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Abstract

What makes some strategy-proof mechanisms easier to understand than others? To address
this question, I propose a new solution concept: A mechanism is obviously strategy-proof (OSP)
if it has an equilibrium in obviously dominant strategies. This has a behavioral interpretation: A
strategy is obviously dominant if and only if a cognitively limited agent can recognize it as weakly
dominant. It also has a classical interpretation: A choice rule is OSP-implementable if and only
if it can be carried out by a social planner under a particular regime of partial commitment. I
fully characterize the set of OSP mechanisms in a canonical setting, with one-dimensional types
and transfers. A laboratory experiment tests and corroborates the theory.

1 Introduction

Dominant-strategy mechanisms are often said to be desirable. They reduce participation costs and
cognitive costs, by making it easy for agents to decide what to do.1 They protect agents from
strategic errors.2 Dominant-strategy mechanisms prevent waste from rent-seeking espionage, since
spying on other players yields no strategic advantage. Moreover, the resulting outcome does not
depend sensitively on each agent’s higher-order beliefs.3

These benefits largely depend on agents understanding that the mechanism has an equilibrium
in dominant strategies; i.e. that it is strategy-proof (SP). Only then can they conclude that they
need not attempt to discover their opponents’ strategies or to game the system.4
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1Vickrey (1961) writes that, in second-price auctions: “Each bidder can confine his efforts and attention to an

appraisal of the value the article would have in his own hands, at a considerable saving in mental strain and possibly
in out-of-pocket expense.”

2For instance, school choice mechanisms that lack dominant strategies may harm parents who do not strategize
well (Pathak and Sönmez, 2008).

3Wilson (1987) writes, “Game Theory has a great advantage in explicitly analyzing the consequences of trading
rules that presumably are really common knowledge; it is deficient to the extent it assumes other features to be
common knowledge, such as one player’s probability assessment about another’s preferences or information.”

4Policymakers could announce that a mechanism is strategy-proof, but that may not be enough. If agents do not
understand the mechanism well, then they may be justifiably skeptical of such declarations. For instance, Google’s
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However, some strategy-proof mechanisms are simpler for real people to understand than others.
For instance, choosing when to quit in an ascending clock auction is the same as choosing a bid
in a second-price sealed-bid auction (Vickrey, 1961). The two formats are strategically equivalent;
they have the same reduced normal form.5 Nonetheless, laboratory subjects are substantially more
likely to play the dominant strategy under a clock auction than under sealed bids (Kagel et al.,
1987). Theorists have also expressed this intuition:

Some other possible advantages of dynamic auctions over static auctions are difficult
to model explicitly within standard economics or game-theory frameworks. For example,
. . . it is generally held that the English auction is simpler for real-world bidders to
understand than the sealed-bid second-price auction, leading the English auction to
perform more closely to theory. (Ausubel, 2004)

In this paper, I model explicitly what it means for a mechanism to be obviously strategy-proof.
This approach invokes no new primitives. Thus, it identifies a set of mechanisms as simple to
understand, while remaining as parsimonious as standard game theory.

A strategy Si is obviously dominant if, for any deviating strategy S′i, starting from any earliest
information set where Si and S′i diverge, the best possible outcome from S′i is no better than
the worst possible outcome from Si. A mechanism is obviously strategy-proof (OSP) if it has an
equilibrium in obviously dominant strategies. By construction, OSP depends on the extensive game
form, so two games with the same normal form may differ on this criterion. Obvious dominance
implies weak dominance, so OSP implies SP.

This definition distinguishes ascending auctions and second-price sealed-bid auctions. Ascending
auctions are obviously strategy-proof. Suppose you value the object at $10. If the current price is
below $10, then the best possible outcome from quitting now is no better than the worst possible
outcome from staying in the auction (and quitting at $10). If the price is above $10, then the best
possible outcome from staying in the auction is no better than the worst possible outcome from
quitting now.

Second-price sealed-bid auctions are strategy-proof, but not obviously strategy-proof. Consider
the strategies “bid $10” and “bid $11”. The earliest information set where these diverge is the
point where you submit your bid. If you bid $11, you might win the object at some price strictly
below $10. If you bid $10, you might not win the object. The best possible outcome from deviating
is better than the worst possible outcome from truth-telling. This captures an intuition expressed
by experimental economists:

The idea that bidding modestly in excess of x only increases the chance of win-
ning the auction when you don’t want to win is far from obvious from the sealed bid
procedure. (Kagel et al., 1987)

I produce two characterization theorems, which suggest two interpretations of obvious strategy-
proofness. The first interpretation is behavioral: Obviously dominant strategies are those that can
be recognized as dominant by a cognitively limited agent. The second interpretation is classical:
Obviously strategy-proof mechanisms are those that can be carried out by a social planner with
only partial commitment power.

advertising materials for the Generalized Second-Price auction appeared to imply that it was strategy-proof, when
in fact it was not (Edelman et al., 2007). Moreover, Rees-Jones (2015) and Hassidim et al. (2015) find evidence of
strategic mistakes in approximately strategy-proof matching markets, even though participants face a high-stakes
decision with expert advice.

5This equivalence assumes that we restrict attention to cut-off strategies in ascending auctions.
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Figure 1: ‘Similar’ mechanisms from 1’s perspective.

First, I model an agent who has a simplified mental representation of the world: Instead of
understanding every detail of every game, his understanding is limited by a coarse partition on the
space of all games. I show that a strategy Si is obviously dominant if and only if such an agent can
recognize Si as weakly dominant.

Consider the mechanisms in Figure 1. Suppose Agent 1 has preferences: A � B � C � D. In
mechanism (i), it is a weakly dominant strategy for 1 to play L. Both mechanisms are intuitively
similar, but it is not a weakly dominant strategy for Agent 1 to play L in mechanism (ii).

In order for Agent 1 to recognize that it is weakly dominant to play L in mechanism (i), he
must use contingent reasoning. That is, he must think through hypothetical scenarios: “If Agent
2 plays l, then I should play L, since I prefer A to B. If Agent 2 plays r, then I should play L,
since I prefer C to D. Therefore, I should play L, no matter what Agent 2 plays.” Notice that the
quoted inferences are valid in (i), but not valid in (ii).

Suppose Agent 1 is unable to engage in contingent reasoning. That is, he knows that playing L
might lead to A or C, and playing R might lead to B or D. However, he does not understand how,
state-by-state, the outcomes after playing L are related to the outcomes after playing R. Then it
is as though he cannot distinguish (i) and (ii).

This idea can be made formal and general. I define an equivalence relation on the space of
mechanisms: The experience of agent i at history h records the information sets where i was
called to play, and the actions that i took, in chronological order.6 Two mechanisms G and G′

are i-indistinguishable if there is a bijection from i’s information sets and actions in G, onto i’s
information sets and actions in G′, such that:

1. G can produce for i some experience if and only if G′ can produce for i the image (under the
bijection) of that experience.

2. An experience might result in some outcome in G if and only if its image might result in that
same outcome in G′.

With this relation, we can partition the set of all mechanisms into equivalence classes. For
instance, the mechanisms in Figure 1 are 1-indistinguishable.

6An experience is a standard concept in the theory of extensive games; experiences are sometimes used to define
perfect recall.
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Our agent knows the experiences that a mechanism might generate, and the resulting outcomes.
That is, he knows all the points at which he may be called to play, and all the actions available
at each point. He knows, for any sequence of points he was called to play and actions that he
took, whether the game might end and, if so, what outcomes might result. However, this does not
nail down every detail of the mechanism. In particular, our agent is unable to reason contingently
about hypothetical scenarios.

The first characterization theorem states: A strategy Si is obviously dominant in G if and only
if it is weakly dominant in every G′ that is i-indistinguishable from G.

This shows that obviously dominant strategies are those that can be recognized as weakly
dominant without contingent reasoning. An obviously dominant strategy is weakly dominant in
any i-indistinguishable mechanism. In that sense, such a strategy is robustly dominant.

The second characterization theorem for OSP relates to the problem of mechanism design under
partial commitment. In mechanism design, we usually assume that the Planner can commit to every
detail of a mechanism, including the events that an individual agent does not directly observe. For
instance, in a sealed-bid auction, we assume that the Planner can commit to the function from all
bid profiles to allocations and payments, even though each agent only directly observes his own
bid. Sometimes this assumption is too strong. If agents cannot individually verify the details of a
mechanism, the Planner may be unable to commit to it.

Mechanism design under partial commitment is a pressing problem. Auctions run by central
brokers over the Internet account for billions of dollars of economic activity (Edelman et al., 2007).
In such settings, bidders may be unable to verify that the other bidders exist, let alone what
actions they have taken. As another example, some wireless spectrum auctions use computationally
demanding techniques to solve complex assignment problems. In these settings, individual bidders
may find it difficult and costly to verify the output of the auctioneer’s algorithm (Milgrom and
Segal, 2015).

For the second characterization theorem, I consider a ‘metagame’ where the Planner privately
communicates with agents, and eventually decides on an outcome. The Planner chooses one agent,
and sends a private message, along with a set of acceptable replies. That agent chooses a reply,
which the Planner observes. The Planner can then either repeat this process (possibly with a
different agent) or announce an outcome and end the game.

The Planner has partial commitment power: For each agent, she can commit to use only a
subset of her available strategies. However, the subset she promises to Agent i must be measurable
with respect to i’s observations in the game. That is, if the Planner plays a strategy not in that
subset, then there exists some agent strategy profile such that Agent i detects (with certainty) that
the Planner has deviated. We call this a bilateral commitment.

Suppose we require that each agent i’s strategy be optimal, for any strategies of the other
agents, and for any Planner strategy compatible with the commitment made to i. What choice
rules can be implemented in this metagame?

The second characterization theorem states: A choice rule can be supported by bilateral commit-
ments if and only if that choice rule is OSP-implementable. Consequently, in addition to formalizing
a notion of cognitive simplicity, OSP also captures the set of choice rules that can be carried out
with only bilateral commitments.

After defining and characterizing OSP, I apply this concept to several mechanism design envi-
ronments.

For the first application, I consider binary allocation problems. In this environment, there is a
set of agents N with continuous single-dimensional types θi ∈ [θi, θi]. An allocation y is a subset
of N . An allocation rule fy is a function from type profiles to allocations. We augment this with
a transfer rule ft, which specifies money transfers for each agent. Each agent has utility equal to
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his type if he is in the allocation, plus his net transfer.

ui(θi, y, t) = 1i∈yθi + ti (1)

Binary allocation problems encompass several canonical settings. They include private-value
auctions with unit demand. They include procurement auctions with unit supply; not being in the
allocation is ‘winning the contract’, and the bidder’s type is his cost of provision. They also include
binary public good problems; the feasible allocations are N and the empty set.

Mechanism design theory has extensively investigated SP-implementation in this environment.
fy is SP-implementable if and only if fy is monotone in each agent’s type (Spence, 1974; Mirrlees,
1971; Myerson, 1981). If fy is SP-implementable, then the required transfer rule ft is essentially
unique (Green and Laffont, 1977; Holmström, 1979).

What are analogues of these canonical results, if we require OSP-implementation rather than
SP-implementation? Are ascending clock auctions special, or are there other OSP mechanisms in
this environment?

I prove the following theorem: Every mechanism that OSP-implements an allocation rule is
‘essentially’ a monotone price mechanism, which is a new generalization of ascending clock auctions.
Moreover, this is a full characterization of OSP mechanisms: For any monotone price mechanism,
there exists some allocation rule that it OSP-implements.

These results imply that when we desire OSP-implementation in a binary allocation problem,
we need not search the space of all extensive game forms. Without loss of generality, we can focus
our attention on the class of monotone price mechanisms.7

Additionally, I characterize the set of OSP-implementable allocation rules. For this part, I
assume that the lowest type of each agent is never in the allocation, and is required to have a
zero transfer. I provide a necessary and sufficient condition for an allocation rule to be OSP-
implementable.

As a second application, I produce an impossibility result for a classic matching algorithm:
With 3 or more agents, there does not exist a mechanism that OSP-implements Top Trading
Cycles (Shapley and Scarf, 1974).

I conduct a laboratory experiment to test the theory. In the experiment, I compare three
pairs of mechanisms. In each pair, both mechanisms implement the same allocation rule. One
mechanism is obviously strategy-proof. The other mechanism is strategy-proof, but not obviously
strategy-proof. Standard theory predicts that both mechanisms result in dominant strategy play,
and have identical outcomes. Instead, subjects play the dominant strategy at significantly higher
rates under the OSP mechanism, compared to the mechanism that is just SP. This effect occurs
for all three pairs of mechanisms, and persists even after playing each mechanism five times with
feedback.

The rest of the paper proceeds in the usual order. Section 2 reviews the literature. Section 3
provides formal definitions and characterizations. Section 4 covers applications. Section 5 reports
the laboratory experiment. Section 6 concludes. Proofs omitted from the main text are in Appendix
A.

2 Related Literature

It is widely acknowledged that ascending auctions are simpler for real bidders than second-price
sealed-bid auctions (Ausubel, 2004). Laboratory experiments have investigated and corroborated

7Of course, if we do not impose the additional structure of a binary allocation problem, then there exist OSP
mechanisms that are not monotone price mechanisms. This paper contains several examples.
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this claim (Kagel et al., 1987; Kagel and Levin, 1993). More generally, laboratory subjects find it
difficult to reason state-by-state about hypothetical scenarios (Charness and Levin, 2009; Esponda
and Vespa, 2014; Ngangoue and Weizsacker, 2015). This mental process, often called “contingent
reasoning”, has received little formal treatment in economic theory.

There is also a strand of literature, including Vickrey’s seminal paper, that observes that sealed-
bid auctions raise problems of commitment (Vickrey, 1961; Rothkopf et al., 1990; Cramton, 1998).
For instance, it may be difficult to prevent shill bidding without third-party verification. Rothkopf
et al. (1990) argue that “robustness in the face of cheating and of fear of cheating is important in
determining auction form”.

This paper formalizes and unifies both these strands of thought. It shows that mechanisms that
do not require contingent reasoning are identical to mechanisms that can be run under bilateral
commitment.

Eyster and Rabin (2005) and Esponda (2008) model agents who do not fully account for other
agents’ private information. An extensive literature on level-k reasoning8 models agents who hold
non-equilibrium beliefs about other agents’ strategies. These are conceptually distinct from mis-
takes in contingent reasoning. In particular, these models predict no deviations from dominant-
strategy play in strategy-proof mechanisms.9

The Prisoner’s Dilemma is a special case of game (i) in Figure 1; playing defect is not obviously
dominant. On the other hand, if Agent 1 is informed of Agent 2’s action before making his
decision, then playing defect is obviously dominant. Shafir and Tversky (1992) find that laboratory
subjects in a Prisoner’s Dilemma are more likely to play the weakly dominant strategy when they
are informed beforehand that their opponent has cooperated (84%) or when they are informed
beforehand that their opponent has defected (97%), compared to when they are not informed of
their opponent’s strategy (63%).

This paper relates to the planned US auction to repurchase television broadcast rights. In this
setting, complex underlying constraints have the result that Vickrey prices cannot be computed
without large approximation errors. To surmount this challenge, Milgrom and Segal (2015) study a
class of algorithms with desirable properties, called direct deferred-acceptance threshold auctions.
Their results imply that every such algorithm is OSP-implementable.

In combinatorial auction problems, finding the optimal solution is NP-hard, so the Vickrey-
Clarke-Groves mechanism may be computationally infeasible. Consequently, there has been sub-
stantial interest in ‘posted-price’ mechanisms that approximate the optimum in polynomial time
(Bartal et al., 2003; Feldman et al., 2014). These have the (previously unmodeled) advantage of
being obviously strategy-proof.

For some mechanisms, there exist polynomial-time algorithms that verify that the mechanism
is strategy-proof (Brânzei and Procaccia, 2015; Barthe et al., 2015). These are useful if agents do
not trust that the mechanism is strategy-proof, but are otherwise computationally sophisticated.

OSP requires equilibrium in obviously dominant strategies. This is distinct from O-solvability,
a solution concept used in the computer science literature on decentralized learning. (Friedman,
2002, 2004) Strategy Si overwhelms S′i if the worst possible outcome from Si is strictly better than
the best possible outcome from S′i. O-solvability calls for the iterated deletion of overwhelmed
strategies. One difference between the two concepts is that O-solvability is for normal form games,
whereas OSP invokes a notion of an ‘earliest point of departure’, which is only defined in the
extensive form. O-solvability is too strong for our current purposes, because almost no games

8Stahl and Wilson (1994, 1995); Nagel (1995); Camerer et al. (2004); Crawford and Iriberri (2007a,b).
9Level-0 agents may deviate from dominant strategy play in a strategy-proof mechanism. However, the behavior

of level-0 agents is a primitive of the theory, and a sufficiently large population of level-0 agents can explain any data.
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studied in mechanism design are O-solvable.10

In subsequent work, Ashlagi and Gonczarowski (2015) investigate the OSP-implementation of
the deferred acceptance algorithm (Gale and Shapley, 1962). Loertscher and Marx (2015) con-
sider the problem of bilateral trade with many buyers and many sellers, and produce a prior-free
asymptotically-optimal OSP mechanism.

3 Definition and Characterization

The planner operates in an environment consisting of:

1. A set of agents, N ≡ {1, . . . , n}.

2. A set of outcomes, X.

3. A set of type profiles, Θ ≡
∏
i∈N Θi.

4. A utility function for each agent, ui : X ×Θi → R

An extensive game form with consequences in X is a tuple 〈H,≺, A,A, P, δc, (Ii)i∈N , g〉, where:

1. H is a set of histories, along with a binary relation ≺ on H that represents precedence.

(a) ≺ is a partial order, and (H,≺) form an arborescence.

(b) h∅ denotes h ∈ H : ¬∃h′ : h′ ≺ h
(c) H has finite depth, i.e.:

∃k ∈ N : ∀h ∈ H : |{h′ ∈ H : h′ ≺ h}| ≤ k (2)

(d) Z ≡ {h ∈ H : ¬∃h′ : h ≺ h′}
(e) σ(h) denotes the set of immediate successors of h.

2. A is a set of actions.

3. A : H \ h∅ → A labels each non-initial history with the last action taken to reach it.

(a) A is one-to-one on σ(h).

(b) A(h) denotes the actions available at h.

A(h) ≡
⋃

h′∈σ(h)

A(h′) (3)

4. P is a player function. P : H \ Z → N ∪ c

5. δc is the chance function. It specifies a probability measure over chance moves. dc denotes
some realization of chance moves: For any h where P (h) = c, dc(h) ∈ A(h).11

10For instance, neither ascending clock auctions nor second-price sealed-bid auctions are O-solvable.
11We could make the addition assumption that δc has full support on the available moves A(h) when it is called

to play. This ensures a pleasing invariance property: It rules out games with zero-probability chance moves that do
not affect play, but do affect whether a strategy is obviously dominant. However, a full support assumption is not
necessary for any of the results that follow, so we do not make it here.
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6. Ii is a partition of {h : P (h) = i} such that:

(a) A(h) = A(h′) whenever h and h′ are in the same cell of the partition.

(b) For any Ii ∈ Ii, we denote: P (Ii) ≡ P (h) for any h ∈ Ii. A(Ii) ≡ A(h) for any h ∈ Ii.
(c) Each action is available at only one information set: If a ∈ A(Ii), a

′ ∈ A(I ′j), Ii 6= I ′j
then a 6= a′.

7. g is an outcome function. It associates each terminal history with an outcome. g : Z → X

Additionally we denote Ii ≺ I ′i if there exist h, h′ such that:

1. h ≺ h′

2. h ∈ Ii

3. h′ ∈ I ′i

We denote Ii ≺ h if there exists h′ ∈ Ii such that h′ ≺ h. h ≺ Ii is defined symmetrically. We
use � to denote the corresponding weak order.

A strategy Si for agent i in game G specifies what agent i does at every one of her information
sets. Si(Ii) ∈ A(Ii). A strategy profile S = (Si)i∈N is a set of strategies, one for each agent. When
we want to refer to the strategies used by different types of i, we use Sθii to denote the strategy
assigned to type θi.

Let zG(h, S, δc) be the lottery over terminal histories that results in game form G when we start
from h and play proceeds according to (S, δc). zG(h, S, dc) is the result of one realization of the
chance moves under δc. We sometimes write this as zG(h, Si, S−i, dc).

