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Abstract

We provide an equilibrium framework for modeling the behavior of an agent
who holds a simplified view of a dynamic optimization problem. The agent faces
a Markov Decision Process, where a transition probability function determines
the evolution of a state variable as a function of the previous state and the
agent’s action. The agent is uncertain about the true transition function and
has a prior over a set of possible transition functions; this set reflects the agent’s
(possibly simplified) view of her environment and may not contain the true
function. We define an equilibrium concept and provide conditions under which
it characterizes steady-state behavior when the agent updates her beliefs using
Bayes’ rule. Unlike the case for static environments, however, an equilibrium
approach for the dynamic setting cannot be used to characterize those steady
states where the agent perceives that learning is incomplete. Two key features
of our approach is that it distinguishes between the agent’s simplified model
and the true primitives and that the agent’s belief is determined endogenously
in equilibrium.
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1 Introduction

Early interest on studying the behavior of agents who hold misspecified views of
the world (e.g., Arrow and Green (1973), Kirman (1975), Sobel (1984), Kagel and
Levin (1986), Nyarko (1991), Sargent (1999)) has recently been renewed by the work
of Piccione and Rubinstein (2003), Jehiel (2005), Eyster and Rabin (2005), Jehiel
and Koessler (2008), Esponda (2008), Esponda and Pouzo (2012, 2016), Eyster and
Piccione (2013), Spiegler (2013, 2016a, 2016b), and Heidhues et al. (2016). There
are least two reasons for this interest. First, it is natural for agents to be uncertain
about their complex environment and to represent this uncertainty with parsimonious
parametric models that are likely to be misspecified. Second, endowing agents with
misspecified models can explain how certain biases in behavior arise endogenously as
a function of the primitives.1

The previous literature focuses on problems that are intrinsically “static” in the
sense that they can be viewed as repetitions of static problems where the only link
between periods arises because the agent is learning the parameters of the model.
Yet dynamic decision problems, where an agent chooses an action that affects a state
variable (other than a belief), are ubiquitous in economics. The main goal of this
paper is to provide a tractable framework to study dynamic settings where the agent
learns with a possibly misspecified model.

We study a Markov Decision Process where a single agent chooses actions at
discrete time intervals. A transition probability function describes how the agent’s
action and the current state affects next period’s state. The current payoff is a
function of states and actions. As is well known, this problem can be represented
recursively via the following Bellman equation,

V (s) = max
x∈Γ(s)

π(s, x) + δ

ˆ
S
V (s′)Q(ds′ | s, x), (1)

where s is the current state, x is the agent’s choice variable, Γ(s) is the set of feasible
actions, π is the payoff function, Q is the transition probability function, and δ is the
discount factor.

In realistic environments, the agent often has to deal with two difficult issues:
1We take the misspecified model as a primitive and assume that agents learn and behave optimally

given their model. In contrast, Hansen and Sargent (2008) study optimal behavior of agents who
have a preference for robustness because they are aware of the possibility of model misspecification.
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a potentially large state space (i.e., the curse of dimensionality) and uncertainty
about the transition probability function. For example, equation (1) may represent
a dynamic savings problem where the agent decides every period what fraction x of
her income to save. The state variable s is a vector that includes wealth as well as
any variable that helps predict returns to savings, such as previous interest rates and
other macroeconomic indicators. The function Q represents the return function, and,
naturally, the agent may not even be sure which indicators are relevant in predicting
returns. In such a complex environment, it is reasonable to expect the agent to
simplify the problem and focus only on certain variables by solving a version of
equation (1) where Q is replaced by a “simpler” transition function.

The main objective of this paper is to provide a framework for modeling the
behavior of an agent who holds a simplified view of the dynamic optimization problem
represented by equation (1). One of the challenges is to determine which transition
function should be used to replace Q in equation (1) as a function of the agent’s
simplified view of her environment.

Before we describe our approach, consider first the way that this problem is often
handled in the literature. The modeler simplifies the problem by eliminating some
state variables from the state space and then solves the problem as if it were true
that the true transition does not depend on the eliminated variables. The typical
justification is that the original problem is too complex to solve for the modeler,
and so it is reasonable that the agent would perform a similar simplification. This
approach has two disadvantages. The first is that we should distinguish between
the possibly simplified model of the agent and the true primitives, since it is the
combination of the agent’s policy function and the true primitives that determines
outcomes. The second is that it is not at all obvious how to simplify Q. We will show
through examples that, in some cases, there is no a priori reasonable candidate while,
in other cases, the obvious candidate to replace Q does not seem appropriate.

We propose an alternative approach that distinguishes between the simplified
model of the agent and the true primitives. This distinction turns out to be crucial
for determining how to simplify the true Q. Our approach is to postulate that the
agent is endowed with a family of transition probability functions, {Qθ : θ ∈ Θ},
indexed by a parameter space Θ. This family captures both the uncertainty of the
agent as well as the way in which she simplifies the problem. In particular, the agent’s
model is misspecified whenever the true model Q is not in {Qθ : θ ∈ Θ}. For example,
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the agent may incorrectly believe that certain macroeconomic indicators are irrelevant
for predicting returns, but she may still be uncertain as to the predictive value of the
remaining indicators.

The agent has a prior µ over Θ, and this belief is updated using Bayes’ rule
based on the current state, the agent’s decision, and the state observed next period,
µ′ = B(s, x, s′, µ), where B denotes the Bayesian operator and µ′ is the posterior
belief. The convenience of Bayesian updating is that we can represent this problem
recursively via the following Bellman equation, where the state variable now also
includes the agent’s belief:

W (s, µ) = max
x∈Γ(s)

π(s, x) + δ

ˆ ˆ
W (s′, µ′)Qθ(ds

′ | s, x)µ(dθ). (2)

The main question that we ask is whether we can characterize the asymptotic
behavior of this agent by studying the problem without learning, as represented by
equation (1), where the agent holds some limiting belief µ∗ ∈ ∆(Θ) and the true
transition Q is replaced by the agent’s simplified version of the transition, Q̄µ∗ =´

Θ
Qθµ

∗(dθ). In addition to gaining tractability, there are two reasons why we focus
on asymptotic behavior. The first is that, as reviewed below, there is a long tradition
in statistics and economics that highlights the advantages of studying asymptotic or
equilibrium behavior, and we can contrast our results to this literature. The second
is that we want to make sure that mistakes are not driven by lack of opportunities to
learn.

In the static settings studied by previous literature (both in games and decision
settings), the answer to the question that we ask is positive under mild assumptions,
meaning that we can characterize steady-state beliefs and behavior by studying a
problem where beliefs are fixed. In particular, we do not need to tackle the problem
of belief updating in order to characterize limiting behavior. This type of result is
quiet remarkable, but it has been customary to expect such a result to hold anytime
a new equilibrium concept is postulated.

In the dynamic environments that we study in this paper, the answer to our ques-
tion is more nuanced. We show that the answer is positive if we restrict attention to
a class of steady states that satisfy a property that we call exhaustive learning. This
property says that the agent perceives that she has nothing else to learn in steady
state. This property is satisfied, for example, if we are interested in behavior that is
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robust to a small amount of exogenous experimentation.2 Steady states that do not
satisfy exhaustive learning, however, cannot generally be characterized by an equi-
librium approach with fixed beliefs. In contrast, the modeler is forced to consider
the more complicated problem with belief updating, as represented by equation (2).
As we explain in Section 5, the difference in results between the static and dynamic
settings arises from the fact that updating a belief can never decrease the agent’s con-
tinuation value in the static case (because of a nonnegative value of experimentation),
but it may decrease it when both the belief and another state variable change.

We define a notion of equilibrium for the dynamic environment and show that
this notion captures the set of steady states with exhaustive learning. We call this
notion a Berk-Nash equilibrium because, in the special case where the environment
is static, it collapses to the single-agent version of Berk-Nash equilibrium, a concept
introduced by Esponda and Pouzo (2016) to characterize steady state behavior in
static environments with misspecified agents. A strategy in a Markov decision process
(MDP) is a mapping from (non-belief) states to actions. For a given strategy and
true transition probability function, the stochastic process for states and actions in
an MDP is a Markov chain and has a corresponding stationary distribution that
can be interpreted as the steady-state distribution over outcomes. A strategy and
corresponding stationary distribution is a Berk-Nash equilibrium if there exists a
belief µ∗ over the parameter space such that: (i) the strategy is optimal for an MDP
with transition probability function Q̄µ∗ , and (ii) µ∗ puts probability one on the set of
parameter values that yield transition probability functions that are “closest” to the
true transition probability function. The notion of “closest” is given by a weighted
version of the Kullback-Leibler divergence that depends on the equilibrium stationary
distribution.

Our asymptotic characterization of beliefs and actions contributes to the literature
that studies asymptotic beliefs and/or behavior under Bayesian learning. Table 1
categorizes some of the more relevant papers in connection to our work. The table
on the left includes papers where the agent learns from data that is exogenous in
the sense that she does not affect the stochastic properties of the data. This topic
has mostly been tackled by statisticians for both correctly-specified and misspecified

2The property is weaker, however, and allows for beliefs to be incorrect due to lack of experimen-
tation, which is a hallmark of the bandit (e.g., Rothschild (1974b), McLennan (1984), Easley and
Kiefer (1988)) and self-confirming equilibrium (e.g., Battigalli (1987), Fudenberg and Levine (1993),
Dekel et al. (2004), Fershtman and Pakes (2012)) literatures.
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Correctly Specified Misspecified Correctly Specified Misspecified

i.i.d.

Schwartz [65] 
Freedman [63] 
Diaconis-Freedman [86] 

Berk [65] 
Bunke-Milhaud [98] 

Static

Rothschild [74]^ 
Gittins [79]^ 
McLennan [84]^ 
Easley-Kiefer [88]  
Aghion et al [91]

Nyarko [91]^ 
Esponda [08]^ 
Esponda-Pouzo [16] 
Heidhues et al [16]^

non-i.i.d. Ghosal-Van der Vaart [07] 
Shalizi [09] 
Vayanos-Rabin [10]^ Dynamic

Freixas [81]^ 
Koulovatianos et al [09]^ 
This paper 

Fudenberg et al [16]^ 
This paper

Exogenous Data Endogenous Data

Table 1: Literature on Bayesian Learning

models and for both i.i.d. and non-i.i.d. data. The table on the right includes papers
where the agent learns from data that is endogenous in the sense that it is driven
by the agent’s actions, a topic that has been studied by economists mostly in static
settings. By static we mean that the problem reduces to a static optimization problem
if stripped of the learning dynamics.3

Table 1 also differentiates between two complementary approaches to studying
asymptotic beliefs and/or behavior. The first approach is to focus on specific settings
and provide a complete characterization of asymptotic actions and beliefs, including
convergence results; these papers are marked with a superscript ˆ in Table 1. Some
papers pursue this approach in dynamic and correctly specified stochastic growth
models (e.g., Freixas (1981), Koulovatianos et al. (2009)). In static misspecified set-
tings, Nyarko (1991), Esponda (2008), and Heidhues et al. (2016) study passive learn-
ing problems where there is no experimentation motive. Fudenberg et al. (2016) is
the only paper that provides a complete characterization in a dynamic decision prob-
lem with active learning.4,5 The second approach, which we follow in this paper and
we followed earlier for the static case (Esponda and Pouzo, 2016) is to study general

3Formally, we say a problem is static if, for a fixed strategy and belief over the transition proba-
bility function, outcomes (states and actions) are independent across time.

4Under active learning, different actions convey different amount of information and a non-myopic
agent takes the exploitation vs. experimentation tradeoff into account. There can be passive or active
learning in both static and dynamic settings.

5The environment in Fudenberg et al. (2016) is dynamic because the agent controls the drift of
a Brownian motion, even though the only relevant state variable for optimality ends up being the
agent’s belief.
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settings and focus on characterizing the set of steady states.6

The paper is also related to the literature which provides learning foundations for
equilibrium concepts, such as Nash or self-confirming equilibrium (see Fudenberg and
Levine (1998) for a survey). In contrast to this literature, we consider Markov decision
problems and allow for misspecified models. Particular types of misspecifications have
been studied in extensive form games. Jehiel (1995) considers the class of repeated
alternating-move games and assumes that players only forecast a limited number of
time periods into the future; see Jehiel (1998) for a learning foundation. We share
the feature that the learning process takes place within the play of the game and that
beliefs are those that provide the best fit given the data.7

The framework and equilibrium notion are presented in Sections 2 and 3. In
Section 4, we work through several examples. We provide a foundation for equilibrium
in Section 5 and study equilibrium refinements in Section 6.

2 Markov Decision Processes

We begin by describing the environment faced by the agent.

