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Abstract

The common prior assumption is a convenient restriction on beliefs in games

of incomplete information, but conflicts with evidence that players publicly dis-

agree in many economic environments. This paper proposes a foundation for

heterogeneous beliefs in games, in which disagreement arises not from different

information, but from different interpretations of common information. A key

assumption imposes that while players may interpret data in different ways,

they have common certainty in the predictions induced by a class of interpre-

tations. The main results characterize which rationalizable actions and Nash

equilibria can be predicted when agents observe a finite quantity of data, and

how much data is needed to predict different solutions. This quantity, which I

refer to as the robustness of the solution, is shown to depend crucially on the

degree of strictness of the solution and the “complexity” of inference from data.

1 Introduction

In games with a payoff-relevant parameter, players’ beliefs about this parameter,

as well as their beliefs about opponent beliefs about this parameter, are important

for predictions of play. The standard approach to modeling beliefs gives players a

common prior belief over states of the world, and assumes that they use Bayesian

updating to form a posterior belief given new information.1 This approach is known
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information-played-statisticians.
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Tsoy, and Muhamet Yildiz improved this paper and are gratefully acknowledged.
1The related, stronger, notion of rational expectations assumes moreover that this common prior

distribution is in fact the “true” distribution shared by the modeler.
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to have strong implications, for example that beliefs that are commonly known must

be identical (Aumann 1976), and that repeated communication of beliefs will even-

tually lead to agreement (Geanakoplos & Polemarchakis 1982). These statements

conflict not only with considerable empirical evidence of public and persistent dis-

agreement, but also with the more basic, day-to-day, experience that individuals

interpret information in different ways.2

This paper generalizes the standard approach by allowing players to form beliefs

based on a set of learning rules F , where a learning rule is any function f that

maps data (a sequence of signals) into a belief distribution over the parameter space

(a first-order belief). In the main part of the paper, I focus on sets of learning

rules that asymptotically recover the true parameter (via a statistical consistency

condition defined in Section 3). If all players are Bayesian learners, then the typical

set F is identified with a set of subjective prior beliefs, and the common prior

approach is nested as the case in which F is a singleton. Other interesting choices

for F include sets of different frequentist estimators—for example, players may be

case-based learners (Gilboa & Schmeidler 1995, Gilboa, Postlewaite & Schmeidler

2008) who predict unknown outcomes based on past similar situations, but perceive

similarity diffferently. The beliefs induced by learning rules in F describe a plausible

range of uncertainty. I impose a key assumption to structure the approach: given

any realization of the data, players have common certainty in the beliefs induced by

learning rules from F .

This approach produces a learning-based refinement on hierarchies of beliefs that

is weakly more permissive than the common prior assumption, but not so flexible

that “anything goes”. Section 3 shows that as the quantity of observed data gets

large, beliefs and strategic behavior resemble those in a limit complete information

game. Specifically: players commonly learn the true value of the parameter (Propo-

sition 1); the set of (Bayesian Nash) equilibria almost surely converges to the set

of strict equilibria in the complete information game (Theorem 1); and the set of

(interim correlated) rationalizable actions almost surely converges to a set that is

sandwiched between the set of strict rationalizable actions, and a set that I define

as “weakly” strict-rationalizable actions (Theorem 2).3

Although behavior is constrained asymptotically, the next set of results show that

2In financial markets, players publicly disagree in their interpretations of earnings announce-

ments (Kandel & Pearson 1995), valuations of financial assets (Carlin, Kogan & Lowery 2013),

forecasts for inflation (Mankiw, Reis & Wolfers 2004), forecasts for stock movements (Yu 2011),

and forecasts for mortgage loan prepayment speeds (Carlin, Longstaff & Matoba 2014). players

publicly disagree also in matters of politics (Wiegel 2009) and climate change (Marlon, Leiserowitz

& Feinberg 2013).
3The difference between these two notions of strict rationalizability regards the order of elimi-

nation, and is of independent interest in its own right: an extended discussion is relegated to the

appendix.
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predictions given small finite quantities of data can be substantially different from

the limit complete information game. Section 4 studies when limit behavior fails

to be a good approximation, and what determines this. Formally, the “robustness”

of an equilibrium profile to inference from n < ∞ observations is defined as the

probability that the profile is an equilibrium when player beliefs are based on a

(random) dataset of size n, and the robustness of a rationalizable action is defined

likewise. Proposition 2 provides a lower bound on these probabilities for every

quantity of data n, with the interpretation that solutions that hold for a larger

measure of size-n datasets are more robust. This bound turns out to depend on two

important features:

First, the bound depends on the speed at which learning rules in F jointly

learn the true value of the parameter. This speed depends both on the quantity of

data required by each individual learning rule in order to recover the true parame-

ter—which is determined by the “complexity” of the data relative to f , as measured

for example by the dimensionality of the signal space—and also on the degree of

correlation across the beliefs induced by learning rules in F . I refer to this latter

channel as “opinion diversity,” and quantify its effect on robustness in Section 5.1.

(b) Second, the bound depends on a cardinal measure of strictness of the solution.

Say that an action profile is a δ-strict NE if each player’s prescribed action is at

least δ better than his next best action; and say that an action profile is δ-strict

rationalizable if it can be rationalized by a chain of best responses, in which each

action yields at least δ over the next best alternative. This parameter δ turns out

to determine how much estimation error the solution can withstand—the lower the

degree of strictness (the smaller the parameter δ), the slower convergence is.

These comparative statics are, in my view, a key advantage to modeling beliefs

using the proposed framework. They show that when players form beliefs from

data using different learning rules, then new channels—in particular, the amount of

common knowledge over how to interpret data, and the “dimensionality” or “com-

plexity” of the learning problem—emerge as determinants of strategic behavior.

These channels are complementary to (and distinct from) the traditional channel

of private information, and have new implications for informational design. Section

7 asks within the proposed model: How might a designer be able to manipulate

behavior either by choosing the nature of public information, or the way in which

individuals interpret it? I present several examples in which provision of extraneous

public information prevents agents from coordinating.

The final sections proceed as follows: Section 8 examines modeling choices made

in the main text—specifically, the assumption of uniform consistency (Section 8.1),

the assumption of common data (Section 8.2), and the assumption of a “true” value

of the unknown parameter (Section 8.3)—and discusses the extent to which these as-

sumptions can be relaxed. Section 9 surveys the related literature, placing this paper
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between the literature that studies the robustness of equilibrium—e.g. Fudenberg,

Kreps & Levine (1988), Carlsson & van Damme (1993), Kajii & Morris (1997), and

Weinstein & Yildiz (2007)—and the literature that studies the asymptotic proper-

ties of learning from data—e.g. Cripps, Ely, Mailath & Samuelson (2008), Al-Najjar

(2009), and Acemoglu, Chernozhukov & Yildiz (2015). Section 10 concludes.

2 Preliminaries and Notation

2.1 The game

Fix a finite set of players I and a finite action set Ai for each player i ∈ I. As usual,

write A =
∏
i∈I Ai. Then, the set of possible games can be identified with U :=

R|I|×|A|. Let Θ ⊂ Rk be a compact subset of finite-dimensional Euclidean space,

which is related to payoffs under a bounded and Lipschitz continuous embedding4,5

g : Θ→ U.

For notational convenience, I will describe players as having uncertainty over the

parameter space Θ instead of the payoff space U . Throughout this paper, the true

value of the parameter is denoted by θ∗ and the true payoffs by u∗ = g(θ∗).

Remark 1. In some contexts, the concept of “true” payoffs may not have meaning,

and we might prefer to think instead of a true distribution over payoffs. In this

case, the parameter θ can be interpreted as indexing a family of distributions over

payoffs, and the map g as taking parameters into expected payoffs (see Section 8.3).

2.2 Beliefs

A complete description of a player’s uncertainty is identified with a hierarchy of

beliefs, or more simply, a type.

Type space. For notational simplicity, consider first I = 2. Following Branden-

burger & Dekel (1993), recursively define

X0 = Θ

X1 = X0 × (∆(X0))

...

Xn = Xn−1 × (∆(Xn−1))

4A map is an embedding if it is a homeomorphism onto its image.
5This map g can be interpreted as capturing the known information about the structure of

payoffs.
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and take T0 =
∏∞
n=0 ∆(Xn). An element (t1, t2, . . . ) ∈ T0 is a complete description

of beliefs over Θ (describing the player’s uncertainty over Θ, his uncertainty over

his opponents’ uncertainty over Θ, and so forth), and is referred to as a type.

This approach can be generalized for I players, taking X0 = Θ, X1 = X0 ×
(∆(X0))I−1, and building up in this way. Mertens & Zamir (1985) have shown

that for every player i, there is a subset of types T ∗i (that satisfy the property of

coherency6) and a function κ∗i : T ∗i → ∆
(
Θ× T ∗−i

)
such that κi(ti) preserves the

beliefs in ti; that is, margXn−1
κi(ti) = tni for every n. Notice that T ∗−i is used here

to denote the set of profiles of opponent types.

The tuple (T ∗i , κ
∗
i )i∈I is known as the universal type space. Other tuples (Ti, κi)i∈I

with Ti ⊆ T ∗i for every i, and κi : Ti → ∆(Θ× T−i), represent alternative (smaller)

type spaces. Since I consider only symmetric type spaces in which there exists a set

T such that Ti = T for every i, I will frequently informally refer to T itself as the

type space, with the understanding that it is meant to invoke (Ti, κi)i∈I .

Remark 2. Types are sometimes modeled as encompassing all uncertainty in the

game. In this paper, I separate strategic uncertainty over opponent actions from

structural uncertainty over payoffs.

Common p-belief. Let T ∗ = T ∗1 ×· · ·×T ∗I denote the set of all type profiles, with

typical element t = (t1, . . . , tI). Then, Ω = Θ × T ∗ is the set of all “states of the

world.” Following Monderer & Samet (1989), for every E ⊆ Ω, let

Bp(E) := {(θ, t) : κi(ti)(E) ≥ p for every i} , (1)

describe the event in which every player believes E ⊆ Ω with probability at least p.

Common p-belief in the set E is given by

Cp(E) :=
⋂
k≥1

[Bp]k (E).

The special case of common 1-belief is referred to in this paper as common certainty.

I use in particular the concept of common certainty in a set of first-order beliefs,

characterized in Battigalli & Sinischalchi (2003). For any F ⊆ ∆(Θ), define

EF := {(θ, t) : margΘ ti ∈ F for every i} , (2)

to be the event in which every player’s first-order belief is in F . Then, C1(EF ) is the

event in which it is common certainty that every player has a first-order belief in F .

The set of types ti given which player i believes that F is common certainty is the

projection of C1(EF ) onto T ∗i .7 Since this set is the same for all players, I will refer

to the projection of C1(EF ) onto T ∗1 as “the set of types with common certainty in

F .”
6margXn−2

tn = tn−1, so that (t1, t2, . . . ) is a consistent stochastic process.
7Notice that when beliefs are allowed to be wrong (as they are in this approach), individual
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2.3 Solution concepts

Strict solution concepts will play an important role in this paper. For the com-

plete information game with payoffs u∗, say that action profile a is a strict Nash

equilibrium if

u∗i (ai, a−i) > u∗i (a
′
i, a−i) ∀ i ∈ I and a′i 6= ai

and a δ-strict Nash equilibrium if

u∗i (ai, a−i) > u∗i (a
′
i, a−i) + δ ∀ i ∈ I and a′i 6= ai.

8

Analogously, say that an action ai is strictly rationalizable for player i if there exists

a family of sets (Rj)j∈I with ai ∈ Ri, such that for every player j and action aj ∈ Rj ,
there is some distribution α−j ∈ ∆(R−j) satisfying

u∗j (aj , α−j) > u∗j (a
′
j , α−j) ∀ a′j 6= aj . (3)

Say that the action is δ-strictly rationalizable for player i if there exists a family of

sets (Rj)j∈I with ai ∈ Ri, such that for every player j and action aj ∈ Rj , there is

some distribution α−j ∈ ∆(R−j) such that

u∗j (aj , α−j) > u∗j (a
′
j , α−j) + δ ∀ a′j 6= aj . (4)

Additionally, I will use two solution concepts for incomplete information games.

The first, interim Bayesian Nash equilibrium, is an incomplete information version

of Nash equilibrium. Fix any type space (Ti, κi)i∈I . A strategy for player i is a

measurable function σi : Ti → Ai, and the strategy profile (σ1, . . . , σI) is a Bayesian

Nash equilibrium if

σi(ti) ∈ argmax
a∈Ai

∫
Θ×T−i

ui(ai, σ−i(t−i), θ)dκi(ti) for every i ∈ I and ti ∈ Ti.

In a slight abuse of terminology, I will say throughout that action profile a is an

(interim) Bayesian Nash equilibrium if the strategy σ with σi(ti) = ai for every

ti ∈ Ti is a Bayesian Nash equilibrium.

perception of common certainty is the relevant object of study. That is, player i can believe that a

set of first-order beliefs is common certainty, even if no other player in fact has a first-order belief

in this set. Conversely, even if every player indeed has a first-order belief in F , player i may believe

that no other player has a first-order belief in this set.
8Replacing the strict inequality > with a weak inequality ≥, this definition reverses the more

familiar concept of ε-equilibrium, which requires that

u∗i (ai, a−i)− max
a′i 6=ai

u∗i (a
′
i, a−i) ≥ −ε ∀ i, where ε ≥ 0.

The concept of ε-equilibrium was introduced to formalize a notion of approximate Nash equilibria

(violating the equilibrium conditions by no more than ε). I use δ-strict equilibrium to provide a

cardinal measure for the strictness of a Nash equilibrium (satisfying the conditions with δ to spare).