Let uGi (h, Si, S−i, dc, θi) ≡ ui(g(zG(h, Si, S−i, dc)), θi). This is the utility to agent i in game G,
when we start at history h, play proceeds according to (Si, S−i, dc), and the resulting outcome is
evaluated according to preferences θi.

Definition 1. ψi(h) is the experience of agent i along history h. ψi(h) is an alternating sequence
of information sets and actions. It is constructed as follows: Initialize t = 1, h1 = h∅, ψi = {∅}.

1. If t > 1 and P (ht−1) = i, add A(ht) to the end of ψi.

2. If P (ht) = i, add Ii : ht ∈ Ii to the end of ψi.

3. Terminate if ht = h.

4. Set ht+1 := h′ ∈ H : h′ ∈ σ(ht) and h′ � h.

5. Set t := t+ 1.

6. Go to 1.

We use Ψi to denote the set {ψi(h) : h ∈ H} ∪ ψ∅, where ψ∅ is the empty sequence.12

An extensive game form has perfect recall if for any information set Ii, for any two histories h
and h′ in Ii, ψi(h) = ψi(h

′). We use ψi(Ii) to denote ψi(h) : h ∈ Ii.

Definition 2. G is the set of all extensive game forms with consequences in X and perfect recall.

12Mandating the inclusion of the empty sequence has the following consequence: By looking at the set Ψi, it is not
possible to infer whether P (h∅) = i.
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A choice rule is a function f : Θ → X. If we consider stochastic choice rules, then it is a
function f : Θ→ ∆X.13

A solution concept C is a set-valued function with domain G × Θ. It takes values in the set of
strategy profiles.

Definition 3. f is C-implementable if there exists

1. G ∈ G

2. ((Sθii )θi∈Θi)i∈N

such that, for all θ ∈ Θ

1. (Sθii )i∈N ∈ C(G, θ).

2. f(θ) = g(zG(∅, (Sθii )i∈N , δc))

Notice that each agent’s strategy depends just on his own type. To ease notation, we abbrebiate
(Sθii )i∈N ≡ Sθ and ((Sθii )θi∈Θi)i∈N ≡ (Sθ)θ∈Θ.

Our concern is with weak implementation: We require that Sθ ∈ C(G, θ), not {Sθ} = C(G, θ).
This is to preserve the analogy with canonical results for strategy-proofness, many of which assume
weak implementation (Myerson, 1981; Saks and Yu, 2005).

We use “(G, (Sθ)θ∈Θ) C-implements f” to mean that (G, (Sθ)θ∈Θ) fulfils the requirements of
Definition 3. We use “G C-implements f” to mean that there exists (Sθ)θ∈Θ such that (G, (Sθ)θ∈Θ)
fulfils the requirements of Definition 3.

Definition 4 (Weakly Dominant). In G for agent i with preferences θi, Si is weakly dominant
if:

∀S′i : ∀S′−i :

Eδc [uGi (h∅, S
′
i, S
′
−i, dc, θi)] ≤ Eδc [uGi (h∅, Si, S

′
−i, dc, θi)]

(4)

Let α(Si, S
′
i) be the set of earliest points of departure for Si and S′i. That is, α(Si, S

′
i) contains

the information sets where Si and S′i have made identical decisions at all prior information sets,
but are making a different decision now.

Definition 5 (Earliest Points of Departure). Ii ∈ α(Si, S
′
i) if and only if:

1. Si(Ii) 6= S′i(Ii)

2. There exist h ∈ Ii, S−i, dc such that h ≺ zG(h∅, Si, S−i, dc).

3. There exist h ∈ Ii, S−i, dc such that h ≺ zG(h∅, S
′
i, S−i, dc).

This definition can be extended to deal with mixed strategies14, but pure strategies suffice for
our current purposes.

13For readability, we generally suppress the latter notation, but the claims that follow hold for both deterministic
and stochastic choice rules. Additionally, the set X could itself be a set of lotteries. The interpretation of this is
that the planner can carry out one-time public lotteries at the end of the mechanism, where the randomization is
observable and verifiable.

14Three modifications are necessary: First, we change requirement 1 to be that both strategies specify different
probability measures at Ii. Second, we adapt requirements 2 and 3 to hold for some realization of the mixed strategies.
Finally, we include the recursive requirement, “There does not exist I ′i ≺ Ii such that I ′i ∈ α(Si, S

′
i).”
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Definition 6 (Obviously Dominant). In G for agent i with preferences θi, Si is obviously dom-
inant if:

∀S′i : ∀Ii ∈ α(Si, S
′
i) :

sup
h∈Ii,S′−i,dc

uGi (h, S′i, S
′
−i, dc, θi) ≤ inf

h∈Ii,S′−i,dc
uGi (h, Si, S

′
−i, dc, θi)

(5)

In words, Si is obviously dominant if, for any deviation S′i, conditional on reaching any earliest
point of departure, the best possible outcome under S′i is no better than the worst possible outcome
under Si.

15

Compare Definition 4 and Definition 6. Weak dominance is defined using h∅, the history that
begins the game. Consequently, if two extensive games have the same normal form, then they
have the same weakly dominant strategies. Obvious dominance is defined with histories that are
in information sets that are earliest points of departure. Thus two extensive games with the
same normal form may not have the same obviously dominant strategies.16 Switching to a direct
revelation mechanism may not preserve obvious dominance, so the standard revelation principle
does not apply.

Weak dominance treats chance moves and other players asymmetrically. Suppose G has a
Bayes-Nash equilibrium, and we replace all the agents in N \ 1 with chance moves drawn from the
Bayes-Nash equilibrium distribution. Then agent 1 has a weakly dominant strategy. By contrast,
obvious dominance treats chance moves and other players symmetrically.17

Definition 7 (Strategy-Proof). S ∈ SP(G, θ) if for all i, Si is weakly dominant.

Definition 8 (Obviously Strategy-Proof). S ∈ OSP(G, θ) if for all i, Si is obviously dominant.

A mechanism is weakly group-strategy-proof if there does not exist a coalition that could deviate
and all be strictly better off ex post.

Definition 9 (Weakly Group-Strategy-Proof). S ∈WGSP(G, θ) if there does not exist a coalition
N̂ ⊆ N , deviating strategies ŜN̂ , non-coalition strategies S′

N\N̂ and chance moves dc such that: For

all i ∈ N̂ :

uGi (h∅, ŜN̂ , S
′
N\N̂ , dc, θi) > uGi (h∅, SN̂ , S

′
N\N̂ , dc, θi) (6)

Obvious strategy-proofness implies weak group-strategy-proofness.

Proposition 1. If S ∈ OSP(G, θ), then S ∈WGSP(G, θ).

15Obvious dominance is related to conditional dominance (Shimoji and Watson, 1998), in that both concepts
evaluate a dominance relationship conditional on reaching some information set. Obvious dominance specifies that
this evaluation is carried out at any earliest point of departure, using a sup-inf comparison.

16Two extensive games have the same reduced normal form if and only if they can be made identical using a small
set of elementary transformations (Thompson, 1952; Elmes and Reny, 1994). Which of these transformations does
not preserve obvious dominance? Elmes and Reny (1994) propose three such transformations, INT, COA, and ADD,
which preserve perfect recall. Brief inspection reveals that obvious dominance is invariant under INT and COA, but
varies under ADD.

17If we replace other agents with chance moves in a second-price sealed-bid auction, the remaining agent’s strategy
is still not obviously dominant. This prediction is consistent with the systematic mistakes that laboratory subjects
make in the Becker-DeGroot-Marschak mechanism (Becker et al., 1964; Cason and Plott, 2014).
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Proof. We prove the contrapositive. Suppose S /∈ WGSP(G, θ). Then there is a coalition N̂
that could jointly deviate to strategies ŜN̂ and all be strictly better off. Fix S′

N\N̂ and dc such

that all agents in the coalition are strictly better off. Along the resulting terminal history, there
must be a first agent i in the coalition to deviate from Si to Ŝi. That first deviation happens
at some information set Ii ∈ α(Si, Ŝi). Since agent i strictly gains from that deviation, S /∈
OSP(G, θ).18

Corollary 1. If S ∈ OSP(G, θ), then S ∈ SP(G, θ).

Proposition 1 suggests a question: Is a choice rule OSP-implementable if and only if it is
WGSP-implementable? Proposition 6 in Subsection 4.3 shows that this is not so.

3.1 Cognitive limitations

In what sense is obvious dominance obvious? Intuitively, to see that S′i is weakly dominated by
Si, the agent must understand the entire function uGi , and check that for all opponent strategy
profiles S−i, the payoff from S′i is no better than the payoff from Si. By contrast, to see that S′i is
obviously dominated by Si, the agent need only know the range of the functions uGi (·, S′i, · · · ) and
uGi (·, Si, · · · ) at any earliest point of departure. Thus, obvious dominance can be recognized even
if the agent has a simplified mental model of the world. We now make this point rigorously.

We define an equivalence relation between mechanisms. In words, G andG′ are i-indistinguishable
if there exists a bijection from i’s information sets and actions in G onto i’s information sets and
actions in G′, such that:

1. ψi is an experience in G iff ψi’s image is an experience in G′.

2. Outcome x could follow experience ψi in G iff x could follow ψi’s image in G′.

Definition 10. Take any G,G′ ∈ G, with information partitions Ii, I ′i and experience sets Ψi,Ψ
′
i.

G and G′ are i-indistinguishable if there exists a bijection λG,G′ from Ii ∪A(Ii) to19 I ′i ∪A′(I ′i)
such that:

1. ψi ∈ Ψi iff λG,G′(ψi) ∈ Ψ′i

2. ∃z ∈ Z : g(z) = x, ψi(z) = ψi iff ∃z′ ∈ Z ′ : g′(z′) = x, ψ′i(z
′) = λG,G′(ψi)

where we use λG,G′(ψi) to denote {λG,G′(ψki )}Tk=1, where T ∈ N ∪∞.

For G and G′ that are i-indistinguishable, we define λG,G′(Si) to be the strategy that, given
information set I ′i in G′, plays λG,G′(Si(λ

−1
G,G′(I

′
i))).

The next theorem states that obviously dominant strategies are the strategies that can be
recognized as weakly dominant, by an agent who has a simplified mental model of the world.

Theorem 1. For any i, θi: Si is obviously dominant in G if and only if for every G′ that is
i-indistinguishable from G, λG,G′(Si) is weakly dominant in G′.

18I thank Ilya Segal for suggesting this concise proof.
19This definition entails that λG,G′ maps Ii onto I′i and A(Ii) onto A′(I′i). If an information set in G was mapped

onto an action in G′, then any experience involving that information set would, when passed through the bijection,
result in a sequence that was not an experience, and ipso facto not an experience of G′.
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The “if” direction permits a constructive proof. Suppose Si is not obviously dominant in G. We
apply a general procedure to construct G′ that is i-indistinguishable from G, such that λG,G′(Si)
is not weakly dominant. The “only if” direction proceeds as follows: Suppose there exists some G′

in the equivalence class of G, where λG,G′(Si) is not weakly dominant. There exists some earliest
information set in G′ where i could gain by deviating. We then use λ−1

G,G′ to locate an information
set in G, and a deviation S′i, that do not satisfy the obvious dominance inequality. Appendix A
provides the details.

One interpretation of Theorem 1 is that obviously dominant strategies are those that can be
recognized as dominant given only a coarse description of the game form.

Another interpretation of Theorem 1 is that obviously dominant strategies are robust to local
misunderstandings. Suppose an agent could mistake any G for any other i-indistinguishable G′.
For instance, in a second-price sealed-bid auction, he might (mistakenly) conjecture that bidding
above his value increases his chance of winning with positive profits. Obviously dominant strategies
are those that are robust to such mistakes.20

3.2 Supported by bilateral commitments

Suppose the following extended game form G̃ with consequences in X: As before we have a set of
agents N , outcomes X, and preference profiles

∏
i∈N Θi. However, there is one player in addition

to N: Player 0, the Planner.
The Planner has an arbitrarily rich message space M . At the start of the game, each agent

i ∈ N privately observes θi. Play proceeds as follows:

1. The Planner chooses one agent i ∈ N and sends a query m ∈M , along with a set of acceptable
replies R ⊂M

2. i observes (m,R), and chooses a reply r ∈ R.

3. The Planner observes r.

4. The Planner either selects an outcome x ∈ X, or chooses to send another query.

(a) If the Planner selects an outcome, the game ends.

(b) If the Planner chooses to send another query, go to Step 1.

For i ∈ N , i’s strategy specifies what reply to give, as a function of his preferences, the past
sequence of queries and replies between him and the Planner, and the current (m,R). That is:

S̃i(θi, (mk, Rk, rk)
t−1
k=1,mt, Rt) ∈ Rt (7)

We use S̃θii to denote the strategy played by type θi of agent i. Again we abbreviate (S̃θii )i∈N ≡
S̃θN and ((S̃θii )θi∈Θi)i∈N ≡ (S̃θN )θ∈Θ.

S̃0 denotes a pure strategy for the Planner. We require that these have finite length, which
ensures that payoffs are well-defined.

Definition 11. S̃0 is a pure strategy of finite length if there exists k ∈ N such that: For all
S̃N : (S̃0, S̃N ) results in the Planner sending k or fewer total queries.

20Obvious dominance can thus be seen as a theory of game form misconceptions, of the kind called for by Cason
and Plott (2014).
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S0 denotes the set of all pure strategies of finite length.
The standard full commitment paradigm is equivalent to allowing the Planner to commit to a

unique S̃0 ∈ S0 (or some probability measure over S0). Instead, we assume that for each agent, the
Planner can commit to a subset Ŝi0 ⊆ S0 that is measurable with respect to that agent’s observations
in the game.

This is formalized as follows: Each (S̃0, S̃N ) results in some observation oi ≡ (oCi , o
X
i ), consisting

of a communication sequence between the Planner and agent i, oCi = (mk, Rk, rk)
T
k=1 for T ∈ N, as

well as some outcome oXi ∈ X.21 Oi is the set of all possible observations (for agent i). We define
φi : S0 × SN → Oi, where φi(S̃0, S̃N ) is the unique observation resulting from (S̃0, S̃N ). Next we
define, for any Ŝ0 ⊆ S0:

Φi(Ŝ0) ≡ {oi : ∃S̃0 ∈ Ŝ0 : ∃S̃N : oi = φi(S̃0, S̃N )} (8)

For any Ôi ⊆ Oi:

Φ−1
i (Ôi) ≡ {S̃0 : ∀S̃N : φi(S̃0, S̃N ) ∈ Ôi} (9)

Definition 12. Ŝ0 is i-measurable if there exists Ôi such that:

Ŝ0 = Φ−1
i (Ôi) (10)

Intuitively, the i-measurable subsets of S0 are those such that, if the Planner deviates, then there
exists an agent strategy profile such that agent i detects the deviation. Formally, the i-measurable
subsets of S0 are the σ-algebra generated by Φi (where we impose the discrete σ-algebra on Oi).

Definition 13. A mixed strategy of finite length over Ŝ0 specifies a probability measure over
a subset S̄0 ⊆ Ŝ0 such that: There exists k ∈ N such that: For all S̃0 ∈ S̄0 and all S̃N : (S̃0, S̃N )
results in the Planner sending k or fewer total queries.

We use ∆Ŝ0 to denote the mixed strategies of finite length over Ŝ0. S̃∆
0 denotes an element of

such a set.

Definition 14. A choice rule f is supported by bilateral commitments (Ŝi0)i∈N if

1. For all i ∈ N : Ŝi0 is i-measurable.

2. There exist S̃∆
0 , and (S̃θN )θ∈Θ such that:

(a) For all θ: (S̃∆
0 , S̃

θ
N ) results in f(θ).

(b) S̃∆
0 ∈ ∆

⋂
i∈N Ŝi0

(c) For all i ∈ N , θi, S̃
′
N\i,S̃

∆′
0 ∈ ∆Ŝi0: S̃θii is a best response to (S̃∆′

0 , S̃′N\i) given preferences
θi.

Requirement 2.a is that the Planner’s mixed strategy and the agent’s pure strategies result in
the (distribution over) outcomes required by the choice rule. Requirement 2.b is that the Planner’s
strategy is a (possibly degenerate) mixture over pure strategies compatible with every bilateral
commitment. 2.c is that each agent i’s assigned strategy is weakly dominant, when we consider the
Planner as a player restricted to playing mixtures over strategies in Ŝi0.

21The communication sequence might be empty, which we represent using T = 0.
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“Supported by bilateral commitments” is just one of many partial commitment regimes. This
one requires that the commitment offered to each agent is measurable with respect to events that
he can observe. In reality, contracts are seldom enforceable unless each party can observe breaches.
Thus, “supported by bilateral commitments” is a natural case to study.

Theorem 2. f is OSP-implementable if and only if there exist bilateral commitments (Ŝi0)i∈N that
support f .

The intuition behind the proof is as follows: A bilateral commitment Ŝi0 is essentially equivalent
to the Planner committing to ‘run’ only games in some i-indistinguishable equivalence class of G.
Consequently, we can find a set of bilateral commitments that support fy if and only if we can
find some (G, (Sθ)θ∈Θ) such that, for every i, for every θi, for every G′ that is i-indistinguishable
from G, λG,G′(S

θi
i ) is weakly dominant in G′. By Theorem 1, this holds if and only if fy is OSP-

implementable. Appendix A provides the details.

3.3 The pruning principle

The standard revelation principle does not hold for OSP mechanisms; converting an OSP mech-
anism into the corresponding direct revelation mechanism may not preserve obvious dominance.
However, there is a weaker principle that substantially simplifies the analysis.22

Here we define the pruning of a mechanism with respect to a set of strategies (one for each
type of each agent). This is the new mechanism constructed by deleting all sub-trees that are not
reached given any type profile.

Definition 15 (Pruning). Take any G = 〈H,≺, A,A, P, δc, (Ii)i∈N , g〉, and (Sθ)θ∈Θ. P(G, (Sθ)θ∈Θ) ≡
〈H̃, ≺̃, Ã, Ã, P̃ , δ̃c, (Ĩi)i∈N , g̃〉 is the pruning of G with respect to (Sθ)θ∈Θ, constructed as follows:

1. H̃ = {h ∈ H : ∃θ : ∃dc : h � zG(∅, Sθ, dc)}

2. For all i, if Ii ∈ Ii then (Ii ∩ H̃) ∈ Ĩi.23

3. (≺̃, Ã, Ã, P̃ , δ̃c, g̃) are (≺, A,A, P, δc, g) restricted to H̃.

It turns out that, if some mechanism OSP-implements a choice rule, then the pruning of that
mechanism with respect to the equilibrium strategies OSP-implements that same choice rule. Thus,
while we cannot restrict our attention to direct revelation mechanisms, we can restrict our attention
to ‘minimal’ mechanisms, where no histories are off the path of play.

Proposition 2 (The Pruning Principle). Let G̃ ≡ P(G, (Sθ)θ∈Θ), and (S̃θ)θ∈Θ be (Sθ)θ∈Θ restricted
to G̃. If (G, (Sθ)θ∈Θ) OSP-implements f , then (G̃, (S̃θ)θ∈Θ) OSP-implements f .

4 Applications

4.1 Binary Allocation Problems

We now consider a canonical environment, (N,X,Θ, (ui)i∈N ). Let Y ⊆ 2N be the set of feasible
allocations, with representative element y ∈ Y . An outcome consists of an allocation y ∈ Y and a
transfer for each agent, X = Y × Rn. t ≡ (ti)i∈N denotes a profile of transfers.

22For instance, the pruning principle is required to concisely state Theorem 3.
23Note that the empty history h∅ is distinct from the empty set. That is to say, (Ii ∩ H̃) = ∅ does not entail that
{h∅} ∈ Ĩi.
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Preferences are quasilinear. Θ =
∏
i∈N Θi, where Θi = [θi, θi], for 0 ≤ θi < θi <∞. For θi ∈ Θi

ui(θi, y, t) = 1i∈yθi + ti (11)

For instance, in a private value auction with unit demand, i ∈ y if and only if agent i receives
at least one unit of the good under allocation y. In a procurement auction, i ∈ y if and only if i
does not incur costs of provision under allocation y. θi is agent i’s cost of provision (equivalently,
benefit of non-provision). In a binary public goods game, Y = {∅, N}.

