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Abstract

We consider the problem of sequential search with free recall and discounting.

Performance of a search rule for a given prior is measured as the fraction of

the maximal payoff under this prior. A search rule is robust if it has a high

performance under every prior. Bayesian search rules are not robust as, while

being optimal under one prior, they can perform very poorly under a different

prior. We present a search rule that performs well after any search history under

any prior with a given support. In each round the rule stops searching with a

probability that is linear in the best previous offer.

1 Introduction

The paper revisits the problem of sequential search with free recall. Search may be for

the lowest price, the best match for an employee or the best job offer. For example,

consider an individual who receives job offers that arrive one by one. Each offer has a

value that can be compared to the others. In each round the individual has to decide:
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to stop and select one of the previous offers, or to continue the search. Offers are

discounted over time, which makes waiting for better offers costly. The opportunity

cost of not accepting an offer is the only kind of search cost in our model.

In the classical formulation of the search problem with i.i.d. values the decision maker

knows the environment, identified by the number of offers to come and the probability

distribution according to which each offer drawn. This makes the solution simple,

the optimal search rule is a stationary strategy that stipulates to wait for an offer

above a certain cutoff (e.g., McCall 1970). At the same time, this formulation is quite

unrealistic, as search is typically accompanied by uncertainty about what outcomes

are even possible. This concern has been addressed in the classic Bayesian approach

in which a decision maker forms beliefs about possible environments (e.g., Rothschild

1974). This approach is often unrealistic as well. Numerous questions arise. Imagine a

shopper visiting one shop after another in search for a particular product. How could

the shopper know the probability that the next shop will have the desired product?

How would she form a prior about such probabilities? Even if a prior is formed, will

the shopper be able to derive an optimal rule? Is she willing to derive the optimal rule

for each product from scratch? It would be nice if she could reuse rules, if a rule that

is optimal for a specific prior also performs well for other priors. However, we show

that quite the opposite is true. A Bayesian optimal rule for one prior can perform very

badly when evaluated under a different prior.

In this paper we consider a decision maker who does not know the true environment

and who does not want to base the choice of her rule on specific beliefs. So we do

not search for a rule that is best for a specific prior. Instead we search for a rule

that does well for any prior. In this sense it will be robust. One might say that it

is universal as it does not have to be adapted to a particular environment or to a

new information as it arrives. Such a rule can be proposed as a compromise among

Bayesians who have different priors. It is a short cut to avoid cumbersome calculations

of the Bayesian optimal rule. As a universal rule it is a useful benchmark for empirical

studies. Understanding how it performs in the least favorable environment will provide

a bound on how valuable it is to gather more information.

All we assume about the environment is that outcomes belong to a specified interval.

This interval of outcomes results from the description of the problem. For instance,
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the set of prices at which a good can be offered is usually bounded. The only other

input for designing the rule, besides the interval of possible outcomes, is the discount

factor of a decision maker. The discount factor can model the degree of the decision

maker’s impatience. It can capture a constant decay of offers that are not accepted.

It can capture an exogenous probability that the search terminates with no previous

offers to recall.

The performance of a candidate rule will be measured as under the competitive ratio

(Sleator and Tarjan 1985). One imagines a Bayesian who knocks on the door, presents

her prior and her optimal expected payoff under that prior, and then demands to know

how well the candidate rule performs relative to it. The competitive ratio of the rule

is the lower bound on this relative performance across all priors. It is the fraction

of the Bayesian optimal payoff that the rule guarantees for every Bayesian prior. As

this comparison includes a Bayesian who knows the true environment, the competitive

ratio measures the maximal relative loss of not knowing the truth.

There is an additional innovative aspect to our approach. In the spirit of Bayesian

decision making we not only consider relative performance ex-ante, before any new

information arrives, but also evaluate it after each additional bit of information has been

gathered. In other words, the rule is compared to the Bayesian optimal performance

for every prior and at every stage of the search.

The value of deriving a rule based on a worst case analysis with so little assumptions

only makes sense if the resulting bounds are not too large. The reader should judge for

oneself. We present a rule such that, for instance, if the best previous offer is at least

1/6 of the range of possible offers, then this rule guarantees a payoff that is at least

2/3 of any Bayesian, and hence of the maximal possible expected payoff in the true

environment. Just for comparison, for every Bayesian rule without outside option, the

guaranteed fraction to any other Bayesian is zero.

We derive the optimal rule under the condition that the initial value or the best previous

offer is above 1/6. This rather complex rule guarantees in each round the highest

performance bound, anticipating that the same rule is also used in all future rounds.

We also identify a simple linear rule that is almost as good. A key insight is to only

accept with certainty those offers that exceed the discount factor. Randomize for all

other lower offers, the acceptance probability being increasing in the best previous offer.
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This randomization allows the decision maker not to miss out on lost opportunities,

such as stopping to search too early, and thus to avoid a low performance ratio.

There is an extensive literature on decision making without priors, sometimes also

referred to as robust control. Almost all of the papers consider a decision maker who

is able to commit to a rule. The specific application of this paper, search without

priors, has been investigated by Bergemann and Schlag (2011) and Parakhonyak and

Sobolev (2015), albeit under commitment. Papers that analyze dynamically consistent

behavior under multiple priors include Baliga, Hanany and Klibanoff (2013), Schlag

and Zapechelnyuk (2015), and Beissner, Lin and Riedel (2016). The methodology

for decision making with multiple priors used in this paper is taken from Schlag and

Zapechelnyuk (2015). There are several advantages of this method as compared to the

others used in the literature. It is easy to explain. It is simple to evaluate (note that the

complications in this paper stem from the fact that the set of priors is extremely rich so

that one cannot proceed by computing the Bayesian optimal solution for each prior).

It was designed to be as close as possible to the Bayesian (i.e., subjective expected

utility) framework. In particular, it provides a solution for a Bayesian where optimal

solutions are too cumbersome to compute. Moreover, it reveals a bound on the value

to a Bayesian of gathering more information.

2 Model

2.1 Preliminaries

An individual searches for a job. Offers with i.i.d. values arrive one by one in discrete

times t = 1, 2, .... At each stage the individual decides whether to stop the search or

to wait for another offer. With every offer all values decay by a discount factor. There

is free recall: when the search is stopped, the individual picks the highest-valued offer

arrived thus far.

The individual has an outside option with value a > 0 that can be chosen any time.