6



The second solution concept, interim correlated rationalizability, is an incom-

plete information analogue of rationalizability defined in Dekel, Fudenberg & Morris

(2007). For every player i and type ti, set S0
i [ti] = Ai, and define Ski [ti] for k ≥ 1

such that ai ∈ Ski [ti] if and only if ai ∈ BRi
(

margΘ×A−i π
)

for some π ∈ ∆(Θ ×

T−i × A−i) satisfying (1) margΘ×T−i π = κi(ti) and (2) π
(
a−i ∈ Sk−1

−i [t−i]
)

= 1,

where Sk−1
−i [t−i] =

∏
j 6=i S

k−1
j [t−j ]. We can interpret π to be an extension of belief

κi(ti) onto the space ∆(Θ× T−i×A−i), with support in the set of actions that sur-

vive k − 1 rounds of iterated elimination of strictly dominated strategies for types

in T−i. For every i, define

S∞i [ti] =

∞⋂
k=0

Ski [ti]

to be the set of actions that are interim correlated rationalizable for player i of type

ti, or (henceforth) simply rationalizable.

3 Approach

Let us enrich the standard description of a game, introduced above, with two new

primitives. First, a data-generating process—formally, a sequence of n i.i.d. random

variables distributed according to a distribution P over signal-space Z. Players

commonly observe the realization zn = (z1, . . . , zn), which I will refer to as a dataset,

but may interpret it in different ways. I will write z when the number of observations

is not important, and Zn to mean the random sequence of n observations.

The second new primitive is a set F of functions

f :

∞⋃
n=1

Zn → ∆(Θ)

that take every dataset z into a distribution over Θ, or a first-order belief. I will

refer to each function f as a learning rule, since it describes a way of extrapolating

from data into a belief, and F a set of learning rules. One interpretation of F is

as a set of different but reasonable ways to interpret data. This interpretation is

particularly apt if every learning rule returns the true value of θ∗ with sufficient

data. In the main part of the paper, I will in fact impose the following, stronger,

property of uniform consistency:

Definition 1 (Uniform consistency.). The family of learning rules F is θ∗-uniformly

consistent if

sup
f∈F

d(f(Zn), δθ∗)→ 0 a.s.

where d is the Prokhorov metric on ∆(Θ).
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This condition says that beliefs induced by all learning rules in F weakly converge

to a point mass on the true value of the parameter; moreover, this convergence is

uniform across F , so that the speed of learning is not “too different” across different

learning rules. Notice that this is a joint assumption on the data-generating process

P and the set of learning rules F .

Remark 3. Every finite family of learning rules F where d(f(Zn), δθ∗)→ 0 a.s. for

every f ∈ F is θ∗-uniformly consistent.

For every dataset z, define

∆z := {f(z) : f ∈ F} ⊆ ∆(Θ)

to be the set of beliefs that are induced by learning rules in F . We can think of this

as the set of “plausible” first-order beliefs given data z.

The main question of interest is the following: Suppose an external analyst does

not know the hierarchies of beliefs that players possess, but believes that given

any realization of the data z, players have common certainty in the set ∆z. (That

is, every player has a first-order belief in ∆z, believes with probability 1 that every

other player having a first-order belief in ∆z, and so forth.) Let the set of types with

this property by called Tz. What can the analyst predict about players’ strategic

behaviors, knowing only that they have types in the set Tz?9,10

3.1 Examples

To give a sense of the flexibility of this approach, let us first consider a few concrete

examples of classes of learning rules that satisfy θ∗-uniform consistency.

Bayesian updating with uncommon priors. Players have different sub-

jective beliefs on Θ but agree on the relationship between values of θ and data.

Formally, let M be a finite set of prior distributions on Θ that have a grain of truth

(µ(θ∗) > 0 for every µ ∈ M). Define
{
xiθ : θ ∈ Θ

}
to be a set of stochastic pro-

cesses on Z∞, where ξθ 6= ξθ′ for every θ 6= θ′ and ξθ
∗

corresponds to i.i.d. draws

9 Notice that no explicit relationship is imposed between types and learning rules. For example,

each of the following is a way of generating type profiles in Tz × · · · × Tz:

• Every player i is identified with a learning rule f ∈ F , and the sequence of learning rules

(fi)i∈I is common knowledge.

• Every player i is identified with an learning rule fi ∈ F . Player i knows his own learning

rule fi, but has a nondegenerate belief distribution over the learning rules of other players.

• Every player i is identified with a distribution Pi on F , and draws a learning rule at random

from F from this distribution. The distributions (Pi)i∈I are common knowledge.

10The results in this paper follow without modification if we relax this assumption to common

certainty in the convex hull of distributions in ∆z. See Lemma 4.
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from P . The set of learning rules is described by F = (fµ)µ∈M where each fµ takes

observed data z into the posterior belief over Θ induced by prior µ and likelihood

function {P θ : θ ∈ Θ}.
Confidence intervals. Players use least-squares regression to estimate a rela-

tionship between p covariates and a real-valued outcome variable. Data consists of

tuples (xi, yi) ∈ Z := Rp × R, where xi ∼i.i.d. N (0, Ip), and

yi = xTi β + εi, εi ∼i.i.d. N (0, σ2).

Assume that xi and εi are independent. The first coordinate of the coefficient vector

β, denoted β1, is payoff-relevant, so Θ = R and the true value of the parameter

is θ∗ = β1. The set of learning rules F consists of all maps from the data into

a distribution with support in the 95% confidence interval for the least-squares

regression estimate of β1.

Case-based learning with different similarity functions. Players extrap-

olate from past instances by taking (different) weighted averages. Let X ⊆ R be

a set of attributes, which are related to outcomes in Θ under the unknown map

f : X → Θ. Data is a sequence of observations

zn = (x1, f(x1)), . . . , (xn, f(xn)),

where every xk ∼i.i.d. Q. Suppose that the unknown parameter θ∗ is the value of

the function f evaluated at a new input x0.

Fix a kernel function K : Rd → R.11 For every sequence h = (hn)n≥1 of

constants, define f̂n,h : X → Θ to be the Nadaraya-Watson estimator

f̂n,h(x) =
(nhn)−1yk

∑n
k=1K

(
(x− xk)/h

1/d
n

)
(nhn)−1

∑n
k=1K

(
(x− xk)/h

1/d
n

) ,

which produces estimates by taking a weighted average of nearby observations.

Let H be a set of sequences (hn)n≥1 that satisfy the assumptions presented

in Einmahl & Mason (2005). Each sequence corresponds to a different level of

“smoothing” applied to the data. Every learning rule in F is identified with a

sequence from H, and takes the data zn into a point belief on the Nadaraya-Watson

estimate f̂n,hn(x0).

11K is measurable and satisfies the conditions∫
Rd

K(x)dx = 1

sup
x∈Rd

‖K(x)‖ = κ <∞
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3.2 Common Learning

Following Cripps et al. (2008), say that players commonly learn the true value of

the parameter if they have asymptotic common certainty in the true value of the

parameter. The formal definition, below, is adapted for the present setting, and says

that for every level of confidence p and level of precision ε, every type in TZn almost

surely believes that the ε-ball around the true parameter θ∗ is common p-belief.12

Definition 2 (Common Learning). Players commonly learn θ∗ if

lim
n→∞

Pn ({zn : Tzn ⊆ Cp(Bε(θ∗))}) = 1.

for every p ∈ [0, 1) and ε > 0.

The following proposition says that the property of θ∗-uniform consistency is both

necessary and sufficient for common learning.

Proposition 1. Players commonly learn the true parameter θ∗ if and only if F is

θ∗-uniformly consistent.

Common learning is a strong property; for example, it is not satisfied by the

sequences of types considered in in Weinstein & Yildiz (2007), Carlsson & van

Damme (1993), and Kajii & Morris (1997).13 Why do we see it here? The key

assumption is common certainty in the set ∆z, which translates a restriction on

first-order beliefs to a restriction on tail beliefs of arbitrarily high order. As the

quantity of data increases, not only does the set of plausible first-order beliefs shrink

(as a direct consequence of θ∗-uniform consistency), but in fact the set of every order

k of beliefs shrinks uniformly in k. That is, it cannot be that players learn θ, believe

with high probability that all other players learn θ, but fail to believe that . . . other

players believe that they learn θ.14

An immediate implication is that the n → ∞ limit returns a complete infor-

mation game, in which agents have common certainty in the true payoffs. Uniform

consistency thus imposes an appealing discipline on the flexibility in beliefs gener-

ated via F , and is for this reason assumed throughout the rest of the paper. Sections

5 and 6 show that despite this strong convergence in beliefs, strategic behavior given

finite quantities of data may differ from their behavior in the limit game.

Remark 4. Section 8.1 describes the maximal relaxation of uniform consistency

under which the main results continue to hold.
12I take ε > 0, so that players believe it is approximate common certainty that the parameter is

close to θ∗; in Cripps et al. (2008), Θ is finite, so players believe it is approximate common certainty

that the parameter is exactly θ∗.
13The analogue of n→∞ is to take the size of the perturbation to 0.
14Formally, the set of types TZn almost surely converges to the type with common certainty of θ∗,

where convergence is in the Hausdorff metric induced by the uniform-weak metric on the universal

type space. See Appendix A for the necessary definitions.
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4 Asymptotic Behavior

Following, let us consider the predictions that the analyst can make regarding equi-

libria and rationalizable actions, if players commonly observe a dataset zn of size

n, and the analyst knows only that players have types in Tzn . A few preliminary

definitions are needed.

For every pure-strategy Nash equilibrium a of the complete information game

with payoffs u∗, define pNEn (a) to be the probability (over possible datasets zn) that

the strategy profile

(σi)i∈I , with σi(ti) = ai ∀ i ∈ I, ti ∈ Tzn

is a Bayesian Nash equilibrium.15 Analogously, define pRn (i, ai) to be the probability

(over possible datasets zn) that action ai is rationalizable for player i given any type

in Tzn ; that is,

ai ∈ S∞i [ti] ∀ ti ∈ Tzn .

Definition 3. Say that the rationalizability of action ai for player i is robust to

inference if pRn (i, ai) → 1 as n → ∞. Say that the equilibrium property of action

profile a is robust to inference if pNEn (a)→ 1 as n→∞.

What is the significance of robustness to inference? Suppose that action ai is

rationalizable when the true parameter is common certainty, and suppose moreover

that this property of ai is robust to inference. Then, the analyst believes with high

probability that ai is rationalizable for player i, so long as the quantity of observed

data is sufficiently large. Conversely, suppose that ai is rationalizable when the

true parameter is common certainty, but that this property of ai is not robust to

inference. Then, there exists a constant δ > 0 such that for any finite quantity of

data, the probability that ai fails to be rationalizable for some plausible hierarchy

is at least δ. In this way, robustness to inference is a minimal requirement for the

rationalizability of ai to persist when players infer their payoffs from finite data.

Analogous statements apply when we replace rationalizability with equilibrium.

Let us first consider two examples in which robustness to inference is trivially

met.

Example 1 (Trivial inference.). Let Θ = R and define g to take every θ ∈ Θ into

the payoff matrix
a1 a2

a1 θ, θ 0, 0

a2 0, 0 1
2 ,

1
2

15Notice that this paper takes an unusual interpretation of the ex-ante/interim distinction, which

does not explicitly invoke a Bayesian perspective. In this paper, the role of the prior is replaced by

a data-generating process.
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The true value of the parameter θ∗ is strictly positive, so (a1, a1) is an equilibrium

in the limit complete information game. Is it robust to inference?

Suppose F = {f}, where the learning rule f is defined such that

f(z) = δθ∗ ∀ z;

that is, beliefs are a point mass on θ∗ regardless of the realized data. Then, ∆z =

{δθ∗} for every z, and Tz consists only of the type with common certainty in the

true value of the parameter. So the incomplete information game with type space Tz
reduces to the limit complete information game, and it follows that pNEn (a1, a1) = 1

for every n ≥ 1. The equilibrium property of (a1, a1) is trivially robust to inference.

Example 2 (Unnecessary inference.). Consider the same payoff matrix, but let

Θ := [0,∞). Then, action profile (a1, a1) is a Nash equilibrium in every complete

information game in the image of g. It is easy to see that beliefs over Θ are irrele-

vant—that is,

(σi)i∈I , with σi(ti) = ai ∀ i ∈ I, ti ∈ T

is a Bayesian Nash equilibrium given any set of types T . So again pNEn (a1, a1) =

1 for every n ≥ 1, and the equilibrium property of (a1, a1) is trivially robust to

inference.

The first example illustrates a case in which learning is artificial, in the sense that

players know the true value of the parameter regardless of what data they see. The

second example illustrates a case in which learning is not necessary, because the

space of uncertainty has been chosen such that the unknown parameter is irrelevant

to the player’s strategic incentives. The following two conditions are designed to

rule out these cases.

Assumption 1 (Nontrivial Inference.). There exists a constant γ > 0 such that for

every n sufficiently large,

Pn ({zn : δθ∗ ∈ Int(∆zn)}) > γ.

This property says that for sufficient quantities of data, the probability that δθ∗

is contained in the interior of the set of plausible first-order beliefs ∆zn is bounded

away from 0. It rules out Example 1 above, as well as related examples in which

every learning rule in F overestimates, or every learning rule in F underestimates,

the unknown parameter.16

16This does not rule out classes of biased estimators. It may be that in expectation, every learning

rule in F overestimates the true parameter. Assumption 1 requires only that underestimation occurs

with probability bounded away from 0.
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To rule out the second example, I impose a richness condition on the image of

g. For every player i and action ai ∈ Ai, define S(i, ai) to be the set of complete

information games in which ai is a strictly dominant strategy for player i; that is,

S(i, ai) :=
{
u ∈ U : ui(ai, a−i) > ui(a

′
i, a−i) ∀ a′i 6= ai and ∀ a−i

}
.

Assumption 2 (Richness.). For every i ∈ I and ai ∈ Ai, g(Θ) ∩ S(i, ai) 6= ∅.

Under this restriction, which is also assumed in Carlsson & van Damme (1993) and

Weinstein & Yildiz (2007), every action is strictly dominant at some parameter

value.

4.1 Equilibrium

Let us first consider robustness of equilibrium.