An allocation rule is a function fy : Θ→ Y . A choice rule is thus a combination of an allocation
rule and a payment rule, f = (fy, ft), where ft : Θ → Rn. Similarly, for each game form G, we
disaggregate the outcome function, g = (gy, gt). In this part, we concern ourselves only with
deterministic allocation rules and payment rules, and thus suppress notation involving δc and dc.

Definition 16. An allocation rule fy is C-implementable if there exists ft such that (fy, ft) is
C-implementable. G C-implements fy if there exists ft such that G C-implements (fy, ft)

Definition 17. fy is monotone if for all i, for all θ−i, 1i∈fy(θi,θ−i) is weakly increasing in θi.

In this environment, fy is SP-implementable if and only if fy is monotone. This result is implicit
in Spence (1974) and Mirrlees (1971), and is proved explicitly in Myerson (1981).24

Moreover, if an allocation rule fy is SP-implementable, then the accompanying payment rule ft
is essentially unique.

ft,i(θi, θ−i) = −1i∈fy(θ) inf{θ′i : i ∈ fy(θ′i, θ−i)}+ ri(θ−i) (12)

where ri is some arbitrary deterministic function of the other agents’ preferences. This follows
easily by arguments similar to those in Green and Laffont (1977) and Holmström (1979).

We are interested in how these results change when we require OSP-implementation. In partic-
ular:

1. What condition on fy characterizes the set of OSP-implementable allocation rules?

2. For OSP-implementation, is there an analogous ‘essential uniqueness’ result on the extensive
game form G?

We now define a monotone price mechanism. Informally, a monotone price mechanism is such
that, for every i, starting from any information set where i has more than one action:

1. Either:

(a) There is a ‘going transfer’ associated with being in the allocation, which falls monoton-
ically.

(b) Whenever the going transfer falls, i chooses whether to keep bidding or to quit.

(c) If i quits, then i is not in the allocation and receives a fixed transfer

(d) If the game ends:

i. If i is in the allocation, then i receives the going transfer.

24These monotonicity results for are for weak SP-implementation rather than full SP-implementation implemen-
tation. Weak SP-implementation requires Sθ ∈ SP(G, θ). Full SP-implementation requires {Sθ} = SP(G, θ). There
are monotone allocation rules for which the latter requirement cannot be satisfied. For example, suppose two agents
with unit demand. Agent 1 receives one unit iff v1 > .5. Agent 2 receives one unit iff v2 > v1.
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ii. If i is not in the allocation, then i receives the fixed transfer.

(e) If i has more than one non-quitting action:

i. The going transfer will not fall in future.

ii. An action is available that guarantees i is in the allocation.

2. Or:

(a) There is a ‘going transfer’ associated with not being in the allocation, which falls mono-
tonically.

(b) Whenever the going transfer falls, i chooses whether to keep bidding or to quit.

(c) If i quits, then i is in the allocation and receives a fixed transfer

(d) If the game ends:

i. If i is not in the allocation, then i receives the going transfer.

ii. If i is in the allocation, then i receives the fixed transfer.

(e) If i has more than one non-quitting action:

i. The going transfer will not fall in future.

ii. An action is available that guarantees i is not in the allocation.

The “either” clause contains ascending clock auctions as a special case. The “or” clause contains
descending price procurement auctions; agents that do not win the contract receive a fixed zero
transfer. There is a positive payment associated with winning the contract (i.e. not being in the
allocation), which starts high and counts downwards.

The following definition restates the above formally.

Definition 18 (Monotone Price Mechanism). A game G is a monotone price mechanism if, for
every i ∈ N , at every earliest information set I∗i such that A(I∗i ) > 1:

1. Either: There exists a real number t0i , a function t̃1i : {Ii : I∗i ∈ ψi(Ii)} → R, and a set of
actions A0 such that:

(a) For all a ∈ A0, for all z such that a ∈ ψi(z): i /∈ gy(z) and gt,i(z) = t0i .

(b) A0 ∩A(I∗i ) 6= ∅.
(c) For all I ′i, I

′′
i ∈ {Ii : I∗i � Ii}:

i. If I ′i ≺ I ′′i , then t̃1i (I
′
i) ≥ t̃1i (I ′′i ).

ii. If I ′i is the penultimate information set in ψi(I
′′
i ) and t̃1i (I

′
i) > t̃1i (I

′′
i ), then A0 ∩

A(I ′′i ) 6= ∅.
iii. If I ′i ≺ I ′′i and t̃1i (I

′
i) > t̃1i (I

′′
i ), then |A(I ′i) \A0| = 1.

iv. If |A(I ′i) \ A0| > 1, then there exists a ∈ A(I ′i) such that: For all z such that
a ∈ ψi(z): i ∈ gy(z).

(d) For all z where I∗i ≺ z:

i. Either: i /∈ gy(z) and gt,i(z) = t0i .

ii. Or: i ∈ gy(z) and
gt,i(z) = inf

Ii:I∗i �Ii≺z
t̃1i (Ii) (13)
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2. Or: There exists a real number t1i , a function t̃0i : {Ii : I∗i ∈ ψi(Ii)} → R, and a set of actions
A1 such that:

(a) For all a ∈ A1, for all z such that a ∈ ψi(z): i ∈ gy(z) and gt,i(z) = t1i .

(b) A1 ∩A(I∗i ) 6= ∅.
(c) For all I ′i, I

′′
i ∈ {Ii : I∗i � Ii}:

i. If I ′i ≺ I ′′i , then t̃0i (I
′
i) ≥ t̃0i (I ′′i ).

ii. If I ′i is the penultimate information set in ψi(I
′′
i ) and t̃1i (I

′
i) > t̃1i (I

′′
i ), then A1 ∩

A(I ′′i ) 6= ∅.
iii. If I ′i ≺ I ′′i and t̃0i (I

′
i) > t̃0i (I

′′
i ), then |A(I ′i) \A1| = 1.

iv. If |A(I ′i) \ A1| > 1, then there exists a ∈ A(I ′i) such that: For all z such that
a ∈ ψi(z): i /∈ gy(z).

(d) For all z where I∗i ≺ z:

i. Either: i ∈ gy(z) and gt,i(z) = t1i .

ii. Or: i /∈ gy(z) and
gt,i(z) = inf

Ii:I∗i �Ii≺z
t̃0i (Ii) (14)

Notice what this definition does not require. The going transfer need not be equal across agents.
Whether and how much one agent’s going transfer changes could depend on other agents’ actions.
Some agents could face a procedure consistent with the ‘either’ clause, and other agents could face
a procedure consistent with the ‘or’ clause. Indeed, which procedure an agent faces could depend
on other agents’ actions.

Theorem 3. If (G, (Sθ)θ∈Θ) OSP-implements fy, then G̃ ≡ P(G, (Sθ)θ∈Θ) is a monotone price
mechanism.

Ascending auctions are characterized by a number of fine procedural details: Each agent faces a
‘going price’. That price only ever rises. At each point, the agent chooses whether to keep bidding
or to quit. If an agent quits, he quits irrevocably. If the agent wins, he pays the going price. By
Theorem 3, obvious dominance entails many of these details, and can be seen as an answer to the
question, “Why are ascending auctions so common?”

Theorem 4 shows that Theorem 3 is a full characterization.

Theorem 4. If G is a monotone price mechanism, then there exists fy such that G OSP-implements
fy.

To characterize the set of OSP-implementable allocation rules, we define traversable allocation
rules. We build towards this definition step by step. All vector inequalities are in the product
order.25

Consider the set:

{θ : ∀θ′N\i ≥ θN\i : i /∈ fy(θi, θ′N\i)} (15)

These are the type profiles such that, if we hold i’s type constant and (weakly) increase every
other agent’s type, then fy requires that i is not in the allocation. To build intuition, suppose we
are running an ascending clock auction with agent-specific clocks. No agent has quit yet, and the

25That is, v ≥ v′ iff for every index i, vi ≥ v′i. Similarly, v > v′ iff for every index i, vi > v′i.
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current price vector is in the set defined by Equation 15. Then we can safely advance i’s clock
while respecting the allocation rule.

Suppose instead that only a subset of the agents B ⊆ N are actively bidding, and we already
know the types of the other agents θN\B. Then Equation 16 is a natural generalization of Equation
15.

{θB : ∀θ′B\i ≥ θB\i : i /∈ fy(θi, θ′B\i, θN\B)} (16)

Definition 19. fy is traversable if: For all B ⊆ N , for all θN\B, for

Θ̃B(θN\B) ≡ ∩i∈Bclosure({θB : ∀θ′B\i ≥ θB\i : i /∈ fy(θi, θ′B\i, θN\B)}) (17)

1. Θ̃B(θN\B) is connected.

2. There exists i ∈ B such that, if θB > sup{Θ̃B(θN\B)}, then i ∈ fy(θB, θN\B).

The sets defined by Equation 17 are join-semilattices.26 There exist traversable allocation rules
that are not monotone, and vice versa.27

The next theorem characterizes the set of OSP-implementable allocation rules. It invokes two
additional assumptions.

First, we assume that fy admits a finite partition, which means that we can partition the type
space into a finite set of |N |-dimensional intervals, with the allocation rule constant within each
interval. This assumption is largely technical. It is required because OSP is defined for extensive
game forms such that play proceeds in discrete steps. OSP is not defined for continuous-time
auctions, although we can approximate some of them arbitrarily finely.28

Definition 20. fy admits a finite partition if there exists K ∈ N such that, for each i, there
exists {θki }Kk=1 such that:

1. θi = θ1
i < θ2

i < . . . < θKi = θi.

2. For all θi, θ
′
i, for all θ−i, if there does not exist k such that θi ≤ θki < θ′i, then fy(θi, θ−i) =

fy(θ
′
i, θ−i)

Second, we assume that the lowest type of each agent is never in the allocation, and has a
zero transfer. This is a substantive restriction, and rules out, for instance, the subsidized-trade
mechanisms examined by Myerson and Satterthwaite (1983).

Theorem 5. Assume that:

1. fy admits a finite partition.

2. For all i, for all θ−i, i /∈ fy(θi, θ−i).

There exists G and ft such that:

26For a proof, see Lemma 6 in Appendix A.
27Let |N | = 2 and Θ1 = Θ2 = [0, 1]. The following allocation rule is traversable but not monotone: i ∈ fy(θi, θ−i)

if and only if θi > θ−i and θi ≤ 1
2
. The following rule is monotone but not traversable: i ∈ fy(θi, θ−i) if and only if

θi >
1
3

and θ−i ≤ 2
3
.

28Simon and Stinchcombe (1989) show that discrete time with a very fine grid can be a good proxy for continuous
time. However, in their theory, players have perfect information about past activity in the system. Adapting this to
our theory, where G includes all discrete-time game forms with imperfect information, is far from straightforward.
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1. G OSP-implements (fy, ft)

2. For all i, for all θ−i, ft,i(θi, θ−i) = 0

if and only if fy is monotone and traversable.

4.2 Online Advertising Auctions

We now study an online advertising environment, which generalizes Edelman et al. (2007).
There are n bidders, and n − 1 advertising positions.29 Each position has an associated click-

through rate αk, where α1 ≥ α2 ≥ . . . ≥ αn−1 > 0. For convenience, we define position n with
αn = 0.

Each bidder’s type is a vector, θi ≡ (θki )nk=1. A bidder with type θi who receives position k and
transfer t has utility:

ui(k, t, θi) = αkθ
k
i + t (18)

The marginal utility of moving to position k from position k′, for type θi, is

m(k, k′, θi) ≡ αkθki − αk′θk
′
i (19)

We make the following assumptions on the type space Θ:

A1. Finite:
|Θ| <∞ (20)

A2. Higher slots are better :

∀k ≤ n− 1 : ∀θ ∈ Θ : ∀i ∈ N : m(k, k + 1, θi) ≥ 0 (21)

A3. Single-crossing :30

∀k ≤ n− 2 : ∀θ, θ′ ∈ Θ : ∀i, j ∈ N : If m(k, k + 1, θi) > m(k, k + 1, θ′j),

then m(k + 1, k + 2, θi) > m(k + 1, k + 2, θ′j).
(22)

A1 is a technical assumption to accommodate extensive game forms that move in discrete steps.
A2 and A3 are substantive assumptions. Edelman et al. (2007) assume that for all k, k′, θki = θk

′
i ,

which entails A2. If α1 > α2 > . . . > αn−1 > 0, then their assumption also entails A3.
In this environment, the Vickrey-Clarke-Groves (VCG) mechanism selects the efficient alloca-

tion. Suppose we number each buyer according to the slot he wins. Then bidder i has VCG
payment:

− ti =

n−1∑
k=i

m(k, k + 1, θk+1) (23)

Edelman et al. (2007) produce a generalized English auction that ex post implements the efficient
allocation rule in online advertising auctions. The generalized English auction has a unique perfect
Bayesian equilibrium in continuous strategies. It is not SP, and therefore is not OSP.

Here we produce an alternative ascending auction that OSP-implements the efficient allocation
rule.

29It is trivial to extend what follows to fewer than n− 1 advertising positions, but doing so would add notation.
30This assumption is not identical to the single-crossing assumption in Yenmez (2014). For instance, Yenmez’s

condition permits the second inequality in Equation 22 to be weak.
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Proposition 3. Assume A1, A2, A3. There exists G that OSP-implements the efficient allocation
rule and the VCG payments.

Proof. We construct G. Set pn−1 := 0, An−1 = N .
For l = 1, . . . , n− 1:

1. Start the price at pn−l.

2. Raise the price in small increments. If the current price is p′n−l, the next price is:

p′′n−l :=

inf
θ∈Θ,i∈N

{m(n− l, n− l + 1, θi) : m(n− l, n− l + 1, θi) > p′n−l}
(24)

3. At each price, query each agent in An−l (in an arbitrary order), giving her the option to quit.

4. At any price p′n−l, if agent i quits, allocate her slot n− l+1, and charge every agent in An−l \ i
the price p′n−l.

5. Set

pn−l−1 :=

inf
θ∈Θ,i∈N

{m(n− l − 1, n− l, θi) : m(n− l, n− l + 1, θi) ≥ p′n−l}
(25)

An−l−1 := An−l \ i (26)

It is an obviously dominant strategy for agent i to quit iff the price in round l is weakly greater
than m(n− l, n− l + 1, θi).

Consider any round l. Payments from previous rounds are sunk costs. Quitting yields slot
n− l + 1 at no additional cost, and removes the agent from future rounds.

Consider deviations where the earliest point of departure involves quitting. The current price
p′n−l is weakly less than m(n − l, n − l + 1, θi). If the truth-telling strategy has the result that i
quits in round l, this outcome is at least as good for i as quitting now. If the truth-telling strategy
has the result that i does not quit in round l, then i is charged some amount less than his marginal
value for moving up a slot, and the next starting price is pn−l−1 ≤ m(n − l − 1, n − l, θi), so the
argument repeats.

Consider deviations where the earliest point of departure involves staying in. The current price
p′n−l is weakly greater than m(n − l, n − l + 1, θi), so this either has the same result as quitting
now, or raises i’s position at marginal cost weakly above i’s marginal utility. This is trivially true
for the current round. Consider the next round, l + 1. If the starting price pn−l−1 is strictly
less m(n − l − 1, n − l, θi), then there exists some θ′ and j such that m(n − l − 1, n − l, θi) >
m(n− l− 1, n− l, θ′j). And m(n− l, n− l+ 1, θi) ≤ p′n−l ≤ m(n− l, n− l+ 1, θ′j), which contradicts
A3. Repeating the argument suffices to prove the claim for all rounds l′ ≥ l.

By inspection, this mechanism and the specified strategy profile result in the efficient allocation
and the VCG payments.

Internet transactions conducted by a central auctioneer raise commitment problems, and bidders
may be legitimately concerned about shill bidding. If we consider such auctions as repeated games,
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reputation can ameliorate commitment problems, but the set of equilibria can be very large and
prevent tractable analysis.

Proposition 3 shows that, even if we do not consider such auctions as repeated games, there
sometimes exist robust mechanisms that rely only on bilateral commitments. In the case of adver-
tising auctions, the speed of transactions may require bidders to implement their strategies using
automata.

4.3 Top Trading Cycles

We now produce an impossibility result in a classic matching environment (Shapley and Scarf,
1974).

There are n agents in the market, each endowed with an indivisible good. An agent’s type is a
vector θi ∈ Rn. Θ is the set of all n by n matrices of real numbers. An outcome assigns one object
to each agent. If agent i is assigned object k, he has utility θki . There are no money transfers.

Given preferences θ and agents R ⊆ N , a top trading cycle is a set ∅ ⊂ R′ ⊆ R whose members
can be indexed in a cyclic order:

R′ = {i1, i2, . . . , ir = i0} (27)

such that each agent ik likes ik+1’s good at least as much as any other good in R. Following
Roth (1982), we assume that the algorithm in question has an arbitrary, fixed way of resolving ties.

Definition 21. f is a top trading cycle rule if, for all θ, f(θ) is equal to the output of the following
algorithm:

1. Set R1 := N

2. For l = 1, 2, , . . .:

(a) Choose some top trading cycle R′ ⊆ Rl.
(b) Carry out the indicated trades.

(c) Set Rl+1 := Rl \R′.
(d) Terminate if Rl+1 = ∅.

The above algorithm is of economic interest, because it finds a core allocation in an economy
with indivisible goods (Shapley and Scarf, 1974).

Proposition 4. If f is a top trading cycle rule, then there exists G that SP-implements f . (Roth,
1982)

Proposition 5. If f is a top trading cycle rule, then there exists G that WGSP-implements f .
(Bird, 1984)

Proposition 6. If f is a top trading cycle rule and n ≥ 3, then there does not exist G that
OSP-implements f .

Proof. SP-implementability is a hereditary property of functions. That is, if f is SP-implementable
given domain Θ, then the subfunction f ′ = f with domain Θ′ ⊆ Θ is SP-implementable. By
inspection, the same is true for OSP-implementability. Thus, to prove Proposition 6, it suffices to
produce a subfunction that is not OSP-implementable.
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Consider the following subset Θ′ ⊂ Θ. Take agents a, b, c, with endowed goods A,B,C. a has
only two possible types, θa and θ′a, such that

Either B �a C �a A �a . . .
or C �a B �a A �a . . .

(28)

We make the symmetric assumption for b and c.
We now argue by contradiction. Take any G pruned with respect to the truthful strategy

profiles, such that (by Proposition 2) G OSP-implements f ′ = f for domain Θ′. Consider some
history h at which P (h) = a with a non-singleton action set. This cannot come before all such
histories for b and c.

Suppose not, and suppose B �a C. If a chooses the action corresponding to B �a C, and faces
opponent strategies corresponding to C �b A and B �c A, then a receives good A. If a chooses
the action corresponding to C �a B, and faces opponent strategies corresponding A �c B, then a
receives good C. Thus, it is not an obviously dominant strategy to choose the action corresponding
to B �a C. So a cannot be the first to have a non-singleton action set.

By symmetry, this argument applies to b and c as well. So all of the action sets for a, b, and c
are singletons, and G does not OSP-implement f ′, a contradiction.

Proposition 6 implies that the OSP-implementable choice rules are not identical to the WGSP-
implementable choice rules.

5 Laboratory Experiment

Are obviously strategy-proof mechanisms easier for real people to understand? The following
laboratory experiment provides a straightforward test: We compare pairs of mechanisms that
implement the same allocation rule. One mechanism in each pair is SP, but not OSP. The other
mechanism is OSP. Standard game theory predicts that both mechanisms will produce the same
outcome. We are interested in whether subjects play the dominant strategy at higher rates under
OSP mechanisms.

5.1 Experiment Design

The experiment is an across-subjects design, comparing three pairs of games. There are four players
in each game.