Let x1, x2, ..., xt denote the realizations of t offers. The value of the best available offer

at each t = 0, 1, ... will be called the search value at stage t and denoted by yt:

yt = max{a, x1, ..., xt}.
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If the individual stops after t draws, then her payoff is the discounted value, δtyt, where

δ ∈ (0, 1) is a discount factor. The search ends after the individual decides to stop, or

after all offers have been received. The total number of offers is denoted by n.

The individual knows her discount factor δ and the outside option value a. We assume

that

0 < a < δ < 1.

A positive outside option, a > 0, together with impatience of the individual, δ < 1,

implies that search is costly, as every new offer costs the individual at least the delayed

consumption of the value a. Also, we assume a < δ, as otherwise it makes no sense for

anyone to search, the search problem then being trivial.

The individual knows neither the number of offers n, nor the distribution of their values

F . A pair (n, F ) is called the environment. We consider the class of environments,

denoted by E , whose distributions have a bounded support (known to the individual),

E = {(n, F ) : n ∈ N ∪ {∞}, supp(F ) ⊂ [0, 1]} .

Environments with n = ∞ describe infinite i.i.d sequences. The normalization of the

support bounds to [0, 1] interval is without loss of generality.

A search rule p prescribes for each stage t = 0, 1, 2, ... and each history of draws

ht = (x1, ..., xt) the probability p(ht) of stopping at that stage. Since the individual

is not aware of the environment E = (n, F ), a search rule of an individual must not

depend on either n or F , but it may depend on the individual’s beliefs about (n, F ).

Note that even though the individual does not know n, the search automatically stops

if all n offers are received. This is as if the individual discovers after n draws that there

are no more offers left, and hence stops the search.1

2.2 Robustness to Bayesian evaluation

A Bayesian model specifies some prior beliefs over environments in E at the outset. At

each stage a Bayesian decision maker updates these beliefs by Bayes’ rule and takes the

1The results do not change if the individual discovers n some periods in advance, since the results

are driven by the case of n =∞.

5



optimal decision w.r.t. the updated beliefs: stop the search if and only if the current

search value is at least as high as the expected continuation payoff under these beliefs.

There are well known problems of the Bayesian approach to search. First, it may

be difficult to justify a choice of prior beliefs. How should one form beliefs about

the distribution of values of a chandelier in the next antique shop? Second, Bayesian

updating can be tedious and even intractable when dimensionality of the model is

large. Third, in an event which is impossible under one’s beliefs, posterior beliefs are

indeterminate and Bayesian approach gives no prescription what to do. Finally, it may

be difficult for one Bayesian individual to justify her actions to another Bayesian who

has different beliefs.

In this paper we take a different approach: we seek simple search rules that do not

require formation and updating of beliefs, and yet perform relatively well in the eyes of

every Bayesian, no matter what beliefs he or she has. In that sense, we are interested

in robust rules that can be justified to Bayesian decision makers with various priors.

Before specifying the criterion of performance evaluation of a search rule, we need to

formally define the performance of Bayesian models which will serve as benchmarks.

A Bayesian prior µ is a discrete probability measure on E , that is, its support supp(µ)

is at most countable collection of environments such that
∑

E∈supp(µ) µ(E) = 1. Denote

by M the class of such discrete probability measures. For every history of draws ht

denote by µ(·|ht) the posterior after ht. Note that the posteriors, whenever exist, are

also discrete probability measures in M.

For every environment E = (n, F ) ∈ E , every period t < n, and every history of

draws ht = (x1, ..., xt), we denote by Up
t (E, ht) the expected payoff from a given search

rule p conditional on history of draws ht. For every finite n it is defined by backward

induction, Up
n(E, hn) = yn, and for every t < n

Up
t (E, ht) = p(ht)yt + (1− p(ht))δEF

[
Up
t+1(E, ht+1)|ht

]
,

where EF

[
· |ht

]
denotes the expectation in the next stage under F conditional on

current history ht. The payoff of rule p under a prior µ at stage t and history ht is

given by

Up
t (µ, ht) =

∑
E∈supp(µ(·|ht))

Up
t (E, ht)µ(E|ht).
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The Bayesian optimal payoff under a prior µ is the maximal payoff:

Vt(µ, ht) = sup
p
Up
t (µ, ht).

A measure µ is called Dirac measure if it places the unit mass on a single environment

E = (n, F ) in which F has full support on [0, 1]. The subclass of Dirac measures

describes Bayesian decision makers who are certain about the true environment. We

will refer to such Bayesians as experts. The expert’s optimal rule stipulates to stop with

certainty whenever search value yt is at least as large as some cutoff c̄ such that the

expert is indifferent between stopping and grabbing that search value and continuing.

The cutoff c̄ is the unique solution of the equation

c̄ = δ

(
F (c̄)c̄+

∫ 1

c̄

xdF (x)

)
, (1)

and it is independent of n (see, e.g., McCall 1970). The expert’s payoff,

Vt(E, ht) = sup
p
Up(E, ht),

is computable by backward induction for n <∞ and via Bellman equation for n =∞.

2.3 Performance criterion

The performance of a search rule p in the eyes of a Bayesian with prior µ is evaluated

as the ratio of p’s payoff to the Bayesian optimal payoff in this environment,
Upt (µ,ht)

Vt(µ,ht)
.

We are interested in rules that perform well in the eyes of all Bayesians. The minimal

performance ratio across all Bayesians is called the competitive ratio of decision rule p,

Rp
t (ht) = inf

µ∈M

Up
t (µ, ht)

Vt(µ, ht)
.

In fact, since
Up
t (µ, ht)

Vt(µ, ht)
≥ inf

E∈supp(µ(·|ht))

Up
t (E, ht)

Vt(E, ht)
,

it is sufficient to consider only Dirac measures,

Rp
t (ht) = inf

E∈E(ht)

Up
t (E, ht)

Vt(E, ht)
,
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where E(ht) denotes the set of environments whose distributions include the historical

realizations {x1, ..., xt} in their support:

E(ht) = {(n− t, F ) ∈ E : n > t, {x1, ..., xt} ⊂ supp(F )}.

When we talk about optimal performance, we use the concept of sequential optimality

(or subgame perfection) which requires the individual to optimize the competitive ratio

at every stage of the search while expecting this optimization to occur at all future

stages.

Formally, we say that search rule q is an improvement over search rule p at history ht

if

Rq
t (ht) > Rp

t (ht)

and

Rq
k(hk) ≥ Rp

k(hk) for all k > t and all hk consistent with ht.

