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Abstract

We study a multi-dimensional collective decision under incomplete informa-

tion. Agents have Euclidean preferences and vote by simple majority on each

issue (dimension), yielding the coordinate-wise median. Judicious rotations of

the orthogonal axes – the issues that are voted upon – lead to welfare improve-

ments. If the agents’ types are drawn from a distribution with independent

marginals then, under weak conditions, voting on the original issues is not op-

timal. If the marginals are identical (but not necessarily independent), then

voting first on the total sum and next on the differences is often welfare supe-

rior to voting on the original issues. We also provide various lower bounds on

incentive efficiency: in particular, if agents’ types are drawn from a log-concave

density with symmetric marginals, a second-best voting mechanism attains at

least 88% of the first-best efficiency.

1 Introduction

In 1974 the U.S. Congress changed its budgeting process: instead of considering

appropriations requests that were voted upon one at a time, which resulted in a grad-

ually determined total level of spending, the Congressional Budget and Impoundment

Control Act required voting first on an overall level of spending, before the deter-

mination of budgets for individual programs in subsequent votes. A large literature
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in the area of public finance (see for example the review articles in Poterba and von

Hagen [1999]) has debated the costs and benefits of such procedural changes, with

particular attention to the size of the expected budget deficit.1

In this paper we analyze the general problem of redefining (or bundling) the issues

brought to vote in a multi-dimensional collective decision problem. Our interest in

this topic stems from the potential of such methods to increase the welfare of the

involved decision makers by allowing them to reach, in an incentive compatible way,

a consensus that was not possible on the original issues. We are thus looking for

the dimensions on which the best consensus can be found, or, put differently, the

dimensions where the least cleavage among voters is present.

We study a multi-dimensional collective decision that is resolved via simple major-

ity voting: an example is a legislature that needs to decide on individual budgets for

public goods such as, say, education and defence. Another example is the decision on

the geographical location of a desirable facility. But even “mundane” decisions such

as hiring or project adoption based on multi-dimensional attributes can be viewed

through our lens.

We adopt the standard spatial model of voting widely used in the political science

literature (see for example, Chapter 5 in Austen-Smith and Banks [2005]), where

voters have preferences characterized by ideal points in each dimension and by a

quadratic loss caused by deviations from the ideal point. The main text deals with

the two-dimensional case, while the generalization to more than two dimensions is in

an Appendix.

The voters’ ideal points are private information, and we look at the outcomes of

voting by simple majority on each dimension separately — as we shall see below, the

focus on simple majority voting yields, in combination with a decision over the dimen-

sions that are the subject of voting, an analysis of more generality than immediately

apparent.

With votes taken by simple majority in each separate dimension, the outcome

is the coordinate-wise median of the voters’ ideal points. This easily follows from

Black’s [1948] famous theorem because the induced preferences are single peaked

on each one-dimensional issue. In general, this outcome does not coincide with the

first-best, given here by the alternative that minimizes the overall distance from the

individual ideal points. It is of course well-known that the first-best outcome is simply

the coordinate-wise average (or mean) of the ideal points, and thus first-best welfare

is given here by the corresponding variance (with a minus sign).

1There was a widespread belief that the new rules would lead to smaller deficits, and the act was

passed almost unanimously in both House and Senate.
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The first-best outcome is not implementable: each agent has an incentive to try

to move the average closer to his/her ideal point by exaggerating his/her position on

one or more issues. This phenomenon has been first documented by Galton [1907],

who was also the first to recommended the use of the median as a robust and non-

manipulable aggregator of opinions.2

Given the tension between first-best on one hand and implementable outcomes

on the other, how well does voting by simple majority perform in terms of welfare?

Using a classical inequality due to Hotelling and Solomons [1932], it can be shown

that, for any distribution of preferences, voting by simple majority on any given issues

achieves at least 50% of the welfare achievable in the first best.

The main insight of the present paper is that a judicious choice of the issues

that are actually put to vote (while maintaining voting by simple majority, with

its desirable incentive properties) can significantly improve welfare.3 For example,

instead of voting on two separate issues such as education and defense, the legislature

could vote on a total budget, and then on a division of that budget between the two

issues – just as Congress started to do in 1974. Ferejohn and Krehbiel [1987] have

shown that the change adopted by Congress can be mathematically represented by a

45-degree rotation of the coordinates (or issues) on which voting takes place, and we

analyze here the general issue of determining an optimal rotation.

Our main results are:

1) If the agents’ ideal points in one dimension are independently distributed from

the ideal points in the other dimension then, under very weak conditions on the

distribution of preferences, voting on the original issues is sub-optimal; that is, a

re-packaging of the issues brought to vote via rotation (this creates some correlation

among the ideal points) increases welfare.

2) If the marginals of the distribution of agents’ ideal points are identically dis-

tributed (but not necessarily independent), we provide sufficient conditions under

which the 45-degree rotation is welfare superior to no rotation. The sufficient con-

ditions are satisfied by commonly used distributions if marginals are identically and

independently distributed (I.I.D.). We show analytically that, with I.I.D. marginals,

the 45-degree rotation is always a critical point, and numerically that it is a global

welfare maximum for many standard distributions. A key observation for these re-

sults is that, under the symmetry of the marginals, the 45-degree rotation entirely

eliminates the conflict arising between efficiency and majority voting in one dimension

– all remaining conflict is concentrated in the other, orthogonal dimension.

2His insights have been sharpened and much generalized in the literature on robust estimation.
3The idea of comparing voting rules in terms of their expected welfare goes back to Rae[1969].
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3) We provide various lower bounds on incentive efficiency for large, non-parametric

families of distribution of ideal points (such as unimodal distributions, distributions

with an increasing hazard rate, etc.). For example, if agents’ ideal points are drawn

from a log-concave density with I.I.D. marginals, a voting mechanism that involves

a 45 degrees rotation of the original dimensions attains at least 88% of the first-best

efficiency. This should be compared to the universal lower bound of 50% that obtains

without any assumption on the distribution, and without using rotations.

Technically and conceptually, our contribution builds upon and relates to several

important and elegant contributions due to Moulin [1980], Border and Jordan [1983],

Kim and Rousch [1984] and Peters, van der Stel and Storcken [1992]. In a one-

dimensional setting with single-peaked preferences, Moulin considered mechanisms

that depend on reported peaks, and characterized the set of dominant strategy incen-

tive compatible (DIC), anonymous and Pareto efficient mechanisms: each mechanism

in the class is obtained by choosing the median among the n reported peaks of the

real voters and the peaks of a set of n− 1 “phantom” voters (these are fixed by the

mechanism, and do not vary with the reports).4 Border and Jordan [1983] removed

Moulin’s assumption whereby mechanisms were allowed to only depend on peaks,

and generalized Moulin’s finding to a multi-dimensional setting with separable and

quadratic preferences: each DIC mechanism was shown to be decomposable into a

collection of one-dimensional DIC mechanisms, each described by the location of the

phantom voters in the respective dimension.5

Gershkov, Moldovanu and Shi [2016] analyzed welfare maximization in a one-

dimensional setting with cardinal utilities, and derived the ex-ante welfare maximiz-

ing placement of phantoms as a function of utilities and of the distribution of types.

They also showed how to avoid the phantom interpretation by implementing Moulin’s

mechanisms (including the welfare optimal one) via a sequential, binary voting pro-

cedure together with a flexible qualified majority schedule needed for the adoption of

various alternatives.6 Combining their result with the Border-Jordan decomposition

yields the welfare maximizing mechanism for multidimensional settings with separa-

ble and quadratic preferences. But, the ensuing solution, described by an optimal

placement of phantoms in each dimension, is not satisfactory from a practical point

of view: it implies that each issue (dimension) in each multi-dimensional problem

must be voted upon according to a particular institution. This theoretically needed

flexibility may be difficult, if not impossible, to achieve in practice and we do not

4Relaxing Pareto efficiency yields the same characterization, but with n+ 1 phantoms.
5See also Barbera, Gul and Stacchetti [1993].
6See also Kleiner and Moldovanu [2016] for a derivation of sufficient conditions under which

sequential, binary voting procedures possess desirable properties.
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expect to observe its deployment.

Instead, we take here a different approach to welfare improvement: we fix an

ubiquitous institution – voting by simple majority on each issue – but we allow flexi-

bility in the design of the issues that are actually put to vote. Such a limited form of

agenda design is very common in practice, and, as we shall see, has important welfare

consequences.

The simplest multidimensional setting for studying issue design and repackaging is

the one with Euclidean preferences: intuitively, the presence of spherically symmetric

preferences does not a-priori determine the dimensions of the Border and Jordan

decomposition into one-dimensional mechanisms. Indeed, Kim and Rousch [1984]

showed that the set of continuous, anonymous and DIC mechanisms can be described

by performing the Border-Jordan analysis subsequent to any translation of the origin

and any rotation of the orthogonal axes. Peters, van der Stel and Storcken [1992]

showed that, for two dimensions, voting by simple majority in each dimension (after

any translation/rotation of the plane) is also Pareto optimal. This is the unique

anonymous and DIC mechanism with this property, and Pareto efficiency is generally

not consistent with DIC in more than two dimensions.

Since both median and mean are translation equivariant, translations of the ori-

gin cannot improve welfare, and it is therefore without loss of generality to restrict

attention to rotations of the axes followed by simple majority voting on each newly

defined dimension.

A key observation, well known in the theory of spatial statistics, is that the mean is

rotation equivariant (i.e., the mean after rotation is obtained by rotating the original

mean) but the coordinate-wise median is not (see Haldane [1948], or the literature on

spatial voting, e.g., Feld and Grofman [1988]). As a consequence, a rotation of the

axes may decrease the distance between the coordinate-wise mean (first-best) and the

coordinate-wise median (outcome of majority voting), thus increasing welfare in our

framework.

The basic feature behind the welfare increasing properties of rotations is the non-

linearity of the median function, i.e. the median of a sum of random variables is

not equal to the sum of the medians. Note that the distributions of ideal points

after rotation can be represented as convolutions of the original distributions, which

explains here the appearance of sums of random variables.

On the one hand, this non-linearity is the driving force behind our results; on the

other hand, it also implies that the analysis becomes relatively complex.7 In order to

7This is true even for common distributions, such as the Gamma, Poisson, lognormal, etc. Some

of our results are based on insights that go back to conjectures by Ramanujan (see Szegö [1928]).
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use calculus and probabilistic/statistical techniques, we focus on the limit case where

the number of voters is infinite. In particular, we employ methods from Fourier

analysis to deal with convolutions, and various concentration inequalities that relate

statistics such as the mean, median, mode and variance of distributions. We sketch

in an Appendix how our analysis can be generalized to more than two dimensions.

It is well-known that, in multi-dimensional models of voting the existence of a

Condorcet winner is rare (Kramer [1973]), and that dictatorship is often the only

strategy-proof mechanism (Zhou [1991]). Kramer [1972] observed that, however, vot-

ing in a variety of institutions is often sequential, issue by issue, and he established

that there exists an issue-by-issue sophisticated voting equilibrium if voters’ prefer-

ences are continuous, convex and separable. Shepsle [1979] forcefully argued that the

division of a complex, collective decision into several different jurisdictions, each juris-

diction being responsible for one aspect only (germaneness), creates stable equilibria

that would not be possible in the general, unconstrained decision model. His main

examples were the various legislative committees in the U.S. congress. Viewed in

this context, the coordinate-wise median analyzed in our paper – obtained by simple-

majority voting in each dimension – constitutes a basic instance of a structure induced

equilibrium in the spirit of Shepsle [1979], and our goal is to endogenize the choice

of jurisdictions in order to improve welfare, an issue that has not received much at-

tention in formal studies. Of course, it is possible to perform an analysis similar to

ours for different underlying goals, e.g., define jurisdictions that serve other purposes,

such as the self-interest of an agenda setter or of a coalition of voters.

