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Abstract

This paper begins by observing that any re�exive binary (preference) relation (over risky prospects)
which satis�es the Independence Axiom admits a form of expected utility representation. We re-
fer to this representation notion as coalitional minmax expected utility representation. By adding
the remaining properties of the expected utility theorem, namely, continuity, completeness and
transitivity, one by one, we �nd how this representation gets sharper and sharper, thereby de-
ducing the versions of this classical theorem in which any combination of these properties are
dropped from its statement. This approach also allows us to weaken transitivity in this theorem,
rather than eliminating it entirely, say, to quasitransitivity or acyclicity. Apart from providing
a uni�ed dissection of the expected utility theorem, these results are relevant for the growing
literature on boundedly rational choice in which revealed preference relations often lack the prop-
erties of completeness and/or transitivity (but often satisfy the Independence Axiom). Finally,
and perhaps more importantly, we show that our representation theorems allow us to answer
many economic questions that are posed in terms of nontransitive/incomplete preferences, say,
about the maximization of preferences, existence of Nash equilibrium, preference for portfolio
diversi�cation, and possibility of the preference reversal phenomenon.

JEL Classi�cation: D11, D81.
Keywords: A¢ ne binary relations, nontransitive and incomplete expected utility representa-
tions, justi�able preferences, existence of mixed strategy Nash equilibrium, preference reversal
phenomenon, preference for portfolio diversi�cation.

�Department of Economics, New York University.
y[Corresponding Author ] Department of Economics and Courant Institute of Applied Mathematics, New

York University. E-mail: efe.ok@nyu.edu
zDepartment of Economics, Universidade de Brasília.

1



1 Introduction

The expected utility theorem is one of the foundational pillars of modern economic theory.
This theorem, which goes back to the 1947 contribution of John von Neumann and Oskar
Morgenstern, says that preferences of a �rational� individual over risky prospects (lotteries)
would be represented by the expectation of a (cardinal) utility function over the payouts of
the lotteries. Needless to say, this result has led to the emergence of modern decision theory
under risk and uncertainty, and has played a foundational role in many other �elds, ranging
from game theory to �nancial economics.
At its core, the expected utility theorem takes a re�exive binary relation on a space of

lotteries, and imposes four hypotheses on this relation: Completeness, transitivity, continu-
ity and the Independence Axiom. While the continuity hypothesis is a basic (and empirically
untestable) regularity condition, the remaining three postulates are behavioral properties that
correspond to various types of �rationality�on the part of the decision maker. As such, nu-
merous experimental studies have shown that they are violated by many individuals, and this
has led decision theorists pursue generalizations of the expected utility theorem by weakening
some of these hypotheses. Motivated by the Allais�Paradox and its derivatives, most work in
this regard has concentrated on weakening the Independence Axiom, thereby leading to what
is now known as �non-expected utility theory.�However, far less attention is given to what
happens to the expected utility theorem when we relax some or all of the remaing three postu-
lates of the theory. A notable exception to this is the work of Aumann (1962), which initiated
the research on obtaining an expected utility theorem in which all but the completeness axiom
is assumed. (Recently, Dubra, Maccheroni and Ok (2004) have proved that result precisely.)
Another exception is Hausner and Wendel (1952), where it was asked and answered exactly
what would happen to the expected utility theorem if we dropped the continuity hypothesis
from its postulates. Surprisingly, and despite ample empirical evidence of non-transitive choice
behavior under risk, a similar exercise was not carried out with respect to the transitivity hy-
pothesis, and/or with respect to combinations of the properties of completeness, transitivity
and continuity. The only work related to this issue is a series of papers by Peter Fishburn
(starting from 1982) in which he has developed the so-called skew-symmetric bilinear (SSB)
utility theory (a precursor of which can be found in Kreweras (1961)). However, this theory
allows for nontransitivity only through violations of the Independence Axiom (in the sense
that SSB utility that satis�es the Independence Axiom is transitive, and hence reduces to the
classical expected utility theory).
All in all, even after 68 years and despite its foundational importance, the literature does

not provide a complete analysis of what exactly happens to the expected utility theorem
if we drop some or all of the hypotheses of completeness, transitivity, and/or continuity in
its statement. In a nutshell, the primary purpose of the present paper is to carry out this
exercise. Given the central place the expected utility theorem occupies within decision theory,
this appears amply justi�ed. However, our motivation for this goes beyond specialized interest,
as we outline next.