Theorem 1. Assume nontrivial inference and richness. Then, the equilibrium prop-

erty of action profile a∗ is robust to inference if and only if it is a strict Nash

equilibrium.

This theorem suggests a new channel through which strictness produces robustness:

inference of payoffs from finite data is subject to estimation error despite arbitrarily

large quantities of data. Strict equilibria can withstand small misperceptions of pay-

offs, and are therefore robust to inference; in contrast, weak equilibria are sensitive

to arbitrarily small perturbations in payoffs, and are not robust.

Proof. Define UNEa∗ ⊆ U to be the set of payoffs given which a∗ is a Nash equilibrium.

Lemma 1. u ∈ Int
(
UNEa∗

)
if and only if action profile a∗ is a strict Nash equilibrium

in the complete information game with payoffs u.

Proof. Suppose that a∗ is not a strict Nash equilibrium in the game with payoffs u.

Then, there is some player i and action ai 6= a∗i such that ui(ai, a
∗
−i) ≥ ui(a

∗
i , a
∗
−i).

Define payoffs uε to agree with u everywhere, except that uεi(ai, a
∗
−i) = ui(ai, a

∗
−i)+ε.

Then, action ai is strictly better than a∗i against a∗−i, so a∗ is not an equilibrium in

the game with payoffs uε. Fix any sequence of positive constants εn → 0. Then for

every n, uεn /∈ UNEa∗ , but uεn → u as n→∞. So u /∈ Int
(
UNEa∗

)
, as desired.

Now suppose that a∗ is a strict Nash equilibrium in the game with payoffs u.

Then

ε∗ := min
i∈I

(
ui(a

∗
i , a
∗
−i)− max

ai 6=a∗i
ui(ai, a

∗
−i)

)
> 0,

so u ∈ Bε∗(u) ⊆ UNEa∗ . Thus, u ∈ Int
(
UNEa∗

)
, as desired.

Lemma 2. The equilibrium property of action profile a∗ is robust to inference if

and only if u∗ ∈ Int
(
UNEa∗

)
.
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Proof. Suppose u∗ ∈ Int
(
UNEa∗

)
. It will be useful to define the function h : ∆(Θ)→

U satisfying

h(µ) =

∫
Θ
g(θ)dµ ∀ µ ∈ ∆(Θ),

which maps first-order beliefs into expected payoff functions. Fix any dataset z with

the property that

h(∆z) := {h(µ) : µ ∈ ∆z} ⊆ UNEa∗ . (5)

Since maxi∈I(ui(a
∗
i , a
∗
−i)−maxai 6=a∗i ui(ai, a

∗
−i)) ≥ 0 for every payoff u ∈ UNEa∗ , also

max
i∈I

(∫
U
ui(a

∗
i , a
∗
−i) dµ− max

ai 6=a∗i

∫
U
ui(ai, a

∗
−i) dµ

)
≥ 0

for every µ ∈ ∆(U) satisfying µ
(
UNEa∗

)
= 1. Thus, the strategy profile (σi)i∈I ,

where σi(ti) = ai for every i ∈ I and ti ∈ Tz, is a Bayesian Nash equilibrium.

Repeating this argument for every z satisfying (5), we see that the measure of such

datasets of size n is a lower bound for pNEn (a∗).

Under uniform consistency of F and continuity of h (see Lemma 3),

d(h(∆Zn), u∗)→ 0 a.s.

Since u∗ is in the interior of UNEa∗ , this moreover implies that the measure of size-n

datasets z for which h(∆z) ⊆ UNEa∗ converges to 1 as n → ∞. Thus, pNEn (a∗) → 1,

and a∗ is robust to inference.

In the other direction, suppose that u∗ /∈ Int
(
UNEa∗

)
. Since u∗ is on the boundary

of UNEa∗ , there exists some player i and action ai 6= a∗i such that u∗i (ai, a
∗
−i) ≥

u∗i (a
∗
i , a
∗
−i). Under the assumption of richness, there exists a parameter θ ∈ Θ such

that ai is strictly dominant for player i in the game with payoffs g(θ). Under

the assumption of nontrivial inference, for every n sufficiently large, there exists a

constant εn > 0 such that the measure of datasets z of size n satisfyingBεn(δθ∗) ⊆ ∆z

is at least γ. Define the sequence of belief distributions (µεn)n≥1 where

µεn = (1− εn)δθ∗ + εnδθ for every n.

Since every µεn ∈ Bεn(δθ∗), if Bεn(δθ∗) ⊆ ∆z then also µεn ∈ ∆z. Thus for n

sufficiently large, the measure of size-n datasets z for which µεn ∈ ∆z is at least γ.

Moreover, for every n,∫
U
ui(ai, a

∗
−i) dg∗(µεn) >

∫
U
ui(a

∗
i , a
∗
−i) dg∗(µεn).

So action a∗i is not a best response to a∗−i given any first-order belief µεn , and the

strategy profile (σi)i∈I , where σi(ti) = ai for every i ∈ I and ti ∈ Tz, is not a

Bayesian Nash equilibrium. It follows that limn→∞ p
NE
n < 1− γ, so a∗ is not robust

to inference.
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It immediately follows from the two lemmas that the equilibrium property of

action profile a∗ is robust to inference if and only if a∗ is a strict Nash equilibrium.

4.2 Rationalizability

Following Theorem 1, a reasonable conjecture is that rationalizability of action a∗i
for player i is robust to inference if and only if a∗i is strictly rationalizable for player

i. A simple example shows this to be false. Suppose that true payoffs are given by

a3 a4

a1 1, 0 1, 0

a2 0, 0 0, 0

Notice that action a1 is a strictly dominant strategy for player 1 in all close complete

information game (where “close” is measured in Euclidean distance between payoffs).

Since as the quantity of data increases, player 1 learns the true payoffs, it is easy to

show that action a1 is robust to inference.

But a1 is not strictly rationalizable for player 1: in the first round of elimination,

both of player 2’s actions are eliminated, since neither is a strict best reply to any

player 1 action. Since there are no surviving player 2 actions, action a1 trivially

fails to be a strict best reply to any surviving player 2 action, and is therefore also

eliminated in the second round.

This example illustrates that the procedure of elimination matters. In particular,

the definition for strict rationalizability requires that every action that is not a strict

best response to any surviving opponent strategy is eliminated at once. This choice

has unintuitive consequences in games like the example above, in which a player is

indifferent between all of his actions. To resolve this, a new procedure of iterated

elimination of strategies that are never a strict best reply is defined below, in which

actions are eliminated (at most) one at a time.

First, define W 1
i := Ai for every player i. Then, for each k ≥ 2, recursively

remove (at most) one action in W k
i that is not a strict best reply to any opponent

strategy α−i with support in W k−1
−i . Let

W∞i =
⋂
k≥1

W k
i

be the set of player i actions that survive every round of elimination, and define

W∞i to be the intersection of all sets W∞i that can be constructed in this way. Say

that an action ai is weakly strict-rationalizable if ai ∈ W∞i .17

17The choice of weak to describe the latter procedure is explained by Claim 1 (see Appendix B),

which says that an action is strict-rationalizable only if it is weakly strict-rationalizable.
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Returning to the example above, we see that there are two patterns of one-at-a-

time elimination. One possibility is

a3 a4

a1 1, 0 1, 0

a2 0, 0 0, 0

−→
a3 a4

a1 1, 0

a2

in which action a2 is eliminated for player 1 and action a4 is eliminated for player

2, so that actions a1 and a3 remain. Another possibility is

a3 a4

a1 1, 0 1, 0

a2 0, 0 0, 0

−→
a3 a4

a1 1, 0

a2

in which action a2 is eliminated for player 1 and action a3 is eliminated for player

2, so that actions a1 and a4 remain. The action a1 survives both procedures; hence,

it is weakly strict-rationalizable.

Theorem 2. Assume nontrivial inference and richness. Then, the rationalizability

of action a∗i for player i is robust to inference if a∗i is strictly rationalizable, and

only if a∗i is weakly strict-rationalizable.

It can be shown that under nontrivial inference and richness, robustness to in-

ference (nearly) coincides with the concept of robustly rationalizable proposed in

Morris, Takahashi & Tercieux (2012) (see Section 8.2 for a more detailed compar-

ison), and can also be understood as requiring persistence across a subset of types

that uniformly converge to the complete information type in the uniform-weak topol-

ogy (proposed and characterized in Chen, di Tillio, Faingold & Xiong (2010)). In

light of this, the sufficiency direction of this result has several predecessors—for ex-

ample, its proof is very similar to the robust rationalizability of strict rationalizable

actions in Morris, Takahashi & Tercieux (2012), and for finite F follows directly

from lower hemi-continuity of strict rationalizability in the uniform-weak topology.

The necessary direction above (and in particular, the construction of weakly strict

rationalizable actions) is new, and its connection with these ideas above is explained

following the remarks below.

Remark 5. Why do non-strict rationalizable actions fail to be robust, despite the

results of Weinstein & Yildiz (2007)? The key intuition is that the negative result

in Weinstein & Yildiz (2007) relies on construction of tail beliefs that put suffi-

cient probability on payoff functions with dominant actions. But in the proposed

approach, it is common certainty that every player puts low probability on “most”

payoff functions. So, with high probability, contagion from “far-off” payoff functions

with a dominant action cannot begin.
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A second intuition for why refinement is obtained is that only perturbations in

the uniform-weak topology (Chen et al. 2010) are considered in this paper, while

Weinstein & Yildiz (2007) considers perturbations in what is known as the product

topology (see Section 8.2 for an extended discussion). In particular, the sequences

of types used to show failure of robustness in Weinstein & Yildiz (2007) do not

converge in the uniform-weak topology, and hence do not have analogues in the

proposed approach.

The example prior to the theorem provided intuition for why strict rationaliz-

ability is not necessary for robustness to inference—specifically, that the procedure

rules out actions that we might think of as “strictly rationalizable” in an informal

sense. Weak strict rationalizability turns out to have a second interpretation, which

explains its role as a necessary condition for robustness to inference. Define URa∗i
to

be the set of payoffs u such that a∗i is rationalizable for player i in the complete

information game with payoffs u. Then, the interior of this set is exactly charac-

terized by the set of payoffs u given which a∗i is weakly strict-rationalizable. One

can show that rationalizability of action a∗i is robust to inference only if the true

payoffs u∗ lie in the interior of URa∗i
; thus, weak strict-rationalizability is necessary

for robustness.

But it turns out that weak strict rationalizability is not sufficient, for the surpris-

ing reason that an action that is rationalizable given common certainty of the true

payoffs may not be rationalizable given common certainty of an arbitrarily small

neighborhood of the true payoffs. Such an example is constructed in Appendix D.

This example relies on the fact that the chain of best responses rationalizing action

a∗i can vary across URa∗i
. In particular, it may be that the true payoffs u∗ lie on the

boundary between two open sets of payoff functions, each with different families of

rationalizable actions. If players believe that payoff functions on different sides of

the boundary are common certainty, then action a∗i may fail to be rationalizable.

On the other hand, if a∗i is strictly rationalizable, then it can be justified by a

chain of strict best responses that remain constant on some neighborhood of u∗. It

can be shown in this case that common certainty in a vanishing neighborhood of u∗

indeed implies rationalizability of a∗i , so that robustness is obtained.

Remark 6. A further implication of these comments is that although strict rational-

izability is lower-hemicontinuous in the uniform-weak topology (Dekel, Fudenberg &

Morris 2006, Chen et al. 2010), the slight relaxation to weak strict-rationalizibility

is not.

Taken together, Theorems 1 and 2 demonstrate that strict solutions hold with

probability arbitrarily close to 1 as the quantity of data increases to infinity.
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5 Finite Data Behavior

Let us turn now to the question of what the analyst can say about behavior if

players observe small, finite quantities of data. Do strict solutions continue to hold

with high probability, and what determines this? Recall that Theorems 1 and 2

provided conditions under which pNEn (a) → 1 and pRn (i, ai) → 1. Proposition 2

below complements these results with a lower bound on pNEn (a) and pRn (i, ai) for

every quantity of data n. This bound depends on two key features:

First, it depends on a cardinal measure of strictness. For every strict Nash

equilibrium a, define

δNEa = sup {δ : a is a δ-strict NE}

to be the largest value of δ for which a is a δ-strict NE. This parameter describes

the amount of slack in the equilibrium property of action profile a; the larger δNEa
is, the “more strict” we will say that the equilibrium is. Similarly, for every strictly

rationalizable action ai, define

δRai = sup{δ : ai is δ-strictly rationalizable}.18

to be the largest value of δ such that ai is δ-strictly rationalizable for player i. Again,

this parameter describes the amount of slack in the solution; the larger δRai is, the

more strict we will say that rationalizability of ai is.

The second important feature of the bounds below is the speed at which rules

in F jointly learn the true payoffs. To define this, let us first introduce the function

h(µ) =

∫
Θ
g(θ)dµ ∀ µ ∈ ∆(Θ).

that maps first-order beliefs into expected payoff functions. For every realized

dataset z, the quantity ‖h(f(z)) − u∗‖∞ is the (sup-norm) distance between the

true payoffs and the expected payoffs under belief f(z). We can interpret this as

the error in inferred payoffs. Taking the supremum over errors across all f ∈ F , the

quantity

sup
f∈F
‖h(f(z))− u∗‖∞

is an upper bound on the error from any single learning rule in F . In expectation

this quantity converges to 0; that is,

EPn
(

sup
f∈F
‖h(f(Zn))− u∗‖∞

)
→ 0.

18I abuse notation here and write δRai instead of δRi,ai . Again, this parameter is defined only if ai
is δ-strictly rationalizable for some δ ≥ 0.
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This follows from θ∗-uniform consistency of F and continuity of h (see Lemma 3).

But the speed at which this convergence occurs varies substantially over different

(P,F) pairs—this is what I will refer to as the speed of joint learning.