It is also instructive to compare our results to those in the classical papers by

Caplin and Nalebuff ([1988], [1991]).8 Again motivated by the instability of multi-

dimensional voting, they considered instead the effect of super-majority requirements

on the stability of the spatial mean. For a log-concave density governing the dis-

tribution of types (and also for other, more general forms of concavity), Caplin and

Nalebuff showed that, once established as status-quo, the mean cannot be displaced

by another alternative if the selection of that alternative requires a super-majority

of at least 64% (or 1− 1
e
). In other words, given the distributional assumptions and

a large population of voters, any coalition that prefers an alternative over the mean

contains less than 64% of the voters, and is thus not effective given the super-majority

requirement. Caplin and Nalebuff did not consider incomplete information and in-

centive constraints: recall that, for any finite number of voters, there is in fact no

incentive compatible voting mechanism that would actually achieve the mean as an

8These authors were also the first to use modern concentration inequalities in the Economics

literature.
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outcome. Thus, it is not entirely clear how the first-best (and stable) status quo

can be reached by a voting process in the first place. As mentioned above, for the

log-concave case with independent marginals, our results display an incentive com-

patible mechanism that achieves at least 88% of the first-best utility. Thus, issue by

issue voting by simple majority on appropriately defined dimensions constitutes an

intuitive and incentive compatible institutional arrangement that is almost efficient

in this case. Moreover, the relative efficiency of this mechanism increases, and tends

to 100% when we increase the number of dimensions of the underlying problem.

The remaining part of the paper is organized as follows: In Section 2 we present the

two dimensional voting model by simple majority, and connect incentive compatible

mechanisms to the special orthogonal group of rotations in the plane. We also discuss

the equi-invariance properties of means and medians. In Section 3 we focus on the

setting with a large number of agents, for which we can use various available statistical

techniques. We first show that voting on independent issues is always sub-optimal:

a rotation that bundles independent issues is always beneficial. We next show that

if the issues are identically distributed, a rotation by 45 degrees (corresponding, for

example, to a vote on a total budget for the two issues and its division among issues)

can improve welfare over the zero rotation. In particular, we give sufficient conditions

that hold for large, non-parametric families of distributions under which the welfare

under such a rotation is higher than in the original, no-rotation case. Numerical

simulations suggest that the 45 degrees rotation is indeed an optimum in this case.

In Section 4 we offer bounds on the relative efficiency of voting by simple majority

complemented by rotations. The effect of rotations is shown to be substantial. Section

5 concludes. Several proofs are gathered in Appendix A, and generalizations to higher

dimensions are sketched in Appendix B.

2 The Model

We consider an odd number of agents, n, who collectively decide about two issues,

X and Y , on a convex region D ⊆ R2. Each agent’s ideal position on these two

issues is given by a peak ti = (xi, yi), i = 1, 2, ..., n. The peak ti is agent i’s private

information. Each agent i has a utility function of the form

− ||ti − v||2

where v = (x, y) is a fixed point in D and where ||·|| is the standard Euclidean (L2)

norm. The peaks ti = (xi, yi) are independently, identically distributed (I.I.D.) across
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agents, according to a joint distribution F (xi, yi), with density f . Throughout the

paper, we assume that E ||ti||2 <∞ for all ti ∈ D.

We consider a utilitarian planner who would like to choose v ∈ D to maximize

the average of the agents’ ex ante utilities, or equivalently, minimize the average of

expected squared distance:

min
v∈D

E

[
1

n

n∑
i=1

||ti − v||2
]
,

subject to agents’ incentive constraints. Ignoring agents’ incentives, the planner can

choose a point u that minimizes the average of ex post distance:

u ∈ arg min
v∈D

1

n

n∑
i=1

||ti − v||2 ,

which we will refer to as the first-best solution. For each fixed realization (t1, t2, ..., tn),

it is well known that the first-best solution is simply the mean of the ideal points

u = t ≡ 1

n

n∑
i=1

ti.

Hence, the first-best (per capita) expected utility is the variance (with negative sign)

− 1
n

∑n
i=1

∣∣∣∣ti − t
∣∣∣∣2. However, the first-best is clearly not implementable: each agent

can advantageously move the mean towards her ideal point by reporting a false peak.

Remark 1 The Euclidean norm adopted here, where first best choice and welfare

are given by mean and variance (with negative sign), respectively, greatly facilitates

our analysis because we can then use various statistical results relating to the mean,

median and variance. We can incorporate other convex norms to address similar

questions, but the technical analysis needs to change accordingly.

2.1 Voting by Simple Majority

We consider voting by simple majority on each separate dimension. This is easily seen

to be an incentive compatible scheme: each agent has a (weakly) dominant strategy,

to state his true ideal point in each dimension. Our focus on simple majority voting

stems from its wide applicability and its actual use in practice. We do not a-priori

restrict the issues on the ballot to be X and Y . Instead, new issues can be created

through “re-packaging and bundling” the basic issues X and Y . The main theme of

the paper is, indeed, the analysis of the problem of optimal bundling of issues X and

Y, i.e. finding what we call the optimal dimensions of consensus.
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2.2 Rotations in the Plane

We model packaging and bundling of issues through rotations in the plane. Recall

that, for fixed Cartesian coordinates, rotating a point (x, y) ∈ R2 counter-clockwise

by an angle of θ can be represented by the multiplication of the vector (x, y) with a

rotation matrix R (θ). The resulting, rotated point (z−, z+) is given then by(
z−

z+

)
=

(
cos θ − sin θ

sin θ cos θ

)
︸ ︷︷ ︸

R(θ)

(
x

y

)
=

(
x cos θ − y sin θ

x sin θ + y cos θ

)
.

Equivalently, one can obtain (z−, z+) by rotating the original Cartesian coordinates

clockwise around the fixed origin by an angle of θ to obtain new orthogonal coordi-

nates, and then projecting (x, y) to the new coordinates.

Let (Z−, Z+) denote the random variables obtained from rotating the random

vector (X, Y ) by an angle of θ. Then we have

Z− (θ) = X cos θ − Y sin θ,

Z+ (θ) = X sin θ + Y cos θ.

The voters vote then on the new issues Z− and Z+, instead of the original issues X and

Y . By the simple majority rule, the voting outcome will be (m− (θ, t1, ..., tn) ,m+ (θ, t1, ..., tn))

where

m− (θ, t1, ..., tn) = median (x1 cos θ − y1 sin θ, ..., xn cos θ − xn sin θ), (1)

m+ (θ, t1, ..., tn) = median (x1 sin θ + y1 cos θ, ..., xn sin θ + xn cos θ), (2)

are the marginal medians after the rotation.

It is easy to verify that the mean t of t1, ..., tn is invariant to rotations (or rotation

equ-invariant), i.e. the mean of rotated peaks is simply the rotated mean of the origi-

nal peaks. In marked contrast, the marginal medians (m− (θ, t1, ..., tn) ,m+ (θ, t1, ..., tn))

are not rotation equivariant, i.e., rotating and taking medians is not the same

as taking medians and rotating. Therefore, rotations are instruments by which the
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planner may try to influence welfare.

y

x

A

B

C

mean

original median

new median

x’

y’

Figure 1. The mean is rotation equ-invariant, the median is not

The reason for the complex behavior of the median is the non-linearity of the median

under convolutions.

Example 1 Consider a discrete random variable X with three possible realizations,

a ≤ b ≤ c, and pa = pc = 2
5

and pb = 1
5
.9 The median of X is mX = b and its mean

is µX = 1
5
(2a+ b+ 2c). Let σ2

X denote the variance of X. We have

mX ≤ µX ⇔ a+ c ≥ 2b. (3)

Consider another I.I.D. variable Y . The expected per capita utility with large number

of voters by choosing marginal medians for each coordinate is

U(0) = −E[(X −mX)2 + (Y −mY )2]

= −2σ2
X − 2(µX −mX)2

= −2σ2
X −

8

25
(a+ c− 2b)2 .

Now suppose we rotate clockwise the two coordinates by π
4
, and then project (X, Y )

to the new coordinates. We obtain then two new random variables
√
2
2
X −

√
2
2
Y and

√
2
2
X +

√
2
2
Y . It is easily seen that

√
2
2
X −

√
2
2
Y is symmetric, so its median m− and

mean µ− are both equal to zero. The random variable
√
2
2
X +

√
2
2
Y has the following

distribution:

value
√

2a
√
2
2

(a+ b)
√

2b
√
2
2

(a+ c)
√
2
2

(b+ c)
√

2c

probability 4
25

4
25

1
25

8
25

4
25

4
25

9Any other probabilities with pa = pc >
1
3 will do as well.
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Therefore, it has the mean µ+ =
√

2µX which is the sum of the means of
√
2
2
X and

√
2
2
Y , and its median is m+ =

√
2
2

(a+ c). Hence,

m+ ≥ µ+ ⇔ a+ c ≥ 2b. (4)

The sum of the medians of
√
2
2
X and

√
2
2
Y is

√
2b, so the median of sum is not the

same as the sum of the medians! In fact,

m+ ≥ m√
2

2
X

+m√
2

2
Y
⇔ a+ c ≥ 2b. (5)

The expected utility associated with the π
4

rotation is:

U(
π

4
) = −E

[(
(X + Y ) /

√
2−m+

)2
+
(

(X − Y ) /
√

2−m−
)2]

= −2σ2
X − (µ+ −m+)2

= −2σ2
X −

1

50
(a+ c− 2b)2

≥ U (0)

The inequality is strict if a + c 6= 2b, i.e. if µX 6= mX . Therefore, the π
4
-rotation

generates higher social welfare than the 0-rotation.

More generally, we could also consider an additional translation of the origin,

say by a vector w, to obtain new orthogonal coordinates (and create new issues).

The joint operation of rotation and translation can also be represented by a linear

matrix.10 But, medians (and means) are translation equ-invariant, and thus there

is no extra welfare advantage from such translations. Therefore, we focus below on

the family of rotations of coordinates around a fixed origin, described by the angle of

rotation θ relative to standard Cartesian coordinates.

2.3 The Set of Voting Mechanisms

Kim and Roush [1984] and Peters et al. [1992] provided a complementary justification

for our focus on simple, majority voting mechanisms. For any rotation angle θ ∈
[0, 2π], we can define the direct marginal median mechanism ϕθ as

ψθ (t1, t2, ..., tn) = (m− (θ, t1, .., tn) ,m+ (θ, t1, .., tn)) ,

10This set of general transformation matrices (rotation and translation) is called the special or-

thogonal group for the plane, and is denoted by SO(2). Each matrix in SO (2) is an orthogonal

matrix. It is special because the determinant of each matrix is +1, whereas the determinant could

be −1 for other orthogonal transformations such as reflections.
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where (m− (θ, t1, .., tn) ,m+ (θ, t1, .., tn)) is the marginal median with respect to ro-

tation θ and reported peaks ti as defined in (1) and (2). Note that the function

ψθ (t1, t2, ..., tn) is continuous in θ and in all its other arguments since both rotations

and medians are continuous functions. It is also easy to see that ψθ is anonymous11

and dominant-strategy incentive compatible (DIC).

Surprisingly enough, it turns out that the set of marginal median mechanisms (for

all possible rotations) coincides with the entire class of anonymous, Pareto optimal12

and DIC mechanisms.

Theorem 1 (Kim and Roush [1984] and Peters et al. [1992]) A mechanism ψθ (t1, t2, ..., tn)

is anonymous, Pareto optimal and DIC if and only if it is a marginal median mech-

anism ψθ (t1, t2, ..., tn) for some angle θ ∈ [0, 2π].

It is worth noting that the characterization in Theorem 1 fails for higher dimen-

sions because anonymous, Pareto optimal and DIC mechanisms need not exist: the

vector of marginal medians need not be in the convex hull of the agents’ peaks. Hence,

our analysis can be extended to higher dimensional problems, but the solution need

not be ex-post Pareto optimal.

The next result shows that a simple and intuitive indirect method to implement

the entire class of mechanisms described in the above theorem is to define the issues

(via rotations) and then sequentially vote by simply majority, one issue at a time,

using a binary, sequential voting procedure with a convex agenda.13 This defines then

a structure induced equilibrium à là Shepsle [1979].