Definition 1. A Markov Decision Process (MDP) is a tuple 〈S,X,Γ, q0, Q, π, δ〉
where

• S is a nonempty and finite set of states

• X is a nonempty and finite set of actions

• Γ : S→ 2X is a non-empty constraint correspondence

• q0 ∈ ∆(S) is a probability distribution on the initial state

• Q : Gr(Γ)→ ∆(S) is a transition probability function8

• π : Gr(Γ)× S→ R is a per-period payoff function
6In macroeconomics there are several models where agents make forecasts using statistical models

that are misspecified (e.g., Evans and Honkapohja (2001) Ch. 13, Sargent (1999) Ch. 6).
7Jehiel and Samet (2007) consider the general class of extensive form games with perfect infor-

mation and assume that players simplify the game by partitioning the nodes into similarity classes.
8For a correspondence Γ : S→ 2X, its graph is defined by Gr(Γ) ≡ {(s, x) ∈ S× X : x ∈ Γ(s)}.
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• δ ∈ [0, 1) is a discount factor

We sometimes use MDP(Q) to denote an MDP with transition probability function
Q and exclude the remaining primitives.

The timing is as follows. At the beginning of each period t = 0, 1, 2, ..., the agent
observes state st ∈ S and chooses a feasible action xt ∈ Γ(st) ⊂ X. Then a new state
st+1 is drawn according to the probability distribution Q(· | st, xt) and the agent
receives payoff π(st, xt, st+1) in period t. The initial state s0 is drawn according to
the probability distribution q0.

The agent facing an MDP chooses a policy rule that specifies at each point in time
a (possibly random) action as a function of the history of states and actions observed
up to that point. As usual, the objective of the agent is to choose a feasible policy
rule to maximize expected discounted utility,

∑∞
t=0 δ

tπ(st, xt, st+1).
By the Principle of Optimality, the agent’s problem can be cast recursively as

VQ(s) = max
x∈Γ(s)

ˆ
S
{π(s, x, s′) + δVQ(s′)}Q(ds′|s, x) (3)

where VQ : S→ R is the (unique) solution to the Bellman equation (3).

Definition 2. A strategy σ is a distribution over actions given states, σ : S→ ∆(X),
that satisfies σ(s) ∈ Γ(s) for all s.

Let Σ denote the space of all strategies and let σ(x | s) denote the probability
that the agent chooses x when the state is s.9

Definition 3. A strategy σ ∈ Σ is optimal for an MDP(Q) if, for all s ∈ S and all
x ∈ X such that σ(x | s) > 0,

x ∈ arg max
x̂∈Γ(s)

ˆ
S
{π(s, x̂, s′) + δVQ(s′)}Q(ds′|s, x̂).

Let Σ(Q) be the set of all strategies that are optimal for an MDP(Q).

9A standard result is the existence of a deterministic optimal strategy. Nevertheless, allowing for
randomization will be important in the case where the transition probability function is uncertain.
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Lemma 1. (i) There is a unique solution VQ to the Bellman equation in (3), and
it is continuous in Q for all s ∈ S; (ii) The correspondence of optimal strategies
Q 7→ Σ(Q) is non-empty, compact-valued, convex-valued, and upper hemicontinuous.

Proof. The proof is standard and relegated to the Online Appendix.

A strategy determines the transitions in the space of states and actions and,
consequently, the set of stationary distributions over states and actions. For any
strategy σ and transition probability function Q, define a transition kernel Mσ,Q :

Gr(Γ)→ ∆ (Gr(Γ)) by letting

Mσ,Q(s′, x′ | s, x) = σ(x′ | s′)Q(s′ | s, x) (4)

for all (s, x), (s′, x′) ∈ Gr(Γ). The transition kernel Mσ,Q is the transition probability
function over Gr(Γ) given strategy σ and transition probability function Q.

For any m ∈ ∆(Gr(Γ)), let Mσ,Q[m] ∈ ∆(Gr(Γ)) denote the probability measure∑
(s,x)∈Gr(Γ)

Mσ,Q(·, · | s, x)m(s, x).

Definition 4. A distribution m ∈ ∆(Gr(Γ)) is a stationary (or invariant) dis-
tribution given (σ,Q) if m = Mσ,Q[m].

A stationary distribution represents the steady-state distribution over outcomes
(i.e, states and actions) when the agent follows a given strategy. Let IQ(σ) ≡ {m ∈
∆(Gr(Γ)) | m = Mσ,Q[m]} denote the set of stationary distributions given (σ,Q).

Lemma 2. The correspondence of stationary distributions σ 7→ IQ(σ) is non-empty,
compact-valued, convex-valued, and upper hemicontinuous.

Proof. See the Appendix.

3 Subjective Markov Decision Processes

Our main objective is to study the behavior of an agent who faces an MDP but is
uncertain about the transition probability function. We begin by introducing a new
object to model the problem with uncertainty, which we call the Subjective Markov
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decision process (SMDP). We then define the notion of a Berk-Nash equilibrium of
an SMDP.

3.1 Setup

Definition 5. A Subjective Markov Decision Process (SMDP) is an MDP,
〈S,X,Γ, q0, Q, π, δ〉, and a nonempty family of transition probability functions, QΘ =

{Qθ : θ ∈ Θ}, where each transition probability function Qθ : Gr(Γ) → ∆(S) is
indexed by a parameter θ ∈ Θ.

We interpret the setQΘ as the different transition probability functions (or models
of the world) that the agent considers possible. We sometimes use SMDP(Q,QΘ) to
denote an SMDP with true transition probability functionQ and a family of transition
probability functions QΘ.

Definition 6. ARegular Subjective Markov Decision Process (regular-SMDP)
is an SMDP that satisfies the following conditions

• Θ is a compact subset of an Euclidean space.

• Qθ(s
′ | s, x) is continuous as a function of θ ∈ Θ for all (s′, s, x) ∈ S×Gr(Γ).

• There is a dense set Θ̂ ⊆ Θ such that, for all θ ∈ Θ̂, Qθ(s
′ | s, x) > 0 for all

(s′, s, x) ∈ S×Gr(Γ) such that Q(s′ | s, x) > 0.

The first two conditions in Definition 6 place parametric and continuity assump-
tions on the subjective models.10 The last condition plays two roles. First, it rules
out a stark form of misspecification by guaranteeing that there exists at least one
parameter value that can rationalize every feasible observation. Second, it implies
that the correspondence of parameters that are a closest fit to the true model is
upper hemicontinuous. Esponda and Pouzo (2016) provide a simple (non-dynamic)
example where this assumption does not hold and equilibrium fails to exist.

10Without the assumption of a finite-dimensional parameter space, Bayesian updating need not
converge to the truth for most priors and parameter values even in correctly specified statistical
settings (Freedman (1963), Diaconis and Freedman (1986)). Note that the parametric assumption
is only a restriction if the set of states or actions is nonfinite, a case we consider in some of the
examples.
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3.2 Equilibrium

The goal of this section is to define the notion of Berk-Nash equilibrium of an SMDP.
The next definition is used to place constraints on the belief µ ∈ ∆(Θ) that the agent
may hold if m is the stationary distribution over outcomes.

Definition 7. The weighted Kullback-Leibler divergence (wKLD) is a mapping
KQ : ∆(Gr(Γ))×Θ→ R̄+ such that for any m ∈ ∆(Gr(Γ)) and θ ∈ Θ,

KQ(m, θ) =
∑

(s,x)∈Gr(Γ)

EQ(·|s,x)

[
ln

(
Q(S ′|s, x)

Qθ(S ′|s, x)

)]
m(s, x).

The set of closest parameter values given m ∈ ∆(Gr(Γ)) is the set

ΘQ(m) ≡ arg min
θ∈Θ

KQ(m, θ).

The set ΘQ(m) contains the parameter values constitute the best fit with the true
transition probability function Q when outcomes are drawn from the distribution m.

Lemma 3. (i) For every m ∈ ∆(Gr(Γ)) and θ ∈ Θ, KQ(m, θ) ≥ 0, with equality
holding if and only if Qθ(· | s, x) = Q(· | s, x) for all (s, x) such that m(s, x) > 0.
(ii) For any regular SMDP(Q,QΘ), m 7→ ΘQ(m) is non-empty, compact valued, and
upper hemicontinuous.

Proof. See the Appendix.

We now define equilibrium.

Definition 8. A strategy and probability distribution (σ,m) ∈ Σ × ∆(Gr(Γ)) is a
Berk-Nash equilibrium of the SMDP(Q,QΘ) if there exists a belief µ ∈ ∆(Θ) such
that

(i) σ is an optimal strategy for the MDP(Q̄µ), where Q̄µ =
´

Θ
Qθµ(dθ),

(ii) µ ∈ ∆(ΘQ(m)), and
(iii) m ∈ IQ(σ).
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Condition (i) in the definition of Berk-Nash equilibrium requires σ to be an op-
timal strategy in the MDP where the transition probability function is

´
Θ
Qθµ(dθ).

Condition (ii) requires that the agent only puts positive probability on the set of
closest parameter values given m, ΘQ(m). Finally, condition (iii) requires m to be a
stationary distribution given (σ,Q).

Remark 1. In Section 5, we interpret the set of equilibria as the set of steady states of
a learning environment where the agent is uncertain about Q. The main advantage
of the equilibrium approach is that it allows us to replace a difficult learning problem
with a simpler MDP with a fixed transition probability function. The cost of this
approach is that it can only be used to characterize asymptotic behavior, as opposed
to the actual dynamics starting from the initial distribution over states, q0 ∈ ∆(S).
This explains why q0 does not enter the definition of equilibrium, and why a mapping
between q0 and the set of corresponding equilibria cannot be provided in general.

Remark 2. In the special case of a static environment, Definition 8 reduces to Esponda
and Pouzo’s (2016) definition of Berk-Nash equilibrium for a single agent. In the
dynamic environment, outcomes follow a Markov process and we must keep track not
only of strategies but also of the corresponding stationary distribution over outcomes.

The next result establishes existence of equilibrium in any regular SMDP.

Theorem 1. For any regular SMDP, there exists a Berk-Nash equilibrium.

Proof. See the Appendix.

The standard approach to proving existence begins by defining a “best response
correspondence” in the space of strategies. This approach does not work here because
the possible non-uniqueness of beliefs implies that the correspondence may not be
convex valued. The trick we employ is to define equilibrium via a correspondence on
the space of strategies, stationary distributions, and beliefs, and then use Lemmas 1,
2 and 3 to show that this correspondence satisfies the assumptions of a generalized
version of Kakutani’s fixed point theorem.11

11Esponda and Pouzo (2016) rely on perturbations to show existence of equilibrium in a static
setting. In contrast, our approach does not require the use of perturbations.
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3.3 Correctly specified and identified SMDPs

An SMDP is correctly specified if the set of subjective models contains the true model.

Definition 9. An SMDP(Q,QΘ) is correctly specified if Q ∈ QΘ; otherwise, it is
misspecified.

In decision problems, data is endogenous and so, following Esponda and Pouzo
(2016), it is natural to consider two notions of identification: weak and strong iden-
tification. These definitions distinguish between outcomes on and off the equilibrium
path. In a dynamic environment, the right object to describe what happens on and
off the equilibrium path is not the strategy but rather the stationary distribution over
outcomes m.

Definition 10. An SMDP is weakly identified given m ∈ ∆(Gr(Γ)) if θ, θ′ ∈
ΘQ(m) implies that Qθ(· | s, x) = Qθ′(· | s, x) for all (s, x) ∈ Gr(Γ) such that
m(s, x) > 0; if the condition is satisfied for all (s, x) ∈ Gr(Γ), we say that the
SMDP is strongly identified given m. An SMDP is weakly (strongly) identified
if it is weakly (strongly) identified for all m ∈ ∆(Gr(Γ)).

Weak identification implies that, for any equilibrium distribution m, the agent
has a unique belief along the equilibrium path, i.e., for states and actions that occur
with positive probability. It is a condition that turns out to be important for proving
the existence of equilibria that are robust to experimentation (see Section 6) and is
always satisfied in correctly specified SMDPs.12 Strong identification strengthens the
condition by requiring that beliefs are unique also off the equilibrium path.

Proposition 1. Consider a correctly specified and strongly identified SMDP with cor-
responding MDP(Q). A strategy and probability distribution (σ,m) ∈ Σ ×∆(Gr(Γ))

is a Berk-Nash equilibrium of the SMDP if and only if σ is optimal given MDP(Q)
and m is a stationary distribution given σ.