First Motivation. Even though its descriptive validity leaves much to be desired, the In-
dependence Axiom is used in a wide variety of decision-theoretic settings that involve risk,
ranging from choice under uncertainty and ambiguity to intertemporal choice and menu pref-
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erences. Considering also the normative appeal of this postulate, therefore, understanding
what this axiom alone entails about one�s preferences (which is not assumed to be either
complete or transitive at the outset) seems desirable. Put di¤erently, the question is how the
expected utility theorem would modify if we dropped all three of the completeness, transitivity
and continuity axioms. If we could answer this question, by adding these properties one by
one to the system of postulates at hand, we could isolate their individual contributions to
the expected utility theorem. At the very least, this would provide a complete picture of the
iceberg the tip of which is the von Neumann-Morgenstern expected utility theorem.
Indeed, we �nd here that any re�exive binary relation (over the set of all lotteries on a

separable metric space) which satis�es the Independence Axiom admits quite an interesting
representation. This representation, which we refer to as coalitional (minmax) expected utility
representation, maintains that there is a set U of sets (coalitions) of continuous utility functions
such that a lottery p is preferred to a lottery q i¤ for every coalition U in U there is a utility
function in U whose expectation with respect to p is at least as large as its expectation with
respect to q: If we think of each utility function here as corresponding to a rational �self�
of the agent, then we may interpret her preference of p over q as being a consequence of no
coalition of her rational �selves�blocking p in favor of q.
The main theoretical �nding of the present work is that one can characterize any relaxation

of the completeness, transitivity and continuity properties in the expected utility theorem in
terms of the notion of coalitional expected utility representation. Adding any one of these
properties to the system restricts the structure of U in a particular way, and brings us closer
to the expected utility theorem. In particular, if we add continuity (and assume that the
underlying space of riskless prizes is compact), we �nd that one can choose each of the mem-
bers of U as compact collections (as well as U itself), and in that case we can express our
representation more concisely: The agent prefers p over q i¤

min

�
max
u2U

(E(u; p)� E(u; q)) : U 2 U
�
� 0;

where E(u; p) is the expectation of u with respect to p; and similarly for E(u; q). If, further,
we assume that preferences are transitive, then we can choose each of the members of U as
singletons, and recover the expected multi-utility representation of Dubra, Maccheroni and
Ok (2004). If, instead, we assume that preferences are complete, we �nd that U must exhibit a
particular coherence property, namely, any two elements (coalitions) in Umust have a common
agent. This result, from which many other characterizations follow, tells us exactly how the
expected utility theorem reads without the transitivity axiom. As such, it parallels the work
of Dubra, Maccheroni and Ok (2004), but for nontransitive preferences, instead of incomplete
ones.
Unlike the property of completeness, there are general ways of weakening the transitivity

property, which may be suitable to adopt in certain settings of economic interest. For instance,
if one wishes to allow for cyclic choices to arise only due to perception di¢ culties (the case of
intransitive indi¤erence), we may postulate that preferences are quasitransitive (that is, the
strict part of the relation is transitive). Or, if we wish to impose that the agent is always
able to identify a best alternative within any �nite collection of lotteries, we would impose
that preferences are acyclic. The notion of coalitional expected utility representation remains
operational to deal with either of these cases. In particular, we �nd here that if preferences are
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quasitransitive, and satisfy all axioms of the expected utility theorem but transitivity, then
we can choose U in the representation itself as a singleton, thereby obtaining a representation
which is very much in the same spirit with what Lehrer and Teper (2011) call justi�able
preferences. On the other hand, we prove that if preferences are acyclic, and satisfy all axioms
of the expected utility theorem but transitivity, then we can choose U in such a way that all
elements (coalitions) possess a common element. The applications we consider in the second
part of the paper demonstrate that this �strong coherence�property provides a remarkably
operational structure for the model.