Theorem 2 Assume that agents decide one issue at a time on the orthogonal dimen-

sions Z+(θ) and Z−(θ) that are obtained by rotating original issues X and Y . Assume

also that the vote on each issue is by simple majority according to a convex, binary

sequential procedure. Then sincere voting is an ex-post equilibrium and the outcome

is (m− (θ, t1, ..., tn) ,m+ (θ, t1, ..., tn)), independently of the order in which the issues

are put up to vote.14

11A mechanism ψ is anonymous if, for any profile of reports (ti, t−i), ψ (t1, ..., ti, ..., tn) =

ψ
(
tp(1), ..., tp(i), ..., tp(n)

)
, where p is any permutation of the set {1, ..., n}.

12A mechanism ψ is Pareto optimal (or Pareto efficient) if, for any profile of reports (ti, t−i), there

is no alternative v such that ||ti − v||2 ≤ ||ti − ψ (ti, t−i)||2 for all i, with strict inequality for at least

one agent. Pareto optimality requires ψ (t1, t2, ..., tn) to be in the convex hull conv(t1, t2, ..., tn) for

every type profile (t1, t2, ..., tn) (see Lemma 2.2 in Peters et al. [1992]).
13At each stage of convex, sequential procedure on a fixed dimension, a binary decision is collec-

tively taken among two ideologically coherent sets of alternatives that create a clear left-right divide.

For details see Gershkov, Moldovanu and Shi (2016) and Kleiner and Moldovanu (2016).
14Sincere voting means that, at each binary decision note, an agent votes for the subset of alter-

natives containing his/her preferred alternative among those that are still relevant.
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Proof. Assume that voters decide first on dimension Z+(θ), and then on dimension

Z−(θ), and recall that these are orthogonal. Denote the first decision by k+ (θ, t1, ..., tn).

This fixes the first coordinate of the final decision. In other words, at the second

stage the agents choose only among alternatives of the form(k+ (θ, t1, ..., tn) , z−).

This is a one-dimensional problem, on which agents have single peaked preferences.

For any k+ (θ, t1, ..., tn), the ex-post equilibrium outcome of any binary, sequential

voting with a convex agenda is sincere voting, and the outcome is the Condorcet

winner z− = m− (θ, t1, ..., tn). Given this outcome, the first decision is a choice

among alternatives of the form (z+,m− (θ, t1, ..., tn)). Since this is again a one-

dimensional problem, the outcome is the Condorcet winner, and the final outcome is

((m+ (θ, t1, ..., tn) ,m− (θ, t1, ..., tn)). An analogous reasoning yields the result for the

other order of votes on the two issues.

3 The Limit Case when the Number of Agents Is

Large

The full probabilistic optimization problem can be rewritten as

(P) min
θ∈[0,2π]

∫
D

...

∫
D

(
1

n

n∑
i=1

||R (θ) ti − ϕθ (t1, t2, ..., tn)||2
)
f(t1)...f(tn)dt1...dtn.

We focus here on the solution to problem (P) when the number of agents is large.

But, note that the resulting optimal mechanism will be incentive compatible, Pareto

optimal and anonymous for any number of voters.15 For a random variable X with

finite mean µX and variance σ2
X , we know from the central limit theorem that

√
n

(
1

n

n∑
i=1

Xi − µX

)
→ N(0, σ2

X).

Bahadur (1966) showed that the quantiles of large samples display a similar behavior.

In particular,
√
n(X(n+1)/2:n −mX)→ N

(
0,

1

4f 2(mX)

)
where

X(n+1)/2:n = median (X1, ..., Xn)

15This contrasts trivial incentive compatible mechanisms such as always choosing a fixed alterna-

tive, which may yield “catastrophic” results for a finite number of agents and particular realizations

of types.
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and wheremX is the median of the distribution. Thus, as n goes to infinity, the sample

median converges to the median of the underlying distribution (and, of course, the

sample mean converges to the mean).

By applying the above limit results to our setting, we obtain that, as n→∞,(
m− (θ, t1, .., tn)

m+ (θ, t1, .., tn)

)
−→m (θ) ≡

(
m− (θ)

m+ (θ)

)
≡

(
median (X cos θ − Y sin θ)

median (X sin θ + Y cos θ)

)
Furthermore, since the norm operation ||·|| is continuous, we obtain that, as n→∞,

1

n

n∑
i=1

||R (θ) ti − ϕθ (t1, t2, ..., tn)||2

=
1

n

n∑
i=1

[
(xi cos θ − yi sin θ −m− (θ, t1, .., tn))2 + (xi sin θ + yi cos θ −m+ (θ, t1, .., tn))2

]
→ E ||X cos θ − Y sin θ −m−(θ), X sin θ + Y cos θ −m+(θ)||2

= σ2
X + σ2

Y +
(
µ− (θ)−m− (θ)

)2
+
(
µ+ (θ)−m+ (θ)

)2
where

µ− (θ) = µX cos θ − µY sin θ, and µ+ (θ) = µX sin θ + µY cos θ

Therefore, in the limit where n is very large, our problem becomes

(P) min
θ∈[0,2π]

(
µ− (θ)−m− (θ)

)2
+
(
µ+ (θ)−m+ (θ)

)2
+ σ2

X + σ2
Y .

In other words, we look for the rotation that creates the marginal median vector with

the minimum distance from the mean.

For most parts of the analysis below, it will be convenient to normalize the means

of X and Y to be zero - such a normalization is without loss of generality because

of the translational equ-invariance of both mean and median. Let us define the

normalized random variables X̃ and Ỹ as

X̃ = X − µX and Ỹ = Y − µY .

The corresponding normalized marginal medians (m̃− (θ) , m̃+ (θ)) are

m̃− (θ) = m− (θ)− µ− (θ) and m̃+ (θ) = m+ (θ)− µ+ (θ) .

Hence, the planner’s problem becomes

(P) min
θ∈[0,2π]

m̃2
− (θ) + m̃2

+ (θ) + σ2
X + σ2

Y .

Since variances are fixed, the planner’s goal under this normalization is simply to find

the rotation resulting in a marginal median vector with minimum norm. To simplify

14



notation, we shall drop the tilde symbol for normalized random variables where no

confusion can arise.

The first basic Lemma shows that it is without loss of generality to restrict atten-

tion to rotations in the interval [0, π/2].

Lemma 1 For any θ ∈ [π/2, 2π] that minimizes the planner’s objective, there exists

θ′ ∈ [0, π/2] that attains the same minimum.

Proof. See the Appendix.

Consider the normalized planner’s problem. The first order condition for the

optimal rotation θ is then:

FOC : m−(θ)m′−(θ) +m+(θ)m′+(θ) = 0⇔ 〈m(θ),m′(θ)〉 = 0 (6)

In words, the vector of marginal medians and the vector of its derivatives must be

orthogonal. The second order condition for the local optimality of θ is

m′′−(θ)m−(θ) + (m′−(θ))2 +m′′+(θ)m+(θ) + (m′+(θ))2 > 0 (7)

and for a critical value θ to be locally sub-optimal we need

SOC : m′′−(θ)m−(θ) + (m′−(θ))2 +m′′+(θ)m+(θ) + (m′+(θ))2 < 0. (8)

3.1 Sub-Optimality of Voting on Independent Issues

In this subsection, we assume that the marginals X and Y are independent. We

work on the normalized version of the planner’s problem. The zero-angle rotation

corresponds then to votes on independent issues X and Y . Our goal is to show that

the zero-angle rotation yields a local maximum of norm of the normalized marginal

median, or in other words, it leads to a local utility minimum, and is thus sub-optimal.

Theorem 3 Assume that X and Y are independent. Then the following hold:

1. The rotation with angle θ = 0 is a critical point, i.e., it satisfies the first-order

condition.

2. The rotation with angle θ = 0 is a local utility minimum if

mXf
′
X (mX) ≥ 0,mY f

′
Y (mY ) ≥ 0,m2

X +m2
Y 6= 0.

Proof. See Appendix A.
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Corollary 1 Assume that X and Y are unimodal and independent.16 Suppose also

that X and Y satisfy

MX ≤ mX ≤ µX or µX ≤ mX ≤MX

MY ≤ mY ≤ µY or µY ≤ mY ≤MY

where M,m, µ are mode, median and mean, respectively. Then the rotation with angle

θ = 0 is a local utility minimum.

Proof. If MX ≤ mX ≤ µX = 0 (where the last equality holds by normalization),

then mX ≤ 0 and f ′(mX) ≤ 0 because mX is to the right of the mode. Hence

mXf
′
X (mX) ≥ 0. If 0 = µX ≤ mX ≤MX , then mX ≥ 0 and f ′(mX) ≥ 0 because mX

is to the left of the mode. Hence mXf
′
X (mX) ≥ 0, and analogously for Y .

The sufficient condition stated in the above Corollary has the advantage that it

is very intuitive: there are elegant, general characterizations of distributions where

such orders of the mode, median, mean hold (see for example, Dharmadhikari and

Joag-Dev [1988], Basu and DasGupta [1997]).

The next figure geometrically illustrates the intuition of suboptimality of voting

on independent issues. Assume that 0 = µX ≤ mX and 0 = µY ≤ mY . We want to

show that a small rotation improves welfare if f ′X (mX) ≥ 0 and f ′Y (mY ) ≥ 0.

my

mx

B C
D

b2

a2

y y’

x
x’

A
E

H

G L

M

a1

b1

Figure 2. Small rotation improves welfare if f ′X (mX) ≥ 0 and f ′Y (mY ) ≥ 0

16A random variable Z is unimodal if its density f(z) has a single mode (or peak).
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Assume that the unrotated median is B. Therefore, by independence, there is a

mass of 50% above the AC line and a mass of 50% to the right of GH line. Consider

a small rotation with angle θ > 0, so that new axes are x′ and y′. We want to show

that this moves the new median towards the mean (0, 0). That is, we want to show

that the median moves towards the south-west. Consider the projection of B onto

the new, rotated axes: the result will follow if the mass above DE and the mass to

the right of LM are both below 50%. If the area of ABE is larger than the one of

BCD, we obtain that the mass above ED is indeed smaller than 0.5 (the comparison

for the other dimension is analogous).

For illustration purposes, let us assume that X and Y distribute on bounded

intervals [a1, a2] and [b1, b2], respectively. The line DE passing through point B is

given by y = mY − (x−mX) tan θ. Therefore, the difference between the areas ABE

and BCD is

ABE −BCD =

∫ a2

a1

[FY (mY − (x−mX) tan θ)− FY (mY )] fX (x) dx

Since f ′Y (mY ) ≥ 0, FY is locally convex at mY . Therefore, for sufficiently small

θ, the curve FY (mY − (x−mX) tan θ) with x ∈ [a1, a2] lies above the tangent line

FY (mY ) + fY (mY ) (mX − x) tan θ. As a result, for sufficiently small θ, we have

ABE −BCD ≥
∫ a2

a1

fY (mY ) (mX − x) tan θfX (x) dx = fY (mY )mX tan θ > 0

as desired. The argument for the other dimension is analogous.

The main arguments in the rigorous proof of Theorem 3 are as follows: the first-

order condition (6) evaluated at θ = 0 is

m− (0)m′− (0) +m+ (0)m′+ (0) = 0 (9)

and the second order condition (8) for sub-optimality, evaluated at θ = 0, is(
m′− (0)

)2
+m− (0)m′′− (0) +

(
m′+ (0)

)2
+m+ (0)m′′+ (0) < 0. (10)

We first show that m′− (0) = m′+ (0) = 0, which implies that condition (9) is fulfilled

(recall that mX = m− (0) and mY = m+ (0)). Condition (10) is then reduced to

mXm
′′
− (0) +mYm

′′
+ (0) < 0.

The main thrust of the proof is an application of the characteristic function ap-

proach (or inverse Fourier Transform) in order to show that the first-order condition

(6), and the second-order condition (8) hold at θ = 0. The characteristic function of

a random variable Z is given by

ϕZ (t) = E
(
eitZ
)
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where i is the imaginary unit. Its main convolution property – used heavily in the

proof – is

ϕaX+bY (t) = E
(
eitX

)
E
(
eitY
)

= ϕX (at)ϕY (bt)

for independent random variables X, Y and real constants a, b. Therefore, by setting

a = sin θ and b = cos θ, we obtain

ϕX sin θ+Y cos θ (t) = ϕ (t sin θ)ϕ (t cos θ) ,

ϕX cos θ−Y sin θ (t) = ϕ (t cos θ)ϕ (−t sin θ) .