12The following is an example where weak identification fails. Suppose an unbiased coin is tossed
every period, but the agent believes that the coin comes up heads with probability 1/4 or 3/4, but
not 1/2. Then both 1/4 and 3/4 minimize the Kullback-Leibler divergence, but they imply different
distributions over outcomes. Relatedly, Berk (1966) shows that beliefs do not converge.
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Proof. Only if : Suppose (σ,m) is a Berk-Nash equilibrium. Then there exists µ such
that σ is optimal given MDP(Q̄µ), µ ∈ ∆(Θ(m)), and m ∈ IQ(σ). Because the
SMDP is correctly specified, there exists θ∗ such that Qθ∗ = Q and, therefore, by
Lemma 3(i), θ∗ ∈ ∆(Θ(m)). Then, by strong identification, any θ̂ ∈ Θ(m) satisfies
Qθ̂ = Qθ∗ = Q, implying that σ is also optimal given MDP(Q). If : Let m ∈ IQ(σ),
where σ is optimal given MDP(Q). Because the SMDP is correctly specified, there
exists θ∗ such that Qθ∗ = Q and, therefore, by Lemma 3(i), θ∗ ∈ ∆(Θ(m)). Thus, σ
is also optimal given Qθ∗ , implying that (σ,m) is a Berk-Nash equilibrium.

Proposition 1 says that, in environments where the agent is uncertain about the
transition probability function but her subjective model is both correctly specified
and strongly identified, then Berk-Nash equilibrium corresponds to the solution of the
MDP under correct beliefs about the transition probability function. If one drops the
assumption that the SMDP is strongly identified, then the “if” part of the proposition
continues to hold but the “only if” condition does not hold. In other words, there
may be Berk-Nash equilibria of correctly-specified SMDPs in which the agent has
incorrect beliefs off the equilibrium path. This feature of equilibrium is analogous to
the main ideas of the bandit and self-confirming equilibrium literatures.

4 Examples

We use three classic examples to illustrate how easy it is to use our framework to
expand the scope of the classical dynamic programming approach.

4.1 Monopolist with unknown dynamic demand

The problem of a monopolist facing an unknown, static demand function was first
studied by Rothschild (1974b) and Nyarko (1991) in correctly and misspecified set-
tings, respectively. In the following example, the monopolist faces a dynamic demand
function but incorrectly believes that demand is static.

MDP: In each period t, a monopolist chooses price xt ∈ X = {L,H}, where
0 < L < H. It then sells st+1 ∈ S = {0, 1} units at zero cost and obtains profit
π(xt, st+1) = xtst+1. The probability that st+1 = 1 is qsx ≡ Q(1 | st = s, xt = x),
where 0 < qsx < 1 for all (s, x) ∈ Gr(Γ) = S × X.13 The monopolist wants to

13The set of feasible actions is independent of the state, i.e., Γ(s) = X for all s ∈ S.
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maximize expected discounted profits, with discount factor δ ∈ [0, 1).
Demand is dynamic in the sense that a sale yesterday increases the probability of

a sale today: q1x > q0x for all x ∈ X. Moreover, a higher price reduces the probability
of a sale: qsL > qsH for all s ∈ S. Finally, for concreteness, we assume that

q1L

q1H

<
H

L
<
q0L

q0H

. (5)

Expression (5) implies that current-period profits are maximized by choosing price
L if there was no sale last period and price H otherwise (i.e., Lq0L > Hq0H and
Hq1H > Lq1L). Thus, the optimal strategy of a myopic monopolist (i.e., δ = 0) who
knows the primitives is σ(H | 0) = 0 and σ(H | 1) = 1. If, however, the monopolist
is sufficiently patient, it is optimal to always choose price L.14

SMDP. The monopolist does not know Q and believes, incorrectly, that demand
is not dynamic. Formally, QΘ = {Qθ : θ ∈ Θ}, where Θ = [0, 1]2 and, for all
θ = (θL, θH) ∈ Θ, Qθ(1 | s, L) = θL and Qθ(1 | s,H) = θH for all s ∈ S. In particular,
θx is the probability that a sale occurs given price x ∈ {L,H}, and the agent believes
that it does not depend on s. Note that this SMDP is regular. For simplicity, we
restrict attention to equilibria in which the monopolist does not condition on last
period’s state, and denote a strategy by σH , the probability that price H is chosen.

Equilibrium. Optimality. Because the monopolist believes that demand is static,
the optimal strategy is to choose the price that maximizes current period’s profit. Let

∆(θ) ≡ HθH − LθL

denote the perceived expected payoff difference of choosing H vs. L under the belief
that the parameter value is θ = (θL, θH) with probability 1. If ∆(θ) > 0, σH = 1 is
the unique optimal strategy; if ∆(θ) < 0, σH = 0 is the unique optimal strategy; and
if ∆(θ) = 0, any σH ∈ [0, 1] is optimal.

Beliefs. For any m ∈ ∆(S× X), the wKLD simplifies to

KQ(m, θ) =
∑

x∈{L,H}

mX(x) {s̄x(m) ln θx + (1− s̄x(m)) ln(1− θx)}+ Const,

14Formally, there exists Cδ ∈ [q1L/q1H , q0L/q0H ], where C0 = q1L/q1H and δ 7→ Cδ is increasing,
such that, if H/L < Cδ, the optimal strategy is σ(H | 0) = σ(H | 1) = 0.
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where s̄x(m) = mS|X(0 | x)q0x +mS|X(0 | x)q1x is the probability of a sale given x.
If σL > 0 and σH > 0, θQ(m) ≡ (s̄L(m), s̄H(m)) is the unique parameter value

that minimizes the wKLD function. If, however, one of the prices is chosen with
zero probability, there are no restrictions on beliefs for the corresponding parameter,
i.e., the set of minimizers is ΘQ(m) = {(θL, θH) ∈ Θ : θH = s̄H(m)} if σL = 0 and
ΘQ(m) = {(θL, θH) ∈ Θ : θL = s̄L(m)} if σH = 0.

Stationary distribution. Fix a strategy σH and denote a corresponding stationary
distribution by m(·;σH) ∈ ∆(S×X). Since the strategy does not depend on the state,
mS|X(· | x;σH) does not depend on x and, therefore, coincides with the marginal
stationary distribution over S, denoted by mS(·;σH) ∈ ∆(S). This distribution is
unique and given by the solution to

mS(1;σH) = (1−mS(1;σH))((1−σH)q0L+σHq0H)+mS(1;σH)((1−σH)q1L+σHq1H).

Equilibrium. We restrict attention to equilibria that are robust to experimen-
tation (i.e., perfect equilibria; see Section 6) by focusing on the belief θ(σH) =

(θL(σH), θH(σH)) ≡ θQ(m(·;σH)) for a given strategy σH ∈ [0, 1].15 Next, let ∆(θ(σH))

be the perceived expected payoff difference for a given strategy σH . Note that
σH 7→ ∆(θ(σH)) is decreasing16, which means that a higher probability of choos-
ing price H leads to more pessimistic beliefs about the benefit of choosing H vs.
L. Therefore, there exists a unique (perfect) equilibrium strategy. Figure 1 depicts
an example where the equilibrium is in mixed strategies.17 Since ∆(θ(0)) > 0, an
agent who always chooses a low price must believe in equilibrium that setting a high
price would instead be optimal. Similarly, ∆(θ(1)) < 0 implies that an agent who al-
ways chooses a high price must believe in equilibrium that settings a low price would
instead be optimal. Therefore, in equilibrium, the agent chooses a strictly mixed
strategy σ∗H ∈ (0, 1) such that ∆(θ(σ∗H)) = 0.18

15Both σH = 0 and σH = 1 are Berk-Nash equilibria supported by beliefs θH(0) = 0 and θL(1) = 0,
respectively. These outcomes, however, are not robust to experimentation, and are eliminated by
requiring θH(0) = limσH→0 s̄H(m(·;σH)) = s̄H(m(·; 0)), and similarly for θL(1).

16The reason is that d
dσH

∆(θ(σH)) = d
dσH

mS(1;σH) (H(q1H − q0H) + L(q1L − q0L)) > 0, since
d

dσH
mS(1;σH) < 0 and q1x > q0x for all x ∈ {L,H}.

17See Esponda and Pouzo (2016) for the importance of mixed strategies in misspecified settings.
18More generally, the unique equilibrium is σH = 0 if ∆(θ(0)) < 0 (i.e., H

L ≤ D1 ≡
q0L

(1−q1L)q0H+q1Hq0L
), σH = 1 if ∆(θ(1)) > 0 (i.e., HL ≥ D2 ≡ (1− q1H) q0Lq0H + q1L), and σ∗H ∈ (0, 1) the

solution to ∆(θ(σ∗H)) = 0 if D1 <
H
L < D2, where q1L

q1H
< D1 < D2 <

q0L
q1H

.
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Figure 1: Equilibrium of the monopoly example

The misspecified monopolist may end up choosing higher prices than optimal,
since she fails to realize that high prices today cost her in the future. But, a bit more
surprisingly, she also may end up choosing lower prices for some primitives.19 The
reason is that her failure to realize that H does relatively better in state s = 1 makes
H unattractive to her.

4.2 Search with uncertainty about future job offers

Search-theoretic models have been central to understanding labor markets since Mc-
Call (1970). Most of the literature assumes that the worker knows all the primitives.
Exceptions include Rothschild (1974a) and Burdett and Vishwanath (1988), wherein
the worker does not know the wage distribution but has a correctly-specified model.
In contrast, we study a worker or entrepreneur who knows the distribution of wages or
returns for new projects but does not know the probability that she would be able to
find a new job or fund a new project. The worker or entrepreneur, however, does not
realize that she is fired or her project fails with higher probability in times in which it
is actually harder to find a new job or fund a new project. We show that the worker
or entrepreneur becomes pessimistic about the chances of finding new prospects and
sub-optimally accepts prospects with low returns in equilibrium.

MDP. At the beginning of each period t, a worker (or entrepreneur) faces a wage
offer (or a project with returns) wt ∈ S = [0, 1] and decides whether to reject or accept
it, xt ∈ X = {0, 1}.20 Her payoff in period t is π(wt, xt) = wtxt; i.e, she earns wt if

19This happens if Cδ < H/L < D1; see footnotes 14 and 18.
20The set of feasible actions is independent of the state, i.e., Γ(w) = X for all w ∈ S.

16



she accepts and zero otherwise. After making her decision, an economic fundamental
zt ∈ Z is drawn from an i.i.d. distribution G.21 If the worker is employed, she is
fired (or the project fails) with probability γ(zt). If the worker is unemployed (either
because she was employed and then fired or because she did not accept employment at
the beginning of the period), then with probability λ(zt) she draws a new wage wt+1 ∈
[0, 1] according to some absolutely continuous distribution F with density f ; wages are
independent and identically distributed across time. With probability 1− λ(zt), the
unemployed worker receives no wage offer, and we denote the corresponding state by
wt+1 = 0 without loss of generality. The worker will have to decide whether to accept
or reject wt+1 at the beginning of next period. If the worker accepted employment
at wage wt at the beginning of time t and was not fired, then she starts next period
with wage offer wt+1 = wt and will again have to decide whether to quit or remain
in her job at that offer.22 The agent wants to maximize discounted expected utility
with discount factor δ ∈ [0, 1). Suppose that γ ≡ E[γ(Z)] > 0 and λ ≡ E[λ(Z)] > 0.

We assume that Cov(γ(Z), λ(Z)) < 0; for example, the worker is more likely to
get fired and less likely to receive an offer when economic fundamentals are strong,
and the opposite holds when fundamentals are weak.

SMDP. The worker knows all the primitives except λ(·), which determines the
probability of receiving an offer. The worker has a misspecified model of the world
and believes λ(·) does not depend on the economic fundamental, i.e., λ(z) = θ for
all z ∈ Z , where θ ∈ [0, 1] is the unknown parameter.23 The transition probability
function Qθ(w

′ | w, x) is as follows: If x = 1, then w′ = w with probability 1− θ, w′
is a draw from F with probability θγ, and w′ = 0 with probability (1− θ)γ; If x = 0,
then w′ is a draw from F with probability θ and w′ = 0 with probability 1− θ.

Equilibrium. Optimality. Suppose that the worker believes that the true param-
eter is θ with probability 1. The value of receiving wage offer w ∈ S is

V (w) = max {w + δ ((1− γ)V (w) + (1− θ)γV (0) + θγE[V (W ′)]) ,

0 + δ (θE[V (W ′)] + (1− θ)V (0))} .
21To simplify the notation, we assume the fundamental is unobserved, although the results are

identical if it is observed, since it is i.i.d. and it is realized after the worker makes her decision.
22Formally, Q(w′ | w, x) is as follows: If x = 1, then w′ = w with probability 1− γ, w′ is a draw

from F with probability E[γ(Z)λ(Z)], and w′ = 0 with probability E[γ(Z)(1 − λ(Z))]; If x = 0,
then w′ is a draw from F with probability λ and w′ = 0 with probability 1− λ.