Proposition 2. (a) Let a∗ be any strict Nash equilibrium in the limit complete

information game. Then, for every n ≥ 1,

pNEn (a∗) ≥ 1− 2

δNEa∗
EPn

(
sup
f∈F
‖h(f(Zn))− u∗‖∞

)
(6)

(b) Let a∗i be any strictly rationalizable action for player i in the limit complete

information game. Then, for every n ≥ 1,

pRn (i, a∗i ) ≥ 1− 2

δRa∗i

EPn
(

sup
f∈F
‖h(f(Zn))− u∗‖∞

)
.

These bounds are increasing in the strictness of the solution (via δNEa∗ and δRa∗i
)

and in the speed of joint learning. Intuitively, the speed of joint learning determines

how much heterogeneity and error in beliefs we should expect given n observations,

and the strictness of the solution determines how much heterogeneity and error in

beliefs the solution can withstand. Formally, the key step in the proof is to show

that pNEn (a∗) admits as a lower bound the probability (over size-n datasets) that

players have common certainty in the δNEa∗ /2-neighborhood of the true payoffs. (The

parallel statement holds for rationalizability, replacing pNEn (a∗) with pRn (i, a∗i ) and

δNEa∗ with δRa∗i
.)

The roles played by strictness, and the “complexity” of learning, are in my

view the key advantages to modeling beliefs using the proposed framework. In

particular, while the degree of strictness resembles classical criteria for equilibrium

selection (such as Pareto-dominance and risk-dominance) in that it relies exclusively

on the payoff matrix, the speed of joint learning depends on features external to

payoffs—specifically, the kind of data that agents see, and the rules they use to

learn from the data. Proposition 2 thus provides a way to leverage knowledge about

the context of the game towards predicting the likelihood of (limit) equilibria and

rationalizable actions. This property will be drawn upon repeatedly in Section 6 to

model a third party’s ability to influence behavior via manipulation of the complexity

of information.

5.1 The Role of Opinion Diversity

It is useful to separate the determinants of the speed of joint learning into two

channels: first, the speed at which individual learning rules recover the true payoffs;

and second, the “opinion diversity,” or the correlation between beliefs induced by
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learning rules across F . This section isolates the second channel and characterizes

its influence on pNEn (a) and pRn (i, ai).

More precisely, recall that every learning rule f maps data into a first-order

belief. Let f(Zn) be the random belief induced by learning rule f and the measure

Pn. Suppose that the distribution of f(Zn) is fixed for every learning rule in F , but

the joint distribution of (f(Zn))f∈F is not. Proposition 7 answers: how much can

the probabilities pNEn (a) and pRn (i, ai) vary?

To preview the bounds in the proposition below, let us consider the game

a b

a θ, θ 0, 1
2

b 1
2 , 0

1
2 ,

1
2

where Θ = {1, 0}, and suppose that the true value of θ is 1. We will be interested in

robustness of the equilibrium property of action profile (a, a). Define µL to be a point

mass on 0 and µ′ to be a point mass on 1, and fix two sequences (Qn1 )n≥1, (Q
n
2 )n≥1

of distributions from ∆(∆(Θ)) so that

Qn1 (µ) =
1

4n
and Qn1 (µ′) =

(
1− 1

4n

)
∀n

Qn2 (µ) =
3

4n
and Qn2 (µ′) =

(
1− 3

4n

)
∀n

Suppose that any set of learning rules F = {f1, f2} is permitted, where f1(Zn) ∼ Qn1
and f2(Zn) ∼ Qn2 . What is the range of possible values for pNEn (a, a)?

Let us consider a few natural choices of F . First, we can choose F so that f1(Zn)

and f2(Zn) are perfectly correlated for every n. One can show that

pNEn (a, a) = Pn({zn | f1(zn) = f2(zn) = µH}),

so the analysis reduces to determining when both learning rules map to µ′.19 Since

f1(Zn) and f2(Zn) are perfectly correlated, every dataset that is mapped to µH by

f2 is also mapped to µH by f1. Therefore,

pNEn (a, a) = Pn({zn | f2(zn) = µH}) = 1− 3

4n
. (7)

19Suppose fi(zn) = µL for some i = 1, 2. Then, the type with common certainty in µL is in Tzn .

But a is strictly dominated for every player with this belief; therefore,

pNEn (a, a) ≤ Pn({zn | f1(zn) = f2(zn) = µH})

Now suppose f1(zn) = f2(zn) = µH . Then, Tzn is a singleton, consisting only of the type with

common certainty in µH . Action a is rationalizable for both players of this type. So also

pNEn (a, a) ≥ Pn({zn | f1(zn) = f2(zn) = µH})

Therefore, pNEn (a, a) = Pn({zn | f1(zn) = f2(zn) = µH}) as desired.
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We can reduce pNEn (a, a) by instead choosing F so that f1(Zn) and f2(Zn) are

independent. Then,

pNEn (a, a) = Pn ({zn | f1(zn) = µH})Pn ({zn : f2(zn) = µH})

=

(
1− 1

4n

)(
1− 3

4n

)
< 1− 3

4n
.

In fact, we further reduce pNEn (a, a) by choosing F so that f1(Zn) and f2(Zn) are

“anti-correlated.” Then, the datasets mapped to µL by f1 and f2 are disjoint. In

this case,

pNEn (A,A) = 1− 1

4n
− 3

4n
= 1− 1

n
. (8)

It turns out that (7) is the largest possible value of pNEn (A,A) (subject to the

constraints on F described above) and (8) is the smallest possible value.

These observations are generalized as follows for arbitrary finite F . First, recall

the previous definitions of UNEa as the set of payoffs given which a is a Nash equilib-

rium, and URai as the set of payoffs given which action ai is rationalizable for player

i. For every distribution Q ∈ ∆(∆(Θ)) and every quantity of data n, let

pNEQ (a) := Q
(
{µ : h (µ) ∈ UNEa

)
, (9)

be the probability that a is a Nash equilibrium if every player shares a first-order

belief determined by the realization of Q. Define pRQ(i, ai) analogously, replacing

UNEa in (9) with URai .

Proposition 3. Fix any K < ∞ sequences of distributions (Qn1 )n≥1, . . . (Q
n
K)n≥1

of distributions from ∆(∆(Θ)). Then, for every F = {f1, . . . , fk} such that every

fk(Zn) ∼ Qnk , the probabilities pNEn (a) and pRn (i, ai) satisfy

pNEn (a) ∈

[
1−

K∑
k=1

pNEQnk
(a), 1− min

k∈{1,...,n}
pNEQnk

(a)

]

pRn (i, ai) ∈

[
1−

K∑
k=1

pRQnk
(i, ai), 1− min

k∈{1,...,n}
pRQnk

(i, ai).

]

The upper bounds correspond to the case in which different learning rules per-

form poorly on sets of data that are as overlapping as possible. That is, if evaluating

rule f on data z produces a belief that is “far” from the degenerate belief on the

true parameter θ∗, then it is likely that evaluating other learning rules in F on the

same data would also produce inaccurate beliefs. The lower bound, when attainable,

corresponds to the case in which different learning rules perform poorly on sets of

data that are “as different” as possible. That is, if evaluating learning rule f on

data z produces a belief that is far from the degenerate belief on the true parameter
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θ∗, then it is likely that evaluating other learning rules would produce accurate be-

liefs. This can be formalized using the idea of co-monotonic and counter-monotonic

random variables, and the proof follows from a straightforward application of the

Frechet-Hoeffding bound.20

6 Application: Data Design

So far, we have taken the data-generating process P and the set of learning rules

F to be exogenously determined. But in practice, both public data and the way in

which individuals interpret it are often influenced by external actors—for example,

the federal reserve board decides what data to release about various financial and

macroeconomic indicators, Consumer Reports determines what data to release about

consumer goods, US News decides what data to release about universities, and so

forth; moreover, the ways in which people draw inferences from public data are often

guided by education and experts. For these reasons, it is important to understand

the strategic implications of data design.21

The examples below illustrate how an external agent might influence strategic

behaviors within the proposed framework, either by controlling the data that players

see or the way that players interpret it. These examples focus on an interesting

special case of the proposed approach, in which the signal space can be written

as Z = X × Θ, where X is a set of observable features, and Θ is the space of

payoff-relevant outcomes. For example,

• the set X might describe physical characteristics of a laptop (weight, battery

life, resolution), while Θ describes quality.

• the set X might describe various macroeconomic indices (interest rates, the

consumer price index), while Θ is inflation next term.

• the set X describes features of a university (student-faculty ratio, ethnic di-

versity, graduation rate), while Θ is the value to attending the university.

Players observe a sequence

(x1, θ1), . . . , (xn, θn),

where each θi is drawn independently and distributed according to an unknown

conditional distribution P (θ|x = xi). The payoff-relevant unknown is the value

20Similar techniques are used in Ely (N.d.).
21A recent area of research has made significant progress on related questions by formulating the

third party’s problem as a choice between information structures. The discussion below will depart

from this literature in one key way by imposing extrinsic meaning to signals (see Section 8.4 for a

brief review and comparison).
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of θ at a new out-of-sample feature vector x. In problems like this, a standard

approach to inference is to estimate the unknown outcome by inferring a model

φ : X → Θ from the data, and evaluating φ at x. There is a vast literature regarding

problems like this and approaches for inference of φ. The examples below focus on

two canonical cases.

Example 1 sets Θ = {1, 0}, so that the problem is one of classification: players

want to learn which values in X map to θ = 1 and which values map to θ = 0.

I introduce a third party that determines the dimensionality of X , and show that

accurate reporting of extraneous observables (an artificial increase in the dimen-

sionality of X ) can reduce the probability of coordination. Example 2 considers a

related setting in which outcomes are linearly related to a set of covariates. I show

that by reporting extraneous covariates (inducing agents to “over-fit” the data),

an external analyst can again reduce the probability of coordination. These exam-

ples illustrate how standard notions of statistical complexity can be used to model

human perception of the “ambiguity” of data, with implications for their strategic

behaviors.

6.1 Example 1: Classification

Two plaintiffs are approached by a lawyer to join their cases into a class action suit.

Their payoffs are
Join Not Join

Join θ, θ 0, 1
2

Not Join 1
2 , 0

1
2 ,

1
2

so that not joining yields a certain payoff of 1
2 and joining alone yields a certain

payoff of 0. If both players join, then the suit is taken to court and players receive

an unknown payoff of θ ∈ {1, 0} (interpret θ = 1 to mean success and θ = 0 to mean

failure). Is the action ‘Join’ rationalizable?

For concreteness, let X = [−c, c]p, so that every suit is described by p charac-

teristics (amount sued for, etc.), each normalized to lie within the interval [−c, c].
Every observation (x, θ) describes the characteristics and outcome of a past class

action suit. Observations are drawn i.i.d. from a distribution P on X × Θ with

the properties that: (1) margX P is uniform over X ; and (2) for every x ∈ X , the

conditional distribution P (· |x) is a point mass on the value of

φ∗(x) =

{
1 if xk ∈ [−c′, c′] for every k = 1, . . . p∗

0 otherwise

for some p∗ < p. Notice that only p∗ of the p characteristics matter for the outcome

of the suit.
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An external agency chooses a transformation of the realized data

(x1, θ1), . . . (xn, θn) (10)

that determines what players observe. Specifically the agency chooses the number

of characteristics to report, where the agency is obligated to report each of the first

p∗ characteristics, but can in addition (truthfully) report any of the remaining p−p∗

characteristics. In the following, I will take these features to be symmetric, so that

the agency’s choice is simply an integer p ∈ {p∗, p∗ + 1, . . . , p}. Thus, instead of

observing (10), players observe

zn = ((τp(x1), θ1), . . . , (τp(xn), θn)), (11)

where τp : (x1, . . . , xp) 7→ (x1, . . . , xp∗) is the truncation of vectors in X to their first

p entries.

Players form beliefs about θ from the data in the following way. Take Φ to be

the set of all “rectangular classification rules”, of which φ∗ is a member, defined to

include every function φ : [−c, c]p → Θ that can be written as

φ(x) =

{
1 if x ∈ [c1, c

′
1]× · · · × [cp, c

′
p]

0 otherwise

for some vector (c1, c
′
1, . . . , cp, c

′
p) ∈ [−c, c]2p. Given observation of (11),

Φz = {φ ∈ Φ : φ (τp(xi)) = θi ∀ i = 1, . . . , n} .

is the set of all functions φ within the class of rectangular classification rules that

exactly fit the observed data. See Figure 1 for an illustration.

Then, the set of all plausible predictions for the class action suit in ques-

tion—which, let’s say, has characteristics x̃—is given by

{φ(τp(x̃)), φ ∈ Φz} ⊆ Θ,

since τp(x̃) is the reported set of characteristics, and φ(τp(x̃)) is the prediction of

function φ at τp(x̃). (Observe that since Θ = {1, 0}, either this set is fully restrictive,

in that every φ predicts the same value of θ, or it is completely unrestrictive, return-

ing Θ.) Let the class of learning rules F be the set of all functions f :
⋃∞
n=1 → ∆(Θ)

with the property that every belief f(z) assigns probability 1 to the set of plausible

predictions {φ(τp(x̃)), φ ∈ Φz}.22 Then:

22The following is a Bayesian interpretation of F . The set of states of the world is Ω = Θ×Φ×Z∞,

so that a state consists of a value of θ, a function φ, and an infinite sequence of observations from

Z. Let M be the set of all probability distributions over Φ, with the property that the induced
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Proposition 4. Suppose x̃k ∈ (−c′, c′) for every k = 1, . . . , p∗, which implies that

Join is rationalizable for both players under complete information. Then, for every

fixed quantity of data n ≥ 1, and for i ∈ {1, 2}:

(a) the probability pRn (i, Join) is monotonically decreasing in the number of reported

characteristics p.

(b) pRn (i, Join)→ 0 as p→∞.