From the Fourier Inversion Theorem (see Gil-Pelaez [1951] or Shephard [1991]) we

know that, for any random variable Z(θ) = X cos θ+Y sin θ, we can uniquely recover

its distribution from its characteristic function by the formula:

FZ(θ)(z) =
1

2
− 1

2π

∫ ∞
0

ϕZ(θ) (t) e−itz − ϕZ(θ) (−t) eitz

it
dt

Since by the definition of the median mZ(θ), FZ(θ)(mZ(θ)) = 1
2
, we obtain that∫ ∞

0

ϕZ(θ) (t) e−itmZ(θ) − ϕZ(θ) (−t) eitmZ(θ)

it
dt = 0.

This condition can be then implicitly differentiated to obtain information about how

the median varies with rotation θ.

3.2 The π/4 Rotation for Distributions with Identical Marginals

We have shown above that a zero-angle rotation is sub-optimal if the issues brought

to vote are such that the distribution of ideal points has independent marginals. In

other words, it is not optimal to vote on independent issues, and, locally around zero,

some rotation is always welfare improving. What is the optimal way to structure new

issues? Formally, what is the optimal rotation that maximizes the per capita voters’

expected utility?

In this subsection, we assume that the marginals X and Y are identically (but

not necessarily independently) distributed. Then, by symmetry, the π/4 rotation is

a natural candidate for the optimal rotation. For θ = π/4 we have(
m− (θ)

m+ (θ)

)
=

(
median (

√
2
2

(X − Y ))

median (
√
2
2

(X + Y ))

)
=

√
2

2

(
0

median (X + Y )

)

The last equality follows because median(λZ) = λmedian(Z) for any random variable

Z, and because X − Y is a symmetric random variable, where the median equals the
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mean (which, recall, is normalized to be zero). For our purposes, this implies that the

π/4 rotation completely eliminates the conflict arising between efficiency and incentive

compatibility along one dimension – all remaining such conflict is concentrated in the

other dimension, as illustrated in the following figure (assuming mX > µX = 0):

y

x

x'

y'

o45

YXm +2
2

Xm

Ym

0

22
YX mm +

Figure 3. The π/4 rotation with symmetric marginals

The π/4 rotation has the following interpretation: Instead of voting X and Y

separately, the vote is on issues X+Y and X−Y , and the outcome is determined by

the simple majority on each issue. Once voters have decided on X + Y and X − Y ,

the planner can then obviously recover X and Y . The two-steps voting procedure

associated with π/4 rotation resembles the “top-down” budgeting procedure widely

used in practice: first a total budget is determined, and then it is allocated among

several items.

We first compare the expected utility under the π
4

rotation with that under the 0

rotation when X and Y are identically distributed. As is also apparent from Figure 3,

this amounts to check whether the original coordinate-wise median vector (mX ,mY ) is

closer to the origin than the new coordinate-wise median vector (mX+Y /2,mX+Y /2),

or vice-versa.

Theorem 4 Suppose X and Y are identically distributed and mX 6= µX . In addition,

suppose that convolution X + Y maintains the relative magnitude of the mean and

median, that is,

mX < (>)µX ⇒ mX+Y < (>)µX+Y .

If mX < (>)µX , and if the median function is super-additive (sub-additive)

mX +mY < (>)mX+Y , (11)

then the expected utility at θ = π
4

exceeds the expected utility at θ = 0.
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Proof. Suppose that mX < µX and that µX = 0. The proof for the other case is

completely analogous. By assumption, mX = mY ≤ 0 and m+(π
4
) ≤ 0. The expected

utility at θ = 0 is

U(0) = −2σ2
X − 2m2

X

and the expected utility at θ = π
4

is

U(
π

4
) = −2σ2

X −m2
+(
π

4
)

Given our assumptions, we have

U(
π

4
) > U(0)⇔ m+(

π

4
) >
√

2mX ⇔ m√
2

2
(X+Y )

>
√

2mX ⇔ mX+Y > 2mX ,

where we use the fact that for any random variable Z, it holds that λmZ = mλZ .

Remark 2 The above sufficient conditions can also be directly applied to compare

the level of total budget between the “bottom-up” and “top-down” budgeting proce-

dures mentioned in the Introduction.17 Whenever the median function is super (sub)-

additive, the top-down procedure where a total budget is determined first leads to a

higher (lower) overall budget than the bottom-up procedure where votes are item by

item and the total budget is gradually determined.

The super-additivity (or sub-additivity) condition on the median function, though

elegant, may not be easily verified directly since it involves the computation of the

convolution and its median. Assuming that X and Y are I.I.D. , we can present a

simple, directly verifiable, sufficient condition that simultaneously guarantees mX <

(>)µX and mX +mY < (>)mX+Y .

Proposition 1 Suppose that X and Y are I.I.D. and that mX 6= µX . If

FX (mX + ε) + FX (mX − ε) ≤ (≥) 1 for all ε > 0, (12)

then

mX < (>)µX and mX +mY < (>)mX+Y .

Proof. See Appendix A.

It is worth noting that van Zwet [1979] shows that the same condition (12) im-

plies that µX < mX < MX (µX > mX > MX). It follows from Corollary 1 that

condition (12) also implies the sufficient condition in Theorem 3 for zero rotation to

be suboptimal.

17Note that this question is not identical to the question of utility comparisons.
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We can apply Proposition 1 to show that, if F is either strictly convex or concave,

then the π/4 rotation is strictly better than zero rotation.18

Corollary 2 Suppose that X and Y are I.I.D. and that µX 6= mX . If F (x) is strictly

convex or strictly concave, then the expected utility at θ = π/4 is strictly higher than

the expected utility at θ = 0.

Proof. Note that F (X) is uniformly distributed random variable , so that E [F (X)] =

1/2. Suppose that F is strictly convex. The concave case can be proved analogously.

By Jensen’s inequality

F (mX) =
1

2
= E [F (X)] > F (E [X]) = F (µX) .

Hence, mX > µX . In order to show that mX + mY > mX+Y , it is sufficient to show

that

FX (mX + ε) + FX (mX − ε) ≥ 1 for all ε > 0.

Note that fX (mX + ε)−fX (mX − ε) > 0 by strict convexity of F , so FX (mX + ε)+

FX (mX − ε) is increasing in ε and reaches a minimum at ε = 0. Since FX (mX) +

FX (mX) = 1, we must have FX (mX + ε) + FX (mX − ε) ≥ 1 for all ε > 0.

It follows from Corollary 2 that the π/4 rotation strictly dominates the zero ro-

tation for the exponential distribution because it is strictly concave. The domination

also holds for the class of power function distribution F (x) = xk with k > 0 and

k 6= 1, because F (x) is strictly concave when k < 1 and strictly convex when k > 1.

We now show how the super-additivity condition in Theorem 4 is satisfied for two

well-known families of distributions where condition (12) is not easily checked, or does

not hold.19 This requires a few definitions and some results that use majorization and

Schur-convexity arguments.

Definition 1 A vector (a, b) is said to majorize (a′, b′), written as (a, b) � (a′, b′), if

a+ b = a′+ b′ and if max(a, b) > max {a′, b′}. A function h (a, b) is said to be Schur-

convex in (a, b) if h (a′′, b′′) ≥ h (a′, b′) whenever (a′′, b′′) � (a′, b′), and Schur-concave

in (a, b) if h (a′′, b′′) ≤ h (a′, b′) whenever (a′′, b′′) � (a′, b′).

18Note that, if X has a bounded support (a, b), a sufficient condition for the case of µX < mX is

FX (mX + ε) + FX (mX − ε) ≥ 1 for all ε ∈ (0, b−mX) .

and a sufficient condition for the other case is

FX (mX + ε) + FX (mX − ε) ≤ 1 for all ε ∈ (0,mX − a) .

19Although the super-additivity (or sub-additivity) condition is derived for normalized distribu-

tions, it is straightward to verify that it is also sufficient for original distributions.
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Consider first the large and important family of Gamma distributions with density

fα,β (x) =
βα

Γ (α)
xα−1e−βx for x > 0.

This family contains the Exponential (that can be obtained by setting α = 1) and

many other well known distributions. For any constant c > 0, the random variable

cX is also Gamma with parameters α and β/c. If X and Y are independent Gamma

with parameters (αX , β) and (αY , β), respectively, then X + Y is also Gamma with

parameters (αX +αY , β). Thus, the Gamma family is closed under scaling and under

convolution. In a classic study, Bock et al. [1987] showed that Pr (aX + bY ≤ t),

0 ≤ a, b ≤ 1, is Schur-convex in (a, b) for all t ≤ µX . Since (1, 0) �
(
1
2
, 1
2

)
, we have

F 1
2
X+ 1

2
Y (t) ≤ FX(t) for all t ≤ mX . This implies m 1

2
X+ 1

2
Y ≥ mX as desired.20

A second family is the Rayleigh distribution with cumulative distribution

F (x) = 1− e−x2 for x ≥ 0.

Suppose X, Y are I.I.D. distributed according to Rayleigh.21 Then, according to

Lemma 4 in Hu and Lin [2000], we have

Pr (X cos θ + Y sin θ ≤ z) = 1−
∫ π/2

0

sin(2τ)
(
1 + φ2(θ, τ , z)

)
e−φ

2(θ,τ ,z)dτ

20Alternatively, let m(α, β) denote the median of Gamma random variable X with parameters α

and β. Then m(α, β) = m(α, 1)/β. Note that

U(
π

4
) = −2σ2 (α, β)−

(
µ+ −m+

)2
= −2σ2 (α, β)−

(√
2α

β
−
√

2

2β
m(2α, 1)

)2

= −2σ2 (α, β)− 1

2β2 (2α−m(2α, 1))2

and

U(0) = −2σ2(α, β)− 2 (µX −mX)
2

= −2σ2(α, β)− 2

β2 (α−m(α, 1))2

Therefore,

U(
π

4
) > U (0) ⇔ 1

2β2 (2α−m(2α, 1))2 <
2

β2 (α−m(α, 1))2

⇔ (2α−m(2α, 1))2 < 4(α−m(α, 1))2

⇔ m2(2α, 1)− 4αm(2α, 1) < 4m2(α, 1)− 8αm(α, 1)

⇔ m(2α, 1) > 2m(α, 1)

The last inequality holds because, as shown in Berg and Pedersen [2008], m(α, 1) is convex in α.
21If Z1, Z2 is a random sample of size 2 from a normal distribution N(0, 1) then the distribution

of X =
√
Z2
1 + Z2

2 is Rayleigh. In other words, the Rayleigh is the distribution of the norm of a

two-dimensional random vector whose coordinates are normally distributed.
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where φ(θ, τ , z) = z/ cos(θ − τ). The medians of X and of Y are mX = mY =
√

ln 2.

It can be (numerically) verified that

Pr
(

(X + Y ) /
√

2 ≤
√

2mX

)
= 1−

∫ π/2

0

sin(2τ)
(

1 + φ2(
π

4
, τ ,
√

2 ln 2)
)
e−φ

2(π
4
,τ ,
√
2 ln 2)dτ

≈ 0.4658

< 0.5

= Pr
(

(X + Y ) /
√

2 ≤ m+(
π

4
)
)

where the last equality follows from the definition of m+(π
4
). Hence, m+(π

4
) >
√

2mX

as desired.

By assuming independence between X and Y , we were able to derive operational,

sufficient conditions for the π/4 rotation to dominate the zero rotation, but indepen-

dence is not necessary in general. We now present an example where, even though X

and Y are correlated, the median function is super-additive (sub-additive) so the π/4

rotation is welfare superior to the zero rotation. The standard tool we use to model

correlation between X and Y for given marginals is the copula (see Nelson [2006] for

an introduction).

