has capacity l and every other object has capacity zero.

Let ϕ be a mechanism satisfying the properties in the statement of the theorem.

Let C = (Cx)x∈O be defined as follows. For each x ∈ O, S ∈ A, and l ∈ {0, . . . , n},
Cx(S, l) = {i ∈ S : ϕi(R

x
S, lx) = x}.

In their proof of Theorem 3, (Ehlers and Klaus, 2016) show that if ϕ satisfies

unavailable-type-invariance, weak non-wastefulness, resource-monotonicity, truncation-

invariance, and strategy-proofness, then for each x ∈ O, Cx satisfies acceptance, gross

substitutes, and monotonicity. Moreover, ϕ is a deferred acceptance mechanism based on C.

It is easy to see that, since ϕ satisfies demand-monotonicity, for each x ∈ O, Cx satisfies

rejection-monotonicity. Thus, C is a lexicographic choice structure and ϕ is a lexicographic

deferred acceptance mechanism.

Let ϕ be a lexicographic deferred acceptance mechanism. Demand-monotonicity

follows from Proposition 7. The other properties follow from Theorem 3 of Ehlers and

Klaus (2016).

Remark 4. We give an example of a mechanism which satisfies all the properties in the

statement of Corollary 4 except for demand-monotonicity, and therefore which is not a

lexicographic deferred acceptance mechanism. The mechanism in the example is a deferred

acceptance mechanism based on a choice structure such that the choice rule of each object is

a walk-open choice rule. The example uses some arguments from the proof of Proposition 6,

where it was shown that the walk-open choice rule violates CWARP.

Example 3. Let N = {a, b, c, d, e} and let O be a finite set of objects. Let �w be defined

as a �w b �w c �w d �w e and �o be defined as e �o b �o d �o c �o a. Let (Cx)x∈O be

the choice structure such that for each object x ∈ O, Cx is the walk-open choice rule based
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on (�w,�o). Let ϕ be the deferred acceptance mechanism based on the choice structure

(Cx)x∈O.

Since for each x ∈ O, Cx satisfies acceptance, gross substitutes, and monotonicity,

by Theorem 3, ϕ satisfies unavailable-type-invariance, weak non-wastefulness, resource-

monotonicity, truncation-invariance, and strategy-proofness.

Let x ∈ O. Let q be such that qx = 2 and for each y ∈ O \ {x}, qy = 0. Let R be such

that x is preferred to ∅ for all the agents except for b. Note that Dx(ϕ(R, q), R) = {c, d}
since Cx({a, c, d, e, 2}) = {a, e}. Let R′ be such that x is preferred to ∅ for all the agents

except for e. Note that Dx(ϕ(R′, q), R′) = {c, d} since Cx({a, b, c, d, 2}) = {a, b}. Thus,

Dx(ϕ(R, q), R) = Dx(ϕ(R′, q), R′).

Now, note that Dx(ϕ(R, q + 1x), R) = {c} since Cx({a, c, d, e, 3}) = {a, c, e} and

Dx(ϕ(R′, q + 1x), R′) = {b} since Cx({a, b, c, d, 3}) = {a, b, d}. Hence, ϕ violates demand-

monotonicity.

Remark 5. A property that is stronger than demand-monotonicity is the following. A

mechanism ϕ satisfies strong demand-monotonicity if for each pair of problems (R, q)

and (R′, q) and each object x ∈ O, if Dx(ϕ(R, q), R) = Dx(ϕ(R′, q), R′), then Dx(ϕ(R, q +

1x), R) = Dx(ϕ(R′, q + 1x), R′). Clearly, strong demand-monotonicity implies demand-

monotonicity. The following example shows a lexicographic deferred acceptance mechanism

(in fact, a classical deferred acceptance mechanism based on a priority profile, which is

lexicographic for a priority profile where all the priority orderings are the same) that

violates strong demand-monotonicity.

Example 4. Let A = {1, 2, 3}. Let O = {a, b, c}. Let �a be defined as 1 �a 2 �a 3, �b

be defined as 2 �a 3 �a 1, and �c be defined as 1 �a 2 �a 3. Let C = (Cx)x∈O be a

lexicographic choice structure such that for each x ∈ O, Cx is lexicographic for the priority

profile (�x,�x,�x). Note that DAC is a classical deferred acceptance mechanism based on

a priority profile. Let the preference profiles R and R′ be as depicted below.

R1 R2 R3 R′1 R′2 R′3
a a b a a a
b b a b b c
c c c c c b
∅ ∅ ∅ ∅ ∅ ∅
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Let q = (qa, qb, qc) = (1, 1, 1) and q′ = (q′a, q
′
b, q
′
c) = (2, 1, 1). Note that Da(DAC(R, q), R) =

Da(DAC(R′, q), R′) = {2, 3}. However, Da(DAC(R, q′), R) = {∅} and Da(DAC(R′, q′), R′) =

{3}. Thus, DAC is a lexicographic deferred acceptance mechanism but violates strong

demand-monotonicity.