Thus, if the agency wants to minimize the probability that joining is rational-

izable given n observations, it should report as many characteristics as possible

(p = p). Moreover, if we allow the agency to report arbitrarily many characteristics

p, then pRn (i, Join) can be made arbitrarily small for any fixed number of observa-

tions. The essential feature of this example is that players do not know which or how

many characteristics φ∗ depends on. Thus, the more characteristics are reported,

the greater the number of models that are “consistent” with the data, and as a re-

sult, the greater the ambiguity in how to interpret the data. Since rationalizability

of the action Join requires not only that players assign sufficiently high probability

to success of the class action suit (θ = 1), but also that they believe with sufficiently

high probability that the other player does the same, the dispersion in beliefs intro-

duced by the extraneous variables serves to dissuade joining the class action suit.

In practice, uncertainty caused by a lack of understanding or agreement over the

determinants of an outcome seem realistic, and provision of “too much” information

may indeed be a practical tool for preventing outcomes that require high confidence

of similar views.

6.2 Example 2: Regression

Two investors decide whether to participate in a risky investment. Their payoffs are

Invest Don’t Invest

Invest θ, θ θ − c, 0
Don’t Invest 0, θ − c 0, 0

distribution over parameters in [−c, c]2p is absolutely continuous with respect to the Lebesgue

measure.

Conditional on φ, a stochastic process ψφ generates an infinite sequence of i.i.d. draws from Pφ,

where margX Pφ is uniform over X , and the conditional distribution P (· |x) is a point mass on

φ(x). For every µ ∈M , write Pµ for the prior belief over Ω induced by µ and the signal processes

(ψφ)φ∈Φ, with the further restriction that probability 1 is assigned to the set {(θ, φ, z) : θ = φ(x̃)}.
Let (Hn)∞n=1 denote the filtration induced on Ω by datasets zn of size n. Then, every zn and

prior belief µ ∈M generate a posterior belief Pµ(θ |Hn)(z) over Θ. Write ∆z ⊆ ∆(Θ) to be the set

of all such posteriors. The set of learning rules F consists of all maps f :
⋃∞
n=1 Z

n → ∆(Θ) such

that f(z) ∈ ∆z for every z. See Appendix C for the argument of equivalence.
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where c > 0 is known but the return to joint investment θ ∈ R is not. Is the action

‘Invest’ rationalizable?

Suppose that a central bank collects data on investments and their returns. Each

investment is described by p covariates (x1, . . . , xp) ∈ Rp. Observations are pairs

(x1
k, . . . , x

p
k, θk), where

θk = φ(xk) + εk = β0 + β1xk + · · ·+ βp∗x
p∗

k + εk, εk ∼ N (0, 1)

for k = 1, . . . , n. That is, returns are a sum of a linear function of the first p∗

covariates and a Gaussian disturbance term.

The central bank reports the first p′ covariates describing each observed invest-

ment, where p′ ≥ p∗. Following this announcement, players form beliefs about θ

by finding the best linear fit to the reported data and projecting the return at the

covariates describing the project, which we can denote by x∗ ∈ Rp′ . Formally, let

β̂LS =
(
β̂LS0 , . . . , β̂LSp

)
be the solution to

β̂LS = argmin
β∈Rp

n∑
k=1

|yk − β · (1 x1
k x

2
k . . . xpk)

T |2.

The least-squares estimate of φ is then

φ̂LS(x) = β̂LS0 + β̂LS1 x1
k + . . . β̂LSp xpk,

and the predicted return at x∗ is φ̂LS(x∗). Denote the (1−α)-th confidence interval

for the prediction φ̂LS(x∗) by CI(z).23

The set of learning rules F consists of all maps f :
⋃∞
n=1Zn → ∆(Θ) with the

property that for every z, the belief f(z) has support in the interval CI(z).

Proposition 5. Suppose φ(x∗) > 0. Then, for every fixed quantity of data n ≥ 1,

and for i ∈ {1, 2},
pRn (i, Invest) ≥ 1− 1

|θ∗|
φ(p′)

for a function φ that is monotonically increasing in the number of reported charac-

teristics p′.

Thus, if the bank wants to minimize the probability that ‘Invest’ is rationalizable

given n observations, it should announce as many extraneous covariates as possible

(p = p). As in the previous example, the intuition is that rationalizability of the

action ‘Invest’ requires common q-belief (for sufficiently high q) that the value of

θ is positive. The greater the number of extraneous covariates reported, the larger

23The (1 − α)-th confidence interval has the property that, if it were repeatedly calculated on

different samples, it would contain the true value φ(x∗) for a (1− α) measure of samples
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the variance of the least-squares prediction, and the larger the confidence interval

around this prediction. This creates a larger range of “plausible” beliefs, given

which even individuals who are optimistic about θ may nevertheless choose not to

cooperate.

7 Extensions

The following section provides brief comment on various modeling choices made in

the main framework.

7.1 Misspecification

The main results hold under a weakening of θ∗-uniform consistency, which I define

below:

Definition 4 ((ε, θ∗)-uniform consistency.). For any ε ≥ 0, say that the class of

learning rules F is (ε, θ∗)-uniformly consistent if

lim
n→∞

sup
f∈F

d(f(Zn), δθ∗) ≤ ε a.s.

where d is the Prokhorov metric on ∆(Θ).

According to this definition, the class of learning rules F is (ε, θ∗)-uniformly

consistent if the set of induced first order beliefs converges almost surely (in the

Hausdorff distance induced by d) to an ε-neighborhood of the true parameter. Notice

that θ∗-uniform consistency is nested as the ε = 0 case. The proofs of Theorems 1

and 2 are easily adapted to show the following result. (In reading this, recall that

if F is (ε, θ∗)-uniformly consistent, then it is also (ε′, θ∗)-uniformly consistent for

every ε′ > ε.)

Proposition 6. Assume nontrivial inference and richness.

1. Suppose F is
(
δNEa∗ , θ

∗)-uniformly consistent. Then, the equilibrium property

of a∗ is robust to inference if and only if a∗ is a strict equilibrium.

2. Suppose F is
(
δNEa∗i

, θ∗
)

-uniformly consistent. Then, the rationalizability of

action a∗i is robust to inference if a∗i is strictly rationalizable.

Thus, the main results hold even if players have heterogeneous and incorrect

beliefs even in the limit, so long as their limit beliefs are constrained within a δNEa∗

neighborhood (respectively, δRa∗i
-neighborhood) of the degenerate belief on θ∗.
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7.2 Private Data

This paper studies players who observe a common dataset, but interpret it in differ-

ent ways. How do the main results change if players instead observe private data?

Cripps et al. (2008) have shown that if the set of signals Z is unrestricted, then

common learning may not occur even if F consists of a single learning rule. So

Proposition 1 need not hold. Moreover, Carlsson & van Damme (1993) and Kajii &

Morris (1997) (among others) have shown that strict Nash equilibria are not robust

to higher-order uncertainty about private opponent information. Thus, Theorems 1

and 2 also will not hold without additional restrictions on beliefs.

In the simplest extension, however, we may suppose that players observe dif-

ferent datasets (zi)i∈I , independently drawn from the same distribution, but have

(incorrect) degenerate beliefs that all opponents have seen the same data that they

have. Then, Theorems 1 and 2 hold without change, and the bounds in Proposition

2 can be revised as follows.

Proposition 7. Suppose a∗ is a strict Nash equilibrium in the limit complete infor-

mation game. Then, for every n ≥ 1,

pNEn (a∗) ≥

(
1− 2

δNEa∗
EPn

(
sup
f∈F
‖h(f(Zn))− u∗‖∞

))I
where I is the number of players. Suppose a∗i is strictly rationalizable in the limit

complete information game. Then, for every n ≥ 1,

pRn (i, a∗i ) ≥

(
1− 2

δRa∗i

EPn
(

sup
f∈F
‖h(f(Zn))− u∗‖∞

))I
.

7.3 Limit Uncertainty

In the main text, we assumed the existence of “true” payoffs, following which the

limit as n → ∞ corresponded to a complete information game. This approach can

be extended in a simple way so that the limit game is in fact a game of incomplete

information. Let ν ∈ ∆(Θ) be the “true” distribution over uncertainty (a “limit

common prior”) and rewrite the property of uniform consistency as follows:

Definition 5 (Limit Common Prior.). The set of learning rules F has a limit

common prior ν if

sup
f∈F

d(f(Zn), ν)→ 0 a.s.

where d is the Prokhorov metric on ∆(Θ).

Then, taking u∗ := h(ν) to be the expected payoff under ν, all the results in

Section 5 follow without revision.
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8 Related Literature

This paper builds a connection between the literature regarding robustness of equi-

librium to specification of player beliefs, and the literature that studies players who

learn from data. I discuss each of these literatures in turn.

8.1 Robustness of Equilibrium

Suppose an analyst does not know the exact game that players are playing, but

believes it to be “nearby” to his model of the game. When can he be reasonably

certain that the solutions in his model are close to solutions of the true game?

Early work on this question considered the true game to be a complete in-

formation game, and “nearby games” to mean other complete information games

with payoffs close in the Euclidean norm (Selten 1975, Myerson 1978, Kohlberg &

Mertens 1986). Fudenberg, Kreps & Levine (1988) suggested a concept of nearby

incomplete information games, in which players have vanishing uncertainty about

the true payoffs. This approach of embedding a complete information game into

games with incomplete information has since been considered in several new ways.

For example: Carlsson & van Damme (1993) study a class of incomplete informa-

tion games in which beliefs are generated by (correlated) observations of a noisy

signal of the true payoffs, and Kajii & Morris (1997) study incomplete information

games in which beliefs are induced by information structures that place high ex-ante

probability on the true payoffs.

The present paper continues in this tradition, studying solutions in incomplete

information games that are “nearby” to the true complete information game. The

definition of nearby that I use differs from the existing literature in several ways:

First, I place a strong restriction on (interim) higher-order beliefs, which has the

consequence that players commonly learn the true payoffs. This contrasts with

the approaches of Carlsson & van Damme (1993) and Kajii & Morris (1997), in

which—even as perturbations become vanishingly small—players consider it pos-

sible that other players have beliefs about the unknown parameter that are very

different from their own. In particular, failures of robustness due to standard con-

tagion arguments do not apply in my setting, leading to rather different robustness

results.24

24For example, the construction of beliefs used in Weinstein & Yildiz (2007) to show failure of

robustness (Proposition 2) relies on construction of tail beliefs that place positive probability on an

opponent having a first-order belief that implies a dominant action. A similar device is employed

in Kajii & Morris (1997) to show that robust equilibria need not exist (see the negative example in

Section 3.1). These tail beliefs are not permitted under my approach. When the quantity of data

is taken to be sufficiently large, it is common certainty (with high probability) that all players have

first-order beliefs close to the true distribution.
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Second, while the restriction I place on interim beliefs is stronger in the sense

described above, I do not require that these beliefs are consistent with a common

prior. This allows for common knowledge disagreement, which is not permitted in

either Carlsson & van Damme (1993) or Kajii & Morris (1997).

Finally, the class of perturbations that I consider are motivated by a learning

foundation. This aspect shares features with Dekel, Fudenberg & Levine (2004) and

Esponda (2013), but players in the present paper learn about payoffs only, and not

actions.

8.2 Role of Higher-Order Beliefs

A related literature studies the sensitivity of solutions to specification of higher-order

beliefs. Early papers in this literature (Mertens & Zamir 1985, Brandenburger &

Dekel 1993) considered types to be nearby if their beliefs were close up to order k

for large k (corresponding to the product topology on types). Several authors have

shown that this notion of close leads to surprising and counterintuitive conclusions,

in particular that strict equilibria and strictly rationalizable actions are fragile to

perturbations in beliefs (Rubinstein 1989, Weinstein & Yildiz 2007).

These findings have motivated new definitions of “nearby” types. Dekel, Fuden-

berg & Morris (2006) characterize the coarsest metric topology on types under which

the desired continuity properties hold. Chen et al. (2010) subsequently developed

a (finer) metric topology on types—the uniform-weak topology—which is defined

explicitly using properties of beliefs. In this topology, two types are considered close

if they have similar first-order beliefs, attach similar probabilities to other players

having similar first-order beliefs, and so forth.

The perturbations in beliefs that I allow for are perturbations in the uniform-

weak topology. Specifically, under the assumptions of nontrivial inference, richness,

and θ∗-uniform consistency, all plausible hierarchies converge in the uniform-weak

topology to the singleton type with common certainty in the true parameter. Thus,

robustness to inference can be interpreted as requiring persistence across a subset

of perturbations in the uniform-weak topology.25

Finally, Morris, Takahashi & Tercieux (2012) and Takahashi (N.d.) characterize

which rationalizable actions remain rationalizable for all types with approximate

common certainty in the true parameter. The property of robustness to inference

considered in Section 4.2 can be understood as a continuous analogue of their con-

cept—in the present setting, Θ may not be finite, and the prediction must hold

across all types with approximate common certainty in neighborhoods of the true

25The robustness characterizations in this paper are conjectured to hold also for the relaxation

in which players have common p-belief in the predictions of learning rules in F , where p→ 1 as the

quantity of data tends to infinity.
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parameter. These differences do not have implications for the strategic character-

ization of asymptotic behavior, although they may matter for the rate results in

Section 5. Relative to this, the contribution in Theorem 2 is an additional “only if”

characterization.

8.3 Players Who Learn from Data

The set of papers including Gilboa & Schmeidler (2003), Billot, Gilboa, Samet

& Schmeidler (2005), Gilboa, Lieberman & Schmeidler (2006), Gayer, Gilboa &

Lieberman (2007), and Gilboa, Samuelson & Schmeidler (2013) propose an inductive

or case-based approach to modeling economic decision-making. The present paper

can be interpreted as studying the strategic behaviors of case-based learners when

there is uncertainty over the inductive rules used by other players.

There is also a body of work that studies asymptotic disagreement between

players who learn from data. Cripps et al. (2008) study players who use the same

Bayesian model but observe different (private) sequences of data; Al-Najjar (2009)

study players who use different frequentist models to learn from data; and Acemoglu,

Chernozhukov & Yildiz (2015) study Bayesian players who have different priors

over the signal-generating distribution. My model of belief formation shares many

features with these models, but the main object of study is the convergence of

equilibrium sets, instead of the convergence of beliefs.