A search rule p is said to be sequentially optimal if there does not exist an improvement

over that rule for any history.

3 Learning and Randomization

One can guarantee the trivial ratio, a/δ, by simply taking the outside option a, where

the worst environment deterministically gives the upper bound value 1 in the first offer.

The question of interest is if one can attain a better competitive ratio.

We now establish two important properties of search under the competitive ratio per-

formance criterion.

First, learning from the history (i.e., inference from past observations) is useless. As

a result, without any loss of optimality one can restrict attention to search rules that

ignore all past information except the search value.

Second, randomness of decisions is essential to obtain any competitive ratio better

than the trivial one. Deterministic search rules (which prescribe to either surely stop

or surely continue) can guarantee only the trivial ratio.
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3.1 Learning

Stationary search rules are those that ignore the history and do not learn from past

observations. Here we show restriction to stationary search rules is without loss of

optimality, and thus learning is useless in this problem.

A search rule p is called stationary if it is a function of the search value only. That is,

p(hs) = p(ĥt) for any two histories hs = (x1, ..., xs) and ĥt = (x̂1, ..., x̂t) with the same

search value, max{a, x1, ..., xs} = max{a, x̂1, ..., x̂t}.

We say that two search rules p and q are payoff-equivalent if they have the same

competitive ratio for all histories:

Rp
t (ht) = Rq

t (ht) for every stage t and every history ht.

Proposition 1. There exists a sequentially optimal search rule which is stationary.

All sequentially optimal search rules are payoff-equivalent to that rule.

The proof is in the Appendix. Here we outline its intuition. At the outset, the in-

dividual only knows that she is facing an environment in the class E : any number of

alternatives in N that are i.i.d. distributed on [0, 1]. After having observed t realiza-

tions, ht = (x1, ..., xt), the number of remaining alternatives is still any number in N.

Moreover, all i.i.d. distributions are ex-ante possible, including those under which the

observed history ht is an arbitrarily unlikely event. The closure of the set of distribu-

tions which generate history ht with a positive probability is the same as the ex-ante

set of distributions. Consequently, there is no history after which the individual can

narrow down the set of environments. After every history she faces the original set of

environments, E . This feature of the problem implies that nothing can be learnt from

the past. Restriction to decision rules that ignore the history and do not learn from

past observations is without loss of optimality.

3.2 Randomization

Here we show that deterministic search rules can guarantee at most the trivial compet-

itive ratio, a/δ. Consequently, randomization is essential for attaining any nontrivial
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performance. A search rule that attains a better competitive ratio must randomize

between stopping and continuing in some contingencies.

The guaranteed competitive ratio of decision rule p is the minimal competitive ratio

across all stages and all histories, including the empty history at the outset:

R̄p = inf
t,ht

Rp
t (ht).

A search rule p is called deterministic if p(ht) ∈ {0, 1} for every t and every history ht.

Proposition 2. For every deterministic search rule p,

R̄p ≤ a

δ
.

The intuition behind the result is straightforward. A deterministic behavior pattern

can be exploited against the individual. The worst-case environment will be the one

where the individual surely stops when she should have continued if she knew the

environment, or vice versa, the individual surely keeps searching when she should have

stopped. The complete proof is in the Appendix.

3.3 Comparing Bayesian Models

Is there a Bayesian model with some beliefs that can be justified in front of Bayesian

decision makers with different beliefs?

A search rule p is called Bayesian if it specifies some prior beliefs over environments in

E at the outset, and prescribes the individual to update these beliefs after each stage

by Bayes’ rule and to take the optimal decision w.r.t. the updated beliefs: to stop

the search if and only if the current search value is at least as high as the expected

continuation payoff under these beliefs.

Observe that Bayesian rules feature learning and determinism. An individual “learns”

from past observations by making inference and adjusting behavior. Also, every

Bayesian rule is deterministic: either the search value is strictly smaller than the ex-

pected continuation payoff (so the individual surely continues) or not (so the individual

surely stops).
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Thus, as concerns performance evaluation of Bayesian rules in the eyes of other Bayesians,

learning is useless by Proposition 1 and determinism prohibits attainment of any com-

petitive ratio above the trivial one, a/δ, by Proposition 2. The following corollary is

immediate.

Corollary 1. For every Bayesian search rule p,

R̄p ≤ a

δ
.

4 Optimal Performance

4.1 Worst-case environments.

Let us narrow down the set of environments that may constitute the worst cases for

search rules.

Proposition 1 allows us to focus on stationary search rules that depend on the search

value only. In what follows, we consider only stationary rules.

With this restriction we can simplify notations as follows. We replace a history ht by

the correspondent search value yt. In the new notations, for a given search value y,

p(yt) denotes the probability of stopping and accepting value yt,

Vt(E, yt) and Up
t (E, yt)

denote, respectively, the expert’s payoff and the payoff of rule p under environment E

at stage t, and the competitive ratio is

Rp(yt) = inf
E∈E

Up
t (E, yt)

Vt(E, yt)
.

Note that since the problem is stationary, the competitive ratio is independent of t. It

depends only on the search value yt.

Denote by E2 the binary-valued environments with infinite number of alternatives,

n = ∞, whose values are i.i.d. lotteries over a pair (w, z) ∈ [0, 1]2, w ≤ z. The

following lemma shows that the class of binary-valued environments E2 contains the

worst-case environments for every stationary search rule.
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Lemma 1. Let p be a stationary search rule. Then, for every period t and every search

value yt > 0,
Up
t (E, yt)

Vt(E, yt)
= Rp(yt) implies E ∈ E2.

4.2 Sequentially optimal performance.

A sequentially optimal rule is very complex, and finding it is a tedious task. In this

paper we focus instead on simple search rules (presented in the next subsection) whose

competitive ratio approximates the sequentially optimal one.

Nevertheless, we find a partial solution for the sequentially optimal performance, to

which the performance of simple search rules will be compared.

Here we present two optimal performance results. First, we establish a lower bound

on the best competitive ratio. This lower bound is tight and equal to 1
4

as y → 0, so

the individual has virtually nothing at her hand.

Proposition 3.

lim
y→0

{
sup

p∈Pstat
Rp(y)

}
=

1

4
.