23The results are identical if the agent is also uncertain of γ(·); given the current misspecification,
the agent only cares about the expectation of γ and will have correct beliefs about it.
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By standard arguments, her optimal strategy is a stationary reservation wage strategy
w(θ) that solves the following equation:

w(θ)(1− δ + δγ) = δθ(1− γ)

ˆ
w>w(θ)

(w − w(θ))F (dw). (6)

The worker accepts wages above the reservation wage and rejects wages below it.
Also, θ 7→ w(θ) is increasing: The higher is the probability of receiving a wage offer,
then the more she is willing to wait for a better offer in the future. Figure 2 depicts
an example.

Beliefs. For any m ∈ ∆(S× X), the wKLD simplifies to

KQ(m, θ) =

ˆ
S×X

EQ(·|w̃,x)

[
ln

Q(W ′ | w̃, x)

Qθ(W ′ | w̃, x)

]
m(dw̃, dx)

=
{
E[γλ] ln

E[γλ]

γθ
+ E[γ(1− λ)] ln

E[γ(1− λ)]

γ(1− θ)
}
mX(1)

+
{
λ ln

λ

θ
+ (1− λ) ln

1− λ
1− θ

}
mX(0),

where the density of W ′ cancels out because the workers knows it and where mX is
the marginal distribution over X. In the Online Appendix, we show that the unique
parameter that minimizes KQ(m, ·) is

θQ(m) ≡ mX(0)

mX(0) +mX(1)γ
λ+

(
1− mX(0)

mX(0) +mX(1)γ

)(
λ+

Cov(γ, λ)

γ

)
. (7)

To see the intuition behind equation (7), note that the agent only observes the real-
ization of λ, i.e., whether she receives a wage offer, when she is unemployed. Unem-
ployment can be voluntary or involuntary. In the first case, the agent rejects the offer
and, since this decision happens before the fundamental is realized, it is independent
of getting or not an offer. Thus, with conditional on unemployment being voluntary,
the agent will observe an unbiased average probability of getting an offer, λ (see the
first term in the RHS of (7)). In the second case, the agent accepts the offer but is
then fired. Since Cov(γ, λ) < 0, she is less likely to get an offer in periods in which
she is fired and, because she does not account for this correlation, she will have a
more pessimistic view about the probability of receiving a wage offer relative to the
average probability λ (the second term in the RHS of (7) captures this bias).
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Figure 2: Equilibrium of the search model

Stationary distribution. Fix a reservation wage strategy w and denote the marginal
over X of the corresponding stationary distribution by mX(·;w) ∈ ∆(X). In the
Online Appendix, we characterizemX(·;w) and show that w 7→ mX(0;w) is increasing.
Intuitively, the more selective the worker, the higher the chance of being unemployed.

Equilibrium. Let θ(ω) ≡ θQ(m(·;w)) denote the equilibrium belief for an agent
following reservation wage strategy w. The weight on λ in equation (7) represents the
probability of voluntary unemployment conditional on unemployment. This weight is
increasing in ω because w 7→ mX(0;w) is increasing. Therefore, w 7→ θ(w) is increas-
ing. In the extreme case in which w = 1, the worker rejects all offers, unemployment is
always voluntary, and the bias disappears, θ(1) = λ. An example of the schedule θ(·)
is depicted in Figure 2. The set of Berk-Nash equilibria is given by the intersection
of w(·) and θ(·). In the example depicted in Figure 2, there is a unique equilibrium
strategy wM = w(θM), where θM < λ.

We conclude by comparing Berk-Nash equilibria to the optimal strategy of a
worker who knows the primitives, w∗. By standard arguments, w∗ is the unique
solution to

w∗(1− δ + δγ) = δ(λ− E[γλ])

ˆ
w>w∗

(w − w∗)F (dw). (8)

The only difference between equations (6) and (8) appears in the term multiplying the
RHS, which captures the cost of accepting a wage offer. In the misspecified case, this
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term is δθ(1−γ); in the correct case, it is δ(λ−E[γλ]) = δλ(1−γ)−δCov(γ, λ). The
misspecification affects the optimal threshold in two ways. First, the misspecified
agent estimates the mean of λ incorrectly, i.e., θ < λ; therefore, she (incorrectly)
believes that, in expectation, offers arrive with lower probability. Second, she does
not realize that, because Cov(γ, λ) < 0, she is less likely to receive an offer when fired.
Both effects go in the same direction and make the option to reject and wait for the
possibility of drawing a new wage offer next period less attractive for the misspecified
worker. Formally, θδ(1− γ) < δλ(1− γ)− δCov(γ, λ) and so wM < w∗.

4.3 Stochastic growth with correlated shocks

Stochastic growth models have been central to studying optimal intertemporal alloca-
tion of capital and consumption since the work of Brock and Mirman (1972). Freixas
(1981) and Koulovatianos et al. (2009) assume that agents learn the distribution over
productivity shocks with correctly specified models. We follow Hall (1997) and sub-
sequent literature in incorporating shocks to both preferences and productivity, but
assume that these shocks are (positively) correlated. We show that agents who fail
to account for the correlation of shocks underinvest in equilibrium.

MDP. In each period t, an agent observes st = (yt, zt) ∈ S = R+×{L,H}, where
yt is income from the previous period and zt is a current utility shock, and chooses
how much income to save, xt ∈ Γ(yt, zt) = [0, yt] ⊆ X = R+, consuming the rest.
Current period utility is π(yt, zt, xt) = zt ln(yt − xt). Income next period, yt+1, is
given by

ln yt+1 = α∗ + β∗ lnxt + εt, (9)

where εt = γ∗zt+ξt is an unobserved productivity shock, ξt ∼ N(0, 1), and 0 < δβ∗ <

1, where δ ∈ [0, 1) is the discount factor. We assume that γ∗ > 0, so that the utility
and productivity shocks are positively correlated. Let 0 < L < H and let q ∈ (0, 1)

be the probability that the shock is H.24

SMDP. The agent believes that

ln yt+1 = α + β lnxt + εt, (10)
24Formally, Q(y′, z′ | y, z, x) is such that y′ and z′ are independent, y′ has a log-normal distribution

with mean α∗ + β∗ lnx+ γ∗z and unit variance, and z′ = H with probability q.

20



where εt ∼ N(0, 1) and is independent of the utility shock. For simplicity, we assume
that the agent knows the distribution of the utility shock, and is uncertain about
θ = (α, β) ∈ Θ = R2. The subjective transition probability function Qθ(y

′, z′ | y, z, x)

is such that y′ and z′ are independent, y′ has a log-normal distribution with mean
α + β lnx and unit variance, and and z′ = H with probability q. The agent has a
misspecified model because she believes that the productivity and utility shocks are
independent when in fact γ∗ 6= 0.

Equilibrium. Optimality. The Bellman equation for the agent is

V (y, z) = max
0≤x≤y

z ln(y − x) + δE [V (Y ′, Z ′) | x]

and it is straightforward to verify that the optimal strategy is to invest a fraction of
income that depends on the utility shock and the unknown parameter β, i.e., x =

Az(β) · y, where AL(β) = δβ((1−q)L+qH)
(1−δβ(1−q))H+δβ(1−q) and AH(β) = δβ((1−q)L+qH)

δβqH+(1−δβq)L < AL(β).
For the agent who knows the primitives, the optimal strategy is to invest fractions
AL(β∗) and AH(β∗) in the low and high state, respectively. Since β 7→ Az(β) is
increasing, the equilibrium strategy of a misspecified agent can be compared to the
optimal strategy by comparing the equilibrium belief about β with the true β∗.

Beliefs and stationary distribution. Let A = (AL, AH), with AH < AL, represent a
strategy, where Az is the proportion of income invested given utility shock z. Because
the agent believes that εt is independent of the utility shock and normally distributed,
minimizing the wKLD function is equivalent to performing an OLS regression of
equation (10). Thus, for a strategy represented by A = (AL, AH), the parameter
value β̂(A) that minimizes wKLD is

β̂(A) =
Cov(lnY ′, lnX)

V ar(lnX)
=
Cov(lnY ′, lnAZY )

V ar(lnAZY )

= β∗ + γ∗
Cov(Z, lnAZ)

V ar(lnAZ) + V ar(Y )
.

where Cov and V ar are taken with respect to the (true) stationary distribution of
(Y, Z). Since AH < AL, then Cov(Z, lnAZ) < 0. Therefore, the assumption that
γ∗ > 0 implies that the bias β̂(A)− β∗ is negative and its magnitude depends on the
strategy A. Intuitively, the agent invests a larger fraction of income when z is low,
which happens to be during times when ε is also low.
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Equilibrium. We establish that there exists at least one equilibrium with pos-
itive investment by showing that there is at least one fixed point of the function
β̂(AL(β), AH(β)).25 The function is continuous in β and satisfies β̂(AL(0), AH(0)) =

β̂(AL(1/δ), AH(1/δ)) = β∗ and β̂(AL(β), AH(β)) < β∗ for all β ∈ (0, 1/δ). Then,
since δβ∗ < 1, there is at least one fixed point βM , and any fixed point satisfies
βM ∈ (0, β∗). Thus, the misspecified agent underinvests in equilibrium compared to
the optimal strategy.26 The conclusion is reversed if γ∗ < 0, illustrating how the
framework provides predictions about beliefs and behavior that depend on the prim-
itives (as opposed to simply postulating that the agent is over or under-confident
about productivity).

5 Equilibrium foundation

In this section, we provide a learning foundation for the notion of Berk-Nash equilib-
rium of SMDPs. We fix an SMDP and assume that the agent is Bayesian and starts
with a prior µ0 ∈ ∆(Θ) over her set of models of the world. She observes past actions
and states and uses this information to update her beliefs about Θ in every period.

Definition 11. For any (s, x, s′) ∈ Gr(Γ)×S, let B(s, x, s′, ·) : Ds,x,s′ → ∆(Θ) denote
the Bayesian operator: For all A ⊆ Θ Borel

B(s, x, s′, µ)(A) =

´
A
Qθ(s

′ | s, x)µ(dθ)´
Θ
Qθ(s′ | s, x)µ(dθ)

. (11)

for any µ ∈ Ds,x,s′ , where Ds,x,s′ = {p ∈ ∆(Θ):
´

Θ
Qθ(s

′ | s, x)p(dθ) > 0}.

Definition 12. A Bayesian Subjective Markov Decision Process (Bayesian-
SMDP) is an SMDP(Q,QΘ) together with a prior µ0 ∈ ∆(Θ) and the Bayesian
operator B (see Definition 11). It is said to be regular if the corresponding SMDP
is regular.

25Our existence theorem is not directly applicable because we have assumed, for convenience,
nonfinite state and action spaces.

26It is also an equilibrium not to invest, A = (0, 0), supported by the belief β∗ = 0, which
cannot be disconfirmed since investment does not take place. But this equilibrium is not robust to
experimentation (i.e., it is not perfect; see Section 6).
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By the Principle of Optimality, the agent’s problem in a Bayesian-SMDP can be
cast recursively as

W (s, µ) = max
x∈Γ(s)

ˆ
S
{π(s, x, s′) + δW (s′, µ′)} Q̄µ(ds′|s, x), (12)

where Q̄µ =
´

Θ
Qθµ(dθ), µ′ = B(s, x, s′, µ) is next period’s belief, updated using

Bayes’ rule, and W : S×∆(Θ)→ R is the (unique) solution to the Bellman equation
(12). Compared to the case where the agent knows the transition probability function,
the agent’s belief about Θ is now part of the state space.

Definition 13. A policy function is a function f : ∆(Θ) → Σ mapping beliefs
into strategies (recall that a strategy is a mapping σ : S → ∆(X)). For any belief
µ ∈ ∆(Θ), state s ∈ S, and action x ∈ X, let f(x | s, µ) denote the probability
that the agent chooses x when selecting policy function f . A policy function f is
optimal for the Bayesian-SMDP if, for all s ∈ S, µ ∈ ∆(Θ), and x ∈ X such that
f(x | s, µ) > 0,

x ∈ arg max
x̂∈Γ(s)

ˆ
S
{π(s, x̂, s′) + δW (s′, µ′)} Q̄µ(ds′|s, x̂).

For each µ ∈ ∆(Θ), let Σ̄(µ) ⊆ Σ denote the set of all strategies that are induced
by a policy that is optimal, i.e.,

Σ̄(µ) =
{
σ ∈ Σ : ∃ optimal f such that σ(· | s) = f(· | s, µ)for all s ∈ S

}
.

Lemma 4. (i) There is a unique solutionW to the Bellman equation in (12), and it is
continuous in µ for all s ∈ S; (ii) The correspondence of optimal strategies µ 7→ Σ̄(µ)

is non-empty, compact-valued, convex-valued, and upper hemicontinuous.

Proof. The proof is standard and relegated to the Online Appendix.