Finally, Steiner & Stewart (2008) study the limiting equilibria of a sequence of

games in which players use a kernel density estimator to infer payoffs from related

games. This paper is conceptually very close, but there are several important differ-

ences in the approach. For example, Steiner & Stewart (2008) suppose that players

share a common model and observe endogenous data (generated by past, strategic

actors), while I suppose that players have different models and observe exogenous

data. Additionally, the learning model in Steiner & Stewart (2008) is not indexed

by the quantity of data, so the limit of their learning process is a game with hetero-

geneous beliefs, whereas the limit of my process is a game with common certainty

of the true payoffs.

8.4 Informational Design

Section 7 is related to the informational design literature (Kamenica & Gentzkow

2011, Aumann & Maschler 1995, Brocas & Carrillo 2007, Rayo & Segal 2009, Alonso

& Camara 2016, Ely N.d.), and in particular the recent literature regarding infor-

mational design in games (Bergemann & Morris 2016, Mathevet, Perego & Taneva

2016). These papers study the question of how a player can influence the behavior

of another (or many others) by controlling their informational environment.
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The examples discussed in Section 7, however, cannot be readily mapped into

the general frameworks proposed in the papers above. Two key reasons include the

following: First, the players in the present paper do not necessarily form beliefs using

Bayesian inference (see e.g. Example 2), nor do they necessarily share a common

prior (see e.g. Example 1); second, and more importantly, the signals in this paper

have exogenous meanings, modeled through the set F . This places a constraint on

the messages that can be sent, and the posteriors they induce.

8.5 Epistemic Game Theory

I extensively use tools, results, and concepts from various papers in epistemic game

theory, including Monderer & Samet (1989), Brandenburger & Dekel (1993), Mor-

ris, Rob & Shin (1995), Dekel, Fudenberg & Morris (2007), Chen et al. (2010).

The notion of common certainty in a set of first-order beliefs was proposed and

characterized in Battigalli & Sinischalchi (2003).

9 Conclusion

This paper proposes and characterizes a learning-based refinement of the universal

type space. A set of “plausible” hierarchies of beliefs are defined from a common

dataset and a set of rules for extrapolating from the data. The proposed approach

is substantially more permissive than the common prior assumption, but restrictive

enough still to make predictions. As the quantity of data converges to infinity,

beliefs and behavior can be approximated by a limit complete information game.

For small quantities of data, the appropriateness of such a reduction depends on the

complexity of the problem of learning payoffs and the strictness of limit solutions.
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Appendix A: Notation and Definitions

• If (X, d) is a metric space with A ⊆ X and x ∈ X, I use the notation d(A, x)

to mean supx′∈A d(x′, x).

• Int(A) is used for the interior of the set A.

• Recall that u ∈ U is a payoff matrix. For clarity, I will sometimes write ui to

denote the the payoffs in u corresponding to player i, and u(a, θ) to denote

g(θ)(a).

• For any measures µ, ν ∈ ∆(Θ), the Wasserstein distance is given by

W1(µ, ν) = inf E(X,Y ),

where the expectation is taken with respect to a Θ×Θ-valued random variable

and the infimum is taken over all joint distributions of X × Y with marginals

µ and ν respectively.

• Let T ki = ∆(Xk−1) = ∆(Θ × T k−1
−i ) denote the set of possible k-th order

beliefs.26,27 The uniform-weak topology on T ∗i , proposed in Chen et al. (2010),

is the metric topology generated by the distance

dUWi
(
t, t′
)

= sup
k≥1

dk
(
t, t′
)
∀ t, t′ ∈ T ∗i ,

where d0 is the metric defined on Θ (see Section 2.1)28 and recursively for

k ≥ 1, dk is the Prokhorov distance29 on ∆
(

Θ× T k−1
−i

)
induced by the metric

max{d0, dk−1} on Θ × T k−1
−i . Since I consider only symmetric type spaces, I

will drop player subscripts throughout, referring to the uniform-weak metric

dUW on the set of types T .

26Working only with types in the universal type space, it is possible to identify each Xk with its

first and last coordinates, since all intermediate information is redundant.
27Since type spaces for all agents are identical in this paper, I will consistently drop notation

indexing type spaces to players.
28In Chen et al. (2010), Θ is finite and d0 is the discrete metric, but this construction extends to

all complete and separable (Θ, d0).
29Recall that the Levy-Prokhorov distance ρ between measures on metric space (X, d) is defined

ρ(µ, µ′) = inf
{
δ > 0 : µ(E) ≤ µ′

(
Eδ
)

+ δ for each measurable E ⊆ X
}

for all µ, µ′ ∈ ∆(X), where Eδ = {x ∈ X : infx′∈E d(x, x′) < δ}.
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• Recall that strict rationalizability has the following equivalent definition: Set

Σ1
i = ∆(Ai) for every player i. For every k > 1, recursively define

Σk
i = {σi ∈ Σk−1

i | ∃σ−i ∈
∏
k 6=i

Conv(Σk−1
j ) such that

ui(σi, σ−i) > ui(σ
′
i, σ−i)∀σ′i ∈ Σk−1

i }

Then, all actions in Ri =
⋂∞
k=1 Σk

i are strictly rationalizable.
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Appendix B: Preliminary Results

Lemma 3. The function

h(µ) =

∫
Θ
g(θ)dµ ∀ µ ∈ ∆(Θ)

is continuous.

Proof. By assumption, g is Lipschitz continuous; letK <∞ be its Lipschitz constant

(assuming the sup-metric on U). Suppose d(µ, µ′) ≤ ε; then,

‖h(µ)− h(µ′)‖∞ =

∥∥∥∥∫
Θ
g(θ)d(µ− µ′)

∥∥∥∥
∞
≤ K sup

g∈BL1(Θ)

∥∥∥∥∫
Θ
g(θ)d(µ− µ′)

∥∥∥∥
∞

= KW1(µ, µ′)

≤ K(diam(Θ) + 1)d(µ, µ′)

≤ K(diam(Θ) + 1)ε

using the assumption of Lipschitz continuity in the first inequality, and compactness

of Θ and the Kantorovich-Rubinstein dual representation of W1 in the following

equality. The second inequality follows from Theorem 2 in Gibbs & Su (2002). It

follows immediately that h is continuous.

Lemma 4. If d(∆Zn , δθ∗)→ 0 a.s. , then also

d (Conv (∆Zn) , δθ∗)→ 0 a.s.

where Conv(∆Zn) denotes the convex hull of ∆Zn.

Proof. Fix any dataset zn of size n, any constant α ∈ [0, 1], and any pair of measures

µ, µ′ ∈ ∆zn . Again using the dual representation of the Wasserstein distance W1,

W1(αµ+ (1− α)µ′, δθ∗) = sup
g∈BL1(Θ)

(∫
g(θ) d((αµ+ (1− α)µ′)− δθ∗)

)
= sup

g∈BL1(Θ)

[
α

(∫
g(θ) d(µ− δθ∗)

)
+ (1− α)

(∫
g(θ) d(µ′ − δθ∗)

)]
≤ α sup

g∈BL1(Θ)

(∫
g(θ) d(µ− δθ∗)

)
+ (1− α) sup

g∈BL1(Θ)

(∫
g(θ) d(µ′ − δθ∗)

)
= αW1(µ, δθ∗) + (1− α)W1(µ′, δθ∗) ≤W1(∆zn , δθ∗)

Using Theorem 2 in Gibbs & Su (2002),

d(αµ+ (1− α)µ′, δθ∗)
2 ≤W1(αµ+ (1− α)µ′, δθ∗), (12)
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and also

W1(∆zn , δθ∗) ≤ Kd(∆zn , δθ∗). (13)

where K := (1 + diam(Θ)) < ∞ by compactness of Θ. Combining (12) and (13)

with the previous inequality, it follows that for for every dataset zn,

d(Conv (∆zn) , δθ∗)
2 ≤ Kd(∆zn , δθ∗).

So d(∆Zn , δθ∗)→ 0 a.s. implies d(Conv (∆Zn) , δθ∗)→ 0 a.s., as desired.

Claim 1. If action ai is strictly rationalizable for player i in the complete informa-

tion game with payoffs u∗, then it is also weakly strict rationalizable for player i in

the complete information game with payoffs u∗.

Proof. By induction. For arbitrary player j, let (Skj )k≥1 be the sequence of sets of

surviving actions corresponding to strict rationalizability (see Section A), and let

(W k
j )k≥1 be the same for weak strict-rationalizability (see Section 5.2). Trivially

S1
j = W 1

j = Aj for every player j. Suppose aj /∈ W 2
j ; then, it is not a strict best

response to any distribution over opponent actions, so also aj /∈ S2
j . Thus,

S2
j ⊆W 2

j ∀ j.

Now, suppose Skj ⊆ W k
j for every player j, and consider any player i and action

ai ∈ Sk+1
i . By construction of the set Sk+1

i , there exists some σ−i ∈ Σk
−i such that

ui(ai, σ−i) > ui(σi, σ−i) ∀σi ∈ Σk−1
i

But since Ski ⊆ W k
i , the strategy σ−i has support in W k

−k, so ai is a strict best

response to some distribution π with support in the surviving set of weakly strict-

rationalizable actions, implying that ai ∈W k+1
i as desired.
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Appendix C: Main Results

.1 Proofs in Section 4

.1.1 Proposition 1.

The proof of this proposition follows from two lemmas. The first is a straightforward

generalization of Proposition 6 in Chen et al. (2010)30, and relates common learning

to convergence of types in the uniform-weak topology. The second lemma says that

for every dataset z, the distance between tiz and tθ∗ is upper bounded by d(∆zn , δθ∗).

Throughout, I use tθ∗ to denote the type with common certainty in θ∗.

Lemma 5. Players commonly learn θ∗ if and only if

dUW (TZn , tθ∗)→ 0 a.s. as n→∞.

Thus, the problem of determining whether players commonly learn θ is equivalent

to that of determining whether the set of types TZn almost surely converges to {tθ∗}
in the uniform-weak topology.

Lemma 6. For every dataset z,

dUW (Tz, tθ∗) ≤ d(∆z, δθ∗) (14)

Proof. Fix any dataset z. It is useful to decompose the set of types Tz into the

Cartesian product
∏∞
k=1H

k
z , where H1

z = ∆z and for each k > 1, Hk
z is recursively

defined

Hk
z =

{
tk ∈ T k :

(
margTk−1 tk

)
(Hk−1

z ) = 1 and margΘ t
k ∈ H1

z

}
; (15)

that is, Hk
z consists of the k-th order beliefs of types in Tz. Define δ∗ = d(∆z, δθ∗).

The following preliminary claims shows that every k-th order belief in the set Hk
z is

within δ∗ (in the dk metric31) of the k-th order belief of type tθ∗ .

Claim 2. For every k ≥ 1,

Hk
z ⊆

{
tkθ∗
}δ∗

:=
{
tk ∈ T k : dk (t, tθ∗) ≤ δ

}
.

Proof. Fix any t ∈ Tz. By construction of Tz, the first-order belief of type t is in

the set ∆z. So it is immediate that

d1(t, tθ∗) ≤ d(∆z, δθ) = δ∗. (16)

30This lemma appears in Chen et al. (2010) for the case in which Θ is a finite set and d0 is

the discrete metric, but generalizes to any complete and separable metric space (Θ, d0) when the

definition of common learning is replaced by Definition 2.
31See Appendix A
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Now suppose Hk
z ⊆

{
tkθ∗
}δ∗

. Consider any measurable set E ⊆ T k. If tkθ∗ ∈ E, then

tk+1
θ∗ ≥

({
tkθ∗
})

= 1 by definition of tθ∗ . Moreover,

tk+1
(
Eδ
∗
)
≥ tk+1

({
tkθ∗
}δ∗)

≥ tk+1
(
Hk

z

)
= 1,

using (15) in the final equality and the assumption that Hk
z ⊆ {tkθ∗}δ

∗
in the in-

equality preceding it. So

tk+1
θ∗ (E) ≤ tk+1

(
Eδ
∗
)

+ δ∗. (17)

If tkθ∗ /∈ E, then tk+1
θ∗ (E) = 0 (again by definition of tθ∗), so (17) follows trivially. So

tk+1
θ∗ (E) ≤ tk+1(Eδ

∗
) + δ∗ for every measurable E ⊆ T k. Using this and (16),

dk+1(t, tθ∗) ≤ δ∗. (18)

as desired.

So dk(t, tθ∗) ≤ δ∗ for every k, implying dUW (t, tθ∗) = supk≥1 d
k(t, tθ∗) ≤ δ∗.

Thus, the question of convergence of types is reduced to the question of convergence

in distributions over Θ.

Now, suppose that F is θ∗-uniformly consistent. Then, d (∆Zn , δθ∗) → 0 a.s.32

It follows from Lemma 6 that

dUW (TZn , tθ∗)→ 0 a.s.,

and from Lemma 5 that players commonly learn θ∗.

For the other direction, suppose F is not θ∗-uniformly consistent. In the fol-

lowing, I will use the notation z1:n to mean the first n coordinates of an infinite

sequence of observations z ∈ Z∞, and P∞ to mean the (unique) measure induced

on the product σ-algebra of Z∞ by the sequence of measures (Pn)n≥1 (see Kolmoro-

gov’s Extension Theorem). Failure of θ∗-uniform consistency is equivalent to:

P∞

(
z ∈ Z∞ | lim

n→∞
sup
f∈F

d(f(z1:n), δθ∗) = 0

)
6= 1. (19)

Define t∗ : µ 7→ t∗µ to map first-order beliefs µ ∈ ∆(Θ) into the type t∗µ with common

certainty in µ. Then, (19) implies that

P∞

(
z ∈ Z∞ | lim

n→∞
sup
f∈F

dUW
(
t∗f(z1:n), t

∗
δθ∗

)
= 0

)
6= 1.

from which it immediately follows that dUW (TZn , tθ∗) does not almost surely con-

verge to 0. Using Lemma 5, players do not commonly learn θ∗, and we are done.