It is straightforward to verify that the search rule p̄(x) = 1−δ
2−δ for all x ∈ [0, 1] deliv-

ers the competitive ratio Rp̄(y) ≥ 1
4

for all y > 0. The proof of the converse, that

limy→0R
p(y) ≤ 1

4
for every stationary strategy p, is more involved. We find the best

rule p against environments that randomize between two values, y and z, with some

probabilities 1 − σ and σ, respectively. We consider the limit of both y and z ap-

proaching zero, while the ratio z/y gets arbitrarily large. If the individual stops after

observing y, then she might forgo a likely z in the next period, with the performance

ratio approaching zero as z/y → ∞. Otherwise, if the individual continues after ob-

serving y, then it might be the case that z is extremely unlikely to appear, so the expert

stops and grabs y while the individual keeps waiting, again, performance ratio being

arbitrarily small. Thus, randomization between stopping and continuing is necessary.

The optimal limit probability of stopping, as y → 0, turns out to be 1−δ
2−δ , which delivers

the limit competitive ratio 1/4. The complete proof is in the Appendix.

Next, we derive a sequentially optimal rule and a corresponding competitive ratio under

the assumption that the outside value satisfies a ≥ 1
6
.
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Proposition 4. For every subgame with the search value at least 1
6
, the rule

p∗ (x) =


2(1−δ)

4−2δ+x−
√
x(x+8)

, if x ≤ δ2

2−δ

1−K(δ,x)+
√
K2(δ,x)−1

1−x/δ , if δ2

2−δ < x < δ

1, if x ≥ δ,

(2)

is sequentially optimal, where K(δ, x) = 1
δ

(
1− (1−δ)x

2δ

)
. The competitive ratio of this

rule is equal to

R∗(y) =


1
2

+ 1
8

(
y +

√
y(y + 8)

)
, if 1

6
≤ y ≤ δ2

2−δ ,

K(δ, y)−
√
K2(δ, y)− 1, if δ2

2−δ < y < δ,

1, if y ≥ δ.

The proof of Proposition 4 proceeds as follows. In simple environments it is simple to

find the tight upper bound on the ratio that the decision maker can guarantee if she

can commit to a rule. The simple environment we consider is one where in each period

nature randomizes equally likely between the best current offer y and the maximal

payoff 1. This determines the acceptance probability for y. We postulate this solution

for all values of the best offer. So, following Lemma 1, the worst case scenario is that

nature puts weight only on two values, w and z. Part of the proof then involves showing

that w = y and z = 1. We are then able to show that z = 1 holds for this worst case

when y ≥ 1/6.

Note that the need to differentiate the two cases, whether y is larger or smaller than
δ2

2−δ , has the following reason. When y > δ2

2−δ then the constraint that nature can put

at most mass 1 on z = 1 is binding.

The complete proof of Proposition (4) is in the Appendix.

We thus know that the best competitive ratio approaches 1/4 as the search value tends

to zero, and it is R∗(y) for the range of search values [1/6, 1]. We do not know what

the best competitive ratio is for y ∈ (0, 1/6). However, condition y ≥ 1/6 is sufficient

for R∗(y) being optimal, but not necessary. Denote by ȳ(δ) the exact lower bound on

y at which R∗(y) becomes optimal. Numerical evaluations shows that ȳ(δ) is strictly
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below 1/6 and is decreasing with the discount factor, and ȳ(δ) → 1/6 as δ → 1. The

table below shows the numerical evaluations of ȳ(δ) for some values of δ.

δ 0.9 0.95 0.99 0.999

ȳ(δ) 0.137 0.151 0.163 0.166

Quite surprisingly, the value of the competitive ratio is independent of the discount

factor as long as the search value is not too large, y ≤ δ2

2−δ . Intuitively, since we evaluate

the rule’s performance by the fraction of the maximal payoff, under the sequentially

optimal rule, a more patient individual simply waits longer in expectation, exactly to

the extent that offsets the benefit of a cheaper waiting time.

The table below illustrates some values of the competitive ratio for the optimal rule

when the individual is not too impatient. It shows for each best offer y what fraction

of the maximal payoff can be guaranteed under any prior, provided y ≤ δ2

2−δ (note that

otherwise the competitive ratio is even larger).

Best offer y 1/6 1/5 1/4 1/3 1/2

Competitive ratio R∗(y) 0.666 0.685 0.71 0.75 0.82

4.3 Linear Decision Rules

In this section we consider the performance of linear rules. We wish to investigate how

well they can perform as compared to our benchmark in Proposition 4. In particular

we will gather information on guaranteed performance when the current search value

is low, so for y < 1/6.

We note that the functional form of our sequentially optimal rule is in some sense

simple. It is history dependent apart from depending on the best past offer. On the

other hand the specific form looks complex, looking at the graph it does not seem to be

easy to approximate with simpler functions. In this section we seek to investigate how

simpler, linear rules perform. In a linear rule, the probability of stopping the search,

is linear in the search value (and truncated at 1). We compare these rules with the

above benchmark and investigate the percentage of the competitive ratio that is lost

due to this simpler form. We will also making this comparison for small search values,

y < 1/6, where we do not know how tight the bound given in Proposition 4 is.
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The linear rules we investigate are denoted by pL (y|b),

pL (y|b) = min
{

1−δ
2−δ + by, 1

}
,

where b > 0 is a parameter to be determined. Note that the intercept 1−δ
2−δ is taken from

our analysis of the case of y → 0 in Proposition 3. It is the acceptance probability

of a job when the individual’s outside option value tends to zero. By choosing this

intercept we approximate the best competitive ratio for very small search values.

For investigating the competitive ratio of such a linear rule, by Lemma 1 we can limit

attention to nature generating i.i.d. outcomes with only two point masses w and z, and

using derivatives we show that the ratio is minimal for a given z when w = y where y

is the search value.

Given these two properties, for each value of b and y we can derive the minimal ratio

by searching for the probability σ put on mass z and the value of z. We also restrict

attention to the range of search values for which we know the sequentially optimal

competitive ratio, y ≥ ȳ(δ).

For each value of δ and b we evaluate

φ(b) = max
y∈[ȳ(δ),1]

R∗ (y)−RpL(·|b) (y)

R∗ (y)

and search for the value b∗ that maximizes the above expression,

φ∗ = φ(b∗) = max
b≥0

φ(b).

So we look for linear rules that generate the smallest maximal loss as compared to

our sequentially optimal rule. The value of φ∗ measures maximum performance loss

relative to the sequentially optimal rule,

RpL(·|b∗) (y) ≥ (1− φ∗)R∗ (y) for all y ≥ ȳ(δ).