Example 2 Suppose that X and Y are identically distributed on [0, 1] with marginals

FX (x) = x2 and FY (y) = y2. To model correlation between X and Y , we consider

here the Farlie-Gumbel-Morgenstern (FGM) copula

Cδ (p, q) = pq + δpq (1− p) (1− q)

with p, q ∈ [0, 1] and δ ∈ [−1, 1]. The correlation coefficient for FGM copula is

ρ = δ/3 ∈ [−1/3, 1/3]. It follows from the Sklar theorem that we can write the joint

distribution F (x, y) in terms of its marginals and a copula C (p, q):

F (x, y) = C (FX (x) , FY (y)) .

With some algebra, we can derive the joint density as

f (x, y) = 4xy + 4δxy
(
2x2 − 1

) (
2y2 − 1

)
.
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Therefore, as in the proof of Proposition 1, we can write Pr (X + Y < mX +mY ) as

2

∫ 1

mY

∫ mX+mY −y

0

f (x, y) dxdy +

∫ mY

0

∫ mX

0

f (x, y) dxdy

= 2

∫ 1

√
2/2

∫ √2−y
0

(
4xy + 4δxy

(
2x2 − 1

) (
2y2 − 1

))
dxdy

+

∫ √2/2
0

∫ √2/2
0

(
4xy + 4δxy

(
2x2 − 1

) (
2y2 − 1

))
dxdy

=

(
146

35
− 104

35

√
2

)
δ − 8

3

√
2 +

13

3
> 0.5

for all δ ∈ [−1, 1]. Consequently, we have mX+Y < mX + mY . Since FX (x) = x2

is convex, µX < mX . Hence, the sufficient condition (11) in Theorem 4 is fulfilled.

Alternatively, suppose FX (x) =
√
x and FY (y) =

√
y. If we again restrict attention

to the FGM copula, we can follow the same procedure to show that mX+Y > mX +mY

and µX > mX .

So far we have shown that the π/4 rotation is often better than the zero rotation.

Given the symmetry of X and Y and the sub-optimality of the zero rotation, the

π/4 rotation is the natural candidate for the optimal rotation. Even though all our

numerical simulations clearly suggest it, we were unable to analytically prove that

the π/4 rotation is fully optimal. But, if X and Y are I.I.D., we can analytically show

that the π/4 rotation is a critical point, i.e., the first-order condition (6) is satisfied

when θ = π/4, and numerically show that the π/4 rotation is indeed optimal for

several standard families of distributions.

Proposition 2 For any I.I.D. marginals X and Y , θ = π/4 is a critical point, i.e.,

it satisfies the first order condition.

Proof. See Appendix A.

If we can verify second-order conditions either locally or globally, then Proposition

2 can tell us whether θ = π/4 is local or global utility maximum. Unfortunately, the

second order conditions, evaluated at θ = π/4, turn out to be very elusive.

We conclude this section with several numerical simulations. In all these simula-

tions, X and Y are I.I.D., and the original distributions (rather than the normalized

ones) are used as inputs. We then use Mathematica to plot the aggregate expected

welfare as a function of the rotation angle θ ∈ [0, π/2]. All simulations suggest that a

π/4-rotation (i.e., θ ≈ 0.785) is globally optimal. We have also varied the parameter
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values for the distributions, and the resulting graphs are similar. In fact, we were not

able to find any standard distribution where the π/4-rotation is not globally optimal.

(a) Exponential: f (x) = e−x, x ≥ 0 (b) Gamma: f (x) = xe−x, x ≥ 0

(c) Pareto: f (x) = x−2, x ≥ 1 (d) Rayleigh: f(x) = 2xe−x
2

, x ≥ 0

Figure 4. Simulation with I.I.D. marginals

4 Bounds on Relative Efficiency

In this section we provide several lower bounds on the (relative) efficiency loss of the

marginal median mechanisms. In particular, for the logconcave case studied by Caplin

and Nalebuff ([1988], [1991]), the lower bound is 88% of the first-best utility22. Various

other bounds are obtained under other assumptions on the distributions governing

the distribution of voter’s ideal points. The proofs use several classical statistical

inequalities, and some more recent concentration inequalities.

Assume that ideal points are distributed such that the marginals are given by ran-

dom variables (X, Y ) where X and Y are not necessarily identical, and are potentially

correlated. Since the results heavily use statistical results that establish relations

between the mean, median and variance, we work here with the non-normalized

22Recall that the first best is obtained by choosing the vector of marginal means, which, for any

finite number of agents, is not incentive compatible
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variables (so that the role of the mean and its relations to the other statistics does not

get obscured by the normalization we used above). The first-best expected utility,

attained by choosing the mean in each coordinate is given by

−E(X − µX)2 − E(Y − µY )2 = −σ2
X − σ2

Y .

Note that the first best utility decreases as the variances increase. The expected

utility of rotated medians with angle θ is given by

U (θ) = −σ2
X − σ2

Y −
(
µ− (θ)−m− (θ)

)2 − (µ+ (θ)−m+ (θ)
)2
.

Thus, the relative efficiency of the rotation with angle θ (relative to first best) is given

by:

EF (θ) =
σ2
X + σ2

Y

σ2
X + σ2

Y +
(
µ− (θ)−m− (θ)

)2
+
(
µ+ (θ)−m+ (θ)

)2 ≤ 1

Observe that two forces play here a role: on the one hand, a distribution that is

concentrated around a central location (such as the mean or the median) will have

a small difference between mean and median, which tends to increase the relative

efficiency. On the other hand, such a distribution also has a low variance so that the

difference between mean and median plays a bigger overall role.

It is interesting to note that the covariance of X and Y does not play a direct

role in the efficiency calculations: it only enters in the way that the medians of the

convolutions are calculated. We define the maximal relative efficiency as

EF ≡ max
θ
EF (θ) .

The first-best outcome can be attained by majority voting (in the limit with a large

number of agents) if the distributions of both X and Y are symmetric around their

respective means. In this case we have µ− (θ) = m− (θ) and µ+ (θ) = m+ (θ).

Example 3 (Normal Distribution) Let X and Y be independently distributed nor-

mal random variables with zero mean. Then X cos θ − Y sin θ and X sin θ + Y cos θ

are also normally distributed with mean and also median equal to zero. Thus, the

first-best is implementable, and all rotations are welfare equivalent. This proves a

conjecture about the normal distribution due to Kim and Roush [1984].

We now obtain various lower bounds on the attained efficiency for various classes

of distributions. We say a random variable X has increasing failure rate (IFR) if its

hazard rate f (x) / (1− F (x)) is increasing in x.

Theorem 5 The following relative efficiency bounds hold:
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1. For any random variables X and Y , EF ≥ 1
2
;

2. If both X and Y are unimodal, then EF > 5
8
;

3. If both X and Y have an increasing failure rate (IFR) such that µX ≤ mX and

µY ≤ mY , then EF > 3
5
;

4. If X and Y are identically distributed, then EF ≥ 2σ2
X

3σ2
X+Cov(X,Y )

. Thus, if X and

Y are independent, EF ≥ 2
3
, and in the co-monotonic scenario expected utility

cannot be improved by rotation.

5. If X and Y are I.I.D., have an increasing failure rate (IFR), and µX ≤ mX ,

then EF ≥ 0.754;

6. If X and Y are I.I.D. and each has a log-concave density, then EF ≥ 0.876.

Proof. 1. A classical inequality due to Hotelling and Solomons [1932] says that the

square distance between the mean and median of any random variable is always less

than variance:

(µ−m)2 ≤ σ2.

Therefore,(
µ− (θ)−m− (θ)

)2 ≤ σ2
−(θ) ≤ σ2

X cos2 θ + σ2
Y sin2 θ − 2 sin θ cos θCov(X, Y )(

µ+ (θ)−m+ (θ)
)2 ≤ σ2

+(θ) ≤ σ2
X sin2 θ + σ2

Y cos2 θ + 2 sin θ cos θCov(X, Y )

Hence we obtain the universal bound:

EF (θ) ≥ σ2
X + σ2

Y

2σ2
X + 2σ2

Y

=
1

2

2. For the class of unimodal distributions it can be shown that the squared

distance between mean and median is at most 3
5

variance (see Basu and DasGupta

[1997]). Thus, for such distributions we get:

EF > EF (0) ≥ σ2
X + σ2

Y

(σ2
X + σ2

Y ) + 3
5
(σ2

X + σ2
Y )

=
5

8

3. For the class of distributions with an increasing failure rate (IFR), we assume

µX ≤ mX and then obtain from Rychlik [2000] that

(µX −mX)2

σ2
≤

(− log(1
2
)− 1

2
)2

3
4

+ log(1
2
)

= 0.656
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and hence an efficiency rate of

EF ≥ EF (0) ≥ σ2
X + σ2

Y

(σ2
X + σ2

Y ) + 0.656(σ2
X + σ2

Y )
=

1

1 + 0.656
' 3

5

4. If X distributes as Y (not necessarily independent), we know that X − Y is

symmetric and hence that m−
(
π
4

)
= µ−

(
π
4

)
= 0. This yields:

EF ≥ EF (
π

4
) =

2σ2
X

2σ2
X +

(
µ+

(
π
4

)
−m+

(
π
4

))2 ≥ 2σ2
X

3σ2
X + Cov(X, Y )

Assume that (X1, Y1) and (X2, Y2) belong to the same Frechet class M(F1, F2) of bi-

variate distributions with fixed marginals F1 and F2. Moreover, assume that (X1, Y1)

≤PQD (X2, Y2) where PQD stands for the positive quadrant order (see Lehmann

[1966]). This stochastic order measures the amount of positive dependence of the un-

derlying random vectors23. We obtain that all one-dimensional variances are identical,

but that Cov(X1, Y1) ≤ Cov(X2, Y2). Thus, the worst case efficiency bound is higher

when the variates are less positive dependent. In particular, for given marginals, the

highest worst-case efficiency of the π
4

rotation is achieved for the I.I.D. case where

Cov(X, Y ) = 0, and where:

EF ≥ EF (
π

4
) ≥ 2σ2

X

3σ2
X

≥ 2

3

The polar case to independence is the case where X and Y are co-monotonic: then,

their covariance is maximized for given marginals, and, moreover, their convolution

is quantile-additive (see Kaas et al. [2002]). In other words, quantiles and thus

medians (the 50% quantile) are linear functions. Hence we obtain for the median

that m+(π
4
) =
√

2mX , that m2
+(π

4
) ≤ 2σ2

X and hence that

∀θ, EF = EF (
π

4
) ≥ 2σ2

X

4σ2
X

=
1

2

In the co-monotonic scenario expected utility cannot be improved by rotation.

5. Consider the I.I.D. and IFR case with µX ≤ mX .24 Then the convolution of

two such variables is again IFR (see Barlow and Proschan [1965]) and we obtain

EF ≥ EF (
π

4
) ≥ 2σ2

X

2σ2
X + 0.65σ2

X

= 0.754

6. Consider now the I.I.D. case with log-concave densities.25 Then X and Y

are unimodal. Their convolution is log-concave (Prekopa [1973]), and hence also

23It is implied, for example, by the supermodular order.
24For example, this holds for convex and IFR distributions.
25Note that any log-concave distribution on the plane yields log-concave marginals (Prekopa

[1973]).
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unimodal26. By applying the bound in (2) for unimodal distributions we would obtain

that

EF ≥ EF (
π

4
) ≥ 2σ2

X

2σ2
X + 3

5
σ2
X

=
10

13
≈ 0.77

But, a better bound can be obtained by exploiting concentration inequalities that ex-

plicitly use the properties of log-concave densities. Denote by fX = fY the respective

logconcave densities. Bobkov and Ledoux [2014] prove that27

1

12σ2
X

≤ f 2
X(mX) ≤ 1

2σ2
X

On the other hand, Ball and Böröczky [2010] prove that:

fX(mX)· | mX − µX |≤ ln

(√
e

2

)
Combining the two inequalities above yields:

(mX − µX)2 ≤ 1

f 2
X(mX)

ln2

(√
e

2

)
≤ 12σ2

X ln2

(√
e

2

)
The efficiency bound in the log-concave case becomes then:

EF ≥ EF (
π

4
) ≥ 2σ2

X

2σ2
X + 12σ2

X ln2
(√

e
2

) =
1

1 + 6 ln2
(√

e
2

) = 0.876

It is important to note that the above calculations also show that the improve-

ment obtained by rotation may be significant. Just to give one example, consider

the distribution for which the Hotelling-Solomons bound is achieved with equality.28

Then, the second-best welfare in the I.I.D. case without rotation is exactly half of

the first-best welfare, while the welfare following the 45 degree rotation is at least

two-thirds of the original first best, yielding an improvement of at least 30%.