For the first pair, we compare the second-price auction (2P) and the ascending clock auction
(AC). In both these games, subjects bid for a money prize. Subjects have induced affiliated private
values; if a subject wins the prize, he earns an amount equal to the value of the prize, minus his
payments from the auction. For each subject, his value for the prize is equal to a group draw plus
a private adjustment. The group draw is uniformly distributed between $10 and $110. The private
adjustment is uniformly distributed between $0 and $20. All money amounts in these games are
in 25-cent increments. Each subject knows his own value, but not the group draw or the private
adjustment.31

31We use affiliated private values for two reasons. First, in strategy-proof auctions with independent private values,
incentives for truthful bidding are weak for bidders with values near the extremes. Affiliation strengthens incentives
for these bidders. Second, Kagel et al. (1987) use affiliated private values, and the first part of the experiment is
designed to replicate their results.
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2P is SP, but not OSP. In 2P, subjects submit their bids simultaneously. The highest bidder
wins the prize, and makes a payment equal to the second-highest bid. Bids are constrained to be
between $0 and $150.32

AC is OSP. In AC, the price starts at a low value (the highest $25 increment that is below the
group draw), and counts upwards, up to a maximum of $150. Each bidder can quit at any point.33

When only one bidder is left, that bidder wins the object at the current price.
Previous studies comparing second-price auctions to ascending clock auctions have small sam-

ple sizes, given that when the same subjects play a sequence of auctions, these are plainly not
independent observations. Kagel et al. (1987) compare 2 groups playing second-price auctions to 2
groups playing ascending clock auctions. Harstad (2000) compares 5 groups playing second-price
auctions to 3 groups playing ascending clock auctions. (The comparison is not the main goal of
either experiment.) Other studies find similar results for second-price auctions (Kagel and Levin,
1993) and for ascending clock auctions (McCabe et al., 1990), but these do not directly compare
the two formats with the same value distribution and the same subject pool. When we compare
2P and AC, we can see this as a high-powered replication of Kagel et al. (1987), since we now
observe 18 groups playing 2P and 18 groups playing AC.34

For the second pair, we compare the second-price plus-X auction (2P+X) and the ascending
clock plus-X auction (AC+X). Subjects’ values are drawn as before. However, there is an addi-
tional random variable X, which is uniformly distributed between $0 and $3. Subjects are not told
the value of X until after the auction.

2P+X is SP, but not OSP. In 2P+X, subjects submit their bids simultaneously. The highest
bidder wins the prize if and only if his bid exceeds the second-highest bid plus X. If the highest
bidder wins the prize, then he makes a payment equal to the second-highest bid plus X. Otherwise,
no agent wins the prize, and no payments are made. In this game, it is a dominant strategy to
submit a bid equal to your value.

AC+X is OSP. In AC+X, the price starts at a low value (the highest $25 increment that is
below the group draw), and counts upwards. Each bidder can quit at any point.35 When only one
bidder is left, the price continues to rise for another X dollars, and then freezes. If the highest
bidder keeps bidding until the price freezes, then she wins the prize at the final price. Otherwise,
no agent wins the prize and no payments are made. In this game, it is an obviously dominant
strategy to keep bidding if the price is strictly below your value, and quit otherwise.

Some subjects might find 2P or AC familiar, since such mechanisms occur in some natural
economic environments. Differences in subject behavior might be caused by different degrees of
familiarity with the mechanism. 2P+X and AC+X are novel mechanisms that subjects are
unlikely to find familiar. 2P+X and AC+X can be seen as perturbations of 2P and AC; the
underlying allocation rule is made more complex while preserving the SP-OSP distinction. Thus,
comparing 2P+X and AC+X indicates whether the distinction between SP and OSP mechanisms
holds for novel and more complicated auction formats.

In the third pair of games, subjects may receive one of four common-value money prizes. The
four prize values are drawn, uniformly at random and without replacement, from the set:

{$0.00, $0.25, $0.50, $0.75, $1.00, $1.25} (29)

32In both 2P and AC, if there is a tie for the highest bid, then no bidder wins the object.
33During the auction, each bidder observes the number of active bidders.
34I am not aware of any previous laboratory experiment that directly compares second-price and ascending clock

auctions, holding constant the value distribution and subject pool, with more than five groups playing each format.
35As in AC, each bidder observes the number of active bidders. However, if the number of active bidders is 1 or

2, then the computer display informs bidders that the number of active bidders is “1 or 2”.
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Table 1: Mechanisms in each treatment
10 rounds 10 rounds 10 rounds

Treatment 1 AC AC+X OSP-RSD
Treatment 2 2P 2P+X SP-RSD
Treatment 3 AC AC+X SP-RSD
Treatment 4 2P 2P+X OSP-RSD

Subjects observe the values of all four prizes at the start of each game.
In a strategy-proof random serial dictatorship (SP-RSD), subjects are informed of their priority

score, which is drawn uniformly at random from the integers 1 to 10. They then simultaneously
submit ranked lists of the four prizes. Players are processed sequentially, from the highest priority
score to the lowest. Ties in priority score are broken randomly. Each player is assigned the highest-
ranked prize on his list, among the prizes that have not yet been assigned. It is a dominant strategy
to rank the prizes in order of their money value. SP-RSD is SP, but not OSP.

In an obviously strategy-proof random serial dictatorship (OSP-RSD), subjects are informed
of their priority score. Players take turns, from the highest priority score to the lowest. When a
player takes his turn, he is shown the prizes that have not yet been taken, and picks one of them.
It is an obviously dominant strategy to pick the available prize with the highest money value.

SP-RSD and OSP-RSD differ from the auctions in several ways. The auctions are private-
value games of incomplete information, whereas SP-RSD and OSP-RSD are common-value games
of complete information. In the auctions, subjects face two sources of strategic uncertainty: They
are uncertain about their opponents’ valuations, and they are uncertain about their opponents’
strategies (a function of valuations). By contrast, in SP-RSD and OSP-RSD, subjects face no
uncertainty about their opponents’ valuations.

Unlike the auctions, SP-RSD and OSP-RSD are constant-sum games, such that one player’s
action cannot affect total player surplus. Any effect that persists in both the auctions and the
serial dictatorships is difficult to explain using social preferences, since such theories typically make
different predictions for constant-sum and non-constant-sum games. Thus, in comparing SP-RSD
and OSP-RSD, we test whether the SP-OSP distinction has empirical support in mechanisms
that are very different from auctions.

At the start of the experiment, subjects are randomly assigned into groups of four. These
groups persist throughout the experiment. Consequently, each group’s play can be regarded as a
single independent observation in the statistical analysis.36

Each group either plays 10 rounds of AC, followed by 10 rounds of AC+X, or plays 10 rounds
of 2P, followed by 10 rounds of 2P+X.37 At the end of each round, subjects are shown the auction
result, their own profit from this round, the winning bidder’s profit from this round, and the bids
(in order from highest to lowest). Notice that subjects have 10 rounds of experience with a standard
auction, before being presented with its unusual +X variant. Thus, the data from +X auctions

36We could, alternatively, randomly rematch subjects after each round. However, in order for subjects to avoid
encountering past opponents, this would require more than 50 subjects per session, which is more than can be
accommodated in a typical experimental economics laboratory. Moreover, we would have to cluster standard errors
at the session level, requiring many sessions with more than 50 subjects per session. This violates our budget
constraint.

37If a stage game with dominant strategies is repeated finitely many times, then the resulting repeated game
typically does not have a dominant strategy. The same holds for obviously dominant strategies. Consequently,
in interpreting these results as informing us about dominant strategy play, we invoke an implicit narrow framing
assumption. The same assumption is made for other experiments in this literature, such as Kagel et al. (1987) and
Kagel and Levin (1993).
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record moderately experienced bidders grappling with a new auction format.
Next, groups are re-randomized into either 10 rounds of OSP-RSD or 10 rounds of SP-RSD.

At the end of each round, subjects see which prize they have obtained, and whether their priority
score was the highest, or second-highest, and so on.

Table 1 summarizes the design. Subjects had printed copies of the instructions, and the exper-
imenter read aloud the part pertaining to each 10-round segment just before that segment began.
The instructions (correctly) informed subjects that their play in earlier segments would not affect
the games in later segments. The instructions did not mention dominant strategies or provide
recommendations for how to play, so as to prevent confounds from the experimenter demand effect.
Instructions for both SP and OSP mechanisms are of similar length and similar reading levels38,
and can be found in Appendix D.

In every SP mechanism, each subject had 90 seconds to make his choice. Each subject could
revise his choice as many times as he desired during the 90 seconds, and only his final choice would
count. For OSP mechanisms, mean time to completion was 113.0 seconds in AC, 121.4 seconds in
AC+X, and 40.5 seconds in RSD-OSP. However, the rules of the OSP mechanisms imply that
not every subject was actively choosing throughout that time.

5.2 Administrative details

Subjects were paid $20 for participating, in addition to their profits or losses from every round of
the experiment. On average, subjects made $37.54, including the participation payment. Subjects
who made negative net profits received just the $20 participation payment.

I conducted the experiment at the Ohio State University Experimental Economics Laboratory
in August 2015, using z-Tree (Fischbacher, 2007). I recruited subjects from the student population
using an online system. I administered 16 sessions, where each session involved 1 to 3 groups. Each
session lasted about 90 minutes. In total, the data include 144 subjects in 36 groups of 4 (with
9 groups in each treatment).39 54% of subjects are male, and 21% self-report as being economics
majors.

5.3 Statistical Analysis

The data include 4 different auction formats, with 180 auctions per format, for a total of 720
auctions.40

One natural summary statistic for each auction is the difference between the second-highest bid
and the second-highest value. This is, equivalently, the difference between that auction’s closing
price, and the closing price that would have occurred if all bidders played the dominant strategy.
Figure 2 displays histograms of the second-highest bid minus the second-highest value, for AC and
2P. Figure 3 does the same for AC+X and 2P+X. If all agents are playing the dominant strategy
in an auction, then the histogram for that auction will be a point mass at zero.

There is a substantial difference between the empirical distributions for OSP and SP mecha-
nisms. If we choose a random auction from the data, how likely is it to have a closing price within
$2.00 of the dominant strategy price? An auction is 31 percentage points more likely to have a
closing price within $2.00 of the dominant strategy price under AC (OSP) compared to 2P (SP).

38Both sets of instructions are approximately at a fifth-grade reading level according to the Flesch-Kincaid read-
ability test, which is a standard measure for how difficult a piece of text is to read (Kincaid et al., 1975).

39In two cases, network errors caused crashes which prevented a group from continuing in the experiment. I
recruited new subjects to replace these groups.

40In 2 out of 720 auctions, computer errors prevented bidders from correctly entering their bids. We omit these 2
observations, but including them has little effect on any of the results that follow.
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Figure 2: Histogram: 2nd-highest bid minus 2nd-highest value for AC and 2P

An auction is 28 percentage points more likely to have a closing price within $2.00 of the dominant
strategy price under AC+X (OSP) compared to 2P+X (SP). Closing prices under 2P+X are
systematically biased upwards (p = .0031)41.

Table 2 displays the mean absolute difference between the second-highest bid and the second-
highest value, for the first 5 rounds and the last 5 rounds of each auction. This measures the
magnitude of errors under each mechanism. (Alternative measures of errors are in Appendix B.)
Errors are systematically larger under SP than under OSP, and this difference is significant in both
the standard auctions and the novel +X auctions, and in both early and late rounds. To build
intuition for effect sizes, consider that the expected profit of the winning bidder in 2P and AC is
about $4.00 (given dominant strategy play). Thus, the average errors under 2P are larger than the
theoretical prediction for total bidder surplus.

There is some evidence of learning in 2P; errors are smaller in the last five rounds compared
to the first five rounds (p = .045, paired t-test). For the other three auction formats, there is no
significant evidence of learning.42

To compare subject behavior under SP-RSD and OSP-RSD, we compute the proportion of
games that do not end in the dominant strategy outcome. Under SP-RSD, 36.1% of games do
not end in the dominant strategy outcome. Under OSP-RSD, 7.2% of games do not end in the
dominant strategy outcome. Table 3 displays the empirical frequency of non-dominant strategy
outcomes, by format and by 5-round blocks. Deviations from the dominant strategy outcome
happen more frequently under SP-RSD than under OSP-RSD, and these differences are highly
significant in both early and late rounds.

In SP-RSD, 29.0% of submitted rank-order lists contain errors. The most common error

41For each group, we take the mean difference between the second-highest bid and the second-highest value. This
produces one observation per group playing 2P+X, for a total of 18 observations, and we use a t-test for the null
that these have zero mean.

42p = .173 for AC, p = .694 for 2P+X, and p = .290 for AC+X.

26



Figure 3: Histogram: 2nd-highest bid minus 2nd-highest value for AC+X and 2P+X

Table 2: mean(abs(2nd bid - 2nd value))
Format Rounds SP OSP p-value

Auction

1-5 8.04 3.19 .006
(1.25) (1.05)

6-10 4.99 1.77 .016
(1.18) (0.33)

+X Auction

1-5 3.99 1.83 .006
(0.60) (0.41)

6-10 3.69 1.29 .017
(0.87) (0.33)

For each group, we take the mean absolute difference over each 5-round block. We then compute standard errors
counting each group’s 5-round mean as a single observation. (18 observations per cell, standard errors in parentheses.)
p-values are computed using a two-sample t-test, allowing for unequal variances. Other empirical strategies yield
similar results; see Appendix B for details.
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Table 3: Proportion of serial dictatorships not ending in dominant strategy outcome
SP OSP p-value

Rounds 1-5 43.3% 7.8% .0002
(7.3%) (3.3%)

Rounds 6-10 28.9% 6.7% .0011
(5.2%) (3.2%)

p-value .1026 .7492

For each group, for each 5-round block, we record the error rate. We then compute standard errors counting each
group’s observed error rate as a single observation. (18 observations per cell, standard errors in parentheses.) When
comparing SP to OSP, we compute p-values using a two-sample t-test, allowing for unequal variances. (Alternative
empirical strategies yield similar results. See Appendix B for details.) When comparing early to late rounds of the
same game, we compute p-values using a paired t-test.

under SP-RSD is to swap the ranks of the highest and second-highest prizes, and report the list
in order 2nd-1st-3rd-4th. This accounts for 38 out of 209 incorrect rank-order lists. However, errors
are diverse: No permutation of {1st, 2nd, 3rd, 4th} accounts for more than a fifth of the incorrect
rank-order lists.

In summary, subjects play the dominant strategy at higher rates in OSP mechanisms, as com-
pared to SP mechanisms that should (according to standard theory) implement the same allocation
rule. This difference is significant and substantial across all three pairs of mechanisms, and persists
after five rounds of repeated play with feedback. Of course, the set of all strategy-proof mechanisms
cannot be tested exhaustively in a single experiment. This is only preliminary evidence that obvious
dominance correctly classifies strategy-proof mechanisms according to their cognitive complexity.

There are not (yet) well-formed alternative theories that explain the data presented here. The
following theories predict dominant-strategy play in any strategy-proof mechanism: Level-k equi-
librium43, cognitive hierarchy equilibrium44, cursed equilibrium45, and analogy-based expectation
equilibrium46. Quantal response equilibrium predicts systematic under-bidding in AC and AC+X,
which does not appear in the data.47

6 Discussion

In this paper, I proposed a definition of obviously strategy-proof mechanisms. One characterization
theorem states: A strategy is obviously dominant if and only if a cognitively limited agent can
recognize it as weakly dominant. Another characterization theorem states: A choice rule is OSP-
implementable if and only if it can be supported by bilateral commitments. For binary allocation
problems, I characterized the OSP mechanisms and the OSP-implementable allocation rules. I
produced an impossibility result for a classic matching algorithm.

Games can be simple or complex in many ways, and no formal definition can capture all of
them. In particular, since obvious dominance invokes only standard game-theoretic primitives, it
does not capture framing effects. The following game has an obviously dominant strategy: You
may choose any 100-digit string. You will receive $10 if your string consists only of the digit “7”,
and $0 otherwise. This modified game also has an obviously dominant strategy: You may choose

43Stahl and Wilson (1994, 1995); Nagel (1995); Camerer et al. (2004); Crawford and Iriberri (2007a,b).
44Camerer et al. (2004).
45Eyster and Rabin (2005); Esponda (2008).
46Jehiel (2005).
47McKelvey and Palfrey (1995, 1998). See Appendix C for details.
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any 100-digit string. You will receive $10 if your string consists of the first 100 digits of π, and
$0 otherwise. These two games have the same extensive form, so the theory of obvious dominance
cannot distinguish them.

Nonetheless, a formal standard of cognitive simplicity is valuable for several reasons. Firstly,
a formal standard helps us to make simplicity an explicit design goal, by asking, “What is the
optimal simple mechanism for this setting?” Secondly, a formal standard allows us to quantify
trade-offs between simplicity and other design goals. For instance, one justification for using a
complex mechanism is that no simple mechanism performs well for the problem at hand. Thirdly,
a formal standard aids mutual understanding, since our definition of simplicity can be common
knowledge, rather than relying on disparate individual intuitions.

Mechanism design typically assumes that the planner can make binding and credible promises,
even about events that the promisee does not observe. Sometimes the full commitment assumption
is justified, and the literature contains many excellent results for that case. However, sometimes the
full commitment assumption is not justified, and we must make do with only partial commitment
power. By studying OSP-implementation, we discover which standard results in mechanism design
rely sensitively on the assumption of full commitment power, and learn how to design mechanisms
that rely only on bilateral commitments.48

Much remains to be done. There are many classic results for SP-implementation, where OSP-
implementation is an open question. For instance, in combinatorial auctions, the Vickrey-Clarke-
Groves mechanism delivers first-best expected welfare but is not obviously strategy-proof (Vickrey,
1961; Clarke, 1971; Groves, 1973). However, when objects are substitutes, there always exists
an obviously strategy-proof mechanism that delivers at least half of first-best expected welfare
(Feldman et al., 2014).49 A natural open question is: What is the welfare-maximizing obviously
strategy-proof mechanism for combinatorial auctions?
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A Proofs omitted from the main text

A.1 Theorem 1

Proof. First we prove the “if” direction. Fix agent 1 and preferences θ1. Suppose that S1 is not
obviously dominant in G = 〈H,≺, A,A, P, δc, (Ii)i∈N , g〉. We need to demonstrate that there exists
G̃ that is i-indistinguishable from G, such that λG,G̃(S1) is not weakly dominant in G̃ . We proceed
by construction.

Let (S′1, I1, h
sup, Ssup

−1 , d
sup
c , hinf , Sinf

−1, d
inf
c ) be such that I1 ∈ α(S1, S

′
1), hinf ∈ I1, hsup ∈ I1, and

uG1 (hsup, S′1, S
sup
−1 , d

sup
c , θ1) > uG1 (hinf , S1, S

inf
−1, d

inf
c , θ1) (30)

Since G is a game of perfect recall, we can pick (Sinf
−1, d

inf
c ) such that hinf ≺ zG(h∅, S1, S

inf
−1, d

inf
c ),

by specifying that (Sinf
−1, d

inf
c ) plays in a way consistent with hinf at any h ≺ hinf . Likewise for hsup

and (Ssup
−1 , d

sup
c ). Suppose we have so done.

We now define another game G̃ is 1-indistinguishable from G. Intuitively, we construct this as
follows:

1. We add a chance move at the start of the game; chance can play L or R.

2. Agent 1 does not at any history know whether chance played L or R.

3. If chance plays L, then the game proceeds as in G.

4. If chance plays R, then the game proceeds mechanically as though all players in N \ 1 and
chance played according to Ssup

−1 , d
sup
c in G, with one exception:

5. If chance played R, we reach the information set corresponding to I1, and agent 1 plays
S1(I1), then the game henceforth proceeds mechanically as though all players in N \ 1 and
chance played according to Sinf

−1, d
inf
c in G.

Formally, the construction proceeds as such: Ã = A ∪ {L,R}, where A ∩ {L,R} = ∅. There
is a new starting history h̃∅, with two successors σ(h̃∅) = {h̃L, h̃R}, Ã(h̃L) = L, Ã(h̃R) = R,
P̃ (h̃∅) = c. The subtree H̃L ⊂ H̃ starting from h̃L ordered by ≺̃ is the same as the arborescence
(H,≺). (Ã, P̃ , δ̃c, g̃) are defined on H̃L exactly as (A, P, δc, g) are on H. For j 6= 1, Ĩj is defined as
on H.

We now construct the subtree starting from h̃R. Let h∗ be such that h∗ ∈ σ(hsup), h∗ �
zG(hsup, S1, S

sup
−1 , d

sup
c ).

H ′ ≡ {h ∈ H : ∃S′′1 : h � zG(h∅, S
′′
1 , S

sup
−1 , d

sup
c )}}

∩[{h ∈ H : P (h) = 1} ∪ {h ∈ Z}]
\{h ∈ H : h∗ � h}

(31)

In words, these are the histories that can be reached by some S′′1 when facing Ssup
−1 , d

sup
c , where

either agent 1 is called to play or that history is terminal, and such that those histories are not h∗

or its successors.
Let h∗∗ be such that h∗∗ ∈ σ(hinf), h∗∗ � zG(hinf , S1, S

inf
−1, d

inf
c ).
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H ′′ ≡ {h ∈ H : ∃S′′1 : h � zG(h∅, S
′′
1 , S

inf
−1, d

inf
c )}

∩[{h ∈ H : P (h) = 1} ∪ {h ∈ Z}]
∩{h ∈ H : h∗∗ � h}

(32)

In words, these are the histories that can be reached by some S′′1 when facing Sinf
−1, d

inf
c , where

either agent 1 is called to play or that history is terminal, and such that those histories are h∗∗ or
its successors.