Second Motivation. In a variety of contexts, one needs to consider as a primitive �preference
relation�a binary relation that may be neither complete nor transitive. In particular, since
the seminal contributions of Aumann (1962) and Bewley (1986), many authors have argued
that completeness is not an unexceptionable trait of rationality. There is now a fairly sizable
literature on rational decision making with incomplete preferences in a variety of contexts,
ranging from consumption choice to decision making under risk and uncertainty. And there is
even a larger literature that works with nontransitive preferences. This literature has mostly
a �boundedly rational��avor, and it studies topics such as nontransitive indi¤erences that
arise from perception di¢ culties (cf. Luce (1956)), or procedural decision making by using
similarity comparisons or regret considerations (cf. Rubinstein (1988) and Loomes and Sugden
(1982)). There are important works on the theory of demand and competitive equilibrium
(mostly under certainty) in which agents� preferences are allowed to be nontransitive (cf.
Shafer (1974) and Kim and Richter (1986)). Starting with Tversky (1969), there are also
numerous experimental �ndings that point to the existence of even strict cycles in the choices
of individuals over risky prospects. Besides, when we consider the preference relation at
hand as that of a group of individuals (as in social choice theory), it becomes only natural
to allow for its lack of transitivity. We refer to Fishburn (1991) and Nishimura (2015) for
thorough discussions of the importance of studying nontransitive preference relations from
both normative and descriptive perspectives, as well as examples of economic contexts in
which nontransitive preferences play an important role.

Third Motivation. In revealed preference theory one arrives at a �preference relation�
endogenously, and in many cases of interest it is not possible to write down conditions on
choice correspondences that would guarantee either the completeness or the transitivity of
this relation. The recent literature on boundedly rational choice theory provides numerous
illustrations of this situation.1 When specialized to the context of risky prospects, however,
one can always impose the condition that p is chosen from a set S i¤ �p+ (1� �)r is chosen
from the set f�q + (1 � �)r : q 2 Sg for any � 2 [0; 1] and lottery r; and this often entails
that the revealed preference relation(s) (or attention sets, etc.) can be chosen to satisfy the
Independence Axiom. In such a situation, deepening the coverage of the characterization
of choice correspondences requires one to know the structure of those nontransitive and/or

1In Eliaz and Ok (2006), for instance, revealed preference relations are incomplete, and in Heller (2012)
and Cherepanov, Feddersen and Sandroni (2013), they are nontransitive. On the other hand, Manzini and
Mariotti (2007), Masatlioglu and Ok (2014), and Ok, Ortoleva and Riella (2015) use the revealed preference
method to obtain what they call �psychological constraint relations�which need not be either complete or
transitive.
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incomplete binary relations that satisfy the Independence Axiom.2 The main representation
theorems of this paper are primed for this purpose.

Fourth Motivation: Applications. Broadly speaking, utility representation theorems have
two main uses. First, they provide a functional structure for a preference relation that allows
one to model that type of a relation in economic environments. Second, they sometimes
help us answer economic questions based on certain types of preferences, which may be quite
di¢ cult to deal with by using the de�ning properties of these preferences directly.
We found that the representation theorems we provide in this paper are particularly useful

from this perspective, as exempli�ed by the large number of applications we present later in
the paper. To hint at what we mean by this, let us consider an individual whose preferences
satisfy all postulates of the expected utility theorem, but transitivity. Assume further that this
individual is not overly nontransitive in that her preferences are acyclic (which, in particular,
implies that she would not fall prey to a strict money pump scheme). Consider the following
questions:

(1) Among all lotteries over a �nite set of (riskless) prizes, is there a degenerate lottery that is
best for this individual?

(2) Suppose this individual plays a strategic game against another such individual. Does there
exist a mixed strategy Nash equilibrium of that game?

(3) Suppose the lotteries in question are monetary and the preferences of the agent are consistent
with �rst order stochastic dominance. Is it possible that this individual prefers a lottery p over
q strictly, and yet her minimum selling price for p is strictly lower than that of q (the preference
reversal phenomenon)? What if her preferences were quasitransitive (so that her cycles may arise
only due to intransitive indi¤erence)?

(4) Suppose the lotteries in question are monetary and the preferences of the agent are consistent
with second order stochastic dominance (so that she is risk averse). Does this agent exhibit
preference for portfolio diversi�cation?

None of the authors of this paper were able to answer these questions (except the second
part of (3)) without invoking at least one of the representation theorems we prove in Section
3. With those theorems, however, we were able come up with the answers fairly easily.3

In Section 4, we use these theorems to ask and answer even more general versions of these
questions (and quite a few more).