In the Appendix we show how the above bounds can be obtained for the case

of more dimensions. The bound derived for the I.I.D. log-concave case, for exam-

ple, increases in the number of dimensions, and tends to 100% when the number of

dimensions becomes infinite.

26The convolution of unimodal densities need not be unimodal ! But, the convolution of X and

Y is unimodal for any Y iff X is log-concave (see Ibragimov [1956])
27Interestingly enough, the left hand side of the inequality applies to all probabiliy densities on

the real line.
28This is a discrete distribution concentrated on two points.. But, it can be easily approximated

by continuous distribution that satisfy the bound with almost equality, for any needed degree of

precision.
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To illustrate the above efficiency bounds, consider again the Gamma distribution

with parameters α and β. The mean and variance are given by

µ(α, β) =
α

β
; σ2(α, β) =

α

β2

The relative efficiency in the I.I.D. case is:

EF (
π

4
) =

2σ2
X

2σ2
X +

(
µ+

(
π
4

)
−m+

(
π
4

))2
=

2α
β2

2α
β2 + 1

2β2 (2α−m(2α, 1))2

=
1

1 + 1
4a

(2α−m(2α, 1))2
≈ 1

1 + 1
36α

=
36α

36α + 1

for α > 1
2

and

EF (
π

4
) ≈ 1

1 + 1
4α

(ln 2)2
=

4α

4α + (ln 2)2

for α ≤ 1
2
.29 In contrast, the relative efficiency in the unrotated case is given by

EF (0) =

2α
β2

2α
β2 + 2

β2 (α−m(α, 1))2
=

1

1 + 1
α

(α−m(α, 1))2

≈ 1

1 + 1
9α

=
9α

9α + 1

for α > 1 and by

EF (0) =
1

1 + 1
α

(α−m(α, 1))2
≈ 1

1 + 1
α

(ln 2)2
=

α

α + (ln 2)2

for α ≤ 1. As α→∞ we obtain that limEF (π
4
) = 1. This is due to the fact that the

mean-median squared distance stays bounded while the variance increases without

bounds. In particular, if α = 1 so that the distribution is exponential, we obtain

EF (
π

4
) =

36

37
= 0.97 > EF (0) = 0.9.

5 Concluding Remarks

We have shown that voting by simple majority on each dimension becomes a highly

efficient aggregation mechanism when combined with a judicious choice of the issues

that are put up for vote. Our study endogenizes the process by which a “structure

29The efficiency is between these bounds for 0 < α < 1
2 .
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induced equilibrium” can be reached in a complex multi-dimensional collective deci-

sion problem with incomplete information about preferences. As we have shown, a

re-definition of issues facilitates the search for an optimal consensus among ex-ante

conflicting interests. While we have focused on welfare maximization, other goals

(such as the maximizing the utility of an agenda setter) can be analyzed by the same

methods. A companion paper will explore in more detail the case of a finite number

of voters.

6 Appendix A: Omitted Proofs

6.1 Proof of Lemma 1

Recall that we normalize the means of X and Y to be zero. First, suppose θ ∈ [π, 2π].

If we let θ′ = θ − π, then θ′ ∈ [0, π]. Furthermore,

m−(θ) = median (X cos θ − Y sin θ)

= median (−X cos (θ − π) + Y sin (θ − π))

= −m−(θ′)

and

m+ (θ) = median (X sin θ + Y cos θ)

= median (−X sin (θ − π)− Y cos (θ − π))

= −m+(θ′)

As a result,

m2
− (θ) +m2

+ (θ) = m2
− (θ′) +m2

+ (θ′) .

Next, suppose θ ∈ [π/2, π]. If we let θ′ = θ − π/2, then θ′ ∈ [0, π/2]. Furthermore,

m−(θ) = median (X cos θ − Y sin θ)

= median
(
−X sin

(
θ − π

2

)
− Y cos

(
θ − π

2

))
= − median (X sin θ′ + Y cos θ′)

= −m+ (θ′)

and

m+ (θ) = median (X sin θ + Y cos θ)

= median
(
X cos

(
θ − π

2

)
− Y sin

(
θ − π

2

))
= median (X cos θ′ − Y sin θ′)

= m−(θ′)
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Again, we have

m2
− (θ) +m2

+ (θ) = m2
− (θ′) +m2

+ (θ′) .

Therefore, for any θ ∈ [π/2, 2π] that minimizes m2
− (θ) + m2

+ (θ), there exists θ′ ∈
[0, π/2] that attains the same minimum.

6.2 Proof of Theorem 3

Recall our discussion in the text after the statement of Theorem 3: in order to show

that θ = 0 is suboptimal, it is sufficient to show that

m′− (0) = m′+ (0) = 0,

and that

mXm
′′
− (0) +mYm

′′
+ (0) < 0.

We divide the proof in three steps. First, we derive expressions for m′+ (θ) and m′′+ (θ),

and verify m′+ (0) = 0. Second, we derive expressions of m′− (θ) and m′′− (θ) and

verify m′− (0) = 0. The last step, that completes the proof, shows that mXm
′′
− (0) +

mYm
′′
+ (0) < 0 if

mXf
′
X (mX) ≥ 0,mY f

′
Y (mY ) ≥ 0,m2

X +m2
Y 6= 0.

Step 1: Compute m′+ (θ) and m′′+ (θ), and verify m′+ (0) = 0.

By the inversion formula, the distribution of the convolution Z = X sin θ+Y cos θ

is

FX sin θ+Y cos θ(z) =
1

2
− 1

2π

∫ ∞
0

ϕX (t sin θ)ϕY (t cos θ) e−itz − ϕX (−t sin θ)ϕY (−t cos θ) eitz

it
dt

where

ϕX (t sin θ) =

∫ ∞
−∞

eitx sin θfX (x) dx and ϕY (t cos θ) =

∫ ∞
−∞

eity cos θfY (y) dy

Since FX sin θ+Y cos θ(m+ (θ)) = 1/2, we must have∫ ∞
0

ϕX (t sin θ)ϕY (t cos θ) e−itm+ − ϕX (−t sin θ)ϕY (−t cos θ) eitm+

it
dt = 0

Let us define

G(m+, θ) =

∫ ∞
0

ϕX (t sin θ)ϕY (t cos θ) e−itm+ − ϕX (−t sin θ)ϕY (−t cos θ) eitm+

it
dt

Then we have

m′+ (θ) = − ∂G/∂θ

∂G/∂m+

(13)
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and

m′′+ (θ) = −

(
∂2G
∂θ2

+ ∂2G
∂m+∂θ

m′+ (θ)
)

∂G
∂m+
−
(
∂2G
∂m2

+
m′+ (θ) + ∂2G

∂m+∂θ

)
∂G
∂θ(

∂G
∂m+

)2
= −

∂2G
∂θ2

(
∂G
∂m+

)2
+
(
∂2G
∂m2

+

∂G
∂θ
− 2 ∂2G

∂m+∂θ
∂G
∂m+

)
∂G
∂θ(

∂G
∂m+

)3 (14)

By definition of ϕX and ϕY , we can compute

∂ϕX (t sin θ)

∂θ
=

∫ ∞
−∞

itx cos θeitx sin θfX (x) dx so
∂ϕX (t sin θ)

∂θ
|θ=0 = itµX

∂ϕX (−t sin θ)

∂θ
=

∫ ∞
−∞
−itx cos θe−itx sin θfX (x) dx so

∂ϕX (−t sin θ)

∂θ
|θ=0 = −itµX

∂ϕY (t cos θ)

∂θ
= −

∫ ∞
−∞

ity sin θeity cos θfY (y) dy so
∂ϕY (t cos θ)

∂θ
|θ=0 = 0

∂ϕY (−t cos θ)

∂θ
=

∫ ∞
−∞

ity sin θe−ity cos θfY (y) dy so
∂ϕY (−t cos θ)

∂θ
|θ=0 = 0

Therefore,

∂G

∂θ
=

∂

∂θ

∫ ∞
0

ϕX (t sin θ)ϕY (t cos θ) e−itm+ − ϕX (−t sin θ)ϕY (−t cos θ) eitm+

it
dt

=

∫ ∞
0

[
ϕY (t cos θ)

∫∞
−∞ x cos θeitx sin θfX (x) dx

−ϕX (t sin θ)
∫∞
−∞ y sin θeity cos θfY (y) dy

]
e−itm+dt

+

∫ ∞
0

[
ϕY (−t cos θ)

∫∞
−∞ x cos θe−itx sin θfX (x) dx

−ϕX (−t sin θ)
∫∞
−∞ y sin θe−ity cos θfY (y) dy

]
eitm+dt (15)

and

∂2G

∂θ2
=

∫ ∞
0


−
∫∞
−∞ ity sin θeity cos θfY (y) dy

∫∞
−∞ x cos θeitx sin θfX (x) dx

+ϕY (t cos θ)
∫∞
−∞ (−x sin θ + itx2 cos2 θ) eitx sin θfX (x) dx

−
∫∞
−∞ itx cos θeitx sin θfX (x) dx

∫∞
−∞ y sin θeity cos θfY (y) dy

−ϕX (t sin θ)
∫∞
−∞

(
y cos θ − ity2 sin2 θ

)
eity cos θfY (y) dy

 e−itm+dt

+

∫ ∞
0


∫∞
−∞ ity sin θe−ity cos θfY (y) dy

∫∞
−∞ x cos θe−itx sin θfX (x) dx

ϕY (−t cos θ)
∫∞
−∞ (−x sin θ − itx2 cos2 θ) e−itx sin θfX (x) dx

−
∫∞
−∞−itx cos θe−itx sin θfX (x) dx

∫∞
−∞ y sin θe−ity cos θfY (y) dy

−ϕX (−t sin θ)
∫∞
−∞

(
y cos θ + ity2 sin2 θ

)
e−ity cos θfY (y) dy

 eitm+dt(16)

Since µX = 0 for the normalized distribution, we have

∂G

∂θ
|θ=0 = 0,
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and since ϕX (0) = 1, we have

∂2G

∂θ2
|θ=0 =

∫ ∞
0

[
ϕY (t)

∫ ∞
−∞

itx2fX (x) dx− ϕX (0)

∫ ∞
−∞

yeityfY (y) dy

]
e−itm+dt

+

∫ ∞
0

[
ϕY (−t)

∫ ∞
−∞
−itx2fX (x) dx− ϕX (0)

∫ ∞
−∞

ye−ityfY (y) dy

]
eitm+dt

=

∫ ∞
0

[
ϕY (t) itσ2

X −
∫ ∞
−∞

yeityfY (y) dy

]
e−itm+dt

+

∫ ∞
0

[
−ϕY (−t) itσ2

X −
∫ ∞
−∞

ye−ityfY (y) dy

]
eitm+dt

=

∫ ∞
0

[∫ ∞
−∞

itσ2
X

(
eit(y−m+) − e−it(y−m+)

)
fY (y) dy

]
dt

−
∫ ∞
0

[∫ ∞
−∞

y
(
eit(y−m+) + e−it(y−m+)

)
fY (y) dy

]
dt

= −2

∫ ∞
0

{∫ ∞
−∞

[
tσ2

X sin (t (y −m+)) + y cos (t (y −m+))
]
fY (y) dy

}
dt

Similarly,

∂G

∂m+

=
∂

∂m+

∫ ∞
0

ϕX (t sin θ)ϕY (t cos θ) e−itm+ − ϕX (−t sin θ)ϕY (−t cos θ) eitm+

it
dt

= −
∫ ∞
0

(
ϕX (t sin θ)ϕY (t cos θ) e−itm+ + ϕX (−t sin θ)ϕY (−t cos θ) eitm+

)
dt(17)

Therefore, with ϕX (0) = 1, we have

∂G

∂m+

|θ=0 = −
∫ ∞
0

(
ϕY (t) e−itm+ + ϕY (−t) eitm+

)
dt

= −
∫ ∞
0

∫ ∞
−∞

[
eit(y−m+) + e−it(y−m+)

]
fY (y) dydt

= −2

∫ ∞
0

∫ ∞
−∞

cos (t (y −m+)) fY (y) dydt

and

m′+ (0) = −
∂G
∂θ
|θ=0

∂G
∂m+
|θ=0

= 0,

Note that if θ = 0, then m+ (0) = mY and thus

m′′+ (0) = −
∂2G
∂θ2

(
∂G
∂m+

)2
+
(
∂2G
∂m2

+

∂G
∂θ
− 2 ∂2G

∂m+∂θ
∂G
∂m+

)
∂G
∂θ(

∂G
∂m+

)3 |θ=0 = −
∂2G
∂θ2
|θ=0

∂G
∂m+
|θ=0

= −

∫∞
0

{∫∞
−∞ [tσ2

X sin (t (y −mY )) + y cos (t (y −mY ))] fY (y) dy
}
dt∫∞

0

∫∞
−∞ cos (t (y −mY )) fY (y) dydt
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Step 2: Compute m′− (θ) and m′′− (θ) and verify that m′− (0) = 0.