We now paste these together. Let H̃R be the rooted subtree ordered by ≺̃, for some bijection
γ : H̃R → H ′ ∪H ′′, such that for all h̃, h̃′ ∈ H̃R, h̃≺̃h̃′ if and only if

1. EITHER: γ(h̃), γ(h̃′) ∈ H ′ and γ(h̃) ≺ γ(h̃′)

2. OR: γ(h̃), γ(h̃′) ∈ H ′′ and γ(h̃) ≺ γ(h̃′)

3. OR: γ(h̃) ≺ h∗ and h∗∗ � γ(h̃′)

The root of this subtree exists and is unique; it corresponds to γ−1(h), where h is the earliest
history preceding zG(h∅, S1, S

sup
−1 , d

sup
c )} where 1 is called to play. Let h̃R be the root of H̃R. This

completes the specification of H̃.
For all h̃ ∈ H̃R, we define:

1. g̃(h̃) = g(γ(h̃)) if h̃ is a terminal history.

2. P̃ (h̃) = 1 if h̃ is not a terminal history.

For all h̃ ∈ H̃R \ h̃R, we define Ã(h̃) = A(h), for the unique (h̃′, h) such that:

1. h̃ ∈ σ(h̃′)

2. h ∈ σ(γ(h̃′))

3. h � γ(h̃)

We now specify the information sets for agent 1. Every h̃ ∈ H̃L corresponds to a unique history
in H. We use γL to denote the bijection from H̃L to H. Let γ̂ be defined as γL on H̃L and γ on
H̃R.

1’s information partition Ĩ1 is defined as such: ∀h̃, h̃′ ∈ H̃ :

∃Ĩ ′1 ∈ Ĩ1 : h̃, h̃′ ∈ Ĩ ′1 (33)

if and only if

∃I ′1 ∈ I1 : γ̂(h̃), γ̂(h̃′) ∈ Ĩ ′1 (34)

All that remains is to define δc; we need only specify that at h̃∅, c plays R with certainty.50

G̃ = 〈H̃, ≺̃, Ã, Ã, P̃ , δ̃c, (Ĩi)i∈N , g̃〉 is 1-indistinguishable from G. Every experience at some
history in H̃L corresponds to some experience in G, and vice versa. Moreover, any experience at
some history in H̃R could also be produced by some history in H̃L.

50If one prefers to avoid δc without full support, an alternative proof puts ε probability on L, for ε close to 0, or
for games with |N | > 2 assigns P̃ (h̃∅) = 2.
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Let λG,G̃ be the appropriate bijection from 1’s information sets and actions in G onto 1’s

information sets and actions in G̃. Take arbitrary S̃−1. Observe that since I1 ∈ α(S1, S
′
1), λG,G̃(S1)

and λG,G̃(S′1) result in the same histories following h̃R, until they reach information set λG,G̃(I1).

Having reached that point, λG,G̃(S1) leads to outcome g(zG(hinf , S1, S
inf
−1, d

inf
c )) and λG,G̃(S′1) leads

to outcome g(zG(hsup, S′1, S
sup
−1 , d

sup
c )). Thus,

Eδ̃c [u
G̃
1 (h̃∅, λG,G̃(S′1), S̃−1, d̃c, θ1)]

= uG1 (hsup, S′1, S
sup
−1 , d

sup
c , θ1)

> uG1 (hinf , S1, S
inf
−1, d

inf
c , θ1)

= Eδ̃c [u
G̃
1 (h̃∅, λG,G̃(S1), S̃−1, d̃c, θ1)]

(35)

So λG,G̃(S1) is not weakly dominant in G̃.

We now prove the “only if” direction. Take arbitrary G̃. Suppose λG,G̃(S1) ≡ S̃1 is not weakly

dominant in G̃. We want to show that S1 is not obviously dominant in G.
There exist θ1, S̃′1 and S̃′−1 such that:

Eδ̃c [u
G̃
1 (h̃∅, S̃

′
1, S̃
′
−1, d̃c, θ1)] > Eδ̃c [u

G̃
1 (h̃∅, S̃1, S̃

′
−1, d̃c, θ1)] (36)

This inequality must hold for some realization of the chance function, so there exists d̃c such
that:

uG̃1 (h̃∅, S̃
′
1, S̃
′
−1, d̃c, θ1) > uG̃1 (h̃∅, S̃1, S̃

′
−1, d̃c, θ1) (37)

Fix (S̃′1, S̃
′
−1, d̃c, θ1).

zG̃(h̃∅, S̃
′
1, S̃
′
−1, d̃c) 6= zG̃(h̃∅, S̃1, S̃

′
−1, d̃c) (38)

Define:

H̃∗ ≡ {h̃ ∈ H̃ : h̃ ≺ zG̃(h̃∅, S̃
′
1, S̃
′
−1, d̃c) and h̃ ≺ zG̃(h̃∅, S̃1, S̃

′
−1, d̃c)} (39)

h̃∗ ≡ h̃ ∈ H̃∗ : ∀h̃′ ∈ H̃∗ : h̃′ � h̃ (40)

Since the opponent strategies and chance moves are held constant across both sides of Equation
38, P (h̃∗) = 1 and h̃∗ ∈ Ĩ1, where S̃1(Ĩ1) 6= S̃′1(Ĩ1). Moreover, Ĩ1 ∈ α(S̃1, S̃

′
1) and λG̃,G(Ĩ1) ∈

α(S1, S
′
1), where we denote S′1 ≡ λG̃,G(S̃′1).

Since G and G̃ are 1-indistinguishable, consider the experiences λG̃,G(ψ1(zG̃(h̃∅, S̃1, S̃
′
−1, d̃c)))

and λG̃,G(ψ1(zG̃(h̃∅, S̃
′
1, S̃
′
−1, d̃c))).

InG, λG̃,G(ψ1(zG̃(h̃∅, S̃1, S̃
′
−1, d̃c))) could lead to outcome g̃(zG̃(h̃∅, S̃1, S̃

′
−1, d̃c)). We use (Sinf

−1, d
inf
c )

to denote the corresponding opponent strategies and chance realizations that lead to that outcome.
We denote hinf ≡ h ∈ λG̃,G(Ĩ1) : h ≺ zG(h∅, S1, S

inf
−1, d

inf
c ) .

InG, λG̃,G(ψ1(zG̃(h̃∅, S̃
′
1, S̃
′
−1, d̃c))) could lead to outcome g̃(zG̃(h̃∅, S̃

′
1, S̃
′
−1, d̃c)). We use (Ssup

−1 , d
sup
c )

to denote the corresponding opponent strategies and chance realizations that lead to that outcome.
We denote hsup ≡ h ∈ λG̃,G(Ĩ1) : h ≺ zG(h∅, S

′
1, S

sup
−1 , d

sup
c ) .
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uG1 (hsup, S′1, S
sup
−1 , d

sup
c , θ1)

= uG̃1 (h̃∅, S̃
′
1, S̃
′
−1, d̃c, θ1)

> uG̃1 (h̃∅, S̃1, S̃
′
−1, d̃c, θ1)

= uG1 (hinf , S1, S
inf
−1, d

inf
c , θ1)

(41)

where hsup, hinf ∈ λG̃,G(Ĩ1) and λG̃,G(Ĩ1) ∈ α(S1, S
′
1). Thus S1 is not obviously dominant in G.

A.2 Theorem 2

Proof. The key is to see that, for every G ∈ G, there is a corresponding S̃∆
0 , and vice versa. We

use S̄0 to denote the support of S̃∆
0 . In particular, observe the following isomorphism:

Table 4: Equivalence between extensive game forms and Planner mixed strategies
G S̃∆

0

dc S̃0 ∈ S̄0

δc the probability measure specified by S̃∆
0

g(z) for z ∈ Z the Planner’s choice of outcome when she ends the game

Ii ((mk, Rk, rk)
t−1
k=1,mt, Rt) consistent with some S̃0 ∈ S̄0

A(Ii) Rt
ψi(z) oci consistent with some S̃0 ∈ S̄0 and S̃N

Information sets inG are equivalent to sequences of past communication ((mk, Rk, rk)
t−1
k=1,mt, Rt)

under S̃∆
0 . Available actions at some information set A(Ii) are equivalent to acceptable responses

Rt. Thus, for any strategy in some game G, we can construct an equivalent strategy given appro-
priate S̃∆

0 , and vice versa.
Furthermore, fixing a chance realization dc and agent strategies SN uniquely results in some

outcome. Similarly, fixing a realization of the planner’s mixed strategy S̃0 ∈ S̄0 and agent strategies
S̃N uniquely determines some outcome. Consequently, for any G ∈ G, there exists S̃∆

0 with the same
strategies available for each agent and the same resulting (probability measure over) outcomes, and
vice versa.51 Table 4 summarizes.

The next step is to see that a bilateral commitment Ŝi0 is equivalent to the Planner promising
to ‘run’ only games in some equivalence class that is i-indistinguishable.

Suppose that there is someG that OSP-implements f . Pick some equivalent S̃∆
0 with support S̄0.

For each i ∈ N , specify the bilateral commitment Ŝi0 ≡ Φ−1
i (Φi(S̄0)). These bilateral commitments

support f .
To see this, take any S̃∆′

0 ∈ ∆Ŝi0, with support S̄′0. For any S̃′0 ∈ S̄′0, for any S̃′N , there exists
S̃0 ∈ S̄0 and S̃N such that φi(S̃

′
0, S̃
′
N ) = φi(S̃0, S̃N ). By construction, G is such that: There exists

z ∈ Z where ψi(z) and g(z) are equivalent to φi(S̃0, S̃N ). Thus, for G′ that is equivalent to S̃∆′
0 ,

every terminal history in G′ results in the same experience for i and the same outcome as some
terminal history in G. Consequently, G and G′ are i-indistinguishable. Thus, by Theorem 1, the
strategy assigned to agent i with type θi is weakly dominant in G′, which implies that it is a best

51Implicitly, this relies on the requirement that both G and S̃∆
0 have finite length. If one had finite length but the

other could be infinitely long, the resulting outcome would not be well defined and the equivalence would not hold.
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response to S̃∆′
0 and any S̃N in the bilateral commitment game. Thus, if f is OSP-implementable,

then f can be supported by bilateral commitments.
Suppose that f can be supported by bilateral commitments (Ŝi0)i∈N , with requisite S̃∆

0 (with
support S̄0) and (S̃θN )θ∈Θ. Without loss of generality, let us suppose these are ‘minimal’ bilateral

commitments, i.e. Ŝi0 = Φ−1
i (Φi(S̄0)). Pick G that is equivalent to S̃∆

0 . G OSP-implements f .
To see this, consider any G′ such that G and G′ are i-indistinguishable. Let S̃∆′

0 denote the
Planner strategy that corresponds to G′. At any terminal history z′ in G′, the resulting experience
ψi(z

′) and outcome g′(z′) are equivalent to the experience ψi(z) and outcome g(z) for some terminal
history z in G. These in turn correspond to some observation oi ∈ Φi(S̄0). Thus S̃∆′

0 ∈ ∆Ŝi0. Since
f is supported by (Ŝj0)j∈N , S̃θii is a best response (for type θi) to S̃∆′

0 and any S̃N\i. Thus, the equiv-

alent strategy Sθii is weakly dominant in G′. Since this argument holds for all i-indistinguishable

G′, by Theorem 1, Sθii is obviously dominant in G. Thus, if f can be supported by bilateral
commitments, then f is OSP-implementable.

A.3 Proposition 2

Proof. We prove the contrapositive. Suppose (G̃, (S̃θ)θ∈Θ) does not OSP-implement f . Then there
exists some (i, θi, S̃

θi
i , S̃

′
i, Ĩi) such that Ĩi ∈ α(S̃θii , S̃

′
i) and

uG̃i (h̃, S̃θii , S̃−i, d̃c, θi, ) < uG̃i (h̃′, S̃′i, S̃
′
−i, d̃

′
c, θi, ) (42)

for some (h̃, S̃−i, d̃c) and (h̃′, S̃′−i, d̃
′
c).

Notice that h̃ and h̃′ correspond to histories h and h′ in G. Moreover, we can define S′i = S̃′i
at information sets containing histories that are shared by G and G̃, and specify S′i arbitrarily
elsewhere. We do the same for (S̃−i, d̃c) and (S̃′−i, d̃

′
c), to construct (S−i, dc) and (S−i, dc). But,

starting from h and h′ respectively, these result in the same outcomes as their partners in G̃. Thus,

uGi (h, Sθii , S−i, dc, θi, ) < uGi (h′, S′i, S
′
−i, d

′
c, θi, ) (43)

h, h′ ∈ Ii, for Ii ∈ α(Sθii , S
′
i). Thus (G, (Sθ)θ∈Θ) does not OSP-implement f .

A.4 Theorem 3

Proof. Take any (G, (Sθ)θ∈Θ) that implements (fy, ft). For any history h, we define

Θh ≡ {θ ∈ Θ : h � zG(h∅, S
θ)} (44)

Θh,i ≡ {θi : ∃θ−i : (θi, θ−i) ∈ Θh} (45)

For information set Ii, we define

ΘIi ≡ ∪h∈IiΘh (46)

ΘIi,i ≡ {θi : ∃θ−i : (θi, θ−i) ∈ ΘIi} (47)

Θ1
Ii,i ≡ {θi : ∃θ−i : (θi, θ−i) ∈ ΘIi and i ∈ fy(θi, θ−i)} (48)
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Θ0
Ii,i ≡ {θi : ∃θ−i : (θi, θ−i) ∈ ΘIi and i /∈ fy(θi, θ−i)} (49)

Some observations about this construction:

1. Since player i’s strategy depends only on his own type, ΘIi,i = Θh,i for all h ∈ Ii.

2. ΘIi,i = Θ1
Ii,i
∪Θ0

Ii,i

3. Since SP requires 1i∈fy(θ) weakly increasing in θi, Θ1
Ii,i

dominates Θ0
Ii,i

in the strong set order.

Lemma 1. Suppose (G, (Sθ)θ∈Θ) OSP-implements (fy, ft), where G ≡ 〈H,≺, A,A, P, δc, (Ii)i∈N , g〉.
For all i, for all Ii ∈ Ii, if:

1. θi < θ′i

2. θi ∈ Θ1
Ii,i

3. θ′i ∈ Θ0
Ii,i

then Sθii (Ii) = S
θ′i
i (Ii).

Equivalently, for any Ii, there exists a∗Ii such that for all θi ∈ Θ1
Ii,i
∩Θ0

Ii,i
, Sθii (Ii) = a∗Ii.

Suppose not. Take (i, Ii, θi, θ
′
i) constituting a counterexample to Lemma 1. Since θi ∈ Θ1

Ii,i
,

there exists h ∈ Ii and S−i such that i ∈ gy(zG(h, Sθii , S−i)). Fix ti ≡ gt,i(zG(h, Sθii , S−i)). Since θ′i ∈
Θ0
Ii,i

, there exists h′ ∈ Ii and S′−i such that i /∈ gy(zG(h′, S
θ′i
i , S

′
−i)). Fix t′i ≡ gt,i(z

G(h′, S
θ′i
i , S

′
−i)).

Since Sθii (Ii) 6= S
θ′i
i (Ii) and θi ∪ θ′i ⊆ ΘIi,i, Ii ∈ α(Sθii , S

θ′i
i ). Thus, OSP requires that

ui(θi, h, S
θi
i , S−i) ≥ ui(θi, h

′, S
θ′i
i , S

′
−i) (50)

which implies

θi + ti ≥ t′i (51)

and

ui(θ
′
i, h, S

θi
i , S−i) ≤ ui(θ

′
i, h
′, S

θ′i
i , S

′
−i) (52)

which implies

θ′i + ti ≤ t′i (53)

But θ′i > θi, so

θ′i + ti > t′i (54)

a contradiction. This proves Lemma 1.

Lemma 2. Suppose (G, (Sθ)θ∈Θ) OSP-implements (fy, ft) and P(G, (Sθ)θ∈Θ) = G. Take any Ii
such that Θ1

Ii,i
∩Θ0

Ii,i
6= ∅, and associated a∗Ii.

1. If there exists θi ∈ Θ0
Ii,i

such that Sθii (Ii) 6= a∗Ii, then there exists t0i such that:
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(a) For all θi ∈ Θ0
Ii,i

such that Sθii (Ii) 6= a∗Ii, for all h ∈ Ii, for all S−i, gt,i(z
G(h, Sθii , S−i)) =

t0i .

(b) For all θi ∈ ΘIi,i such that Sθii (Ii) = a∗Ii, for all h ∈ Ii, for all S−i, if i /∈ gy(zG(h, Sθii , S−i)),

then gt,i(z
G(h, Sθii , S−i)) = t0i .

2. If there exists θi ∈ Θ1
Ii,i

such that Sθii (Ii) 6= a∗Ii, then there exists t1i such that:

(a) For all θi ∈ Θ1
Ii,i

such that Sθii (Ii) 6= a∗Ii, for all h ∈ Ii, for all S−i, gt,i(z
G(h, Sθii , S−i)) =

t1i .

(b) For all θi ∈ ΘIi,i such that Sθii (Ii) = a∗Ii, for all h ∈ Ii, for all S−i, if i ∈ gy(zG(h, Sθii , S−i)),

then gt,i(z
G(h, Sθii , S−i)) = t1i .

Take any type θ′i ∈ Θ0
Ii,i

such that S
θ′i
i (Ii) 6= a∗Ii . Take any type θ′′i ∈ Θ0

Ii,i
such that S

θ′′i
i (Ii) = a∗Ii .

(By Θ1
Ii,i
∩Θ0

Ii,i
6= ∅ there exists at least one such type.) Notice that Ii ∈ α(S

θ′i
i , S

θ′′i
i ).

By Lemma 1, θ′i /∈ Θ1
Ii,i

, and the game is pruned. Thus,

∀h ∈ Ii : ∀S−i : i /∈ gy(zG(h, S
θ′i
i , S−i)) (55)

Since θ′′i ∈ Θ0
Ii,i

,

∃h ∈ Ii : ∃S−i : i /∈ gy(zG(h, S
θ′′i
i , S−i)) (56)

OSP requires that type θ′i does not want to (inf-sup) deviate. Thus,

inf
h∈Ii,S−i

gt,i(z
G(h, S

θ′i
i , S−i)) ≥

sup
h∈Ii,S−i

{gt,i(zG(h, S
θ′′i
i , S−i)) : i /∈ gy(zG(h, S

θ′′i
i , S−i))}

(57)

OSP also requires that type θ′′i does not want to (inf-sup) deviate. This implies

inf
h∈Ii,S−i

{gt,i(zG(h, S
θ′′i
i , S−i)) : i /∈ gy(zG(h, S

θ′′i
i , S−i))}

≥ sup
h∈Ii,S−i

gt,i(z
G(h, S

θ′i
i , S−i))

(58)

The RHS of Equation 57 is weakly greater than the LHS of Equation 58. The RHS of Equation
58 is weakly greater than the LHS of Equation 57. Consequently all four terms are equal. Moreover,

this argument applies to every θ′i ∈ Θ0
Ii,i

such that S
θ′i
i (Ii) 6= a∗Ii , and every θ′′i ∈ Θ0

Ii,i
such that

S
θ′′i
i (Ii) = a∗Ii . Since the game is pruned, θ′′i satisfies (1b) iff θ′′i ∈ Θ0

Ii,i
and S

θ′′i
i (Ii) = a∗Ii . This

proves part 1 of Lemma 2. Part 2 follows by symmetry; we omit the details since they involve only
small changes to the above argument.

Lemma 3. Suppose (G, (Sθ)θ∈Θ) OSP-implements (fy, ft) and P(G, (Sθ)θ∈Θ) = G. Take any Ii
such that Θ1

Ii,i
∩Θ0

Ii,i
6= ∅, and associated a∗Ii. Let t1i and t0i be defined as before.