Let h∞ = (s0, x0, ..., st, xt, ...) represent the infinite history or outcome path of the
dynamic optimization problem and let H∞ ≡ (Gr(Γ))∞ represent the space of infinite
histories. For every t, let µt : H∞ → ∆(Θ) denote the agent’s Bayesian beliefs, defined
recursively by µt = B(st−1, xt−1, st, µt−1) whenever µt−1 ∈ Dst−1,xt−1,st (see Definition
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11), and arbitrary otherwise. We assume that the agent follows some policy function
f . In each period t, there is a state st and a belief µt, and the agent chooses a (possibly
mixed) action f(· | st, µt) ∈ ∆(X). After an action xt is realized, the state st+1 is
drawn from the true transition probability. The agent observes the realized action
and the new state and updates her beliefs to µt+1 using Bayes’ rule. The primitives of
the Bayesian-SMDP (including the initial distribution over states, q0, and the prior,
µ0 ∈ ∆(Θ)) and a policy function f induce a probability distribution over H∞ that
is defined in a standard way; let P f denote this probability distribution over H∞.

We now define strategies and outcomes as random variables. For a fixed policy
function f and for every t, let σt : H∞ → Σ denote the strategy of the agent, defined
by setting

σt(h
∞) = f(· | ·, µt(h∞)) ∈ Σ.

Finally, for every t, let mt : H∞ → ∆(Gr(Γ)) be such that, for all t, h∞, and
(s, x) ∈ Gr(Γ),

mt(s, x | h∞) =
1

t

t∑
τ=0

1(s,x)(sτ , xτ )

is the frequency of times that the outcome (s, x) occurs up to time t.
One reasonable criteria to claim that the agent has reached a steady-state is that

her strategy and the time average of outcomes converge.

Definition 14. A strategy and probability distribution (σ,m) ∈ Σ × ∆(Gr(Γ)) is
stable for a Bayesian-SMDP with prior µ0 and policy function f if there is a set
H ⊆ H with Pf (H) > 0 such that, for all h∞ ∈ H, as t→∞,

σt(h
∞)→ σ and mt(h

∞)→ m. (13)

If, in addition, there exists a belief µ∗ and a subsequence (µt(j))j such that,

µt(j)(h
∞)

w→ µ∗ (14)

and, for all (s, x) ∈ Gr(Γ), µ∗ = B(s, x, s′, µ∗) for all s′ ∈ S such that Q̄µ∗(s
′ | s, x) >

0, then (σ,m) is called stable with exhaustive learning.

Condition (13) requires that strategies and the time frequency of outcomes sta-
bilize. By compactness, there exists a subsequence of beliefs that converges. The
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additional requirement of exhaustive learning says that the limit point of one of the
subsequences, µ∗, is perceived to be a fixed point of the Bayesian operator, implying
that no matter what state and strategy the agent contemplates, she does not expect
her belief to change. Thus, the agent believes that all learning possibilities are ex-
hausted under µ∗. The condition, however, does not imply that the agent has correct
beliefs in steady state.

The next result establishes that, if the time average of outcomes stabilize to m,
then beliefs become increasingly concentrated on ΘQ(m).

Lemma 5. Consider a regular Bayesian-SMDP with true transition probability func-
tion Q, full-support prior µ0 ∈ ∆(Θ), and policy function f . Suppose that (mt)t

converges to m for all histories in a set H ⊆ H such that Pf (H) > 0. Then, for all
open sets U ⊇ ΘQ(m),

lim
t→∞

µt (U) = 1

Pf -a.s. in H.

Proof. See the Appendix.

The proof of Lemma 5 clarifies the origin of the wKLD function in the definition
of Berk-Nash equilibrium. The proof adapts the proof of Lemma 2 by Esponda and
Pouzo (2016) to dynamic environments. Lemma 5 extends results from the statistics
of misspecified learning (Berk (1966), Bunke and Milhaud (1998), Shalizi (2009)) by
considering a setting where agents learn from data that is endogenously generated by
their own actions in a Markovian setting.

The following result provides a learning foundation for the notion of Berk-Nash
equilibrium of an SMDP.

Theorem 2. There exists δ̄ ∈ [0, 1] such that:
(i) for all δ ≤ δ̄, if (σ,m) is stable for a regular Bayesian-SMDP with full-support

prior µ0 and policy function f that is optimal, then (σ,m) is a Berk-Nash equilibrium
of the SMDP.

(ii) for all δ > δ̄, if (σ,m) is stable with exhaustive learning for a regular Bayesian-
SMDP with full-support prior µ0 and policy function f that is optimal, then (σ,m) is
a Berk-Nash equilibrium of the SMDP.
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Proof. See the Appendix.

Theorem 2 provides a learning justification for Berk-Nash equilibrium. The main
idea behind the proof is as follows. We can always find a subsequence of posteriors
that converges to some µ∗ and, by Lemma 5 and the fact that behavior converges to σ,
it follows that σ must solve the dynamic optimization problem for beliefs converging
to µ∗ ∈ ΘQ(m). In addition, by convergence of σt to σ and continuity of the transition
kernel σ 7→Mσ,Q, an application of the martingale convergence theorem implies that
mt is asymptotically equal to Mσ,Q[mt]. This fact, linearity of the operator Mσ,Q[·],
and convergence of mt to m then imply that m is an invariant distribution given σ.

The proof concludes by showing that σ not only solves the optimization problem
for beliefs converging to µ∗ but also solves the MDP, where the belief is forever fixed
at µ∗. This is true, of course, if the agent is sufficiently impatient, which explains
why part (i) of Theorem 2 holds. For sufficiently patient agents, the result relies on
the assumption that the steady state satisfies exhaustive learning. We now illustrate
and discuss the role of this assumption.

example. At the initial period, a risk-neutral agent has four investment choices:
A, B, S, and O. Action A pays 1 − θ∗, action B pays θ∗, and action S pays a safe
payoff of 2/3 in the initial period, where θ∗ ∈ {0, 1}. For any of these three choices,
the decision problem ends there and the agent makes a payoff of zero in all future
periods. Action O gives the agent a payoff of −1/3 in the initial period and the option
to make an investment next period, where there are two possible states, sA and sB.
State sA is realized if θ∗ = 1 and state sB is realized if θ∗ = 0. In each of these
states, the agent can choose to make a risky investment or a safe investment. The
safe investment gives a payoff of 2/3 in both states, and a subsequent payoff of zero
in all future periods. The risky investment gives the agent a payoff that is thrice the
payoff she would have gotten from choice A, that is, 3(1− θ∗), if the state is sA, and
it gives the agent thrice the payoff she would have gotten from choice B, that is, 3θ∗,
if the state is sB; the payoff is zero is all future periods.

Suppose that the agent knows all the primitives except the value of θ∗. Let
Θ = {0, 1}; in particular, the SMDP is correctly specified.

This problem is simple enough that we can directly characterize a steady-state
and then check if it is a Berk-Nash equilibrium. Suppose the (Bayesian) agent who
starts with a prior µ = Pr(θ = 1) ∈ (0, 1) and updates her belief. The value of action
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O is
−1

3
+ δ (µW (sA, 1) + (1− µ)W (sB, 0)) = −1

3
+ δ

2

3
<

2

3
, (15)

where we have used the fact that W (sA, 1) = W (sB, 0) = 2/3. In other words, the
agent realizes that if the state sA is realized, then she will update her belief to µ′ = 1,
which implies that the safe investment is optimal in state sA; a similar argument holds
for state sB. She then finds it optimal to choose action A if µ ≤ 1/3, B if µ ≥ 2/3,
and S if µ ∈ [1/3, 2/3]. In particular, choosing S is a steady state outcome for any
prior in [1/3, 2/3].

We now show that the safe action, S, is not a Berk-Nash equilibrium if the agent
is sufficiently patient. Let µ ∈ [0, 1] denote the agent’s equilibrium belief about the
probability that θ∗ = 1. For action S to be preferred to A and B, it must be the case
that µ ∈ [1/3, 2/3]. But, for a fixed µ, the perceived benefit from action O is

−1

3
+ δ (µW (sA, µ) + (1− µ)W (sB, µ)) = −1

3
+ δ

(
µmax{2

3
, 3(1− µ)}+ (1− µ) max{2

3
, 3µ}

)
(16)

≥ −1

3
+ δ6µ(1− µ),

which is strictly higher than 2/3, the payoff from action S, for all µ ∈ [1/3, 2/3]

provided that δ > δ̄ = 3/4. Thus, for a sufficiently patient agent, there is no belief that
makes action S optimal and, therefore, S is not chosen in any Berk-Nash equilibrium.
The belief supporting S, however, does not satisfy exhaustive learning, since the agent
believes that any other action would completely reveal all uncertainty. �

The previous example illustrates an important tension that arises when an equilib-
rium concept–where strategies are optimal given a fixed equilibrium belief–is intended
to represent the steady state of a dynamic environment where beliefs are being up-
dated. This tension, however, has not been recognized in the past, where equilibrium
concepts have been shown to successfully capture steady-state behavior. The rea-
son is that the tension illustrated by the previous example does not arise in static
environments (where the only link between periods is the updating of a belief).

We will now explain why the tension described above does not arise in static
environments, why it does arise in the type of dynamic environments that we study
in this paper, and how the property of exhaustive learning is used in the proof of
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Theorem 2 to deliver the intended result. We call an action a steady-state action
if it is in the support of a stable strategy and we call it a non steady-state action
otherwise. A key step is to show that, if a steady-state action is better than a non
steady-state action when beliefs are updated, it will also be better when beliefs are
fixed.

Consider first an inherently static environment (Esponda and Pouzo (2016)). Sup-
pose that x and not y is a steady-state action, implying that x yields a higher payoff
than y :

EQµ(·|x) [π(x, S ′) + δV (B(x, S ′, µ))] ≥ EQµ(·|y) [π(y, S ′) + δV (B(y, S ′, µ))] . (17)

In particular, the value function, V , only depends on the agent’s belief. If we assume
weak identification, then B(x, s′, µ) = µ for all s′ that occur with positive probability
according to µ, and so the LHS of (17) becomes EQµ(·|x) [π(x, S ′) + δV (µ))]. Next, we
add and subtract δV (µ) from the RHS of (17) to obtain

EQµ(·|y) [π(y, S ′) + δV (µ)] + δEQµ(·|y) [V (B(y, S ′, µ))− V (µ)] . (18)

The second term in (18) is what is known in the literature as the value of experi-
mentation: It is the difference in net present value between starting next period with
updated belief B(y, S ′, µ), which depends on the action y and the random realiza-
tion of S ′, and starting next period with the current belief µ. By the Martingale
property of Bayesian updating and the convexity of the value function, it follows
that the value of experimentation is nonnegative.27 It then follows that (17) implies
EQµ(·|x) [π(x, S ′)] ≥ EQµ(·|y) [π(y, S ′)]. Thus, an action that is dynamically optimal is
also optimal when the belief is fixed.

The previous argument does not carry over to an inherently dynamic environment.
Suppose that x and not y is a steady-state action, implying that x yields a higher
payoff than y :

EQµ(·|s,x) [π(s, x, S ′) + δW (S ′, B(s, x, S ′, µ))] ≥ EQµ(·|s,y) [π(s, y, S ′) + δW (S ′, B(s, y, S ′, µ))] .

(19)
The value function, W , now also depends on a non-belief state, S ′. As before, weak
identification implies that the LHS of (19) is equivalent to EQµ(·|s,x) [π(s, x, S ′) + δW (S ′, µ)].

27Formally, EQµ(·|y) [V (B(y, S′, µ))− V (µ)] ≥ V [EQµ(·|y)B(y, S′, µ)]− V (µ) = 0.
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Next, we add and subtract δEQµ(·|s,y) [W (S ′, µ)] from the RHS of (19) to obtain

EQµ(·|s,y) [π(s, y, S ′) + δW (S ′, µ)]+δEQµ(·|s,y) [W (S ′, B(s, y, S ′, µ))−W (S ′, µ)] . (20)

The second term in (20) is the difference in net present value between starting next
period with non-belief state S ′ and updated belief B(y, S ′, µ) and starting next period
with non-belief state S ′ and belief µ. This expression no longer represents what is
traditionally understood as the value of experimentation because one also has to take
into account that the non-belief state is changing. In fact, as the previous example
illustrates, this second term may actually be negative (see equations (15) and (16)).
The role of exhaustive learning is to guarantee that this second term is equal to zero.
When this term is zero, (19) implies

EQµ(·|s,x) [π(s, x, S ′) + δW (S ′, µ)] ≥ EQµ(·|s,y) [π(s, y, S ′) + δW (S ′, µ)] ,

and, therefore, an action that is dynamically optimal in the dynamic environment is
also dynamically optimal when the belief is fixed.

We conclude with additional remarks about Theorem 2.