We then investigate how small y can be such that this bound remains to be true. A

numerical evaluation of this bound will be denoted by y(δ).

In the table below we present for various values of δ the numerically best linear rule

coefficient b∗, the bound on performance loss of that rule relative to R∗(y), and the
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lower bound y(δ) on the interval search values for which this performance loss is not

exceeded.

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.999

b∗ 4.68 2.48 1.75 1.38 1.19 1.05 0.93 0.81 0.6 0.39 0.1 0.01

φ∗ 4.9% 4.7% 4.6% 4.5% 4.8% 5% 4.8% 4.4% 5.5% 6.6% 8.1% 8.3%

y(δ) 0.01 0.01 0.01 0.02 0.05 0.06 0.05 0.03 0.02 0.02 0.01 0.01

Note that the value of b∗ is such that pL (δ|b∗) = 1−δ
2−δ + b∗ · δ ≈ 0.95. Note also that

we have no way of understanding how good the performance of these linear rules is

for extremely low but strictly positive search values. Given our choice of the constant

we know that they cannot be beaten as y → 0, and we know that they only lose

minimally as compared to the upper bound when y is not too small. So there is only

an extremely small part of the space of outcomes where we have no benchmark to

compare their performance too.

One may not be satisfied by the performance of the linear rules when δ is large. For

large δ there is a different simple rule that performs almost as well as the sequentially

optimal rule. Let

ps (y|α) = min

{√
α (1− δ) y

1− y
, 1

}
for y < δ and ps (y|α) = 1 for y ≥ δ, where α > 0 is a parameter. Again we are

searching for the parameter α∗ that minimizes the maximal relative loss in efficiency,

φ∗. Here we limit attention to search values y above ȳ (δ). We list the values of α∗ in

the table below.

δ 0.9 0.95 0.99 0.999

α∗ 1.35 0.8 0.22 0.024

φ∗ 2.8% 1.6% 2.5% 3%

ȳ(δ) 0.137 0.151 0.163 0.166
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Appendix

Proof of Proposition 1. Fix any history ht = (x1, ..., xt), and suppose that there

remain alternatives to draw, n > t. The set of environments E(ht) that the individual

faces from stage t + 1 on is obtained by elimination from E the environments whose

distributions do not support the historical values x1, ..., xt. (Note that the set of possible

numbers of remaining alternatives after period t is the same as at the start, since

{n− t : n ∈ N, n > t} = N.) Consequently, Closure(E(ht)) = E . The supremum of the

performance ratio is the same whether the domain is E(ht) or Closure(E(ht)) = E .

We thus have obtained that the set of environments is irreducible after any history

of observations. At every stage t the only payoff relevant variable is the search value

yt, any other information about past observations is payoff irrelevant. We show now

that the sequentially optimal performance ratio at any stage is history independent, it

depends only on the search value at that stage.

Let p be a sequentially optimal decision rule. Consider two histories, hs = (x1, ..., xs)

and ht = (x̂1, ..., x̂t) with the same search value, ys = yt = ŷ. That is, ŷ = max{a, x1, ..., xs} =

max{a, x̂1, ..., x̂t}. Suppose that Rp(hs) < Rp(ht). Then we can construct an improve-

ment over p at history hs by decision rule p̂ identical to p in all subgames except the one

following history hs. In that subgame we define p̂ equal to p in the subgame following

history ht. This contradicts the assumption of sequential optimality of p.

As performance at each stage t can depend only on the search value yt, without loss it

can be attained by a stationary decision rule.

Finally, we show that all sequentially optimal rules are payoff-identical. Suppose that

there exist two sequentially optimal rules p and q whose performance ratio differs

at some history ht, say, Rq(ht) > Rp
t (ht). Then we can construct an improvement

over p at history ht by decision rule p̂ identical to p in all subgames except the one

following history ht. In that subgame we define p̂ equal to q in the same subgame.

This contradicts the assumption of sequential optimality of p.

Proof of Proposition 2. Denote by Eσ the environment with infinite number of

alternatives, n =∞, whose values are i.i.d. lotteries between 0 and 1 with probabilities
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1 − σ and σ, respectively. Let Ê be the set of such environments with nondegenerate

lotteries:

Ê = {Eσ : σ ∈ (0, 1)} .

Let p be a deterministic rule. Suppose that p stipulates to stop and take the outside

alternative after k zero-valued observations, h0
k = (x1, ..., xk) = (0, ..., 0), for some

k ≥ 0, and hence

Up
k (E, h0

k) = a.

Every environment in Ê is consistent with this history, as h0
k has a nonzero probability

of realization under every Eσ ∈ Ê . The first-best payoff under Eσ ∈ Ê with σ close

enough to 1 is

Vk(Eσ, h
0
k) = δ(σ + (1− σ)Vk+1(h0

k+1)) = ... =
δσ

1− δ(1− σ)
.

Hence,

Rp
k(hk) ≤ inf

Eσ∈Ê

Up
k (Eσ, h

0
k)

Vk(Eσ, h0
k)
≤ lim

σ→1

a
δσ

1−δ(1−σ)

=
a

δ
.

Now consider the complementary case, where p stipulates to continue after k zero-

valued observations for all k = 0, 1, 2, .... The first-best rule under Eσ ∈ Ê with σ close

enough to 0 would stipulate to stop immediately and yields at t = 0

V0(Eσ) = a.

On the other hand, the payoff of p at t = 0 satisfies

U0(Eσ) ≤ δ(σ + (1− σ)U1(Eσ, h
0
1)) ≤ ... ≤ δσ

1− δ(1− σ)
.

Hence,

Rp
0 ≤ inf

Eσ∈Ê

Up
0 (Eσ)

V0(Eσ)
≤ lim

σ→0

δσ
1−δ(1−σ)

a
= 0 ≤ a

δ
.

Proof of Lemma 1. Consider any stationary rule p. Fix a period t and a search

value y > 0 in that period.
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Recall that the expert’s optimal strategy is to stop whenever the search value ex-

ceeds some cutoff c̄ and to continue otherwise. By (1), cutoff c̄ must satisfy c̄ =

δ
(
F (c̄)c̄+

∫ 1

c̄
xdF (x)

)
, where F is the distribution. Using integration by parts, we

can rewrite this condition as

c̄ = δ

(
F (c̄)c̄+

(
1− c̄F (c̄)−

∫ 1

c̄

F (x)dx

))
= δ

(
1−

∫ 1

c̄

F (x)dx

)
,

or equivalently, ∫ 1

c̄

F (x)dx = 1− c̄

δ
. (3)

Fix a cutoff c̄ ∈ (0, δ) and denote by Ec̄ the set of environments whose distributions

have this cutoff,

Ec̄ = {(n, F ) ∈ E : n > t and F satisfies (3)} .