1. If there exists θi ∈ Θ0
Ii,i

such that Sθii (Ii) 6= a∗Ii, then for all (h ∈ Ii, Si, S−i), if i ∈
gy(z

G(h, Si S−i)), then gt,i(z
G(h, Si, S−i)) ≤ t0i − sup{θi ∈ Θ0

Ii,i
: Sθii (Ii) 6= a∗Ii}.
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2. If there exists θi ∈ Θ1
Ii,i

such that Sθii (Ii) 6= a∗Ii, then for all (h ∈ Ii, Si, S−i), if i /∈
gy(z

G(h, Si S−i)), then gt,i(z
G(h, Si, S−i)) ≤ inf{θi ∈ Θ1

Ii,i
: Sθii (Ii) 6= a∗Ii}+ t1i .

Suppose that part 1 of Lemma 3 does not hold. Fix (h ∈ Ii, Si, S−i) such that i ∈ gy(zG(h, Si S−i))

and gt,i(z
G(h, Si, S−i)) > t0i − sup{θi ∈ Θ0

Ii,i
: Sθii (Ii) 6= a∗Ii}. Since G is pruned, we can find some

θ′i ∈ ΘIi,i such that for every Ĩi ∈ {I ′i ∈ Ii : Ii ∈ ψ(I ′i)}, S
θ′i
i (Ĩi) = Si(Ĩi). Fix that θ′i.

Fix θ′′i ∈ Θ0
Ii,i

such that Sθii (Ii) 6= a∗Ii and θ′′i ≥ sup{θi ∈ Θ0
Ii,i

: Sθii (Ii) 6= a∗Ii} − ε. Since G is

pruned and θ′′i /∈ Θ1
Ii,i

(by Lemma 1), it must be that S
θ′′i
i (Ii) 6= S

θ′i
i (Ii).

By construction, Ii ∈ α(S
θ′i
i , S

θ′′i
i ).

OSP requires that, for all h′′ ∈ Ii, S′′−i:

ui(θ
′′
i , h
′′, S

θ′′i
i , S

′′
−i) ≥ ui(θ′′i , h, S

θ′i
i , S−i) (59)

which entails

t0i ≥ θ′′i + gt,i(z
G(h, Si, S−i)) (60)

which entails

t0i − sup{θi ∈ Θ0
Ii,i : Sθii (Ii) 6= a∗Ii}+ ε ≥ gt,i(zG(h, Si, S−i)) (61)

But, by hypothesis,

t0i − sup{θi ∈ Θ0
Ii,i : Sθii (Ii) 6= a∗Ii} < gt,i(z

G(h, Si, S−i)) (62)

Since this argument holds for all ε > 0, we can pick ε small enough to create a contradiction.
This proves part 1 of Lemma 3. Part 2 follows by symmetry.

Lemma 4. Suppose (G, (Sθ)θ∈Θ) OSP-implements (fy, ft) and P(G, (Sθ)θ∈Θ) = G. Take any Ii
such that |Θ1

Ii,i
∩Θ0

Ii,i
| > 1 and associated a∗Ii.

1. If there exists θi ∈ Θ0
Ii,i

such that Sθii (Ii) 6= a∗Ii, then for all θ′i ∈ Θ1
Ii,i

, S
θ′i
i (Ii) = a∗Ii.

2. (Equivalently) If there exists θi ∈ Θ1
Ii,i

such that Sθii (Ii) 6= a∗Ii, then for all θ′i ∈ Θ0
Ii,i

, S
θ′i
i (Ii) =

a∗Ii.

Suppose Part 1 of Lemma 4 does not hold. Fix Ii, and choose θ′i < θ′′i such that {θ′i} ∪ {θ′′i } ⊆
Θ1
Ii,i
∩Θ0

Ii,i
. Fix θ′′′i ∈ Θ1

Ii,i
such that S

θ′′′i
i (Ii) 6= a∗Ii . By Lemma 1, if θ′′′i ∈ Θ0

Ii,i
, then S

θ′′′i
i (Ii) = a∗Ii ,

a contradiction. Thus, θ′′′i ∈ Θ1
Ii,i
\ Θ0

Ii,i
, and since Θ1

Ii,i
dominates Θ0

Ii,i
in the strong set order,

θ′′i < θ′′′i .

Since θ′i ∈ Θ1
Ii,i

, there exists h′ ∈ Ii and θ′−i such that (θ′i, θ
′
−i) ∈ ΘIi and i ∈ gy(zG(h′, S

θ′i
i , S

θ′−i
−i )).

By Lemma 2, there exists ai ∈ Ai(Ii) such that ai 6= a∗Ii and choosing ai ensures i /∈ y and ti = t0i .
Thus, by G SP

θ′i + gt,i(z
G(h′, S

θ′i
i , S

θ′−i
−i )) ≥ t0i (63)

By θ′′i ∈ Θ0
Ii,i

, there exists h′′ ∈ Ii and θ′′−i such that i /∈ gy(zG(h′′, S
θ′′i
i , S

θ′′−i
−i )). By Lemma 2

gt,i(z
G(h′′, S

θ′′i
i , S

θ′′−i
−i )) = t0i (64)
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By G SP, i ∈ gy(zG(h′, S
θ′′′i
i , S

θ′−i
−i )) and gt,i(z

G(h′, S
θ′′′i
i , S

θ′−i
−i )) = gt,i(z

G(h′, S
θ′i
i , S

θ′−i
−i )).

Notice that Ii ∈ α(S
θ′′i
i , S

θ′′′i
i ). Thus, OSP requires that θ′′i does not want to (inf-sup) deviate to

θ′′′i ’s strategy, which entails:

gt,i(z
G(h′′, S

θ′′i
i , S

θ′′−i
−i )) ≥ θ′′i + gt,i(z

G(h′, S
θ′′′i
i , S

θ′−i
−i )) (65)

t0i ≥ θ′′i + gt,i(z
G(h′, S

θ′′′i
i , S

θ′−i
−i ))

> θ′i + gt,i(z
G(h′, S

θ′i
i , S

θ′−i
−i ))

(66)

which contradicts Equation 63.
Part 2 is the contrapositive of Part 1. This proves Lemma 4.

Lemma 5. Suppose (G, (Sθ)θ∈Θ) OSP-implements (fy, ft) and P(G, (Sθ)θ∈Θ) = G.
For all Ii, if |Θ1

Ii,i
∩Θ0

Ii,i
| ≤ 1 and |A(Ii)| ≥ 2, then there exists t1i and t0i such that:

1. For all θi ∈ ΘIi,i, h ∈ Ii, S−i:

(a) If i /∈ gy(zG(h, Sθii , S−i)) then gt,i(z
G(h, Sθii , S−i)) = t0i

(b) If i ∈ gy(zG(h, Sθii , S−i)) then gt,i(z
G(h, Sθii , S−i)) = t1i

2. If |Θ1
Ii,i
| > 0 and |Θ0

Ii,i
| > 0, then t1i = − inf{θi ∈ Θ1

Ii,i
}+ t0i

By G pruned, ΘIi,i 6= ∅.
Consider the case where Θ1

Ii,i
= ∅. Pick some θ′i ∈ Θ0

Ii,i
and some h′ ∈ Ii, S

′
−i. Fix t0i ≡

gt,i(z
G(h′, S

θ′i
i , S

′
−i)). Suppose there exists some (θ′′i , θ

′′
−i) ∈ ΘIi such that ft,i(θ

′′
i , θ
′′
−i) = t0i

′′ 6= t0i .

Pick h′′ ∈ Ii such that h′′ � zG(∅, Sθ
′′
i
i , S

θ′′−i
−i ). By Equation 12, for all θi ∈ ΘIi,i, ft,i(θi, θ

′′
−i) = t0i

′′
.

By G pruned and |A(Ii)| ≥ 2, we can pick θ′′′i ∈ Θ0
Ii,i

such that S
θ′′′i
i (Ii) 6= S

θ′i
i (Ii). Notice that

Ii ∈ α(S
θ′′′i
i , S

θ′i
i ). If t0i

′′
> t0i , then

ui(θ
′
i, h
′, S

θ′i
i , S

′
−i) = t0i < t0i

′′
= ui(θ

′
i, h
′′, S

θ′′′i
i , S

θ′′−i
−i ) (67)

so S
θ′i
i is not obviously dominant for (i, θ′i). If t0i

′′
< t0i , then

ui(θ
′′′
i , h

′, S
θ′i
i , S

′
−i) = t0i > t0i

′′
= ui(θ

′′′
i , h

′′, S
θ′′′i
i , S

θ′′−i
−i ) (68)

so S
θ′′′i
i is not obviously dominant for (i, θ′′′i ). By contradiction, this proves Lemma 5 for this

case. A symmetric argument proves Lemma 5 for the case where Θ0
Ii,i

= ∅.
Note that, if Lemma 5 holds at some information set Ii, it holds at all information sets I ′i that

follow Ii. Thus, we need only consider some earliest information set I∗i at which |Θ1
I∗i ,i
∩Θ0

I∗i ,i
| ≤ 1

and |A(I∗i )| ≥ 2.
Now we consider the case where Θ1

I∗i ,i
6= ∅ and Θ0

I∗i ,i
6= ∅.

At every prior information set Ii prior to I∗i , |Θ1
Ii,i
∩Θ0

Ii,i
| > 1. Since Θ1

I∗i ,i
6= ∅ and Θ0

I∗i ,i
6= ∅,

by Lemma 4, I∗i is reached by some interval of types all taking the same action. Thus sup{θi ∈
Θ0
I∗i ,i
} = inf{θi ∈ Θ1

I∗i ,i
}.
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Fix θ̂i ∈ Θ0
I∗i ,i

such that θ̂i ≥ sup{θi ∈ Θ0
I∗i ,i
}− ε. Choose corresponding ĥ ∈ I∗i and θ̂−i ∈ ΘI∗i ,−i

such that i /∈ gy(zG(ĥ, S θ̂ii , S
θ̂−i
−i )). Define t0i ≡ gt,i(zG(ĥ, S θ̂ii , S

θ̂−i
−i )).

Fix θ̌i ∈ Θ1
I∗i ,i

such that θ̌i ≤ inf{θi ∈ Θ1
I∗i ,i
}+ ε. Choose corresponding ȟ ∈ I∗i and θ̌−i ∈ ΘI∗i ,−i

such that i ∈ gy(zG(ȟ, S θ̌ii , S
θ̌−i
−i )). Define t1i ≡ gt,i(zG(ȟ, S θ̌ii , S

θ̌−i
−i )).

Suppose there exists some (θ′i, θ
′
−i) ∈ ΘI∗i

such that i /∈ fy(θ′i, θ′−i) and ft,i(θ
′
i, θ
′
−i) = t0i

′ 6= t0i .
Since sup{θi ∈ Θ0

I∗i ,i
} = inf{θi ∈ Θ1

I∗i ,i
}, it follows that for all θ−i ∈ ΘI∗i ,−i, inf{θi : i ∈ fy(θi, θ−i)} =

inf{θi ∈ Θ1
I∗i ,i
}. Thus, by Equation 12, for all θi ∈ ΘI∗i ,i

: ft,i(θi, θ
′
−i) = −1i∈fy(θi,θ′−i)

inf{θi ∈

Θ1
I∗i ,i
}+ t0i

′
. Fix h′ ∈ I∗i such that h′ � zG(∅, Sθ

′
i
i , S

θ′−i
−i ).

By A(Ii) ≥ 2, we can pick some θ′′i ∈ ΘI∗i ,i
such that S

θ′′i
i (Ii) 6= S θ̂ii (Ii). Notice that I∗i ∈

α(S
θ′′i
i , S

θ̂i
i ). Either θ′′i ∈ Θ0

I∗i
or θ′′i ∈ Θ1

I∗i
\Θ0

I∗i
. Suppose θ′′i ∈ Θ0

I∗i
. Suppose t0i

′
> t0i . By OSP,

ui(θ̂i, ĥ, S
θ̂i
i , S

θ̂−i
−i ) ≥ ui(θ̂i, h′, S

θ′′i
i , S

θ′−i
−i ) (69)

which entails

t0i ≥ t0i
′
+ 1i∈fy(θ′′i ,θ

′
−i)

(θ̂i − inf{θi ∈ Θ1
I∗i ,i
})

≥ t0i
′
+ 1i∈fy(θ′′i ,θ

′
−i)

(−ε)

≥ t0i
′ − ε

(70)

and we can pick ε small enough to constitute a contradiction. Suppose t0i
′
< t0i . By OSP

ui(θ
′′
i , ĥ, S

θ̂i
i , S

θ̂−i
−i ) ≤ ui(θ′′i , h′, S

θ′′i
i , S

θ′−i
−i ) (71)

which entails

t0i ≤ t0i
′
+ 1i∈fy(θ′′i ,θ

′
−i)

(θ′′i − inf{θi ∈ Θ1
I∗i ,i
})

= t0i
′
+ 1i∈fy(θ′′i ,θ

′
−i)

(θ′′i − sup{θi ∈ Θ0
I∗i ,i
}) ≤ t0i

′ (72)

which is a contradiction.
The case that remains is θ′′i ∈ Θ1

I∗i
\ Θ0

I∗i
. Then i ∈ fy(θ′′i , θ′−i) and ft,i(θ

′′
i , θ
′
−i) = − inf{θi ∈

Θ1
I∗i ,i
}+ t0i

′
. Suppose t0i

′
> t0i . OSP requires:

ui(θ̂i, ĥ, S
θ̂i
i , S

θ̂−i
−i ) ≥ ui(θ̂i, h′, S

θ′′i
i , S

θ′−i
−i ) (73)

which entails

t0i ≥ θ̂i − inf{θi ∈ Θ1
I∗i ,i
}+ t0i

′

≥ t0i
′ − ε

(74)

and we can pick ε small enough to constitute a contradiction.

Suppose t0i
′
< t0i . Since S

θ′′i
i (Ii) 6= S θ̂ii (Ii), either S θ̌ii (Ii) 6= S θ̂ii (Ii) or S θ̌ii (Ii) 6= S

θ′′i
i (Ii). More-

over, ft,i(θ̌i, θ
′
i) = −1i∈fy(θ̌i,θ′−i)

inf{θi ∈ Θ1
I∗i ,i
}+ t0i

′
.
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Suppose S θ̌ii (Ii) 6= S θ̂ii (Ii). OSP requires:

ui(θ̌i, h
′, S θ̌ii , S

θ′−i
−i ) ≥ ui(θ̌i, ĥ, S θ̂ii , S

θ̂−i
−i ) (75)

which entails

1i∈fy(θ̌i,θ′−i)
(θ̌i − inf{θi ∈ Θ1

I∗i ,i
}) + t0i

′ ≥ t0i (76)

which entails

1i∈fy(θ̌i,θ′−i)
ε+ t0i

′ ≥ t0i (77)

and we can pick ε small enough to yield a contradiction. Suppose S θ̌ii (Ii) 6= S
θ′′i
i (Ii). By Equation

12, ft,i(θ̌i, θ
′
−i) = −1i∈fy(θ̌i,θ′−i)

inf{θi ∈ Θ1
I∗i ,i
}+ t0i

′
, and ft,i(θ

′′
i , θ̂−i) = − inf{θi ∈ Θ1

I∗i ,i
}+ t0i . OSP

requires

ui(θ̌i, h
′, S θ̌ii , S

θ′−i
−i ) ≥ ui(θ̌i, ĥ, S

θ′′i
i , S

θ̂−i
−i ) (78)

which entails

1i∈fy(θ̌i,θ′−i)
(θ̌i − inf{θi ∈ Θ1

I∗i ,i
}) + t0i

′ ≥ (θ̌i − inf{θi ∈ Θ1
I∗i ,i
}) + t0i (79)

which entails

1i∈fy(θ̌i,θ′−i)
ε+ t0i

′ ≥ ε+ t0i (80)

which entails

t0i
′ ≥ t0i (81)

a contradiction. By the above argument, for all Ii satisfying the assumptions of Lemma 5, there
is a unique transfer t0i for all terminal histories z passing through Ii such that i /∈ gy(z). Equation
12 thus implies that there is a unique transfer t1i for all terminal histories z passing through Ii such
that i ∈ gy(z). Moreover, t1i = − inf{θi ∈ Θ1

Ii,i
}+ t0i . This proves Lemma 5.

Now to bring this all together. We leave showing parts (1.c.iv) and (2.c.iv) of Definition 18
to the last. Take any (G, (Sθ)θ∈Θ) that OSP-implements (fy, ft). Define G̃ ≡ P(G, (Sθ)θ∈Θ) and
(S̃θ)θ∈Θ as (Sθ)θ∈Θ restricted to G̃. By Proposition 2, (G̃, (S̃θ)θ∈Θ) OSP-implements (fy, ft).

We now characterize (G̃, (S̃θ)θ∈Θ). For any player i, consider any information set I∗i such that
|A(I∗i )| ≥ 2, and for all prior information sets I ′i ≺ I∗i , |A(I ′i)| = 1. By Lemma 1, there is a unique
action a∗I∗i

taken by all types in Θ1
I∗i ,i
∩Θ0

I∗i ,i
.

Either |Θ1
I∗i ,i
∩Θ0

I∗i ,i
| > 1 or |Θ1

I∗i ,i
∩Θ0

I∗i ,i
| ≤ 1.

If |Θ1
I∗i ,i
∩Θ0

I∗i ,i
| > 1, then by Lemma 4, G̃ pruned and |A(Ii)| ≥ 2,

1. EITHER: There exists θi ∈ Θ0
I∗i ,i

such that Sθii (I∗i ) 6= a∗I∗i
, and for all θ′i ∈ Θ1

I∗i ,i
, S

θ′i
i (I∗i ) = a∗I∗i

.

2. OR: There exists θi ∈ Θ1
I∗i ,i

such that Sθii (I∗i ) 6= a∗I∗i
, and for all θ′i ∈ Θ0

I∗i ,i
, S

θ′i
i (I∗i ) = a∗I∗i

.
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In the first case, then by Lemma 2, there is some t0i such that, for all (Si, S−i), for all h ∈ Ii, if
i /∈ gy(zG(h, Si, S−i), then gt,i(z

G(h, Si, S−i) = t0i . Moreover, we can define a ‘going transfer’ at all
information sets I ′i such that I∗i � I ′i:

t̃1i (I
′
i) ≡ min

I′′i :I∗i �I′′i �I′i
[t0i − sup{θi ∈ Θ0

I′′i ,i
: Sθii (I ′′i ) 6= a∗I′′i

}] (82)

Notice that this function falls monotonically as we move along the game tree; for any I ′i, I
′′
i such

that I ′i � I ′′i , t̃1i (I
′
i) ≥ t̃1i (I ′′i ). Moreover, by construction, at any I ′i, I

′′
i such that I ′′i is the immediate

successor of I ′i in i’s experience, if t̃1i (I
′
i) > t̃1i (I

′′
i ), then there exists a ∈ A(I ′′i ) that yields i /∈ y,

and by Lemma 2 this yields transfer t0i . We define A0 to include all such quitting actions; i.e. A0

is the set of all actions such that:

1. a ∈ Ii for some Ii ∈ Ii

2. For all z such that a ∈ ψi(z): i /∈ gy(z) and gt,i(z) = t0i

Lemma 3 and SP together imply that, at any terminal history z, if i ∈ gy(z), then

gt,i(z) = inf
Ii:I∗i �Ii≺z

t̃1i (Ii) (83)

This holds because, if gt,i(z) < infIi:I∗i �Ii≺z t̃
1
i (Ii), then type θi such that t0i−infIi:I∗i �Ii≺z t̃

1
i (Ii)) <

θi < t0i − gt,i(z) could profitably deviate to play a ∈ A0 at information set I∗i .
In the second case, then by Lemma 2, there is some t1i such that, for all (Si, S−i), for all h ∈ I∗i ,

if i ∈ gy(zG(h, Si, S−i), then gt,i(z
G(h, Si, S−i) = t1i . Moreover, we can define a ‘going transfer’ at

all information sets I ′i such that I∗i � I ′i):

t̃0i (I
′
i) ≡ min

I′′i :I∗i �I′′i �I′i
[t1i + inf{θi ∈ Θ0

I′′i ,i
: Sθii (I ′′i ) 6= a∗I′′i

}] (84)

Once more,

1. This function falls monotonically as we move along the game tree.

2. At any I ′i, I
′′
i such that I ′′i is the immediate successor of I ′i in i’s experience, if t̃0i (I

′
i) > t̃0i (I

′′
i ),

then there exists a ∈ A(I ′′i ) that yields i ∈ y, and transfer t1i .