Remark 3. Discount factor : In the proof of Theorem 2, we provide an exact value for
δ̄ as a function of primitives. This bound, however, may not be sharp. As illustrated
by the above example, to compute a sharp bound we would have to solve the dynamic
optimization problem with learning, which is precisely what we are trying to avoid
by focusing on Berk-Nash equilibrium.

Convergence: Theorem 2 does not imply that behavior will necessarily stabilize in
an SMDP. In fact, it is well known from the theory of Markov chains that, even if no
decisions affect the relevant transitions, outcomes need not stabilize without further
assumptions. So one cannot hope to have general statements regarding convergence
of outcomes—this is also true, for example, in the related context of learning to
play Nash equilibrium in games.28 Thus, the theorem leaves open the question of
convergence in specific settings, a question that requires other tools (e.g., stochastic
approximation) and is best tackled by explicitly studying the dynamics of specific
classes of environments (see the references in the introduction).

28For example, in the game-theory literature, general global convergence results have only been
obtained in special classes of games–e.g. zero-sum, potential, and supermodular games (Hofbauer
and Sandholm, 2002).
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Mixed strategies : Theorem 2 also raises the question of how a mixed strategy
could ever become stable, given that, in general it is unlikely that agents will hold
beliefs that make them exactly indifferent at any point in time. Fudenberg and Kreps
(1993) asked the same question in the context of learning to play mixed strategy
Nash equilibria, and answered it by adding small payoff perturbations a la Harsanyi
(1973): Agents do not actually mix; instead, every period their payoffs are subject
to small perturbations, and what we call the mixed strategy is simply the probabil-
ity distribution generated by playing pure strategies and integrating over the payoff
perturbations. We followed this approach in the paper that introduced Berk-Nash
equilibrium in static contexts (Esponda and Pouzo, 2016). The same idea applies
here, but we omit payoff perturbations to reduce the notational burden.29

6 Equilibrium refinements

Theorem 2 implies that, for sufficiently patient players, we should be interested in
the following refinement of Berk-Nash equilibrium.

Definition 15. A strategy and probability distribution (σ,m) ∈ Σ × ∆(Gr(Γ)) is
a Berk-Nash equilibrium with exhaustive learning of the SMDP if it is a
Berk-Nash equilibrium that is supported by a belief µ∗ ∈ ∆(Θ) such that, for all
(s, x) ∈ Gr(Γ),

µ∗ = B(s, x, s′, µ∗)

for all s′ ∈ S such that Q̄µ∗(s
′ | s, x) > 0.

In an equilibrium with exhaustive learning, there is a supporting belief that is
perceived to be a fixed point of the Bayesian operator, implying that no matter what
state and strategy the agent contemplates, she does not expect her belief to change.
The requirement of exhaustive learning does not imply robustness to experimentation.
For example, in the monopoly problem studied in Section 4.1, choosing low price with
probability 1 is an equilibrium with exhausted learning which is supported by the
belief that, with probability 1, θ∗L = 0. We rule out equilibria that are not robust to
experimentation by introducing a further refinement.

29Doraszelski and Escobar (2010) incorporate payoff perturbations in a dynamic environment.

30



Definition 16. An ε-perturbed SMDP is an SMDP wherein strategies are restricted
to belong to

Σε = {σ ∈ Σ : σ(x | s) ≥ ε for all (s, x) ∈ Gr(Γ)} .

Definition 17. A strategy and probability distribution (σ,m) ∈ Σ×∆(Gr(Γ)) is a
perfect Berk-Nash equilibrium of an SMDP if there exists a sequence (σε,mε)ε>0

of Berk-Nash equilibria with exhaustive learning of the ε-perturbed SMDP that con-
verges to (σ,m) as ε→ 0.30

Selten (1975) introduced the idea of perfection in extensive-form games. By itself,
however, perfection does not guarantee that all (s, x) ∈ Gr(Γ) are reached in an MDP.
The next property guarantees that all states can be reached when the agent chooses
all strategies with positive probability.

Definition 18. An MDP(Q) satisfies full communication if, for all s0, s
′ ∈ S, there

exist finite sequences (s1, ..., sn) and (x0, x1, ..., xn) such that (si, xi) ∈ Gr(Γ) for all
i = 0, 1, ..., n and

Q(s′ | sn, xn)Q(sn | sn−1, xn−1)...Q(s1 | s0, x0) > 0.

An SMDP satisfies full communication if the corresponding MDP satisfies it.

Full communication is standard in the theory of MDPs and holds in all of the
examples in Section 4. It guarantees that there is a single recurrent class of states
for all ε-perturbed environments. In cases where it does not hold and there is more
than one recurrent class of states, one can still apply the following results by focusing
on one of the recurrent classes and ignoring the rest as long as the agent correctly
believes that she cannot go from one recurrent class to the other.

Full communication guarantees that there are no off-equilibrium outcomes in a
perturbed SMDP. It does not, however, rule out the desire for experimentation on
the equilibrium path. We rule out the latter by requiring weak identification.

30Formally, in order to have a sequence, we take ε > 0 to belong to the rational numbers; here-
inafter we leave this implicit to ease the notational burden.
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Proposition 2. Suppose that an SMDP is weakly identified, ε-perturbed, and satisfies
full communication.

(i) If the SMDP is regular and if (σ,m) is stable for the Bayesian-SMDP, it is
also stable with exhaustive learning.

(ii) If (σ,m) is a Berk-Nash equilibrium, it is also a Berk-Nash equilibrium with
exhaustive learning.

Proof. See the Appendix.

Proposition 2 provides conditions such that a steady state satisfies exhaustive
learning and a Berk-Nash equilibrium can be supported by a belief that satisfies
the exhaustive learning condition. Under these conditions, we can find equilibria
that are robust to experimentation, i.e., perfect equilibria, by considering perturbed
environments and taking the perturbations to zero (see the examples in Section 4).

The next proposition shows that perfect Berk-Nash is a refinement of Berk-Nash
with exhaustive learning. As illustrated by the monopoly example in Section 4.1, it
is a strict refinement.

Proposition 3. Any perfect Berk-Nash equilibrium of a regular SMDP is a Berk-
Nash equilibrium with exhaustive learning.

Proof. See the Appendix.

We conclude by showing existence of perfect Berk-Nash equilibrium (hence, of
Berk-Nash equilibrium with exhaustive learning, by Proposition 3).

Theorem 3. For any regular SMDP that is weakly identified and satisfies full com-
munication, there exists a perfect Berk-Nash equilibrium.

Proof. See the Appendix.

7 Conclusion

We provide a framework for modeling the behavior of an agent who holds a simplified
view of a recursive dynamic optimization problem. The agent faces a Markov decision
process and has a prior over a set of possible transition probability functions. This
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set captures the agent’s simplified view of her environment; in particular, the agent
has a misspecified model if the set does not include the true transition function.
We focus on asymptotic behavior of an agent who updates her beliefs using Bayes’
rule. In particular, we define an equilibrium notion, Berk-Nash equilibrium, in order
to capture the agent’s steady state behavior. Two key features of our approach is
that it distinguishes between the agent’s simplified model and the true primitives
and that the agent’s belief is determined endogenously in equilibrium. Moreover, the
framework can be used to tackle applications that remained previously inaccessible

We show that a Berk-Nash equilibrium does indeed capture steady state behavior
provided that the agent is sufficiently impatient. If the agent is patient, however, our
equilibrium concept only captures those steady states that satisfy a property that we
call exhaustive learning. This property says that the agent perceives that she has
nothing else to learn in steady state. This property is satisfied, for example, if we are
interested in behavior that is robust to a small amount of exogenous experimentation.

Steady states that do not satisfy exhausted learning, however, cannot generally
be characterized by an equilibrium approach with fixed beliefs. For such cases, the
modeler is forced to consider the more complicated problem where the agent’s belief
is part of the state variable. This is a feature of the dynamic environment that is not
present in the static case, and it informs us of the limitations of using an equilibrium
approach to study behavior in dynamic environments.
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Appendix

Proof of Lemma 2. IQ(σ) is nonempty : Mσ,Q is a linear (hence continuous) self-
map on a convex and compact subset of an Euclidean space (the set of probability
distributions over the finite set Gr(Γ)); hence, Brower’s theorem implies existence of
a fixed point.

IQ(σ) is convex valued : For all α ∈ [0, 1] andm1,m2 ∈ ∆(Gr(Γ)), αMσ,Q[m1]+(1−
α)Mσ,Q[m2] = Mσ,Q[αm1 + (1− α)m2]. Thus, if m1 = Mσ,Q[m1] and m2 = Mσ,Q[m2],
then αm1 + (1− α)m2 = Mσ,Q[αm1 + (1− α)m2].

IQ(σ) is upper hemicontinuous and compact valued : Fix any sequence (σn,mn)n

in Σ×∆(Gr(Γ)) such that limn→∞(σn,mn) = (σ,m) and such that mn ∈ IQ(σn) for
all n. Since Mσn,Q[mn] = mn, ||m −Mσ,Q[m]|| ≤ ||m −mn|| + ||Mσn,Q[mn −m]|| +
||Mσn,Q[m] −Mσ,Q[m]||. The first term in the RHS vanishes by the hypothesis. The
second term satisfies ||Mσn,Q[mn −m]|| ≤ ||Mσn,Q|| × ||mn −m|| and also vanishes.31

For the third term, note that σ 7→Mσ,Q[m] is a linear mapping and supσ ||Mσ,Q[m]|| ≤
maxs′ |

∑
(s,x)∈Gr(Γ)Q(s′ | s, x)m(s, x)| <∞. Thus ||Mσn,Q[m]−Mσ,Q[m]|| ≤ K×||σn−

31For a matrix A, ||A|| is understood as the operator norm.
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σ|| for some K < ∞ , and so it also vanishes. Therefore, m = Mσ,Q[m]; thus, IQ(·)
has a closed graph and so IQ(σ) is a closed set. Compactness of IQ(σ) follows from
compactness of ∆(Gr(Γ)). Therefore, IQ(·) is upper hemicontinuous (see Aliprantis
and Border (2006), Theorem 17.11). �

The proof of Lemma 3 relies on the following claim. The proofs of Claims A, B,
and C in this appendix appear in the Online Appendix .

Claim A. (i) For any regular SMDP, there exists θ∗ ∈ Θ and K < ∞ such
that, for all m ∈ ∆(Gr(Γ)), KQ(m, θ∗) ≤ K. (ii) Fix any θ ∈ Θ and a sequence
(mn)n in ∆(Gr(Γ)) such that Qθ(s

′ | s, x) > 0 for all (s′, s, x) ∈ S×Gr(Γ) such that
Q(s′ | s, x) > 0 and limn→∞mn = m. Then limn→∞KQ(mn, θ) = KQ(m, θ). (iii) KQ

is (jointly) lower semicontinuous: Fix any (mn)n and (θn)n such that limn→∞mn = m

and limn→∞ θn = θ. Then lim infn→∞KQ(mn, θn) ≥ KQ(m, θ).

Proof of Lemma 3. (i) By Jensen’s inequality and strict concavity of ln(·),
KQ(m, θ) ≥ −∑(s,x)∈Gr(Γ) ln(EQ(·|s,x)[

Qθ(S′|s,x)
Q(S′|s,x)

])m(s, x) = 0, with equality if and only
if Qθ(· | s, x) = Qθ(· | s, x) for all (s, x) such that m(s, x) > 0.

(ii) ΘQ(m) is nonempty : By Claim A(i), there exists K < ∞ such that the
minimizers are in the constraint set {θ ∈ Θ : KQ(m, θ) ≤ K}. Because KQ(m, ·) is
continuous over a compact set, a minimum exists.