Let E = (n, F ) be an environment in Ec̄. We now construct an environment E ′ =

(∞, G) ∈ E2 with the same cutoff c̄, such that the performance ratio is smaller,
Upt (E,y)

Vt(E,y)
≥

Upt (E′,y)

Vt(E′,y)
.

First, suppose that y ≥ c̄, so the expert’s payoff is y. The worst-case payoff for rule

p is attained if there is an infinite sequence of alternatives whose values never exceed

y, in particular, the degenerate distribution that places probability 1 on value c̄. This

environment is in E2.

Next, suppose that y < c̄, and hence the expert continues searching until finds a value

above c̄. Observe that the expert’s payoff satisfies

Vt(E, y) = δ

(∫ 1

c̄

xdF (x) + F (c̄)Vt+1(E, y)

)
= δ(1 + δF (c̄) + ...+ (δF (c̄))n−t−1)

∫ 1

c̄

xdF (x) + (δF (c̄))n−ty

≤ δ

∞∑
k=0

δkF k(c̄))

∫ 1

c̄

xdF (x) =
δ

1− δF (c̄)

∫ 1

c̄

xdF (x) = c̄.

The individual’s payoff is given by

Up
t (E, y) = p(y)y + (1− p(y))δ

∫ 1

0

Up
t+1(E,max{y, x})dF (x).
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Imagine that the individual plays a zero-sum game with Nature. The individual’s

objective is to maximize her payoff, while Nature strives to minimize it. The individual

chooses a strategy p, to which Nature responds by a choice of environment E in the

set Ec̄.

Let us now make the individual’s payoff smaller by having the individual to choose

strategy p once and for all, but allowing Nature to choose a new environment at every

stage, with the constraint that chosen environments must be in the set Ec̄. In this

game, the individual’s payoff at stage t+ 1 from strategy p and value xt+1 = x is

Ûp(x) = inf
Ê∈Ec̄

Up
t+1(Ê,max{y, x}).

Observe that Ûp(x) is independent of t, since p is stationary and Ec̄ does not change

with time. By construction Up
t+1(E, x) ≥ Ûp(x), hence∫ 1

0

Up
t+1(E,max{y, x})dF (x) ≥

∫ 1

0

Ûp(x)dF (x)

=

∫ c̄

0

Ûp(x)dF (x) +

∫ 1

c̄

Ûp(x)dF (x).

We now find a distribution that minimizes the right-hand side expression of the above

inequality subject to (3) so the cutoff c̄ remains constant,

min
G

∫ c̄

0

Ûp(x)dG(x) +

∫ 1

c̄

Ûp(x)dG(x)

s.t.

∫ 1

c̄

G(x)dx = 1− c̄

δ
.

A solution to the above problem is a distribution with two-point support {w, z} and

probabilities 1− σ and σ, respectively, where w satisfies

w ∈ arg min
x∈[0,c̄]

Ûp(x),

and (σ, z) solve

min
σ∈[0,1], z∈[c̄,1]

{
(1− σ)Ûp(w) + σÛp(z)

}
s.t. c̄ = δ(σz + (1− σ)c̄),
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where the constraint is by (3).

Define environment E ′ = (∞, G) and observe that the minimum payoff in the above

problem is attained under the environment E ′. Also, notice that

V (E ′, y) = c̄,

since E ′ is the environment with cutoff c̄ and infinite alternatives. We thus have
Upt (E,y)

Vt(E,y)
≥ Upt (E′,y)

Vt(E′,y)
, and environment E ′ is in E2.

Thus we conclude that E2 must contain an environment that minimizes the ratio,
Upt (E,y)

Vt(E,y)
, among all environments in E .

Proof of Proposition 3. First we show that limy→0R
p(y) ≤ 1

4
for all stationary p.

Denote

q = lim sup
y→0

p(y)

and consider two decreasing sequences, {y1, y2, ...} and {z1, z2, ...}, that converge to

zero and satisfy

lim
k→∞

p(yk) = lim
k→∞

p(zk) = q and lim
k→∞

yk
zk

= 0.

Fix σ < 1/2. For each k consider the environment that randomizes between yk and zk

with probabilities 1−σ and σ, respectively. Denote such an environment by (yk, zk, σ).

For every large enough k the ratio yk/zk is sufficiently small, so that yk <
δσzk

1−δ(1−σ)
, so

that the expert waits for zk to realize and obtains

V (yk, zk, σ) =
δσzk

1− δ(1− σ)
.

The individual’s payoff is

Up(yk, zk, σ) =
p(yk)yk + (1− p(yk))δσzk p(zk)

1−δ(1−p(zk))

1− δ(1− σ)(1− p(yk))
As we take the limit, k → ∞, the ratio yk/zk approaches zero, while both p(yk) and

p(zk) approach q. Hence we have

Up(yk, zk, σ)

V (yk, zk, σ)
=

(
p(yk)

yk
zk

+ (1− p(yk))δσ p(zk)
1−δ(1−p(zk))

)
(1− δ(1− σ))

δσ(1− δ(1− σ)(1− p(yk)))

→
(1− q) q

1−δ(1−q)(1− δ(1− σ))

1− δ(1− σ)(1− q))
as k →∞.
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The above expression is increasing in σ, and hence

inf
σ∈[0,1]

lim
k→∞

Up(yk, zk, σ)

V (yk, zk, σ)
=

(1− q) q
1−δ(1−q)(1− δ(1− σ))

1− δ(1− σ)(1− q))

∣∣∣∣∣
σ=0

=
q(1− q)(1− δ)
(1− δ(1− q))2

.

Thus we have obtained

lim
y→0

Rp(y) ≤ lim
k→∞

Rp(yk) ≤
q(1− q)(1− δ)
(1− δ(1− q))2

.

Since for δ ∈ (0, 1)

max
q∈[0,1]

q(1− q)(1− δ)
(1− δ(1− q))2

=
1

4
,

it is immediate that limy→0R
p(y) ≤ 1

4
.