2For instance, Eliaz and Ok (2006) invoke the expected multi-utility theorem of Dubra, Maccheroni and
Ok (2004) to provide a functional structure for the revealed (incomplete) preferences in their choice model.
To be honest, the present work was initiated when we attempted to carry out the same exercise in the context
of the revealed (p)reference model of Ok, Ortoleva and Riella (2015).

3We will of course discuss these in detail in Section 4, but let us mention here that the answers are: (1)
Yes. (2) Yes. (3) Yes. No. (4) Yes for 2-asset portfolio diversi�cation, but no for 3 (or more)-asset portfolio
diversi�cation (even when preferences are quasitransitive). Not only that some of these answers are somewhat
unexpected, they are also of economic signi�cance. In particular, the analysis of (2) yields a generalization
of Nash�s existence theorem, while that of (3) shows that the common experimental practice of deducing
preferences of the subjects by asking them �price�the lotteries is suspect (because this practice is not valid
even for acyclic preferences). On the other hand, the analysis of (4) shows that the validity of the insight
�risk aversion implies preference for diversi�cation,�depends on the transitivity hypothesis. It is false even
for continuous, complete and quasitransitive preferences that satisfy the Independence Axiom.

5



The paper is organized as follows. In Section 2 we introduce the premilinary notation
and terminology that we adopt throughout the paper. Section 3.1 provides a roadmap that
explains how our representation theorems relate to the expected utility theorem. In Section
3.2, we introduce, and discuss in detail, the notion of coalitional minmax expected utility
representation. Section 3.3 points to the fundamental nature of this notion by showing that
any re�exive relation (on a lottery space) which satis�es the Independence Axiom can be
represented in this manner. In the remaining subsections of Section 3, we introduce the other
rationality properties of expected utility theorem, and re�ne our representation step by step.
(We thus trace the roadmap of Section 3.1 and eventually end up with the expected utility
theorem.) Section 4 presents numerous applications in which our representation theorems are
used in a substantive manner. In addition to answering (generalizations of) the questions
we posed above, we chararacterize in this section stochastically monotonic and risk averse
preferences over monetary lotteries which need not be either complete or transitive. We
conclude the main body of the paper with Section 5 in which we state a number of open
problems that arise from this work in precise terms. Appendix A contains the proofs of
our representation theorems, and for completeness of exposition, Appendix B discusses an
alternative expected multi-utility representation notion (for discontinuous) preferences.

2 Preliminaries

Order-Theoretic Nomenclature. Let A be a nonempty set. By a binary relation on
A; we mean a nonempty subset R of A � A; but, as usual, we often write a R b to mean
(a; b) 2 R: Moreover, for any a 2 A and nonempty B � A; we write a R B to mean a R b for
each b 2 B: (The expression B R b is similarly understood.) We denote the asymmetric part
of this relation by R>. (That is, R> is either empty or it is a binary relation on A such that
a R> b i¤ a R b but not b R a). The symmetric part of R is then de�ned as R= := RnR>.
We recall that R is said to be re�exive if a R a for each a 2 A; irre�exive if a R a is

false for every a 2 A; complete (or total) if either a R b or b R a holds for each a; b 2 A,
antisymmetric if a R b and b R a do not both hold for any distinct a; b 2 A, and transitive
if a R b and b R c imply a R c for each a; b; c 2 A. We say that R is quasitransitive if R>

is either empty or transitive, and acyclic if for no �nitely many elements a1; :::; ak in A; we
may have a1 R> � � � R> ak R

> a1. It is plain that transitivity of a binary relation implies its
quasitransitivity, and its quasitransitivity implies its acyclicity, but not conversely.
Let R be a binary relation on A: If R is re�exive and transitive, it is said to be a preorder

on A: If R is an antisymmetric preorder on A; we say that R is a partial order on A; and if
it is a complete partial order on A; we say that it is a linear order on A: If A is understood
to be endowed with a particular partial order on A; we may refer to it as a poset (short for
partially ordered set). Similarly, when A is endowed with a linear order on A; we refer to it
as a loset.
When A is endowed with a topological structure, there are a variety of ways of de�ning a

notion of �continuity�for a binary relation R on A. We will adopt the most commonly used
version of these here, and say that R is continuous if it is a closed subset of A�A. When A
is a metric space, this is the same thing as saying that limxm R lim ym for any two convergent
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sequences (xm) and (ym) in A with xm R ym for each m:4