3. For any z, if i /∈ gy(z), then
gt,i(z) = inf

Ii:I∗i �Ii≺z
t̃0i (Ii) (85)

We define A1 symmetrically for this second case.
Part (1.c.iii) and (2.c.iii) of Definition 18 follow from Lemma 5. The above constructions suffice

to prove Theorem 3 for cases where |Θ1
I∗i ,i
∩ Θ0

I∗i ,i
| > 1. Cases where |Θ1

I∗i ,i
∩ Θ0

I∗i ,i
| ≤ 1 are dealt

with by Lemma 5.
Now for the last piece: We prove that parts (1.c.iv) and (2.c.iv) of Definition 18 hold. The proof

of part (1.c.iv) is as follows: Suppose we are facing the “either” clause of Definition 18, and for
some Ii, |A(I ′i) \ A0| > 1. By part (1.c.iii), we know that the going transfer t̃1i can fall no further.
Since G̃ is pruned and |A(I ′i) \ A0| > 1, there exist two distinct types of i, θi, θ

′
i ∈ ΘI′i,i

, who do
not quit at I ′i, and take different actions. Since neither quits at I ′i and the going transfer falls no
further, there exist θ−i, θ

′
−i ∈ ΘI′i,−i such that i ∈ fy(θi, θ−i) and i ∈ fy(θ

′
i, θ
′
−i). So there exist

(h ∈ I ′i, S−i) and (h′ ∈ I ′i, S′−i) such that
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i ∈ gy(h, Sθii , S−i) (86)

i ∈ gy(h′, S
θ′i
i , S

′
−i) (87)

gt,i(h, S
θi
i , S−i) = gt,i(h

′, S
θ′i
i , S

′
−i) = t̃1i (I

′
i) (88)

WLOG suppose θi < θ′i. Suppose that there does not exist a ∈ A(I ′i) such that, for all z such
that a ∈ ψi(z), i ∈ gy(z). Then there must exist (h′′ ∈ I ′i, S′′−i) such that

i /∈ gy(h′′, S
θ′i
i , S

′′
−i) (89)

gt,i(h
′′, S

θ′i
i , S

′′
−i) = t0i (90)

Note that I ′i ∈ α(Sθii , S
θ′i
i ). But then S

θ′i
i is not obviously dominant, a contradiction, since

uG̃i (h′′, S
θ′i
i , S

′′
−i, θ

′
i) = t0i ≤ θi + t̃1i (I

′
i)

< θ′i + t̃1i (I
′
i) = uG̃i (h, Sθii , S−i, θ

′
i)

(91)

(The first inequality holds because of type θi’s incentive constraint.) This shows that part
(1.c.iv) of Definition 18 holds. Part (2.c.iv) is proved symmetrically.

A.5 Theorem 4

Proof. Take any monotone price mechanism G. For any i, the following strategy Si is obviously
dominant:

1. If i encounters an information set consistent with Clause 1 of Definition 18, then, from that
point forward:

(a) If θi + t̃1i (Ii) > t0i and there exists a ∈ A(Ii) \A0, play a ∈ A(Ii) \A0.

i. If |A(Ii) \ A0| > 1, then play a ∈ A(I ′i) such that: For all z such that a ∈ ψi(z):
i ∈ gy(z).

(b) Else play some a ∈ A0.52

2. If i encounters an information set consistent with Clause 2 of Definition 18, then, from that
point forward:

(a) If θi + t1i < t̃0i (Ii) and there exists a ∈ A(Ii) \A1, play a ∈ A(Ii) \A1.

i. If |A(Ii) \ A1| > 1, then play a ∈ A(I ′i) such that: For all z such that a ∈ ψi(z):
i /∈ gy(z).

(b) Else play some a ∈ A1.

52If |A0 ∩A(Ii)| > 1, the agent chooses deterministically but arbitrarily.
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The above strategy is well-defined for any agent in any monotone price mechanism, by inspection
of Definition 18.

Consider any deviating strategy S′i. At any earliest point of departure, the agent will have
encountered an information set consistent with either Clause 1 or Clause 2 of Definition 18. Suppose
that the agent has encountered an information set covered by Clause 1.

Take some earliest point of departure Ii ∈ α(Si, S
′
i). Notice that, by (1.d) of Definition 18, no

matter what strategy i plays, conditional on reaching Ii, either agent i is not in the allocation and
receives t0i , or agent i is in the allocation and receives a transfer t̂i ≤ t̃1i (Ii).

Suppose θi + t̃1i (Ii) > t0i . Note that under Si, conditional on reaching Ii, the agent either is not
in the allocation and receives t0i , or is in the allocation and receives a transfer strictly above t0i − θi.
If S′i(Ii) ∈ A0 (i.e. if agent i quits), then the best outcome under S′i is no better than the worst
outcome under Si. If S′i(Ii) /∈ A0, then, since S′i(Ii) 6= Si(Ii), |A(Ii) \A0| > 1. Then, by (1.c.iii) of
Definition 18, t̃1i will fall no further. So Si(Ii) guarantees that i will be in the allocation and receive
transfer t̃1i (Ii). But, by (1.d) of Definition 18, the best possible outcome under S′i conditional on
reaching Ii is no better, so the obvious dominance inequality holds.

Suppose θi + t̃1i (Ii) ≤ t0i . Then, under Si, conditional on reaching Ii, agent i is not in the
allocation and has transfer t0i .

53 However, under S′i, either the outcome is the same, or agent i is in
the allocation for some transfer t̂i ≤ t̃1i (Ii) ≤ t0i − θi. Thus, the best possible outcome under S′i is
no better than the worst possible outcome under Si, and the obvious dominance inequality holds.

The argument proceeds symmetrically for Clause 2.
Notice that the above strategies result in some allocation and some payments, as a function of

the type profile. We define these to be (fy, ft), such that G OSP-implements (fy, ft).

A.6 Theorem 5

Proof.

Lemma 6. For all B ⊆ N , for all θN\B, Θ̃B(θN\B) is a join-semilattice with respect to the product
order on ΘB.

Take any θ′′B, θ
′′′
B ∈ Θ̃B(θN\B). We want to show that θ′′B ∨ θ′′′B ∈ Θ̃B(θN\B).

For all i ∈ B,

θ′′B, θ
′′′
B ∈ closure({θB : ∀θ′B\i ≥ θB\i : i /∈ fy(θi, θ′B\i, θN\B)}) (92)

The set on the RHS is upward-closed with respect to the product order on θB\i.

Consider θ̌B ≡ θ′′B ∨ θ′′′B . Its ith element has the property: θ̌i = max{θ′′i , θ′′′i }. WLOG, suppose
θ′′i ≥ θ′′′i . Then, since θ̌B\i ≥ θ′′B\i,

θ̌B ∈ closure({θB : ∀θ′B\i ≥ θB\i : i /∈ fy(θi, θ′B\i, θN\B)}) (93)

Since the above argument holds for all i ∈ B, θ′′B ∨ θ′′′B ∈ Θ̃B(θN\B). This concludes the proof
of Lemma 6.

First we prove the “if” direction. We do this by constructing G (and the corresponding strategy
profiles). ft is specified implicitly.

Fix, for each i, the partition points {θki }Kk=1. Initialize k0 := (1, 1, . . . , 1), where k0
i denotes the

ith element of this vector. Each agent i chooses whether to stay in the auction, at price θ
k0
i
i . i

53By (1.c.ii) of Definition 18, either i will have quit in the past, or will have an opportunity to quit now, which he
exercises.
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quits iff i has a type weakly less than θ
k0
i
i . Set B0 := N . (We use Bl to keep track of the agents

still bidding in iteration l.) Set y0 := ∅. (We use yl to keep track of agents who must be in the
allocation at iteration l.)

At each stage, we define θQ
N\Bl−1 ≡ {θ

kl−1
i
i }i∈N\Bl−1 . These are the recorded type (intervals) of

the agents who have stopped bidding.
For l = 1, 2, . . .:

1. If Bl−1 = ∅, then terminate the algorithm at allocation y = yl−1.

2. If

(θ
kl−1
i
i )i∈Bl−1 = sup{Θ̃Bl−1(θQ

N\Bl−1)} (94)

then

(a) Choose agent i ∈ Bl−1 such that, if θBl−1 > (θ
kl−1
j

j )j∈Bl−1 , then i ∈ fy(θBl−1 , θ
Q
N\Bl−1).

(b) Charge that agent the price θ
kl−1
i
i .

(c) Ask that agent to report k̂ > kl−1
i such that θi ∈ (θk̂−1

i , θk̂i ]. Set (klj)j∈N such that:

klj :=

{
k̂ if j = i

kl−1
j otherwise.

(95)

(d) Set Bl := Bl−1 \ i
(e) Set yl := yl−1 ∪ i
(f) Skip to stage l + 1.

3. Choose i ∈ Bl−1 such that (klj)j∈N satisfies

klj :=

{
kl−1
j + 1 if j = i

kl−1
j otherwise.

(96)

and

(θ
klj
j )j∈Bl−1 ∈ Θ̃Bl−1(θQ

N\Bl−1) (97)

4. Offer agent i the option to quit. Agent i quits iff his type is less than or equal to θ
kli
i .

5. If agent i does not quit, set Bl := Bl−1.

6. If agent i quits, set Bl := Bl−1 \ i.

7. Set yl := yl−1

8. Go to stage l + 1.

The above algorithm defines an auction with monotonically ascending prices, where an agent
has the option to quit (for a transfer of zero) whenever her price rises. i makes a payment equal
to her going price at the first point where she ‘clinches the object’ - i.e. when she is guaranteed to
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be in the final allocation. When i clinches the object, i is also asked to report her type - this may
affect the payoffs of the agents that remain active, but does not affect her.54

By inspection, it is an obviously dominant strategy for i to stay in the auction if the price is
less than her type, to quit if the price is greater than or equal to her type and to report her type
truthfully at the point when she clinches the object.

It remains to show that the algorithm is well-defined for all type profiles, and that whenever it
terminates, the resulting allocation agrees with fy. In particular, we must show that in Steps (2a)
and (3), we can pick agent i satisfying the requirements of the algorithm.

Step (2a) is well-defined by assumption.

Lemma 7. (Given the assumptions of Theorem 5.) Under the above algorithm, for all l, (θ
kli
i )i∈Bl ∈

Θ̃Bl(θ
Q
N\Bl)

We prove Lemma 7 by induction. It holds for l = 0 by the assumption that for all i, for all θ−i,
i /∈ fy(θi, θ−i). Suppose it holds for l − 1. We now prove that it holds for l (assuming, of course,
that the algorithm does not terminate in Step 1 of iteration l).

Suppose (θ
kl−1
i
i )i∈Bl−1 = sup{Θ̃Bl−1(θQ

N\Bl−1)}, so that Step 2 of the algorithm is triggered in

iteration l. Since (θ
kl−1
i
i )i∈Bl−1 ∈ Θ̃Bl−1(θQ

N\Bl−1), we know that for all j ∈ Bl−1:

(θ
kl−1
i
i )i∈Bl−1 ∈ closure({θBl−1 : ∀θ′Bl−1\j ≥ (θ

kl−1
i
i )i∈Bl−1\j :

j /∈ fy(θ
kl−1
j

j , θ′Bl−1\j , θ
Q
N\Bl−1)})

(98)

The set on the RHS of Equation 98 is upward closed with respect to the product order on

θBl−1\j . Bl ⊂ Bl−1 and (θ
kli
i )i∈Bl = (θ

kl−1
i
i )i∈Bl . Moreover, for the agent i who just clinched the

object, θ
kli
i > θ

kl−1
i
i . Consequently, for all j ∈ Bl

(θ
kli
i )i∈Bl ∈ closure({θBl : ∀θ′Bl\j ≥ (θ

kli
i )i∈Bl\j :

j /∈ fy(θ
klj
j , θ

′
Bl\j , θ

Q
N\Bl)})

(99)

Since this holds for each set in the intersection that defines Θ̃Bl(θ
Q
N\Bl), this entails that

(θ
kli
i )i∈Bl ∈ Θ̃Bl(θ

Q
N\Bl).

Suppose (θ
kl−1
i
i )i∈Bl−1 6= sup{Θ̃Bl−1(θQ

N\Bl−1)}, so that we reach Step 3 of the algorithm in

iteration l. Then, provided Step 3 is well-defined (i.e. we can pick i satisfying our requirements),

(θ
klj
j )j∈Bl−1 ∈ Θ̃Bl−1(θQ

N\Bl−1) (100)

Bl ⊆ Bl−1, and if i ∈ N \Bl, then θQi = θ
kli
i . Thus,

54We could remove this feature by restricting attention to non-bossy allocation rules, where if changing i’s type
changes the allocation, then it also changes whether i is satisfied. However, the canonical results for SP do not assume
non-bossiness of fy, and we do not do so here. Alternatively, we could rule out such OSP mechanisms by instead
requiring full implementation. However, the canonical monotonicity results for SP hold only for weak implementation.
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(θ
klj
j )j∈Bl ∈ Θ̃Bl(θ

Q
N\Bl) (101)

So we need only show that Step 3 is well-defined for iteration l, given that Lemma 7 holds
for l − 1. This will simultaneously prove Lemma 7, and demonstrate that Step 3 is well-defined
throughout.

We know that

(θ
kl−1
j

j )j∈Bl−1 ∈ Θ̃Bl−1(θQ
N\Bl−1) (102)

and

(θ
kl−1
j

j )j∈Bl−1 6= sup{Θ̃Bl−1(θQ
N\Bl−1)} (103)

Let B̂ ⊆ Bl−1 be the set of all agents in Bl−1 such that θ
kl−1
j

j is less than the jth element of

sup{Θ̃Bl−1(θQ
N\Bl−1)}. Define θ′

B̂
= 0.5(θ

kl−1
j

j )j∈Bl−1 + 0.5(θ
kl−1
j +1

j )j∈Bl−1 .

Now we define two disjoint open sets:

ΘL
Bl−1 = {θBl−1 : θB̂ < θ′

B̂
} (104)

ΘH
Bl−1 = [closure(ΘL

Bl−1)]C (105)

The sets Θ̃Bl−1(θQ
N\Bl−1) ∩ ΘL

Bl−1 and Θ̃Bl−1(θQ
N\Bl−1) ∩ ΘH

Bl−1 are disjoint nonempty sets, and

are open in the subspace topology. By connectedness, there exists some θ′′
Bl−1 ∈ Θ̃Bl−1(θQ

N\Bl−1) \

(ΘL
Bl−1 ∪ΘH

Bl−1). Fix some θ′′
Bl−1 . For some dimension i ∈ B̂, θ′′i = (θ

kl−1
i
i + θ

kl−1
i +1
i )/2.

Define θ′′′
Bl−1 = (θ

kl−1
j

j )j∈Bl−1 ∨ θ′′Bl−1 . By Lemma 6, Θ̃Bl−1(θQ
N\Bl−1) is a join-semilattice. Thus,

θ′′′
Bl−1 ∈ Θ̃Bl−1(θQ

N\Bl−1).

By construction,

(θ
kl−1
j

j )j∈B̂ ≤ θ
′′′
B̂
< (θ

kl−1
j +1

j )j∈B̂ (106)

θ′′′
Bl−1\B̂ = (θ

kl−1
j

j )j∈(Bl−1\B̂) (107)

Pick i ∈ B̂ such that θ′′i = (θ
kl−1
i
i + θ

kl−1
i +1
i )/2. Define:

klj :=

{
kl−1
j + 1 if j = i

kl−1
j otherwise.

(108)

Consider the sequence 1
t θ
′′′
Bl−1 + (1 − 1

t )(θ
klj
j )j∈Bl−1 for t = 1, 2, 3, . . .. Since fy admits a finite

partition, and this sequence does not move past any partition coordinates, every element of this

sequence is in Θ̃Bl−1(θQ
N\Bl−1). Since Θ̃Bl−1(θQ

N\Bl−1) is closed, the limit of the sequence, (θ
klj
j )j∈Bl−1 ,

is also in Θ̃Bl−1(θQ
N\Bl−1). This proves Lemma 7.

Now we show that whenever the algorithm terminates, it agrees with fy.
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By the assumption that for all i, for all θ−i, i /∈ fy(θi, θ−i), it follows that all the agents that
quit at price θ1

i = θi are never satisfied (i.e. i /∈ fy(θ∗) for the true type profile θ∗).
By construction, after any iteration l, the bidders that remain active Bl have true types (θ∗i )i∈Bl

that strictly exceed the going prices (θ
kli
i )i∈Bl . The bidders that are inactive have their types

recorded (as accurately as we need given the finite partition) in the vector θQ
N\Bl .

Suppose Step 1 is not activated and Step 2 is activated, in iteration l. Then, based on the
information revealed up to iteration l− 1, we know that the chosen bidder i is such that i ∈ fy(θ∗).
Thus, for all l, yl ⊆ fy(θ∗).

Suppose neither Step 1 nor Step 2 is activated in iteration l. By Lemma 7, (θ
kl−1
j

j )j∈Bl−1 ∈
Θ̃Bl−1(θQ

N\Bl−1). Consider the chosen bidder i whose price is incremented. The new price vector

satisfies:

klj :=

{
kl−1
j + 1 if j = i

kl−1
j otherwise.

(109)

and

(θ
klj
j )j∈Bl−1 ∈ Θ̃Bl−1(θQ

N\Bl−1) (110)

We now show that if bidder i quits, i.e. if his true type θi is in the interval (θ
kl−1
i
i , θ

kli
i ], then

he is required not to be in the allocation based on the information revealed thus far. We proceed

by contradiction: If there exists θ∗
Bl−1\i > (θ

klj
j )j∈Bl−1\i such that i ∈ fy(θ

kli
i , θ

∗
Bl−1\i, θ

Q
N\Bl−1), then

(θ
klj
j )j∈Bl−1 /∈ Θ̃Bl−1(θQ

N\Bl−1). (Thus contradicting Equation 110.)

Pick ε such that 0 < ε < min{θk
l
i
i − θ

kl−1
i
i ,minj∈Bl−1\i{θ∗j − θ

klj
j }}. For all θ∗∗

Bl−1 such that

‖θ∗∗
Bl−1 − (θ

klj
j )j∈Bl−1‖2 < ε, it follows (by the finite partition and by monotonicity) that i ∈

fy(θ
∗∗
i , θ

∗
Bl−1\i, θ

Q
N\Bl−1), and moreover θ∗∗

Bl−1\i < θ∗
Bl−1\i. Thus, θ∗∗

Bl−1 /∈ {θBl−1 : ∀θ′
Bl−1\i ≥ θBl−1\i :

i /∈ fy(θi, θ′Bl−1\i, θ
Q
N\Bl−1}. Since this is true for all θ∗∗

Bl−1 in an ε-ball around (θ
klj
j )j∈Bl−1 , it fol-

lows that (θ
klj
j )j∈Bl−1 /∈ closure({θBl−1 : ∀θ′

Bl−1\i ≥ θBl−1\i : i /∈ fy(θi, θ
′
Bl−1\i, θ

Q
N\Bl−1}). Thus

(θ
klj
j )j∈Bl−1 /∈ Θ̃Bl−1(θQ

N\Bl−1). We have the desired contradiction.

Thus, whenever some bidder i’s going price rises in iteration l, the types who quit are those
that, based on the information revealed so far, are required by the allocation rule not to be satisfied.
For all l, for the true type profile θ∗, (Bl)C ∩ (yl)C ⊆ fy(θ∗)C .

Gathering results: For all l, yl = (Bl)C ∩ yl ⊆ fy(θ
∗) and (Bl)C ∩ (yl)C ⊆ fy(θ

∗)C . Thus,
whenever Bl = ∅, fy(θ∗) = yl. This completes the proof of the “if” direction.

Now the “only if” direction. G OSP-implements (fy, ft), so fy is SP-implementable. Thus, fy
is monotone.

For all i, type θi is never satisfied, and always has a zero transfer. Thus, by Theorem 3, we can
restrict our attention to monotone price mechanisms that satisfy the “Either” clause in Definition 18
- i.e. every agent faces an ascending price associated with being satisfied, and a fixed outside option
(call this an ascending price mechanism, or APM). Suppose we have some G that OSP-implements
(fy, ft). Moreover, suppose G is pruned, so that G is an APM.