We now prove the converse: that there exists a stationary rule p such that limy→0R
p(y) ≥

1
4
. Let

p(x) = q =
1− δ
2− δ

,

independent of x. Observe that this strategy satisfies conditions of Lemma 1, and

hence we only need to consider binary environments with n = ∞ that randomize

between values w and z with probabilities 1− σ and σ, respectively. Denote any such

environment by (w, z, σ).

First, suppose that the first-best rule dictates to stop immediately and obtain y. The

individual’s payoff in this case is increasing in both w and σ, hence consider w = y and

σ = 0. Thus,

Up(y, z, 0) =
qy

1− δ(1− q)
=

1−δ
2−δy

1− δ(1− 1−δ
2−δ )

=
y

2
,

and the ratio is
Up(y, z, 0)

V (y, z, 0)
=
y/2

y
=

1

2
>

1

4
.

Second, suppose that the first-best rule dictates to continue until z realizes, so

V (w, z, σ) =
δσz

1− δ(1− σ)
.

The ratio is then increasing in w and decreasing in z, hence consider w = y and z = 1.

Thus,

Up(y, 1, σ) =
qy + (1− q) qδσ

1−δ(1−q)

1− δ(1− q)(1− σ)
.
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As y can be arbitrarily small, we have

lim
y→0

Up(y, 1, σ)

V (y, 1, σ)
=

q(1− q)(1− δ(1− σ))

(1− δ(1− q))(1− δ(1− q)(1− σ))
.

This expression is increasing in σ, hence substituting σ = 0 and q = 1−δ
2−δ we have

lim
y→0

Up(y, 1, σ)

V (y, 1, σ)
≥ q(1− q)(1− δ)

(1− δ(1− q))2
=

1

4
.

Proof of Proposition 4.

p∗ (x) =


2(1−δ)

4−2δ+x−
√
x(x+8)

, if x ≤ δ2

2−δ

1−K(δ,x)+
√
K2(δ,x)−1

1−x/δ , if δ2

2−δ < x < δ

1, if x ≥ δ,

(4)

is sequentially optimal, where K(δ, x) = 1
δ

(
1− (1−δ)x

2δ

)
. The competitive ratio of this

rule is equal to

R∗(y) =


1
2

+ 1
8

(
y +

√
y(y + 8)

)
, if 1

6
≤ y ≤ δ2

2−δ ,

K(δ, y)−
√
K2(δ, y)− 1, if δ2

2−δ < y < δ,

1, if y ≥ δ.

The proof consists of two steps. On Step 1 we restrict attention to a very small set

of environments and then find a sequentially optimal rule, p, w.r.t. this restricted set.

On Step 2 we show the environments in the restricted set are actually the relevant

worst-case environments within the general class of environments, E , and hence the

rule p is sequentially optimal on the general class.

Step 1. Fix a period t and a search value y > 1 in that period. To simplify notations,

we omit the reference to t.

Denote by Eσ the environment with n = ∞ that randomizes between two values, 0

and 1, with probabilities 1 − σ and σ, respectively. Suppose that the set of feasible

environments consists of only two environments: E0 and Eσ∗ , where

σ∗ =


3y+
√
y(y+8)

2(1−y)
1−δ
δ
, if y ≤ δ2

2−δ ,

1, if y > δ2

2−δ .
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Note that σ∗ is continuous w.r.t. y.

Let us find a search rule p that maximizes the competitive ratio w.r.t. these two envi-

ronments. Notice that under these environments the search value will remain equal to

y in all periods until the first realization of 1. Thus, there are only two possible values

to consider: y and 1. Set

p(1) = 1 and p(y) = q.

That is, there is a single parameter q ∈ [0, 1] of the search rule that needs to be

optimized.

If y ≥ δ, then the highest attainable payoff is y. The individual stops immediately,

q = 1, and obtains the first-best payoff y.

In what follows we assume y < δ.

Under environment E0, the search value remains y forever. Thus the expert’s payoff is

V (E0, y) = y, and the individual’s payoff is

Up(E0, y) = qy + (1− q)δUp(E0, y) =
qy

1− δ(1− q)
.

Under environment Eσ∗ , assuming y < δ, the expert waits until the realization of 1

and obtains

V (Eσ∗ , y) = δ(σ∗ + (1− σ∗)V (Eσ∗ , y)) =
δσ∗

1− δ(1− σ∗)
> y.

The individual’s payoff is equal to

Up(Eσ∗ , y) = qy + (1− q)δ(σ∗ + (1− σ∗)Up(Eσ∗ , y)) =
qy + (1− q)δσ∗

1− δ(1− q)(1− σ∗)
.

Hence

min
σ∈{0,σ∗}

Up(Eσ, y)

V (Eσ, y)
= min

{
q

1− δ(1− q)
,

qy+(1−q)δσ∗
1−δ(1−q)(1−σ∗)

δσ∗

1−δ(1−σ∗)

}
.

Observe that the two expressions in the curly brackets are monotonic in q in the

opposite directions. Hence q must satisfy

q

1− δ(1− q)
=

qy+(1−q)δσ∗
1−δ(1−q)(1−σ∗)

δσ∗

1−δ(1−σ∗)
. (5)
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Tedious but straightforward analysis, carried out separately for the two cases, y ≤ δ2

2−δ
and δ2

2−δ < y < δ, yields the unique solution on the domain [0, 1]:

q∗ =


2(1−δ)

4−2δ+y−
√
y(y+8)

, if y ≤ δ2

2−δ

1−K(δ,y)+
√
K2(δ,y)−1

1−y/δ , if δ2

2−δ < y < δ,

where K(y) = 1 − (1−δ)y
2δ

. Also recall that q = 1 for y ≥ δ. Substituting this solution

into the ratio expression q
1−δ(1−q) yields

min
σ∈{0,σ∗}

Up(Eσ, y)

V (Eσ, y)
=


1
2

+ y
8

+
√

y
8

(
1 + y

8

)
, if 1

6
≤ y ≤ δ2

2−δ ,

1
δ

(
K(y)−

√
K2(y)− δ

)
, if δ2

2−δ < y < δ,

1, if y ≥ δ.

Thus we have obtained that rule p∗ defined by (4) attains the above competitive ratio

w.r.t. the restricted set of environments {E0, Eσ∗}.

Step 2. We now show that for every y ≥ 1
6

the pair of environments {E0, Eσ∗} are in

fact the worst-case environments for the rule p∗ defined by (4). That is, expanding the

set of environments to E will not change the competitive ratio for the rule p∗.