ΘQ(·) is uhc and compact valued: Fix any (mn)n and (θn)n such that limn→∞mn =

m, limn→∞ θn = θ, and θn ∈ ΘQ(mn) for all n. We establish that θ ∈ ΘQ(m) (so
that Θ(·) has a closed graph and, by compactness of Θ, it is uhc). Suppose, in
order to obtain a contradiction, that θ /∈ ΘQ(m). Then, by Claim A(i), there exists
θ̂ ∈ Θ and ε > 0 such that KQ(m, θ̂) ≤ KQ(m, θ) − 3ε and KQ(m, θ̂) < ∞. By
regularity, there exists (θ̂j)j with limj→∞ θ̂j = θ̂ and, for all j, Qθ̂j

(s′ | s, x) > 0

for all (s′, s, x) ∈ S2 × X such that Q(s′ | s, x) > 0. We will show that there is
an element of the sequence, θ̂J , that “does better” than θn given mn, which is a
contradiction. Because KQ(m, θ̂) < ∞, continuity of KQ(m, ·) implies that there
exists J large enough such that

∣∣∣KQ(m, θ̂J)−KQ(m, θ̂)
∣∣∣ ≤ ε/2. Moreover, Claim

A(ii) applied to θ = θ̂J implies that there exists Nε,J such that, for all n ≥ Nε,J ,∣∣∣KQ(mn, θ̂J)−KQ(m, θ̂J)
∣∣∣ ≤ ε/2. Thus, for all n ≥ Nε,J ,

∣∣KQ(mn, θ̂J)−KQ(m, θ̂)
∣∣ ≤∣∣KQ(mn, θ̂J)−KQ(m, θ̂J)

∣∣+
∣∣KQ(m, θ̂J)−KQ(m, θ̂)

∣∣ ≤ ε and, therefore,

KQ(mn, θ̂J) ≤ KQ(m, θ̂) + ε ≤ KQ(m, θ)− 2ε. (21)
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Suppose KQ(m, θ) < ∞. By Claim A(iii), there exists nε ≥ Nε,J such that
KQ(mnε , θnε) ≥ KQ(m, θ)−ε. This result, together with (21), implies thatKQ(mnε , θ̂J) ≤
KQ(mnε , θnε) − ε. But this contradicts θnε ∈ ΘQ(mnε). Finally, if KQ(m, θ) = ∞,
Claim A(iii) implies that there exists nε ≥ Nε,J such that KQ(mnε , θnε) ≥ 2K, where
K is the bound defined in Claim A(i). But this also contradicts θnε ∈ ΘQ(mnε). Thus,
ΘQ(·) has a closed graph, and so ΘQ(m) is a closed set. Compactness of ΘQ(m) follows
from compactness of Θ. Therefore, ΘQ(·) is upper hemicontinuous (see Aliprantis and
Border (2006), Theorem 17.11). �

Proof of Theorem 1. Let W = Σ × ∆(Gr(Γ)) × ∆(Θ) and endow it with
the product topology (given by the Euclidean one for Σ × ∆(Gr(Γ)) and the weak
topology for ∆(Θ)). Clearly, W 6= {∅}. Since Θ is compact, ∆(Θ) is compact under
the weak topology; Σ and ∆(Gr(Γ)) are also compact. Thus by Tychonoff’s theorem
(see Aliprantis and Border (2006)), W is compact under the product topology. W is
also convex. Finally, W ⊆M2 × rca(Θ) where M is the space of |S| × |X| real-valued
matrices and rca(Θ) is the space of regular Borel signed measures endowed with the
weak topology. The space M2 × rca(Θ) is locally convex with a family of seminorms
{(σ,m, µ) 7→ pf (σ,m, µ) = ||(σ,m)||+ |

´
Ω
f(x)µ(dx)| : f ∈ C(Ω)} (C(Ω) is the space

of real-valued continuous and bounded functions and ||.|| is understood as the spectral
norm). Also, we observe that (σ,m, µ) = 0 iff pf (σ,m, µ) = 0 for all f ∈ C(Ω), thus
M2 × rca(Θ) is also Hausdorff.

Let T : W→ 2W be such that T (σ,m, µ) = Σ(Q̄µ)×IQ(σ)×∆(ΘQ(m)). Note that
if (σ∗,m∗, µ∗) is a fixed point of T , then m∗ is a Berk-Nash equilibrium. By Lemma 1,
Σ(·) is nonempty, convex valued, compact valued, and upper hemicontinuous. Thus,
for every µ ∈ ∆(Θ), Σ(Q̄µ) is nonempty, convex valued, and compact valued. Also,
because Qθ is continuous in θ (by regularity assumption), then Q̄µ is continuous (un-
der the weak topology) in µ. Since Q 7→ Σ(Q) is upper hemicontinuous, then Σ(Q̄µ) is
also upper hemicontinuous as a function of µ. By Lemma 2, IQ(·) is nonempty, convex
valued, compact valued and upper hemicontinuous. By Lemma 3 and the regularity
condition, the correspondence ΘQ(·) is nonempty, compact valued, and upper hemi-
continuous; hence, the correspondence ∆(ΘQ(·)) is nonempty, upper hemicontinuous
(see Aliprantis and Border (2006), Theorem 17.13), compact valued (see Aliprantis
and Border (2006), Theorem 15.11) and, trivially, convex valued. Thus, the corre-
spondence T is nonempty, convex valued, compact valued (by Tychonoff’s Theorem),
and upper hemicontinuous (see Aliprantis and Border (2006), Theorem 17.28) under
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the product topology; hence, it has a closed graph (see Aliprantis and Border (2006),
Theorem 17.11). Since W is a nonempty compact convex subset of a locally Hausdorff
space, then there exists a fixed point of T by the Kakutani-Fan-Glicksberg theorem
(see Aliprantis and Border (2006), Corollary 17.55). �

For the proof of Lemma 5, we rely on the following definitions and Claim. Let
K∗(m) = infθ∈ΘKQ(m, θ) and let Θ̂ ⊆ Θ be a dense set such that, for all θ ∈ Θ̂,
Qθ(s

′ | s, x) > 0 for all (s′, s, x) ∈ S×Gr(Γ) such that Q(s′ | s, x) > 0. Existence of
such a set Θ̂ follows from the regularity assumption.

Claim B. Suppose limt→∞ ‖mt −m‖ = 0 a.s.-Pf . Then: (i) For all θ ∈ Θ̂,

lim
t→∞

t−1

t∑
τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
=

∑
(s,x)∈Gr(Γ)

EQ(·|s,x)

[
log

Q(S ′|s, x)

Qθ(S ′|s, x)

]
m(s, x)

a.s.-Pf . (ii) ForPf -almost all h∞ ∈ H∞ and for any ε > 0 and α = (infΘ: dm(θ)≥εKQ(m, θ)−
K∗(m))/3, there exists T such that, for all t ≥ T ,

t−1

t∑
τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
≥ K∗(m) +

3

2
α

for all θ ∈ {Θ: dm(θ) ≥ ε}, where dm(θ) = inf θ̃∈ΘQ(m) ||θ − θ̃||.

Proof of Lemma 5. It suffices to show that limt→∞
´

Θ
dm(θ)µt(dθ) = 0 a.s.-Pf

overH. LetK∗(m) ≡ KQ(m,ΘQ(m)). For any η > 0 let Θη(m) = {θ ∈ Θ : dm(θ) < η},
and Θ̂η(m) = Θ̂ ∩ Θη(m) (the set Θ̂ is defined in condition 3 of Definition 6,
i.e., regularity). We now show that µ0(Θ̂η(m)) > 0. By Lemma 3, ΘQ(m) is
nonempty. By denseness of Θ̂, Θ̂η(m) is nonempty. Nonemptiness and continuity
of θ 7→ Qθ, imply that there exists a non-empty open set U ⊆ Θ̂η(m). By full
support, µ0(Θ̂η(m)) > 0. Also, observe that for any ε > 0, {Θ: dm(θ) ≥ ε} is
compact. This follows from compactness of Θ and continuity of θ 7→ dm(θ) (which
follows by Lemma 3 and an application of the Theorem of the Maximum). Com-
pactness of {Θ: dm(θ) ≥ ε} and lower semi-continuity of θ 7→ KQ(m, θ) (see Claim
A(iii)) imply that infΘ: dm(θ)≥εKQ(m, θ) = minΘ: dm(θ)≥εKQ(m, θ) > K∗(m). Let
α ≡ (minΘ: dm(θ)≥εKQ(m, θ) − K∗(m))/3 > 0. Also, let η > 0 be chosen such that
KQ(m, θ) ≤ K∗(m) + 0.25α for all θ ∈ Θη(m) (such η always exists by continuity of
θ 7→ KQ(m, θ)).
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Let H1 be the subset of H for which the statements in Claim B hold; note that
Pf (H \H1) = 0. Henceforth, fix h∞ ∈ H1; we omit h∞ from the notation to ease
the notational burden. By simple algebra and the fact that dm is bounded in Θ, it
follows that, for all ε > 0 and some finite C > 0,

ˆ
Θ

dm(θ)µt(dθ) =

´
Θ
dm(θ)Qθ(st | st−1, xt−1)µt−1(dθ)´

Θ
Qθ(st | st−1, xt−1)µt−1(dθ)

=

´
Θ
dm(θ)Zt(θ)µ0(dθ)´

Θ
Zt(θ)µ0(dθ)

≤ ε+ C

´
{Θ: dm(θ)≥ε} Zt(θ)µ0(dθ)´

Θ̂η(m)
Zt(θ)µ0(dθ)

≡ ε+ C
At(ε)

Bt(η)
.

where Zt(θ) ≡
∏t

τ=1
Qθ(sτ |sτ−1,xτ−1)
Q(sτ |sτ−1,xτ−1)

= exp
{
−∑t

τ=1 log
(
Q(sτ |sτ−1,xτ−1)
Qθ(sτ |sτ−1,xτ−1)

)}
. Hence, it

suffices to show that

lim sup
t→∞

{exp {t (K∗(m) + 0.5α)}At(ε)} = 0 (22)

and
lim inf
t→∞

{exp {t (K∗(m) + 0.5α)}Bt(η)} =∞. (23)

Regarding equation (22), we first show that

lim
t→∞

sup
{Θ: dm(θ)≥ε}

{
(K∗(m) + 0.5α)− t−1

t∑
τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

}
≤ const < 0.

To show this, note that, by Claim B(ii) there exists a T , such that for all t ≥ T ,
t−1
∑t

τ=1 log Q(sτ |sτ−1,xτ−1)
Qθ(sτ |sτ−1,xτ−1)

≥ K∗(m) + 3
2
α, for all θ ∈ {Θ: dm(θ) ≥ ε}. Thus,

lim
t→∞

sup
{Θ: dm(θ)≥ε}

{
K∗(m) +

α

2
− t−1

t∑
τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

}
≤ −α.

Therefore,

lim sup
t→∞

{exp {t (K∗(m) + 0.5α)}At(ε)}

≤ lim sup
t→∞

sup
{Θ: dm(θ)≥ε}

exp
{
t
(

(K∗(m) + 0.5α)− t−1

t∑
τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

)}
= 0.
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Regarding equation (23), by Fatou’s lemma and some algebra it suffices to show
that

lim inf
t→∞

exp {t (K∗(m) + 0.5α)}Zt(θ) =∞ > 0

(pointwise on θ ∈ Θ̂η(m)), or, equivalently,

lim inf
t→∞

(
K∗(m) + 0.5α− t−1

t∑
τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

)
> 0.

By Claim B(i),

lim inf
t→∞

(
K∗(m) + 0.5α− t−1

t∑
τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

)
= K∗(m) + 0.5α−KQ(m, θ)

(pointwise on θ ∈ Θ̂η(m)). By our choice of η, the RHS is greater than 0.25α and our
desired result follows. �

Proof of Theorem 2. For any s ∈ S and µ ∈ ∆(Θ), let

x(s, µ) ≡ arg max
x∈Γ(s)

EQ̄µ(·|s,x) [π(s, x, S ′)]

δ̃(s, µ) ≡ min
x∈Γ(s)\x(s,µ)

{
max
x∈Γ(s)

EQ̄µ(·|s,x) [π(s, x, S ′)]− EQ̄µ(·|s,x) [π(s, x, S ′)]
}

δ̂ ≡ max
{

min
s,µ

δ̃(s, µ), 0
}

δ̄ ≡ max
{
δ ≥ 0 | δ̂ − 2

δ

1− δM ≥ 0
}

=
δ̂/M

2 + δ̂/M
,

where M ≡ max(s,x)∈Gr(Γ),s∈S′ |π(s, x, s′)|.
By Lemma 5, for all open sets U ⊇ ΘQ(m), limt→∞ µt (U) = 1 a.s.-Pf in H.