As before, the distribution of the convolution W = X cos θ − Y sin θ is

FX cos θ−Y sin θ(w) =
1

2
− 1

2π

∫ ∞
0

ϕX (t cos θ)ϕY (−t sin θ) e−itw − ϕX (−t cos θ)ϕY (t sin θ) eitw

it
dt

Since FX cos θ−Y sin θ(m− (θ)) = 1/2, we must have∫ ∞
0

ϕX (t cos θ)ϕY (−t sin θ) e−itm− − ϕX (−t cos θ)ϕY (t sin θ) eitm−

it
dt = 0

Let us define

H(m−, θ) =

∫ ∞
0

ϕX (t cos θ)ϕY (−t sin θ) e−itm− − ϕX (−t cos θ)ϕY (t sin θ) eitm−

it
dt

Then

m′− (θ) = − ∂H/∂θ

∂H/∂m−
(18)

and

m′′− (θ) = −
∂2H
∂θ2

(
∂H
∂m−

)2
+
(
∂2H
∂m2
−

∂H
∂θ
− 2 ∂2H

∂m−∂θ
∂H
∂m−

)
∂H
∂θ(

∂H
∂m−

)3 (19)

As before, we can compute

∂H

∂θ
=

∂

∂θ

∫ ∞
0

ϕX (t cos θ)ϕY (−t sin θ) e−itm− − ϕX (−t cos θ)ϕY (t sin θ) eitm−

it
dt

=

∫ ∞
0

[
ϕY (−t sin θ)

∫∞
−∞−x sin θeitx cos θfX (x) dx

+ϕX (t cos θ)
∫∞
−∞−y cos θe−ity sin θfY (y) dy

]
e−itm−dt

−
∫ ∞
0

[
ϕY (t sin θ)

∫∞
−∞ x sin θe−itx cos θfX (x) dx

+ϕX (−t cos θ)
∫∞
−∞ y cos θeity sin θfY (y) dy

]
eitm−dt (20)

and

∂2H

∂θ2
=

∫ ∞
0


∫∞
−∞−ity cos θe−ity sin θfY (y) dy

∫∞
−∞−x sin θeitx cos θfX (x) dx

+ϕY (−t sin θ)
∫∞
−∞

(
−x cos θ + itx2 sin2 θ

)
eitx cos θfX (x) dx

+
∫∞
−∞−itx sin θeitx cos θfX (x) dx

∫∞
−∞−y cos θe−ity sin θfY (y) dy

+ϕX (t cos θ)
∫∞
−∞ (y sin θ + ity2 cos2 θ) e−ity sin θfY (y) dy

 e−itm−dt

−
∫ ∞
0


∫∞
−∞ ity cos θeity sin θfY (y) dy

∫∞
−∞ x sin θe−itx cos θfX (x) dx

+ϕY (t sin θ)
∫∞
−∞

(
x cos θ + itx2 sin2 θ

)
e−itx cos θfX (x) dx

+
∫∞
−∞ itx sin θe−itx cos θfX (x) dx

∫∞
−∞ y cos θeity sin θfY (y) dy

+ϕX (−t cos θ)
∫∞
−∞ (−y sin θ + ity2 cos2 θ) eity sin θfY (y) dy

 eitm−dt(21)
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Furthermore, we can compute

∂H

∂m−
=

∂

∂m−

∫ ∞
0

ϕX (t cos θ)ϕY (−t sin θ) e−itm− − ϕX (−t cos θ)ϕY (t sin θ) eitm−

it
dt

= −
∫ ∞
0

[
ϕX (t cos θ)ϕY (−t sin θ) e−itm− + ϕX (−t cos θ)ϕY (t sin θ) eitm−

]
dt(22)

Given that µY = 0, we have

∂H

∂θ
|θ=0 =

∫ ∞
0

−ϕX (t)µY e
−itm−dt+

∫ ∞
0

ϕX (−t)µY eitm−dt = 0

and since ϕY (0) = 1, we have

∂2H

∂θ2
=

∫ ∞
0

[
ϕY (0)

∫ ∞
−∞
−xeitxfX (x) dx+ itϕX (t)

∫ ∞
−∞

y2fY (y) dy

]
eitm−dt

−
∫ ∞
0

[
ϕY (0)

∫ ∞
−∞

xe−itxfX (x) dx+ itϕX (−t)
∫ ∞
−∞

y2fY (y) dy

]
eitm−dt

=

∫ ∞
0

[∫ ∞
−∞
−xeitxfX (x) dx+ itϕX (t)σ2

Y

]
e−itm−dt

−
∫ ∞
0

[∫ ∞
−∞

xe−itxfX (x) dx+ itϕX (−t)σ2
Y

]
eitm−dt

=

∫ ∞
0

[∫ ∞
−∞

itσ2
Y

(
eit(x−m−) − e−it(x−m−)

)
fX (x) dx

]
dt

−
∫ ∞
0

[∫ ∞
−∞

x
(
eit(x−m−) + e−it(x−m−)

)
fX (x) dx

]
dt

= −2

∫ ∞
0

{∫ ∞
−∞

[
tσ2

Y sin (t (x−m−)) + x cos (t (x−m−))
]
fX (x) dx

}
dt

and

∂H

∂m−
|θ=0 = −

∫ ∞
0

[
ϕX (t) e−itm− + ϕX (−t) eitm−

]
dt = −2

∫ ∞
0

∫ ∞
−∞

cos (t (x−m−)) fX (x) dxdt

As a result,

m′− (0) = − ∂H/∂θ

∂H/∂m−
|θ=0 = 0

Since m− (0) = mX , we have

m′′− (0) = −
∂2H
∂θ2

(
∂H
∂m−

)2
+
(
∂2H
∂m2
−

∂H
∂θ
− 2 ∂2H

∂m−∂θ
∂H
∂m−

)
∂H
∂θ(

∂H
∂m−

)3 |θ=0 = −
∂2H
∂θ2
|θ=0

∂H
∂m−
|θ=0

= −

∫∞
0

{∫∞
−∞ [tσ2

Y sin (t (x−mX)) + x cos (t (x−mX))] fX (x) dx
}
dt∫∞

0

∫∞
−∞ cos (t (x−mX)) fX (x) dxdt
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Step 3: Verify the sufficient, second-order condition.

Note that the second-order derivative at θ = 0 is given by

mXm
′′
− (0) +mYm

′′
+ (0)

= −mX

∫∞
0

{∫∞
−∞ [tσ2

Y sin (t (x−mX)) + x cos (t (x−mX))] fX (x) dx
}
dt∫∞

0

∫∞
−∞ cos (t (x−mX)) fX (x) dxdt

−mY

∫∞
0

{∫∞
−∞ [tσ2

X sin (t (y −mY )) + y cos (t (y −mY ))] fY (y) dy
}
dt∫∞

0

∫∞
−∞ cos (t (y −mY )) fY (y) dydt

We want to show that

mXf
′
X (mX) ≥ 0,mY f

′
Y (mY ) ≥ 0,mX +mY 6= 0.

implies

mXm
′′
− (0) +mYm

′′
+ (0) < 0.

By the inversion formula:

FX(z) =
1

2
− 1

2π

∫ ∞
0

ϕX (t) e−itz − ϕX (−t) eitz

it
dt

=
1

2
− 1

2π

∫ ∞
0

1

it

∫ ∞
−∞

[
eitxe−itz − e−itxeitz

]
fX (x) dxdt

=
1

2
− 1

2π

∫ ∞
0

1

it

∫ ∞
−∞

[
eit(x−z) − e−it(x−z)

]
fX (x) dxdt

=
1

2
− 1

2π

∫ ∞
0

1

it

∫ ∞
−∞

[2i sin (t (x− z))] fX (x) dxdt

=
1

2
− 1

π

∫ ∞
0

∫ ∞
−∞

1

t
sin (t (x− z)) fX (x) dxdt

Therefore,

fX (z) = − 1

π

∫ ∞
0

∫ ∞
−∞

1

t
(−t) cos (t (x− z)) fX (x) dxdt =

1

π

∫ ∞
0

∫ ∞
−∞

cos (t (x− z)) fX (x) dxdt

f ′X (z) =
1

π

∫ ∞
0

∫ ∞
−∞

t sin (t (x− z)) fX (x) dxdt

Hence ∫ ∞
0

∫ ∞
−∞

cos (t (x− z)) fX (x) dxdt = πfX (z)∫ ∞
0

∫ ∞
−∞

t sin (t (x− z)) fX (x) dxdt = πf ′X (z)
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As a result

mXm
′′
− (0) +mYm

′′
+ (0)

= −mX

σ2
Y

∫∞
0

∫∞
−∞ t sin (t (x−mX)) fX (x) dxdt+

∫∞
0

∫∞
−∞ x cos (t (x−mX)) fX (x) dxdt∫∞

0

∫∞
−∞ cos (t (x−mX)) fX (x) dxdt

−mY

σ2
X

∫∞
0

∫∞
−∞ t sin (t (y −mY )) fY (y) dydt+

∫∞
0

∫∞
−∞ y cos (t (y −mY )) fY (y) dydt∫∞

0

∫∞
−∞ cos (t (y −mY )) fY (y) dydt

= − mX

fX (mX)

[
σ2
Y f
′
X (mX) +

∫∞
0

∫∞
−∞ x cos (t (x−mX)) fX (x) dxdt

π

]

− mY

fY (mY )

[
σ2
Xf
′
Y (mY ) +

∫∞
0

∫∞
−∞ y cos (t (y −mY )) fY (y) dydt

π

]

By the inversion theorem for real functions we have:∫ ∞
0

∫ ∞
−∞

x cos (t (x−mX)) fX (x) dxdt = πmXf (mX)∫ ∞
0

∫ ∞
−∞

y cos (t (y −mY )) fY (y) dydt = πmY f (mY )

Then

mXm
′′
− (0) +mYm

′′
+ (0)

= − mX

fX (mX)

[
σ2
Y f
′
X (mX) +mXf (mX)

]
− mY

fY (mY )

[
σ2
Xf
′
Y (mY ) +mY f (mY )

]
= −m2

X

[
σ2
Y

f ′X (mX)

mXfX (mX)
+ 1

]
−m2

Y

[
σ2
X

f ′Y (mY )

mY f (mY )
+ 1

]
= −σ2

Y

mXf
′
X (mX)

fX (mX)
− σ2

X

mY f
′
Y (mY )

f (mY )
−m2

X −m2
Y

Therefore, a sufficient condition for

mXm
′′
− (0) +mYm

′′
+ (0) < 0

is

mXf
′
X (mX) ≥ 0,mY f

′
Y (mY ) ≥ 0, and m2

X +m2
Y 6= 0.