6 Conclusion

Our formulation of a choice rule and the properties that we consider take into account

that the capacity may vary. When designing choice rules especially for resource allocation

purposes, such as in school choice, a designer may be interested in how the choice rule

responds to changes in capacity. In that framework, our Theorem 1 shows that acceptance,

gross substitutes, monotonicity, and CWARP are altogether satisfied only by lexicographic

choice rules, which identifies the properties that distinguish lexicographic choice rules from

other plausible choice rules.

A lexicographic choice rule in our setup operates based on a unique list containing

as many priority orderings as the maximum possible capacity. Alternatively, one could

consider capacity-wise lexicographic choice rules that we have defined in Section 4, which,

at each capacity, operate based on a list containing as many priority orderings as the

capacity, yet the lists for different capacity levels do not have to be related in any way. A

characterization of capacity-wise lexicographic choice rules, or in other words characterizing

lexicographic choice rules for a fixed capacity, is also an important step in the analysis of

lexicographic choice rules, which we do not answer in our paper.
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Appendix

A Independence of Properties in Theorem 1

Violating only acceptance: Let A = {a, b, c}. Let � be a priority ordering. Let C be

the choice rule such that, for each problem (S, q), C(S, q) is a singleton consisting of the
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�-maximal alternative in S. Note that C violates acceptance and clearly satisfies gross

substitutes. Since the choice does not vary with capacity, C also satisfies monotonicity and

CWARP.

Violating only gross substitutes: Let A = {a, b, c}. Let � and �′ be defined as

a � b � c and b �′ a �′ c. Let the choice rule C be defined as follows. For each problem

(S, q), C(S, q) consists of the �-maximal alternative in S if q = 1 and c ∈ S; otherwise,

C(S, q) coincides with the choice rule that is responsive for �2. Note that C satisfies

acceptance.

Since a ∈ C({a, b, c}, 1) = {a} and a /∈ C({a, b}, 1) = {b}, C violates gross substitutes.

To see that C satisfies monotonicity, first note that there is a unique choice set S such

that C(S, 2) 6= ∅, which is S = {a, b, c}. Therefore, the only possibility to violate

monotonicity is to have x ∈ A such that x ∈ C({a, b, c}, 1) and x /∈ C({a, b, c}, 2). Since

C({a, b, c}, 1) = {a} and C({a, b, c}, 2) = {a, b}, C satisfies monotonicity. To see that C

satisfies CWARP, note the revealed preference relation at q = 2 consists of a unique pair:

b is revealed preferred to c.

Violating only monotonicity: Let A = {a, b, c}. Let � be defined as a � b � c. Let

the choice rule C be defined as follows. For each problem (S, q), C(S, q) consists of the

�-maximal alternative in S if q = 1; C(S, 2) = S if |S| = 2; and C({a, b, c}, 2) = {b, c}.
Note that C satisfies acceptance.

Since a ∈ C({a, b, c}, 1) and a /∈ C({a, b, c}, 2), C violates monotonicity. For q = 1,

C satisfies gross substitutes, since C maximizes �; for q ∈ {2, 3}, C clearly satisfies gross

substitutes. To see that C satisfies CWARP, note that the revealed preference relation is

empty at q = 2, since C({a, b, c}, 1) = {a} and C({a, b, c}, 2) = {b, c}.

Violating only CWARP: Note that three of the four rules that we have discussed in

Section 4 satisfy all the properties but CWARP.

B Definitions of the Properties in Section 5

Unavailable-Type-Invariance: Let (R, q) ∈ P and R′ ∈ RN . If for each i ∈ N and

each pair of available objects x, y ∈ O (qx > 0, qy > 0) we have [x Ri y if and only if
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x R′i y], then ϕ(R, q) = ϕ(R′, q).

Weak Non-Wastefulness: For each (R, q) ∈ P, each x ∈ O such that qx > 0, and each

i ∈ N , if x Pi ϕi(R, q) and ϕi(R, q) = ∅, then |{i ∈ N : ϕi(R, q) = x}| = qx.

Resource-Monotonicity: For each R ∈ RN , and each pair of capacity profiles (q, q′), if

for each x ∈ O, qx ≤ q′x, then for each i ∈ N , ϕi(R, q
′)Ri ϕi(R, q).

Truncation-Invariance: Let (R, q) ∈ P and R′ ∈ RN . If for each i ∈ N and each

pair of objects x, y ∈ O we have [x Ri y if and only if x R′i y] and ϕi(R, q) R
′
i ∅, then

ϕ(R, q) = ϕ(R′, q).

Strategy-proofness: For each (R, q) ∈ P, each i ∈ N , and each R′i ∈ R, ϕi(R, q) Ri

ϕi((R
′
i, R−i), q).
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