Also Let gτ (h∞)(s, x) = 1(s,x)(sτ , xτ ) −Mστ (s, x | sτ−1, xτ−1) for any τ and (s, x) ∈
Gr(Γ) and h∞ ∈ H. The sequence (gτ )τ is a Martingale difference and by analogous
arguments to those in the proof of Claim B: limt→∞ ||t−1

∑t
τ=0 gτ (h

∞)|| = 0 a.s.-Pf .
Let H∗ be the set in H such that for all h∞ ∈ H∗ the following holds: for all open
sets U ⊇ ΘQ(m), limt→∞ µt (U) = 1 and limt→∞ ||t−1

∑t
τ=0 gτ (h

∞)|| = 0. Note that
Pf (H \H∗) = 0. Henceforth, fix an h∞ ∈ H∗, which we omit from the notation.
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We first establish that m ∈ IQ(σ). Note that

‖m−Mσ,Q [m]‖ ≤ ‖m−mt‖+ ‖mt −Mσ,Q [m]‖

where (s, x) 7→ Mσ,Q[p](s, x) ≡ ∑s̃,x̃∈Gr(Γ)Mσ(s, x|s̃, x̃)p(s̃, x̃) for any p ∈ ∆(Gr(Γ)).
By stability, the first term in the RHS vanishes, so it suffices to show that limt→∞ ||mt−
Mσ,Q [m] || = 0. The fact that limt→∞ ||t−1

∑t
τ=0 gτ || = 0 and the triangle inequality

imply

lim
t→∞

∥∥mt −Mσ,Q [m]
∥∥ ≤ lim

t→∞

∥∥mt − t−1

t∑
τ=1

Mστ ,Q(·, · | sτ−1, xτ−1)
∥∥

+ lim
t→∞

∥∥t−1

t∑
τ=1

Mστ ,Q(·, · | sτ−1, xτ−1)−Mσ,Q [m]
∥∥

= lim
t→∞

∥∥t−1

t∑
τ=1

gτ
∥∥+ lim

t→∞

∥∥t−1

t∑
τ=1

Mστ ,Q(·, · | sτ−1, xτ−1)−Mσ,Q [m]
∥∥

≤ lim
t→∞

∥∥t−1

t∑
τ=1

Mστ ,Q(·, · | sτ−1, xτ−1)−Mσ,Q

[
t−1

t∑
τ=1

1(·,·)(sτ−1, xτ−1)
]∥∥

+ lim
t→∞

∥∥Mσ,Q

[
t−1

t∑
τ=1

1(·,·)(sτ−1, xτ−1)
]
−Mσ,Q[m]

∥∥. (24)

Moreover, by definition of Mσ,Q (see equation (4)), for all (s, x) ∈ Gr(Γ),

t−1

t∑
τ=1

Mστ ,Q(s, x | sτ−1, xτ−1) =
∑

s̃,x̃∈Gr(Γ)

Q(s|s̃, x̃)t−1

t∑
τ=1

στ (x|s)1(s̃,x̃)(sτ−1, xτ−1)

(25)

Mσ,Q

[
t−1

t∑
τ=1

1(·,·)(sτ−1, xτ−1)
]

=
∑

s̃,x̃∈Gr(Γ)

Q(s | s̃, x̃)t−1

t∑
τ=1

σ(x | s)1(s̃,x̃)(sτ−1, xτ−1).

(26)

Equations (25) and (26) and stability (σt → σ) imply that the first term in the
RHS of 24 vanishes. The second term in the RHS also vanishes under stability due
to continuity of the operator Mσ[.] and the fact that t−1

∑t
τ=1 1(·,·)(sτ−1, xτ−1) =

t−1
t
mt−1 (·, ·). Thus, ‖m−Mσ,Q [m]‖ = 0, and so m ∈ IQ(σ).
Therefore, for proving cases (i) and (ii), we need to establish that, for each case,
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there exists µ ∈ ∆(ΘQ(m)) such that σ is an optimal strategy for the MDP(Q̄µ).
(i) Consider any δ ∈ [0, δ̄]. Since ∆(Θ) is compact under the weak topology, there

exists a subsequence of (µt)t — which we still denote as (µt)t — such that µt
w→ µ∞

and µ∞ ∈ ∆(ΘQ(m)). Since σt ∈ Σ̄(µt) for all t and Σ̄ is uhc (see Lemma 4), stability
(σt → σ) implies σ ∈ Σ̄(µ∞). We conclude by showing that σ is an optimal strategy
for the MDP(Q̄µ∞). If δ = δ̄ = 0, this assertion is trivial. If δ̄ ≥ δ > 0, it suffices to
show that

x(s, µ∞) = arg max
x∈Γ(s)

ˆ
S
{π(s, x, s′) + δW (s′, B(s, x, s′, µ∞))} Q̄µ∞(ds′|s, x)

= arg max
x∈Γ(s)

ˆ
S
{π(s, x, s′) + δW (s′, µ∞)} Q̄µ∞(ds′|s, x). (27)

We conclude by establishing (27). Note that, since δ̄ > 0, it follows that δ̂ > 0, which
in turn implies that x(s, µ∞) is a singleton. The first equality in (27) holds because,
by definition of δ̄,

EQ̄µ∞ (·|s,x(s,µ∞)) [π(s, x(s, µ∞), S ′)]− EQ̄µ∞ (·|s,x) [π(s, x, S ′)] ≥ δ̂ ≥ 2
δM

1− δ > 0

for all x ∈ Γ(s)\{x(s, µ∞)}, and, by definition of M ,

2
δM

1− δ ≥ δ

ˆ
S

{
W (s′, B(s, x, s′, µ∞))Q̄µ∞(ds′|s, x)−W (s′, B(s, x(s, µ∞), s′, µ∞))Q̄µ∞(ds′|s, x(s, µ∞))

}
.

The second equality in (27) holds by similar arguments.
(ii) By stability with exhaustive learning, there exists a subsequence (µt(j))j such

that µt(j)
w→ µ∗. This fact and the fact that for all open U ⊇ ΘQ(m), limt→∞ µt(j) (U) =

1, imply that µ∗ ∈ ∆(ΘQ(m)). Since σt(j) ∈ Σ̄(µt(j)) for all j and Σ̄ is uhc (see
Lemma 4), stability (σt → σ) implies σ ∈ Σ̄(µ∗). Moreover, by condition of stability
with exhaustive learning (i.e., µ∗ = B(s, x, s′, µ∗) for all (s, x) ∈ Gr(Γ) and s′ ∈
supp(Q̄µ∗(·|s, x))), W (s, µ∗) = maxx∈Γ(s)

´
S {π(s, x, s′) + δW (s′, µ∗)} Q̄µ∗(ds

′|s, x) for
all s ∈ S. Then, by uniqueness of the value function, σ is an optimal strategy for the
MDP(Q̄µ∗). �

The proof of Proposition 2 relies on the following claim.

Claim C. If (σ,m) ∈ Σ×∆(S× X) is such that σ ∈ Σε and m ∈ IQ(m) with Q
satisfying the full communication condition in Definition 18, then m(s, x) > 0 for all
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(s, x) ∈ Gr(Γ).

Proof of Proposition 2. (i) We show that, if (σ,m) is stable for a Bayesian-
SMDP that is ε-perturbed, weakly identified and satisfies full communication (and
has a prior µ0 and policy function f ), then (σ,m) is stable with exhaustive learning.
That is, we must find a subsequence (µt(j))j such that µt(j) converges weakly to
µ∗ and µ∗ = B(s, x, s′, µ∗) for any (s, x) ∈ Gr(Γ) and s′ ∈ supp(Q̄µ∗(· | s, x)).
By compactness of ∆(Θ), there always exists a convergent subsequence with limit
point µ∗ ∈ ∆(Θ). By Lemma 5, µ∗ ∈ ∆(ΘQ(m)). By assumption, σ ∈ Σε and,
by the arguments given in the proof of Theorem 2, m ∈ IQ(σ). Since the SMDP
satisfies full-communication, by Claim C, supp(m) = Gr(Γ). This result, the fact
that µ∗ ∈ ∆(ΘQ(m)), and weak identification imply strong identification, i.e., for any
θ1 and θ2 in the support of µ∗, Qθ1(· | s, x) = Qθ2(· | s, x) for all (s, x) ∈ Gr(Γ).
Hence, it follows that, for all A ⊆ Θ Borel and for all (s, x) ∈ Gr(Γ) and s′ ∈ S such
that Q̄µ∗(s

′ | s, x) > 0 (i.e.,
´

Θ
Qθ(s

′ | s, x)µ∗(dθ) > 0),

B(s, x, s′, µ∗)(A) =

´
A
Qθ(s

′ | s, x)µ∗(dθ)´
Θ
Qθ(s′ | s, x)µ∗(dθ)

= µ∗(A).

Thus, µ∗ satisfies the desired condition.
(ii) We prove that if (σ,m) is a Berk-Nash equilibrium, then it is also a Berk-Nash

equilibrium with exhaustive learning. Let µ be the supporting equilibrium belief. By
Claim C and weak identification, it follows that there is strong identification, and so
for any θ1 and θ2 in the support of µ, Qθ1(· | s, x) = Qθ2(· | s, x) for all (s, x) ∈ Gr(Γ).
It follows that, for all A ⊆ Θ Borel and for all (s, x) ∈ Gr(Γ) and s′ ∈ S such that
Q̄µ(s′ | s, x) > 0 (i.e.,

´
Θ
Qθ(s

′ | s, x)µ(dθ) > 0),

B(s, x, s′, µ)(A) =

´
A
Qθ(s

′ | s, x)µ(dθ)´
Θ
Qθ(s′ | s, x)µ(dθ)

= µ(A).

Thus, (σ,m) is a Berk-Nash equilibrium with exhaustive learning. �

Proof of Proposition 3. Suppose (σ,m) is a perfect Berk-Nash equilibrium
and let (σε,mε, µε)ε be the associated sequence of equilibria with exhausted learning
such that limε→0(σε,mε) = (σ,m). By possibly going to a sub-sequence, let µ =

limε→0 µ
ε (under the weak topology). By the upper hemicontinuity of the equilibrium

correspondence T (σ,m, µ) = Σ(Q̄µ)×IQ(σ)×∆(ΘQ(m)) (see the proof of Theorem 1),
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(σ,m) is a Berk-Nash equilibrium with supporting belief µ. We conclude by showing
that (σ,m) is a Berk-Nash equilibrium with exhaustive learning.

For all (s, x) ∈ Gr(Γ) and s′ ∈ supp
(
Q̄µ(·|s, x)

)
, and for all f : Θ → R

bounded and continuous,
∣∣´ f(θ)µ(dθ) −

´
f(θ)B(s, x, s′, µ)(dθ)

∣∣ ≤ ∣∣´ f(θ)µ(dθ) −´
f(θ)µε(dθ)

∣∣ +
∣∣´ f(θ)µε(dθ) −

´
f(θ)B(s, x, s′, µ)(dθ)

∣∣. The first term in the RHS
vanishes as ε → 0 by definition of weak convergence. For the second term, note
that, for sufficiently small ε, s′ ∈ supp

(
Q̄µε(·|s, x)

)
, and so, since µε = B(s, x, s′, µε)

for any (s, x) ∈ Gr(Γ) and s′ ∈ supp
(
Q̄µε(·|s, x)

)
, we can replace

´
f(θ)µε(dθ) with´

f(θ)B(s, x, s′, µε)(dθ). Thus, the second term vanishes by continuity of the Bayesian
operator. Therefore, by a standard argument32, µ(A) = B(s, x, s′, µ)(A) for all A ⊆ Θ

Borel and all (s, x) ∈ Gr(Γ) and s′ ∈ supp
(
Q̄µ(·|s, x)

)
, which implies that (σ,m) is a

Berk-Nash equilibrium with exhaustive learning.�

Proof of Theorem 3. Existence of a Berk-Nash equilibrium of an ε-perturbed
environment, (σε,mε), follows for all ε ∈ (0, ε̄], where ε̄ = 1/(|X|+ 1), from the same
arguments used to establish existence for the case ε = 0 (see Theorem 1). Weak iden-
tification, full communication and Proposition 2(ii) imply that there exists a sequence
(σε,mε)ε>0 of Berk-Nash equilibrium with exhaustive learning. By compactness of
Σ×∆(Gr(Γ)), there is a convergent subsequence, which is a perfect Berk-Nash equi-
librium by definition. �

32Suppose µ1, µ2 in ∆(Θ) are such that
∣∣´ f(θ)µ1(dθ)−

´
f(θ)µ2(dθ)

∣∣ = 0 for any f bounded and
continuous. Then, for any F ⊆ Θ closed, µ1(F )−µ2(F ) ≤ Eµ1 [fF (θ)]−µ2(F ) = Eµ2 [fF (θ)]−µ2(F ),
where fF is any continuous and bounded and fF ≥ 1{F}; we call the class of such functions CF . Thus,
µ1(F )− µ2(F ) ≤ inff∈CF Eµ2

[f(θ)]− µ2(F ) = 0, where the equality follows from an application of
the monotone convergence theorem. An analogous trick yields the reverse inequality and, therefore,
µ1(F ) = µ2(F ) for any F ⊆ Θ closed. Borel measures over Θ are inner regular (also known as
tight; see Aliprantis and Border (2006), Ch. 12, Theorem 12.7). Thus, for any Borel set A ⊆ Θ
and any ε > 0, there exists a F ⊆ A compact such that µi(A \ F ) < ε for all i = 1, 2. Therefore
µ1(A) − µ2(A) ≤ µ1(A) − µ2(F ) ≤ µ1(F ) − µ2(F ) + ε. By our previous result, it follows that
µ1(A)−µ2(A) ≤ ε. A similar trick yields the reverse inequality and, since ε is arbitrary, this implies
that µ1(A) = µ2(A) for all A ⊆ Θ Borel.
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