6.3 Proof of Proposition 1

Suppose FX (mX + ε) + FX (mX − ε) ≤ 1 for all ε > 0. The other case is completely

analogous. We first use an argument by van Zwet [1979] to claim that mX < µX .
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Note that

mX − µX =

∫ mX

−∞
(mX − x) fX (x) dx+

∫ ∞
mX

(mX − x) fX (x) dx

=

∫ mX

−∞
FX (x) dx−

∫ ∞
mX

(1− FX (x)) dx

=

∫ ∞
0

[FX (mX − x) + FX (mX + x)− 1] dx

It follows from mX 6= µX that mX < µX , and that FX (mX − x)+FX (mX + x)−1 <

0 for some interval of x. Next, we use an argument adapted from Watson and Gordon

[1986] to prove that the median function is super-additive. The super-additivity of

the median function is equivalent to

Pr (X + Y < mX +mY ) <
1

2
(23)

Note that

Pr (X + Y < mX +mY )

=

∫ ∞
mY

∫ mX+mY −y

−∞
fX (x) fY (y) dxdy +

∫ mY

−∞

∫ mX

−∞
fX (x) fY (y) dxdy

+

∫ ∞
mX

∫ mX+mY −x

−∞
fX (x) fY (y) dxdy

=

∫ ∞
mY

FX (mX +mY − y) fY (y) dy +
1

4
+

∫ ∞
mX

fX (x)FY (mX +mY − x) dx

=

∫ ∞
0

FX (mX − ε) fY (mY + ε) dε+

∫ ∞
0

fX (mX + ε)FY (mY − ε) dε+
1

4

Therefore, condition (23) is equivalent to

4

∫ ∞
0

FX (mX − ε) fY (mY + ε) dε+ 4

∫ ∞
0

fX (mX + ε)FY (mY − ε) dε < 1 (24)

Let us define non-negative random variables X+, X−, Y +, Y − as

X+ = X −mX |X ≥ mX and X− = mX −X|X ≤ mX

Y + = Y −mY |Y ≥ mY and Y − = mY − Y |Y ≤ mY

Then

Pr
(
X− > Y +

)
=

∫ ∞
0

2FX (mX − ε) 2fY (mX + ε) dε

Pr
(
Y − > X+

)
=

∫ ∞
0

2FY (mX − ε) 2fX (mX + ε) dx
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Therefore, condition (24) is equivalent to

Pr
(
X− > Y +

)
+ Pr

(
Y − > X+

)
< 1 (25)

A sufficient condition for (25) is

Pr
(
X+ < ε

)
≤ Pr

(
X− < ε

)
and Pr

(
Y + < ε

)
≤ Pr

(
Y − < ε

)
(26)

for all ε > 0 , and with strict inequality for some open interval of ε, because by setting

ε = Y + and ε = X+, respectively, we obtain

Pr
(
X+ < Y +

)
< Pr

(
X− < Y +

)
and Pr

(
Y + < X+

)
< Pr

(
Y − < X+

)
and thus (25). Since X and Y are I.I.D., the sufficient condition (26) reduces to

Pr
(
X+ < ε

)
≤ Pr

(
X− < ε

)
for all ε > 0.

Equivalently,

Pr (X −mX < ε) ≤ Pr (mX −X < ε) .

which simplifies into the first inequality in (12). As we argued above, since mX 6= µX ,

we must have FX (mX − ε) + FX (mX + ε) − 1 < 0 for some open interval of ε, as

desired.

6.4 Proof of Proposition 2

The first order condition (6), evaluated at θ = π/4, is given by

m−(
π

4
)m′−(

π

4
) +m+(

π

4
)m′+(

π

4
) = 0.

Because X and Y are I.I.D., we must have m−(π
4
) = µ−(π

4
) = 0. Therefore, it is

sufficient to show

m′+(
π

4
) = 0.

Recall from the proof of Theorem 3 that m′+ (θ) is given by

m′+ (θ) = − ∂G/∂θ

∂G/∂m+

where

G(m+, θ) =

∫ ∞
0

ϕX (t sin θ)ϕY (t cos θ) e−itm+ − ϕX (−t sin θ)ϕY (−t cos θ) eitm+

it
dt
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and

∂G

∂θ
=

∫ ∞
0

[
ϕY (t cos θ)

∫∞
−∞ x cos θeitx sin θfX (x) dx

−ϕX (t sin θ)
∫∞
−∞ y sin θeity cos θfY (y) dy

]
e−itm+dt

+

∫ ∞
0

[
ϕY (−t cos θ)

∫∞
−∞ x cos θe−itx sin θfX (x) dx

−ϕX (−t sin θ)
∫∞
−∞ y sin θe−ity cos θfY (y) dy

]
eitm+dt

Since X and Y are I.I.D. and since cos (π/4) = sin (π/4) =
√
2
2

, it is easy to verify

that
∂G

∂θ
|θ=π

4
= 0.

Therefore, we have m′+(π
4
) = 0.

7 Appendix B: More than Two Dimensions

Our main result that it is never optimal to vote on independent issues can be easily

extended to higher dimensions. The idea is to apply our previous two-dimensional

analysis to the first two dimensions, while keeping all other dimensions fixed. It then

follows that one can improve welfare by rotating the first two dimensions. Therefore,

it is never optimal to vote on independent issues.

7.1 Sub-optimality of the Zero Rotation

ConsiderK independent issues, denoted byXk, k = 1, ..., K. We write X = (X1, ..., XK)T

and assume that all random variables Xk are normalized. Let SOK denote the special

orthogonal group in dimension K which consists of K ×K orthogonal matrices with

determinant +1. This group is isomorphic to the set of rotations in RK . A K × K
orthogonal matrix Q ∈ SOK is a real matrix with

QTQ = QQT = I

where QT is the transpose of Q , and where I is the K × K identity matrix. As a

result

Q−1 = QT

Each K × K special orthogonal matrix Q transforms an orthogonal system X into

another orthogonal system while preserving the orientation in RK . The transformed

orthogonal system X is denoted as QX. Then, the planner’s objective is to choose Q

in order to maximize welfare.
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The zero-angle rotation is captured of course by the K ×K identity matrix. In

order to show that this rotation is sub-optimal for higher dimensions, consider the

following special orthogonal matrix

Q (θ) =


cos θ − sin θ 0 · · · 0

sin θ cos θ 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


It is easy to verify that [Q (θ)]−1 = [Q (θ)]T , so that Q (θ) is indeed an orthogonal

matrix with determinant +1. This matrix represents a rotation in the plane of the

first two dimensions, while keeping fixed all other dimensions. Hence, for our purpose,

it is sufficient to show that

∆ (θ) ≡ E ||Q (θ) X−median (Q (θ) X)||2 ≤ E ||X−median(X)||2 ≡ ∆ (0)

for some θ close to 0 .

In particular, it is sufficient to show that ∆ (θ) has a local maximum at θ = 0.

But

Q (θ) X =


cos θ − sin θ 0 · · · 0

sin θ cos θ 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




X1

X2

X3

...

XK

 =


X1 cos θ −X2 sin θ

X1 sin θ +X2 cos θ

X3

...

XK


Therefore,

∆ (θ) =
K∑
k=1

σ2
Xk

+
K∑
k=3

m2
Xk

+[median (X1 cos θ −X2 sin θ)]2+[median (X1 sin θ +X2 cos θ)]2

and the sub-optimality of the zero-angle rotation follows directly from our two-

dimensional analysis.

7.2 The Analog of the π/4 Rotation

Suppose X1, ..., XK are I.I.D. drawn from a common distribution. What is the coun-

terpart of π/4 rotation (or equivalently the top-down procedure) in higher dimensions?

We need to look for an orthogonal matrix Q that transforms X into a new vector QX

whose one coordinate is given by the sum X1 + ...+XK while the other coordinates
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consists of various differences. This is straightforward if K is even, and slightly more

complicated if K is odd. For example, If K = 4, the orthogonal matrix Q (with

determinant equal to +1) is given by
1
2

1
2
−1

2
−1

2
1
2
−1

2
−1

2
1
2

−1
2

1
2
−1

2
1
2

1
2

1
2

1
2

1
2




X1

X2

X3

X4

 =
1

2


X1 +X2 −X3 −X4

X1 +X4 −X2 −X3

X2 +X4 −X1 −X3

X1 +X2 +X3 +X4


More generally, if K is even, it is easy to see that the same condition we had before,

namely the super-additivity of the median function, is again sufficient for the π/4

rotation to dominate the zero-angle rotation.

If K = 3, the required orthogonal matrix Q (with determinant equal to +1) is

given 
1
6

√
6 −1

3

√
6 1

6

√
6

1
2

√
2 0 −1

2

√
2

1
3

√
3 1

3

√
3 1

3

√
3


 X1

X2

X3

 =


√
6
6

(X1 +X3 − 2X2)√
2
2

(X1 −X3)√
3
3

(X1 +X2 +X3)



7.3 Efficiency Bounds

As in the main text, we work here with the non-normalized random variablesX1, ..., XK

representing the marginals of the distribution of ideal points. Note that, when there

are K dimensions, the expected utility of choosing marginal medians under an or-

thogonal transformation Q is given by

U (Q) = −E ||QX−median(QX)||2 = −
K∑
k=1

var (QkX)−
K∑
k=1

(mean (QkX)−median(QkX))2

where Qk is the k-th row of the Q matrix. The first-best expected utility is simply

−
∑K

k=1var(QkX). We define the relative efficiency of transformation Q relative to

the first-best as:

EF (Q) ≡
∑K

k=1 var (QkX)∑K
k=1 var (QkX) +

∑K
k=1 (mean (QkX)−median(QkX))2

and the maximal relative efficiency as

EF ≡ max
Q

EF (Q) .
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Again, we can apply the Hotelling-Solomons inequality to obtain that

EF (Q) ≥
∑K

k=1 var (QkX)∑K
k=1 var (QkX) +

∑K
k=1 var (QkX)

=
1

2

Analogously, we can use the Basu-DasGupta inequality to show that, for unimodal

distributions, we have

EF > EF (I) ≥
∑K

k=1 var (QkX)∑K
k=1 var (QkX) + 3

5

∑K
k=1 var (QkX)

=
5

8

Suppose now that K is even, and that X1, ..., XK are I.I.D. with log-concave

densities. Consider an orthogonal matrix Q̂ with

1√
K
Q̂ij =

{
either 1 or − 1 for all j if i 6= K

1 for all j if i = K

such that for all k 6= K, Q̂kX contains an equal number of Xk’s appearing with

positive and negative signs (existence???). It follows from the I.I.D. assumption that

mean(Q̂kX)−median(Q̂kX) =

{
0 if k 6= K,

1√
K

(mean(
∑K

k=1Xk)−median(
∑K

k=1Xk)) if k = K.

Therefore, we have

EF (Q̂) =

∑K
k=1 var(Q̂kX)∑K

k=1 var(Q̂kX) + 1
K

(
mean(

∑K
k=1Xk)−median(

∑K
k=1Xk)

)2
Given that X1, ..., XK have log-concave densities, the convolution Z ≡

∑K
k=1Xk

also has a log-concave densities. Then the inequalities of Bobkov and Ledoux [2014]

and of Ball and Böröczky [2010] together imply

(mZ − µZ)2 ≤ 1

f 2
Z(mZ)

ln2

(√
e

2

)
≤ 12σ2

Z ln2

(√
e

2

)
Hence,

EF (Q̂) ≥
∑K

k=1 var(Q̂kX)∑K
k=1 var(Q̂kX) + 1

K
12σ2

Z ln2
(√

e
2

)
Let σ2

Xk
denote the variance of Xk. Then we have σ2

Z = Kσ2
Xk

and

var(Q̂kX) = Q̂kQ̂
T
k σ

2
Xk

= σ2
Xk

since Q̂kQ̂
T
k = 1 by the definition of an orthogonal matrix. Therefore, we obtain the

following efficiency bound for log-concave densities:

EF ≥ EF (Q̂) ≥
Kσ2

Xk

Kσ2
Xk

+ 12σ2
Xk

ln2
(√

e
2

) =
K

K + 12 ln2
(√

e
2

)
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For example, if K = 4, the bound is 93.4%. Note that this bound is increasing the

number of dimensions K, and tends to 100% when K goes to infinity.
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