32Uniform convergence in W1 implies uniform convergence in the Prokhorov metric d. See for

example Gibbs & Su (2002).
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.1.2 Theorem 2

Necessity. Define URa∗i
⊆ U to consist of all payoffs u such that a∗i is rationalizable

for player i in the complete information game with payoffs u.

Lemma 7. u ∈ Int
(
URa∗i

)
if and only if a∗i is weakly strict-rationalizable in the

complete information game with payoffs u.

Proof. If: Suppose u /∈ Int
(
URa∗i

)
. Consider any sequence of payoff functions

un → u. Since action sets are finite, there is a finite number of possible orders

of elimination. This implies existence of a subsequence along which the same order

of iterated elimination of strategies removes a∗i . Choose any one-at-time iteration

of this order of elimination. Then, a∗i fails to survive this order of elimination given

the limiting payoffs u, so it is not weakly strict-rationalizable.

Only if: Suppose a∗i fails to survive some iteration of weak strict-rationalizability.

Then, there exists a sequence of sets
(
W k
j

)
k≥1

for every player j satisfying the

recursive description in Section 5.1, such that a∗i /∈WK
i for some K <∞. To show

that u /∈ Int
(
URa∗i

)
, I construct a sequence of payoff functions un with un → u (in

the sup-metric) such that a∗i is not rationalizable in any complete information game

with payoffs along this sequence, for n sufficiently large.

For every n ≥ 1, define the payoff function un as follows. For every player j, let

un,1j satisfy

un,1j (aj , a−j) = uj(aj , a−j) + ε/n ∀ aj ∈W k−1
j and ∀ a−j ∈ A−j

un,1j (aj , a−j) = uj(aj , a−j) otherwise.

Recursively for k ≥ 1, let un,kj satisfy

un,kj (aj , a−j) = un,k−1
j (aj , a−j) + ε/n ∀ aj ∈W k−1

j and ∀ a−j ∈ A−j
un,kj (aj , a−j) = un,k−1

j (aj , a−j) otherwise.

Define un such that unj := un,Kj for every player j.

I claim that a∗i is not rationalizable in the complete information game with

payoff function un, for any n sufficiently large. To show this, let us construct for

every player j the sets (Sk,nj )k≥1 of actions surviving k rounds of iterated elimina-

tion of strictly dominated strategies given payoff function un, and show that for n

sufficiently large, Sk,nj = W k
j for all k and every player j. I will use the following

intermediate results.

Claim 3. There exists γ > 0 such that for any u′ satisfying ‖u′−u‖∞ < γ, and for

any player j, if

uj(aj , a−j) > max
a′j 6=aj

uj(aj , a−j)
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then

u′j(aj , a−j) > max
a′j 6=aj

u′j(aj , a−j).

Proof. Let γ = 1
2 mini∈I minai∈Ai

∣∣∣ui(ai, a−i)−maxa′i 6=ai ui(a
′
i, a−i)

∣∣∣, which exists

by finiteness of I and action sets Ai. The claim follows immediately.

Corollary 1. Let N = εK/γ. Then, for every n ≥ N , if

uj(aj , a−j) > max
a′j 6=aj

uj(aj , a−j)

then

un,kj (aj , a−j) > max
a′j 6=aj

un,kj (aj , a−j)

for every k ≥ 1.

Proof. Directly follows from Claim 3, since for every j,

‖un,kj − uj‖∞ ≤ ‖unj − uj‖∞ ≤
εK

n

by construction.

The remainder of the proof proceeds by induction. Trivially, S0,n
j = W 0

j = Aj
for every j and n. Now consider any player j and action aj ∈ Aj . Suppose there

exists some strategy α−j ∈ ∆(A−j) such that

uj (aj , α−j)− max
a′j 6=aj

uj
(
a′j , α−j

)
> 0,

so that aj is a strict best response to α−j under u. Then aj ∈ W 1
j , and for n ≥ N ,

also aj ∈ S1,n
j (using Corollary 1). Suppose aj is never a strict best response, but

there exists α−j ∈ ∆(A−j) such that

uj (aj , α−j)− max
a′j 6=aj

uj
(
a′j , α−j

)
= 0.

If aj ∈W 1
j , then

unj (aj , α−j)− max
a′j 6=aj

unj
(
a′j , α−j

)
≥ uj (aj , α−j)− max

a′j 6=aj
uj
(
a′j , α−j

)
,

so also ai ∈ S1,n
i for n ≥ N . If aj /∈ W j , then for n ≥ N , there exists an action

a′j 6= aj such that uj

(
a′j , α−j

)
= uj (aj , α−j), but uni

(
a′j , α−j

)
> unj (aj , α−j). So

aj /∈ S1,n
j . No other actions survive to either W 1

j or S1,n
j . Thus S1,n

j = W 1
j for all

n ≥ N .
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This argument can be repeated for arbitrary k. Suppose Sk,nj = W k
j for every

j and n ≥ N , and consider any action aj ∈ Sk,nj . If there exists some strategy

α−j ∈ ∆(Sk,n−j ) such that

uj (aj , α−j)− max
a′j 6=aj

ui
(
a′j , α−j

)
> 0,

then aj ∈ W k+1
j , and for n ≥ N , also aj ∈ Sk+1,n

j (using Corollary 1). Suppose aj

is not a strict best response to any α−j ∈ ∆(Sk,n−j ), but there exists α−j ∈ ∆(Sk,n−j )

such that

uj (aj , α−j)− max
a′j 6=aj

uj
(
a′j , α−j

)
= 0.

Then, if aj ∈ W k+1
j , action aj is a strict best response to a−j under un, so aj ∈

Sk+1,n
j . Otherwise, if aj /∈ W k+1

j , then there exists some a′j ∈ W k+1
j such that

unj (a′j , α−j) > unj (aj , α−j), so also aj /∈ Sk+1,n
j . No other actions survive to either

W k+1
j or Sk+1,n

j , so Sk+1,n
j = W k+1

j for n ≥ N . Therefore Sk,nj = W k
j for every

k and n ≥ N , and in particular SK,nj = WK
j for n ≥ N . Since aj /∈ WK

j , also

aj /∈ S∞,nj for n sufficiently large, as desired.

Finally, notice that by construction ‖un − u‖∞ ≤ εK
n , which can be rewritten

‖un(ε′) − u‖∞ ≤ ε′

where n(ε′) := εK
ε′ . Thus, for every ε′ ≥ 0, the payoff function u

n(ε′)
i ∈ Bε′(u), but ai

is not rationalizable in the complete information game with payoff function u
n(ε′)
i .

So u /∈ Int
(
URa∗i

)
, as desired.

Next, I show that ai is robust to inference only if the true payoff function u∗ is

in the interior of URa∗i
.

Lemma 8. a∗i is robust to inference only if u∗ ∈ Int
(
URa∗i

)
.

Proof. The following claim will be useful.

Claim 4. u∗ ∈ Int
(
URa∗i

)
if and only if δθ∗ ∈ Int(h−1(Ua)).

Proof. Suppose u∗ ∈ Int
(
URa∗i

)
. Then, there is an open set V such that

u∗ ∈ V ⊆ URa∗i .

Since h is continuous (see Lemma 3), h−1(V ) is an open set in ∆(Θ). So

δθ∗ ∈ h−1(V ) ⊆ h−1
(
URa∗i

)
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implying that δθ∗ ∈ Int
(
h−1

(
URa∗i

))
, as desired.

For the other direction, suppose towards contradiction that δθ∗ ∈ Int
(
h−1

(
URa∗i

))
but u∗ /∈ Int

(
URa∗i

)
. Since u∗ is on the boundary of URa∗i

, there exists some agent i

and action a′i 6= ai such that

u∗i (a
′
i, a−i) ≥ u∗i (a′i, a−i).

Under assumption 2, g(Θ) has nonempty intersection with S(i, ai), so there exists

some θ ∈ g−1(S(i, ai)). For every ε > 0, define

µε = (1− ε)δθ∗ + εδθ.

The expected payoff under µε satisfies∫
U
ui(a

′
i, a−i) dg∗(µε) >

∫
U
ui(ai, a−i) dg∗(µε)

where g∗(ν) denotes the push forward measure of ν ∈ ∆(Θ) under the map g. So

ai is not a best response to a−i given beliefs µε over Θ, and therefore h(µε) /∈ URa∗i .

This implies also µε /∈ h−1
(
URa∗i

)
. Thus the sequence µε → δθ∗ and has the property

that µε /∈ h−1
(
URa∗i

)
for every ε, so δθ∗ /∈ Int(h−1(URa∗i

)), as desired.

Suppose u∗ /∈ Int(URa∗i
); then, using Claim 4, also δθ∗ /∈ Int(h−1(URa∗i

)). Under

assumption NI, there is a constant ε > 0 such that δθ∗ ∈ Int(∆zn) for at least an

ε-measure of datasets. Consider any such such dataset. Then, δθ∗ /∈ Int
(
h−1(URa∗i

)
)

,

implies that ∆zn * h−1(Ua). Fix any u ∈ ∆zn\h−1(URa∗i
). Then a∗i is not rationaliz-

able in the complete information game with payoffs u, so it is also not rationalizable

for the type with common certainty in u.

Sufficiency. If a∗i is strongly strict-rationalizable, then there exists a family of

sets (V k
j )j∈I is closed under δ-strict best reply for some δ ≥ 0; that is, for every

aj ∈ V k
j , there exists a distribution α−j ∈ ∆(V k

−j) such that

u∗j (aj , α−j) > max
a′j 6=aj

u∗j (a
′
j , α−j) + δ.

Recall the following fixed-point property of the set of rationalizable actions:

Lemma 9 (Dekel, Fudenberg & Morris (2007)). Fix any type profile (tj)j∈I . Con-

sider any family of sets Vj ⊆ Aj such that every action aj ∈ Vj is a best reply

to a distribution π ∈ ∆(Θ × T−j × A−j) that satisfies margΘ×T−j π = g(tj) and

π(a−j ∈ V−j [t−j ]) = 1. Then, Vj ⊆ S∞j [tj ] for every player j.
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Fix any ε > 0. Then, for every player j and type tj with common certainty in

Bε(u
∗), we have that∫
uj(aj , α−j , θ)dκj(tj)− max

a′j 6=aj

∫
uj(a

′
j , α−j , θ)dκj(tj)

≥ inf
u∈Bε(u∗)

(
uj(aj , α−j)− max

a′j 6=aj
uj(a

′
j , α−j)

)
≥ δ − 2ε,

which is positive for any ε ≤ δ/2. So the family of sets (V k
j )j∈I satisfies the con-

ditions in Lemma 9 when ε is sufficiently small, and it follows that a∗i ∈ S∞i [tj ], as

desired.

.2 Proofs in Section 5

.2.1 Proposition 2

(a) To simplify notation, set δ := δNEa∗ . Since a∗ is a strict equilibrium, δ ≥ 0.

Lemma 10. Bδ/2(u∗) ⊆ UNEa∗ .

Proof. Consider any payoff function u′ satisfying

‖u′ − u∗‖∞ ≤
δ

2
. (20)

Then for every player i,

u′i(a
∗
i , a
∗
−i)− u′i(a′i, a∗−i) = u′i(a

∗
i , a
∗
−i)− u∗i (a∗i , a∗−i)︸ ︷︷ ︸
≥−δ/2

+ u∗i (a
∗
i , a
∗
−i)− u∗i (a′i, a∗−i)︸ ︷︷ ︸

>δ

+u∗i (a
′
i, a
∗
−i)− u′i(a′i, a∗−i)︸ ︷︷ ︸
≥−δ/2

≥ 0.

where u∗i (a
∗
i , a
∗
−i)− u∗i (a′i, a∗−i) > δ follows from the assumption that a∗ is a δ-strict

NE in the complete information game with payoffs u∗, and the other two bounds

follow from (20). So a∗ is a NE in the complete information game with payoffs u′,

implying that u′ ∈ UNEa∗ .

Recall from the proof of Theorem 1 that h(∆z) ⊆ UNEa∗ is a sufficient condition

for the strategy profile

(σi)i∈I , with σi(ti) = ai ∀ i ∈ I, ti ∈ Tzn
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to be a Bayesian Nash equilibrium. So it follows from Lemma 10 that h(∆zn) ⊆
Bδ/2(u∗) is also a sufficient condition. Thus,

pNE
n (a∗) ≥ Pn

({
zn : h(∆zn) ⊆ Bδ/2(u∗)

})
= Pn

({
zn : sup

f∈F
‖h(f(zn))− u∗‖∞ ≤ δ/2

})

= 1− Pn
({

zn : sup
f∈F
‖h(f(zn))− u∗‖∞ > δ/2

})

≥ 1− 2

δ
EPn

(
sup
f∈F
‖h(f(zn))− u∗‖∞

)
using Markov’s inequality in the final line.

(b) To simplify notation, set δ := δRa∗i
. Since a∗i is strictly rationalizable for player

i, δ ≥ 0.

Lemma 11. Bδ/2(u∗) ⊆ URa∗i .

Proof. Consider any payoff function u′ satisfying

‖u′ − u∗‖∞ ≤
δ

2
. (21)

By definition of δRa∗i
, there exists a family of sets (Ri)i∈I with the property that for

every player j and action aj ∈ Rj , there is an action α−j [aj ] ∈ ∆(R−j) satisfying

u∗j (aj , α−j [ai]) > u∗j (a
′
j , α−j [aj ]) + δ ∀ a′j 6= aj . (22)

I will show that (Rj)j∈I satisfies the conditions in Lemma 9 for any type profile

(tj)j∈I , where every tj has common certainty in Bδ/2(u∗). Fix an arbitrary player

j, and type tj with common certainty in Bδ/2(u∗). Define the distribution π ∈
∆(Θ×T−j×A−j) such that margΘ×T−j π = κj(tj) and margA−j π = α−j [aj ], noting

that since α−j [aj ] ∈ ∆(R−j), this implies also that π(a−j ∈ R−j) = 1.