Take any B ⊆ N and θN\B. We now show that Θ̃B(θN\A) is connected. Let p : [0, 1] → ΘB

be the price path under G faced by agents in B, when the type profile for the agents in B is
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sup{Θ̃B(θN\B)} and the type profile for the agents in N \B is θN\B. Let z be the terminal history
that results from that type profile, and let l be the number of elements of that sequence. Let
h1, h2, . . . , hl be the subhistories of z.

Formally, p is defined as follows: Start f(0) = (θi)i∈A. For each subhistory hm, let p(ml )
be equal to the prices faced by agents in B at hm. For all points in r ∈ (m−1

l , ml ), p(r) =
(1− β)p(m− 1) + βp(m), for β = (r − m−1

l )/(1/l).
By inspection, p is a continuous function. Moreover, since at any point when an agent i quits

under G, i /∈ fy(θ∗) based on the information revealed so far, for all r, p(r) ∈ Θ̃B(θN\B). Thus, p

is a path from Θ̃B(θN\B) to sup{Θ̃B(θN\A)}.
By Lemma 6, Θ̃B(θN\B) is a join semi-lattice. We can generate a path p′ from any θ′B ∈

Θ̃B(θN\B) to sup{Θ̃B(θN\B)}, by defining p′(r) ≡ θ′B ∨ p(r). Thus, Θ̃B(θN\B) is path-connected,
which implies that it is connected.

We now show that there exists i ∈ B such that, if θB > sup{Θ̃B(θN\B)}, then i ∈ fy(θB, θN\B).

If we cannot choose some θB > sup{Θ̃B(θN\B)}, then this holds vacuously. Thus, fix some θ′B >

sup{Θ̃B(θN\B)}.
Let z be the terminal history in G when the type profile is (θ′B, θN\B).

Suppose there does not exist i ∈ B such that such that, for all θB > sup{Θ̃B(θN\B)}, i ∈
fy(θB, θN\B). By definition of sup{Θ̃B(θN\B)}, there also does not exist i ∈ B such that such that,

for all θB > sup{Θ̃B(θN\B)}, i /∈ fy(θB, θN\B).
Thus, the price path for agents in B along history z (defined as before) is not such that p(r) ≤

sup{Θ̃B(θN\B)} for all r ∈ [0, 1]. Thus, there must be a first point along z where the price path is

not in {Θ̃B(θN\B)}. Consider the agent i whose price was incremented at that point.

For all j ∈ B, the relevant set in the intersection that defines {Θ̃B(θN\B)} is upward-closed

with respect to the product order on B \ j. Thus, when the price first leaves {Θ̃B(θN\B)} at some
subhistory ht, it must be that

p(
t

l
) /∈ closure({θB : ∀θ′B\i ≥ θB\i : i /∈ fy(θi, θ′B\i, θN\B)}) (111)

The complement of the set on the RHS of Equation 111 is open. Thus, for some ε > 0, an open
ε-ball around p( tl ) is a subset of the complement of the RHS.

Consequently, we can choose some θ′′i strictly greater than i’s old price, and strictly less than
i’s new going price, and some θ′′B\i strictly greater (in the product order) than the going prices

for B \ i, such that i ∈ fy(θ′′i , θ′′B\i, θN\B). Since G is an APM, the actions of types (θ′′i , θ
′′
B\i) and

the actions of types θ′B are indistinguishable prior to that point. Thus, G does not result in the
prescribed outcome for type profile (θ′′i , θ

′′
B\i, θN\B), a contradiction.

This completes the proof of the “only-if” direction.

B Alternative Empirical Specifications

Here we report alternative empirical specifications for the experiment. Table 5 and 6 are identical
to Table 2 except that they compute p-values and standard errors using alternative methods.

A natural measure of errors would be to take the sum, for k = 1, 2, 3, 4, of the absolute difference
between the kth highest bid and the kth highest value. However we do not observe the highest bid
under AC, and we often do not observe the highest bid under AC+X. We could instead take the
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Table 5: mean(abs(2nd bid - 2nd value), p-values calculated using Wilcoxon rank-sum test
Format Rounds SP OSP p-value

Auction

1-5 8.04 3.19 < .001

6-10 4.99 1.77 .005

+X Auction

1-5 3.99 1.83 .004

6-10 3.69 1.29 < .001

This is the same as Table 2, except that the p-values are calculated using the Wilcoxon rank-sum test.

Table 6: mean(abs(2nd bid - 2nd value), p-values and standard errors calculated using clustered
regression (clustered by groups)

Format Rounds SP OSP p-value

Auction

1-5 8.04 3.19 .006
(1.26) (1.06)

6-10 4.99 1.77 .014
(1.20) (0.34)

+X Auction

1-5 3.99 1.83 .005
(0.61) (0.41)

6-10 3.69 1.29 .015
(0.88) (0.33)

This is the same as Table 2, except that the p-values and standard errors are calculated by running a single regression
(with appropriate indicator variables) and clustering by groups.
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sum for k = 2, 3, 4 of the absolute difference between the kth highest bid and the kth highest value,
averaged as before in five-round blocks. Table 7 reports the results.

Table 7: mean(sum(abs(kth bid - kth value))), for k = 2, 3, 4
Format Rounds SP OSP p-value

Auction

1-5 32.63 9.89 < .001
(4.64) (1.89)

6-10 16.28 5.53 .001
(2.73) (0.91)

+X Auction

1-5 17.04 6.18 .011
(3.70) (1.06)

6-10 14.21 4.74 .022
(3.70) (0.75)

For each auction, we sum the absolute differences between the kth bid and the kth value, for k = 2, 3, 4. We then
take the mean of this over each 5-round block. We then compute standard errors counting each group’s 5-round
mean as a single observation. (18 observations per cell.) p-values are computed using a two-sample t-test, allowing
for unequal variances.

Another measure of errors would be to take the sum of the absolute difference between each
bidder’s bid and that bidder’s value, dropping all highest bidders for symmetry. Table 8 reports
the results.

Table 9 reports the results of Table 3, except that the p-values are calculated using the Wilcoxon
rank-sum test.

29.0% of rank-order lists are incorrect under SP-RSD. 2.6% of choices are incorrect under
OSP-RSD. However, this is not a fair comparison; rank-order lists mechanically allow us to spot
more errors than single choices. To compare like with like, we compute the proportion of incorrect
choices we would have observed, if subjects played OSP-RSD as though they were implementing
the submitted rank-order lists for SP-RSD. This is a cautious measure; it counts errors under
SP-RSD only if they would have altered the outcome under OSP-RSD. Table 10 reports the
results.

Finally, in Table 11, we compute the mean difference between the second-highest bid and the
second-highest value, by auction format and by five-round blocks. This summarizes the average
direction of deviations (positive or negative) from equilibrium play. I had no prior hypothesis about
these outcome variables, but report this analysis for completeness.

C Quantal Response Equilibrium

Quantal response equilibrium (QRE) is defined for normal form games (McKelvey and Palfrey,
1995). Agent quantal response equilibrium (AQRE) adapts QRE to extensive form games (McK-
elvey and Palfrey, 1998). In AQRE, each agent plays a (perturbed) best response at each informa-
tion set, given correct beliefs about other agents’ play and his own mistakes at future information
sets. In AC and AC+X, a rational agent is indifferent between quitting and continuing when the
price is equal to his value, since if he continues presently, then he will quit at the next bid increment.
Consequently, an AQRE agent strictly prefers to quit when the price is equal to his value, since he
correctly forsees that if he continues, he will sometimes make a mistake at the next bid increment,
and the increment after that, resulting in a negative expected value. By continuity, an AQRE agent
strictly prefers to quit when the price is in some interval below his value. Consequently, AQRE
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Table 8: mean(sum(abs(i’s bid - i’s value))), dropping highest bidders
Format Rounds SP OSP p-value

Auction

1-5 35.13 10.18 < .001
(5.20) (1.88)

6-10 15.46 4.89 .002
(2.85) (0.72)

+X Auction

1-5 17.88 5.58 .009
(4.10) (1.01)

6-10 14.20 4.64 .022
(3.72) (0.83)

For each auction, we sum the absolute differences between each bidder’s bid and their value, dropping the highest
bidder. We then take the mean of this over each 5-round block. We then compute standard errors counting each
group’s 5-round mean as a single observation. (18 observations per cell.) p-values are computed using a two-sample
t-test, allowing for unequal variances.

Table 9: Proportion of serial dictatorships not ending in dominant strategy outcome, p-values
calculated using Wilcoxon rank-sum test

SP OSP p-value

Rounds 1-5 43.3% 7.8% .0001
Rounds 6-10 28.9% 6.7% .0010

This is the same as Table 3, except that the p-values are calculated using the Wilcoxon rank-sum test.

Table 10: Proportion of incorrect choices under serial dictatorship: SP (imputed) vs OSP (actual)
SP OSP p-value

Rounds 1-5 17.8% 2.6% < .001
(3.5%) (1.1%)

Rounds 6-10 10.7% 2.6% .002
(2.0%) (1.3%)

p-value .078 1.000

For each group in SP-RSD, for each period, we simulate the three choices that we would have observed under
OSP-RSD. For each group, for each 5-round block, we record the proportion of choices that are incorrect. We then
compute standard errors counting each group-block pair as a single observation. (18 observations per cell.) When
comparing SP to OSP, we compute p-values using a two-sample t-test. When comparing early to late rounds of the
same game, we compute p-values using a paired t-test. In the sample for OSP-RSD, there are 7 incorrect choices in
the first five rounds and 7 incorrect choices in the last five rounds.
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predicts systematic under-bidding in AC and AC+X.
As Figure 2 and Figure 3 illustrate, there is no evidence of systematic under-bidding in AC

and AC+X. Table 11 shows this rigorously.

D Experiment instructions
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WELCOME

This is a study about decision-making.  Money earned will be paid to you in cash at the 
end of the experiment.  This study is about 90 minutes long.

We will pay you $5 for showing up, and $15 for completing the experiment.  Additionally, 
you will be paid in cash your earnings from the experiment.  If you make choices in this 
experiment that lose money, we will deduct this from your total payment.  However, your 
total payment (including your show-up payment and completion payment) will always be 
at least $20.

You have been randomly assigned into groups of 4.  This experiment involves 3 games 
played for real money.  You will play each game 10 times with the other people in your 
group.
 
We will give you instructions about each game just before you begin to play it.  Your 
choices in one game will not affect what happens in other games.

There is no deception in this experiment.  Every game will be exactly as specified in the 
instructions.  Anything else would violate the IRB protocol under which we run this 
study.  (IRB Protocol 34876)
 
Please do not use electronic devices or talk with other volunteers during this study.  If 
we do find you using electronic devices or talking with other volunteers, the rules of the 
study require us to deduct $20 from your earnings.

If you have questions at any point, please raise your hand and we will answer your 
questions privately. 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GAME 1  

In this game, you will bid in an auction for a money prize.  The prize may have a 
different dollar value for each person in your group.  You will play this game for 10 
rounds.  All dollar amounts in this game are in 25 cent increments.

At the start of each round, we display your value for this round’s prize.  If you win the 
prize, you will earn the value of the prize, minus any payments from the auction. 
 
Your value for the prize will be calculated as follows:

1. For each group we will draw a common value, which will be between $10.00 and 
$100.00.  Every number between $10.00 and $100.00 is equally likely to be drawn.

2. For each person, we will also draw a private adjustment, which will be between 
$0.00 and $20.00.  Every number between $0.00 and $20.00 is equally likely to be 
drawn.

In each round, your value for the prize is equal to the common value plus your 
private adjustment.  At the start of each round, you will learn your total value for the 
prize, but not the common value or the private adjustment.

This means that each person in your group may have a different value for the prize.  
However, when you have a high value, it is more likely that other people in your group 
have a high value.

The auction proceeds as follows:  First, you will learn your value for the prize.  Then you 
can choose a bid in the auction.  Each person in your group will submit their bids 
privately and at the same time.  You do this by typing your bid into a text box and 
clicking ‘confirm bid’.  You will have 90 seconds to make your decision, and can revise 
your bid as many times as you like.  At the end of 90 seconds, your final bid will be the 
one that counts.
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All bids must be between $0.00 and $150.00, and in 25 cent increments. 
 
The highest bidder will win the prize, and make a payment equal to the second-
highest bid.  This means that we will add to her earnings her value for the prize, and 
subtract from her earnings the second-highest bid.  All other bidders’ earnings will not 
change.

At the end of each auction, we will show you the bids, ranked from highest to lowest, 
and the winning bidder’s profits.  If there is a tie for the highest bidder, no bidder will win 
the object. 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GAME 2

In this game, you will bid in an auction for a money prize.  You will play this game for 10 
rounds.

Your value for the prize will be generated as before.

However, each round, we will also draw a new number, X, for each group. 

The rules of the auction are different, as follows:

All bidders will submit their bids privately and at once.  However, the highest bidder will 
win the prize if and only if their bid exceeds the second-highest bid by more than X.

If the highest bidder wins the prize, she will make a payment equal to the second-
highest bid plus X.  This means that we will add to her earnings her value for the 
prize, and subtract from her earnings the second-highest bid plus X.  All other 
bidders’ earnings will not change.

If the highest bid does not exceed the second-highest bid by more than X, then no 
bidder will win the prize.  In that case, no bidder’s earnings will change.

X will be between $0.00 and $3.00, with every 25 cent increment equally likely to be 
drawn.  You will be told your value for the prize at the start of each round, but will not be 
told X.   At the end of each round, we will tell you the value of X. 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GAME 3

You will play this game for 10 rounds.  In each round of this game, there are four prizes, 
labeled A, B, C, and D.  Prizes will be worth between $0.00 and $1.25.  For each prize, 
its value will be the same for all the players in your group.  

At the start of each round, you will learn the value of each prize.  You will also learn your 
priority score, which is a random number between 1 and 10.  Every whole number 
between 1 and 10 is equally likely to be chosen.

The game proceeds as follows:  We will ask you to list the prizes, in any order of your 
choice.  All players will submit their lists privately and at the same time.

After all the lists have been submitted, we will assign prizes using the following rule:
1. The player with the highest priority score will be assigned the top prize on his list.
2. The player with the second-highest priority score will be assigned the top prize on 

his list, among the prizes that remain.
3. The player with the third-highest priority score will be assigned the top prize on his 

list, among the prizes that remain.
4. The player with the lowest priority score will be assigned whatever prize remains.

If two players have the same priority score, we will break the tie randomly.

You will have 90 seconds to form your list.  You do this by typing a number, from 1 to 4, 
next to each prize, and then clicking the button that says “Confirm Choices”.  Each prize 
must be assigned a different number, from 1 (top) to 4 (bottom).  Your choices will not 
count unless you click the button that says “Confirm Choices”.
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If you do not produce a list by the end of 90 seconds, we will assign prizes as though 
you reported the list in order A-B-C-D.

At the end of each round, we will add to your earnings the value of the prize you were 
assigned.
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WELCOME

This is a study about decision-making.  Money earned will be paid to you in cash at the 
end of the experiment.  This study is about 90 minutes long.

We will pay you $5 for showing up, and $15 for completing the experiment.  Additionally, 
you will be paid in cash your earnings from the experiment.  If you make choices in this 
experiment that lose money, we will deduct this from your total payment.  However, your 
total payment (including your show-up payment and completion payment) will always be 
at least $20.

You have been randomly assigned into groups of 4.  This experiment involves 3 games 
played for real money.  You will play each game 10 times with the other people in your 
group.
 
We will give you instructions about each game just before you begin to play it.  Your 
choices in one game will not affect what happens in other games.

There is no deception in this experiment.  Every game will be exactly as specified in the 
instructions.  Anything else would violate the IRB protocol under which we run this 
study.  (IRB Protocol 34876)
 
Please do not use electronic devices or talk with other volunteers during this study.  If 
we do find you using electronic devices or talking with other volunteers, the rules of the 
study require us to deduct $20 from your earnings.

If you have questions at any point, please raise your hand and we will answer your 
questions privately. 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GAME 1
 
In this game, you will bid in an auction for a money prize.  The prize may have a 
different dollar value for each person in your group.  You will play this game for 10 
rounds.  All dollar amounts in this game are in 25 cent increments.

At the start of each round, we display your value for this round’s prize.  If you win the 
prize, you will earn the value of the prize, minus any payments from the auction. 
 
Your value for the prize will be calculated as follows:

1. For each group we will draw a common value, which will be between $10.00 and 
$100.00.  Every number between $10.00 and $100.00 is equally likely to be drawn.

2. For each person, we will also draw a private adjustment, which will be between 
$0.00 and $20.00.  Every number between $0.00 and $20.00 is equally likely to be 
drawn.

In each round, your value for the prize is equal to the common value plus your 
private adjustment.  At the start of each round, you will learn your total value for the 
prize, but not the common value or the private adjustment.

This means that each person in your group may have a different value for the prize.  
However, when you have a high value, it is more likely that other people in your group 
have a high value.

The auction proceeds as follows:  First, you will learn your value for the prize.  Then, the 
auction will start.  We will display a price to everyone in your group, that starts low and 
counts upwards in 25 cent increments, up to a maximum of $150.00.  At any point, you 
can choose to leave the auction, by clicking the button that says “Stop Bidding”.

�  of �2 5 AA



When there is only one bidder left in the auction, that bidder will win the prize at the 
current price.  This means that we will add to her earnings her value for the prize, 
and subtract from her earnings the current price.  All other bidders’ earnings will not 
change.

At the end of each auction, we will show you the prices where bidders stopped, and the 
winning bidder’s profits.  If there is a tie for the highest bidder, no bidder will win the 
object. 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GAME 2

In this game, you will bid in an auction for a money prize.  You will play this game for 10 
rounds.

Your value for the prize will be generated as before.

However, each round, we will also draw a new number, X, for each group.

The rules of the auction are different, as follows:

The price will count up from a low value, and you can choose to leave the auction at any 
point, by clicking the button that says “Stop Bidding”.  When there is only one bidder left 
in the auction, the price will continue to rise for another X dollars, and then freeze.

If the last bidder stays in the auction until the price freezes, then she will win the 
prize at the final price.  This means that we will add to her earnings her value for the 
prize, and subtract from her earnings the final price.  All other bidders’ earnings will 
not change.

If the last bidder stops bidding before the price freezes, then no bidder will win the prize.  
In that case, no bidder’s earnings will change.

X will be between $0.00 and $3.00, with every 25 cent increment equally likely to be 
drawn.  You will be told your value for the prize at the start of each round, but will not be 
told X.   At the end of each round, we will tell you the value of X. 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GAME 3

You will play this game for 10 rounds.  In each round of this game, there are four prizes, 
labeled A, B, C, and D.  Prizes will be worth between $0.00 and $1.25.  For each prize, 
its value will be the same for all the players in your group.

At the start of each round, you will learn the value of each prize.  You will also learn your 
priority score, which is a random number between 1 and 10.  Every whole number 
between 1 and 10 is equally likely to be chosen.

The game proceeds as follows: 

1. The player with the highest priority score will pick one prize. 
2. The player with the second-highest priority score will pick one of the prizes that 

remains.  
3. The player with the third-highest priority score will pick one of the prizes that 

remains.  
4. The player with the lowest priority score will be assigned whatever prize remains.

If two players have the same priority score, we will break the tie randomly.

When it is your turn to pick, you will have 30 seconds to make your choice.  You do this 
by selecting a prize and then clicking the button that says “Confirm Choice”.  Your 
choices will not count unless you click the button that says “Confirm Choice”.

If you do not make a choice by the end of 30 seconds, we will assign prizes as though 
you picked whichever prize is earliest in the alphabet.

At the end of each round, we will add to your earnings the value of the prize you picked.
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Table 11: mean(2nd bid - 2nd value)
Format Rounds SP OSP

Auction

1-5 -1.59 0.58
(2.07) (0.77)

6-10 4.22∗∗∗ 0.78∗

(1.28) (0.40)

+X Auction

1-5 1.62∗∗ 0.15
(0.70) (0.47)

6-10 2.97∗∗∗ 0.02
(0.97) (0.31)

For each group, we take the mean difference between the second-highest bid and the second-highest value over each
5-round block. We then compute standard errors counting each group’s 5-round mean as a single observation. (18
observations per cell, standard errors in parentheses.) We then run a two-sided t-test for the null that the value in
each cell has zero mean. * denotes p < .10, ** denotes p < .05, and *** denotes p < .01.
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