Consider search rule

p∗ (x) =


2(1−δ)

4−2δ+x−
√
x(x+8)

, if x ≤ δ2

2−δ

1−K(δ,x)+
√
K2(δ,x)−1

1−x/δ , if δ2

2−δ < x < δ

1, if x ≥ δ,

We will prove that for every environment E ∈ E and y ≥ 1
6

this rule attains the ratio

at least

R∗(y) =


1
2

+ 1
8

(
y +

√
y(y + 8)

)
, if 1

6
≤ y ≤ δ2

2−δ ,

K(δ, y)−
√
K2(δ, y)− 1, if δ2

2−δ < y < δ,

1, if y ≥ δ.

By Lemma 1, without loss we consider the environments with n =∞ that randomize

between two values, w and z, 0 ≤ w < z ≤ 1. Denote by 1− σ and σ the probabilities

assigned to w and z, respectively. For short, denote any such environment by (w, z, σ).
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First, consider any environment (w, z, σ) such that the expert prefers to stop immedi-

ately. The expert’s payoff y, and it is the same as under the environment E0:

V ((w, z, σ), y) = V (E0, y) = y.

Under this assumption, the individual’s payoff is increasing in σ, thus minimized at

σ = 0. When σ = 0, the payoff is independent of z, so we can set z = 1. Moreover, for

w ≥ y,

Up∗((w, 1, 0), y) = p∗(y)y + (1− p∗(y))δUp∗((w, 1, 0),max{w, y})
= p∗(y)y + (1− p∗(y))δ(p∗(w)w + (1− p∗(w))δUp∗((w, 1, 0), w)

= p∗(y)y + (1− p∗(y))δ
p∗(w)w

1− δ(1− p∗(w))

= p∗(y)y + (1− p∗(y))δwR∗(w),

which is increasing in w. As the continuation payoff is the function of max{w, y}, the

payoff is minimized at w = 0. The environment (w, z, σ) = (0, 1, 0) is the same as E0.

Thus we have

Up∗((w, z, σ), y) ≥ Up∗(E0, y).

So environment E0 minimizes the ratio Up
∗

(E0,y)
V (E0,y)

among all environments in which the

expert stops immediately.

Next we consider all environments (w, z, σ) such that the expert searches until the first

draw of z and obtains

V ((w, z, σ), y) = δ(σz + (1− σ)V (w, z, σ)) =
δσz

1− δ(1− σ)
= c̄ > y.

This is independent of w. Thus V ((0, z, σ), y) = V ((w, z, σ), y).

Next, the individual’s payoff is

Up∗((w, z, σ), y) = p∗(y)y + (1− p∗(y))δ
(

(1− σ)Up∗((w, z, σ),max{w, y})

+ σUp∗((w, z, σ), z)
)

Recall that w ≤ c̄ < z and evaluate the next-period payoffs conditional on search values

z and w,

Up∗((w, z, σ), z) = p∗(z)z + (1− p∗(z))δUp∗((w, z, σ), z)

=
zp∗(z)

1− δ(1− p∗(z))
= zR∗(z),
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which is constant in w, and

Up∗((w, z, σ), w) = p∗(w)w + (1− p∗(w))δ
(
(1− σ)Up∗((w, z, σ), w)

+ σUp∗((w, z, σ), z)
)

=
p∗(w)w + (1− p∗(w))δσzR∗(z)

1− δ(1− p∗(w))(1− σ)
.

This expression is generally convex in w for w > y. Let w∗(σ, z) minimize the above

expression on interval [0, c̄] for a given (σ, z). We will now consider the case y ≥ w∗,
thus Up∗((w, z, σ), y) is minimized at w = 0. Later we will show that if y is below

w∗(σ, z), then under the optimal choice of (σ, z) the performance ratio will be increasing

in w, so the ratio can be reduced by lowering w.

So we consider w = 0 and denote q = p∗(y) to simplify notations. Thus,

Up∗((0, z, σ), y) = qy + (1− q)δ
(

(1− σ)Up∗((0, z, σ), y) + σUp∗((0, z, σ), z)
)

=
qy + (1− q)δσzR∗(z)

1− δ(1− q)(1− σ)
.

Hence

Up((0, z, σ)), y

V ((0, z, σ), y)
=

qy+(1−q)δσzR̄(z)
1−δ(1−q)(1−σ)

δσz
1−δ(1−σ)

=
1− δ(1− σ)

1− δ(1− q)(1− σ)

(
q
y

δσz
+ (1− q)R∗(z)

)
.

We need to minimize the above expression w.r.t. z and σ. Define

R̄(x) =
1

8

(
4 + x+

√
x(x+ 8)

)
.

Observe that R̄(x) ≤ R∗(x) for all x and R̄(1) = R∗(1) = 1. We now replace R∗(z)

with R̄(z) in the ratio expression and show that it is minimized at z = 1, thus showing

that the original ratio with R∗(z) is also minimized at z = 1.

For a given z, the obtained expression

1− δ(1− σ)

1− δ(1− q)(1− σ)

(
q
y

δσz
+ (1− q)R̄(z)

)
(6)
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is quasiconvex in σ and is minimized at

σ̄(z) =
δ(1− δ)(1− q)a+

√
δ(1− δ)qa((1− δ(1− q))b− δ(1− q)a)

δ(qb− δ(1− q)a)
,

where a = qy
δz

and b = (1 − q)R̄(z). Straightforward, but tedious analysis shows that

(6) evaluated at σ = max{σ̄(z), 1} is strictly decreasing in z for all z < 1, provided

1

6
≤ y ≤ δσz

1− δ(1− σ)
.

Also, observe that max{σ̄(z), 1} evaluated at z = 1 is equal to σ∗. Consequently, the

environment Eσ∗ = (0, 1, σ∗) minimizes the performance ratio,

min
z, σ

Up((0, z, σ), y)

V ((0, z, σ), y)
=
Up((0, 1, σ∗), y)

V ((0, 1, σ∗), y)
= R∗(y).

It remains to show that an environment (w, z, σ) with w > y never minimizes the ratio.

Let w > y. Notice that the minimization problem w.r.t. (z, σ) has not changed, hence

(z, σ) = (1, σ∗) (with w instead of y in the expression for σ∗. But then the expression
Up((w,1,σ∗),y)
V ((w,1,σ∗),y)

is increasing in w and minimized at w = 0.

We thus have shown that Eσ∗ is the worst environment among those where the expert

waits for z, and E0 is the worst environment among those where the expert stops

immediately.
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