Since by assumption, tj has common certainty in Bδ/2(u∗), the support of

h (margΘ κ(tj)) is contained in Bδ/2(u∗). So the expected payoff from playing aj
exceeds the expected payoff from playing a′j 6= aj by at least

inf
u∈Bδ/2(u∗)

(
u(aj , α−j)− u(a′j , α−j)

)
≥ −δ

2
(23)

It follows that∫
uj(aj , α−j ,θ) dπ −

∫
uj(a

′
j , α−j , θ) dπ =

∫
uj(aj , α−j , θ) dπ − u∗j (aj , α−j , θ)︸ ︷︷ ︸

≥− 1
2
δ

+ u∗(aj , α−j , θ)− u∗(a′j , α−j , θ)︸ ︷︷ ︸
>δ

+

∫
u∗j (a

′
j , α−j , θ) dπ − uj(a′j , α−j , θ)︸ ︷︷ ︸

≥− 1
2
δ

≥ 0,
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using the inequalities in (22) and (23). It follows that aj is a best response to α−j
given distribution π. Repeating this argument for every player j, action aj ∈ Rj ,
and type tj with common certainty in Bδ/2(u∗), it follows from Lemma 9 that

Rj ⊆ S∞j [tj ] for every player j. Since a∗i ∈ Ri, also a∗i ∈ S∞i [ti], as desired.

Recall from the proof of Theorem 2 that ∆zn ⊆ URa∗i is a sufficient condition for

ai ∈ S∞i [ti] ∀ ti ∈ Tzn .

So it follows from Lemma 21 that ∆zn ⊆ Bδ/2(u∗) is also a sufficient condition.

Thus,

pRn (i, a∗i ) ≥ Pn
({

zn : h(∆zn) ⊆ Bδ/2(u∗)
})

= Pn

({
zn : sup

f∈F
‖h(f(zn))− u∗‖∞ ≤ δ/2

})

= 1− Pn
({

zn : sup
f∈F
‖h(f(zn))− u∗‖∞ > δ/2

})

≥ 1− 2

δ
EPn

(
sup
f∈F
‖h(f(zn))− u∗‖∞

)

using Markov’s inequality in the final line.

.3 Proofs in Section 6

.3.1 Proposition 4

The argument is for player 1; the case for player 2 follows identically. For every

dataset zn = {(xk, θk}nk=1, define

∆zn = {φ ∈ Φ : φ(xk) = θk ∀ k = 1, . . . n}

and let Tzn be the set of hierarchies of belief with common certainty in ∆zn . First,

I will show that ‘Join’ is rationalizable for player 1 of any type in Tzn if and only

if ∆zn = {1}. Suppose that ∆zn 6= {1}, implying that 0 ∈ ∆zn . Then Tzn includes

the type with common certainty in θ = 0. Since Join is not rationalizable for

player 1 of this type, it clearly does not hold that Join is rationalizable for player

1 of any type in Tzn . In the other direction, suppose ∆zn = {1}. Then, Tzn is a

singleton set consisting only of the type with common certainty in θ = 1. Since

Invest is rationalizable for player 1 of this type, it trivially follows that Invest is

rationalizable for every type in Tzn .

Now, observe that ∆zn = {1} if and only if every φ ∈ Φ that satisfies φ(xk) = θk
for all k = 1, . . . , n predicts φ(x∗) = 1. That is, every rectangular classification
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rule that exactly fits the data classifies x∗ to ‘1’. We can reduce this problem by

looking at whether the smallest hyper-rectangle that contains every vector x, where

(x, 1) ∈ zn, also contains x∗. Say that Condition A is satisfied on dimension k if

there exist observations (xi, 1) and (xj , 1) such that xik < x∗k and xjk > x∗k (that is, a

“successful” observation lies on either side of x∗ in dimension k). Then, pRn (i, Join)

is equal to the probability that Condition A holds on every dimension k.

If k ∈ {1, . . . , p∗}, then Condition A is satisfied on dimension k only if some xi

satisfying xki ∈ [−c′,x∗k) is sampled, and additionally some xj satisfying xjk ∈ (x∗k, c
′]

is sampled. Since by assumption x∗k ∈ (−c, c′), the probability that this occurs is

1−
[(

2c− c′ − x∗k
2c

)n
+

(
2c− c′ + x∗k

2c

)n
−
(
c− c′

2c

)n]
:= q.

If k ∈ {p∗ + 1, . . . , p}, then Condition A is satisfied on dimension k only if some

xi satisfying xki < x∗k is sampled, and additionally some xj satisfying xjk > x∗k is

sampled. The probability that this occurs is

1−
(
c− x∗k

2c

)n
−
(
x∗k + c

2c

)n
:= r.

Now, observe that realizations of characteristics are independent across dimensions.

So the probability that Condition A is satisfied on every dimension is

pRn (i, Join) = qp
∗
rp−p

∗
.

Since r < 1, pRn (i, Join) is strictly and monotonically decreasing in p, as desired.

.3.2 Footnote 22.

Write z = (xk, φ(xk))
n
k=1. I will show that there exists a belief ν ∈ ∆z such that

Join is strictly dominated for player 1 with first-order belief ν if and only if there

exists some φ ∈ Φ such that

φ(xk) = θk for every k = 1, . . . , n,

and moreover, φ(x∗) = 0.

Suppose there exists some φ ∈ Φ satisfying the conditions above. Consider any

prior belief µ with µ(φ) > 1
2 . Then, the posterior belief induced by prior µ and the

data z assigns at least probability 1
2 to φ, and hence at least probability 1

2 to θ = 0.

Thus, there exists ν ∈ ∆z with ν(θ = 0) > 1
2 , and Join is strictly dominated for

either player with this first order belief.

In the other direction, suppose towards contradiction that there do not exist any

functions φ ∈ Φ satisfying the conditions above. Then, for any prior belief µ, the

posterior given data z must put probability 1 on functions φ for which φ(x∗) = 1.

Thus, there does not exist a belief ν ∈ ∆z such that Join is strictly dominated for

player 1 with first-order belief ν.
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.3.3 Proposition 5

Fix an arbitrary p′ > p∗ and write β̂ for the OLS estimate of coefficients in

y = β0 + β1x1 + · · ·+ βp′xp′

and β̃ for the OLS estimate of coefficients in

y = β0 + β1x1 + · · ·+ βp′xp′ + βp′+1xp′+1.

Claim 5. For any vector u = (w z) where w ∈ R1×p′ and z ∈ R,

Var
(
wβ̂
)
≥ Var

(
uβ̃
)
.33 (24)

Proof. Write X for the n × p matrix stacking row vectors (xi1, . . . ,x
i
p′), where i ∈

{1, . . . , n}, and xp′+1 for the n × 1 column vector of observations xip′+1. Write

U = (X xp′+1) for the concatenation of these two matrices. Finally, let y be the

n× 1 column vector of outcomes. Then,

β̂ = (X ′X)−1X ′y and β̃ = (U ′U)−1U ′y.

Observe that

Var(wβ̂) = Var(w(X ′X)−1X ′y)

= Var(w(X ′X)−1X ′(Xβ + ε))

= Var(w(X ′X)−1X ′ε))

= σ2(w(X ′X)−1X ′)(w(X ′X)−1X ′)′

= σ2w(X ′X)−1w′

and similar manipulations yield that

Var(uβ̃) = σ2u(U ′U)−1u′.

Further define R = (U ′U)−1 and

Q =

[
(X ′X)−1 OK1×K2

OK2×K1 OK2×K2

]
.

where each Ok×k′ is a zero matrix of size k × k′. The, the inequality in (24) holds

if and only if the matrix

∆ := R−Q =

[
X ′X X ′Z

Z ′X Z ′Z

]−1

−

[
(X ′X)−1 OK1×K2

OK2×K1 OK2×K2

]
33Proof of this claim benefitted from discussions with Ben Golub and Iosif Pinelis.
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is positive semidefinite. To show this, write(
U V

V ′ T

)
=

(
X ′X X ′Z

Z ′X Z ′Z

)−1

.

From properties of block matrix inversion,

V = −A−1BT

U = A−1 +A−1BTB′A−1

T = (D −B′A−1B)−1

where A := X ′X, B := X ′Z, D = Z ′Z.

Now consider any row vector (c d). Algebraic manipulations yield

(c d) ∆

(
c

d

)
= (c d)

(
U −A V

V ′ T

)(
c

d

)
= (B′A−1x− d)′T (B′A−1x− d) ≥ 0

using in the last inequality that T is positive definite (as a diagonal block in a

positive definite matrix). Since this holds for arbitrary (c d), we have that ∆ is

positive semidefinite as desired.

.4 Remaining Proofs

Proposition 3

The argument below is for Nash equilibrium; the argument for rationalizability

follows analogously. Enumerate the learning rules in F by f1, . . . , fK . For every

k = 1, . . . ,K, define

Xn
k = 1

(
h (fk(Zn)) /∈ UNEa

)
.

Write Gnk for the distribution of random variable Xn
k , and Gn for the joint dis-

tribution of random variables (Xn
k )Kk=1. By Sklar’s theorem, there exists a copula

C : [0, 1]K → [0, 1] such that

Gn(x1, . . . , xK) = C (Gn1 (x1), . . . , GnK(xK))

for every (x1, . . . , xK) ∈ RK . Using the Frechet-Hoeffding bound,

1−K +
K∑
k=1

Gnk(xk) ≤ C (Gn1 (x1), . . . , GnK(xK)) ≤ min
k∈{1,...,K}

Gnk(xk).

Since pNEn (a) = Gn(0, . . . , 0), it follows that

1−K +

K∑
i=1

Gnk(0) ≤ pNEn (a) ≤ min
k∈{1,...,K}

Gnk(0). (25)
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Finally, since every Xn
k ∼ Ber

(
1− pNEQnk

)
by definition of pNEQnk

, (25) implies

1−
K∑
k=1

pNEQnk
≤ pNEn (a) ≤ 1− min

k∈{1,...,K}
pNEQnk

as desired.
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Appendix D

The following is an example of a game with the property that some action a is

weakly strict-rationalizable given common certainty of the true payoffs, but not

rationalizable along a sequence of perturbed types in the uniform-weak topology.

This game has four players, each of whom has two actions: a and b. (Throughout

I will use, for example, abab to denote choice of a by players 1 and 3, and b by players

2 and 4.) Payoffs u are defined as follows. Player 1’s payoffs are:

u1(axxx) =

{
1 if xxx = aaa or bbb

0 otherwise.

u1(bxxx) =

{
0 if xxx = aaa or bbb

1 otherwise.

Notice that if players 2-4 are playing the same action, then player 1’s best response

is a. Otherwise, his best response is b. The payoffs to players 2-4 are the same given

either player 1 action, and are described below (where rows correspond to player 2’s

actions, columns to player 3, and choice of matrices to player 4). Player 1’s payoffs

are omitted, so that the first coordinate corresponds to player 2’s payoff:

a b

a 1, 1, 0 0, 0, 0

b 0, 0, 0 0, 0, 0

a b

a 0, 0, 0 0, 0, 0

b 0, 0, 0 1, 1, 0

(26)

(a) (b)

Notice that if player 4 chooses action a, then players 2 and 3 prefer coordination on

a; and if player 4 chooses b, then players 2 and 3 prefer coordination on b.

Let us first consider the case in which the payoffs u are common certainty, so

that this is a game of complete information. Action a is rationalizable for player 1

in this game; moreover,

• there is a constant ε > 0 such that a is rationalizable for player 1 in every game

u′ with ‖u′−u‖∞ ≤ ε, so that rationalizability is preserved on a neighborhood

of the complete information game with payoffs u.

• a is weakly strict-rationalizable.

• although a is not strictly rationalizable, it fails to survive this process for the

reason that none of player 4’s actions survive the first round of elimination.

Let t1 be the type with common certainty in the payoffs u. I will now show that

there exists a sequence of types tn1 such that tn1 → t1 in the uniform-weak topology,

but action a fails to be rationalizable for agent 1 everywhere along this sequence.
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Fix a sequence of positive constants εn that tend to 0 as n → ∞. Let type tn1
be any hierarchy of beliefs that satisfies the following three properties: First, the

first-order beliefs of tn1 are a point mass on u. Second, tn1 assigns probability 1 to

the event that player 2 believes it is common certainty that payoffs are:

a b

a 1, 1,−εn 0, 0,−εn
b 0, 0,−εn 0, 0,−εn

a b

a −εn, 0, 0 −εn, 0, 0
b 0, 0, 0 1, 1, 0

(27)

(a) (b)

Third, tn1 assigns probability 1 to the event that player 3 believes it is common

certainty that payoffs are:

a b

a 1, 1, 0 0,−ε,0
b 0, 0, 0 0,−εn, 0

a b

a 0, 0,−εn 0, 0,−εn
b 0, 0,−εn 1, 1,−εn

(28)

(a) (b)

Let us now consider the rationalizable actions for players 2 and 3, from the

perspective of type tn1 . If player 4 assigns probability 1 to the payoffs in (27),

then b is his uniquely rationalizable action. So (tn1 believes with probability 1 that)

player 2 believes with probability 1 that player 4 will play b. Since (tn1 believes

with probability 1 that) player 2 also assigns probability 1 to the payoffs in (27),

(tn1 believes with probability 1 that) action b is player 2’s uniquely rationalizable

action. By a similar argument, if player 4 assigns probability 1 to payoffs in (28),

then a is his uniquely rationalizable action. So player 3 believes with probability 1

that player 4 will play a, and thus considers a to be his own uniquely rationalizable

action.

Thus, type tn1 believes that player 2’s uniquely rationalizable action is b, and

player 3’s uniquely rationalizable action is a, given which player 1’s unique best

response is b. Repeating this argument for every n, it follows that action a is not

rationalizable for player 1 all along the sequence of types (tni )n≥1. But every tni
believes that Bεn(u) is common certainty, so tni → ti in the uniform-weak topology.
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