Lotteries. Throughout this paper, we let X stand for a separable metric space which is
interpreted as a universal set of (non-random) outcomes. By a lottery on X; we mean a
Borel probability measure on X. The support of a lottery p on X is the smallest closed
subset S of X such that p(S) = 1: In turn, by a simple lottery on X, we mean a lottery on
X with �nite support, and by a degenerate lottery on X; we mean a lottery whose support
is a singleton. As is standard, we denote by �! the degenerate lottery on X whose support is
f!g:
The set of all lotteries on X is denoted by �(X): As usual, we think of this set as a

topological space relative to the topology of weak convergence; as such this space is metrizable.
Throughout the paper, C(X) stands for the set of all continuous real maps on X; and Cb(X)
is the set of all continuous and bounded real maps on X. (When X is compact, these two
sets are the same.) We always think of Cb(X) as a metric space relative to the sup-metric.
The expectation of any map u in Cb(X) with respect to a probability measure p in �(X) is
denoted by E(u; p); that is,

E(u; p) :=
Z
X

udp:

A¢ ne Relations. For any linear space Y , a function f : �(X) ! Y is said to be a¢ ne if
f(�p + (1 � �)q) = �f(p) + (1 � �)f(q) for every p; q 2 �(X) and � 2 [0; 1_]: For example,
E(u; �) is an a¢ ne real map on �(X) for any u 2 Cb(X). Finally, we say that a binary relation
R on �(X) satis�es the Independence Axiom, if

p R q i¤ �p+ (1� �)r R �q + (1� �)r

for every p; q; r 2 �(X) and � 2 (0; 1]:

De�nition. An a¢ ne relation on �(X) is a re�exive binary relation on �(X) which satis�es
the Independence Axiom.

We focus on such binary relations exclusively in this paper.

3 Main Results

3.1 A Roadmap

Decision theory under risk takes a re�exive binary relation R on �(X) as its primitive, and
interprets it as the preference relation of an individual over lotteries onX: In turn, the classical
expected utility theory makes four fundamental assumptions on R, namely, it assumes that
R is complete, transitive, a¢ ne, and continuous. That is, expected utility theory focuses at
large on a continuous and a¢ ne preorder on �(X): The founding result of this theory is the

4Some authors use the term �closed-continuity� for what we call continuity of a binary relation. In turn,
one may say that R is open-continuous if R> is an open subset of A�A. These notions are in general distinct,
but they reduce to the same thing when R is complete.
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von Neumann-Morgenstern (Expected Utility) Theorem which provides an extremely useful
characterization for such preorders.

The von Neumann-Morgenstern Theorem.5 Let X be a separable metric space and % a
binary relation on �(X): Then, % is a continuous, complete and a¢ ne preorder on �(X) if,
and only if, there is a (utility) function u 2 Cb(X) such that

p % q i¤ E(u; p) � E(u; q)

for every p and q in �(X):

The assumption that separates expected utility theory from other theories of (cardinal)
utility is surely the Independence Axiom. As such, it is historically the most widely debated
axiom of the theory, and we have little to contribute to this discussion here. Instead, we take
this axiom as what �makes�expected utility theory, and attempt to understand the structure
it entails for preferences over lotteries in a systematic manner. As the re�exivity property is
none other than a triviality, the primitive of this paper will always be an a¢ ne relation on
�(X); where X is a separable metric space.
Our task is to understand exactly how the Independence Axiom meshes with the three

other assumptions that are imposed on % in the above theorem, namely, [C] completeness,
[T] transitivity and [CC] continuity. As we discussed in detail in the Introduction, there are
good economic reasons for doing so, and some of our applications in Section 4 will justify
this further. In Section 3.3, we begin our investigation by providing a result which is in a
sense the opposite extreme of the von Neumann-Morgenstern Theorem. This theorem drops
all three of the hypotheses [C], [T] and [CC] in that theorem, and characterizes those re�exive
preference relations that are known only to satisfy the Independence Axiom. We will see that
the main strokes of the von Neumann-Morgenstern Theorem are not lost even at this level
of generality. It is just that the notion of �expected utility� is then replaced by a notion of
�coalitional expected utility.�It then remains further to prove seven theorems, one for each
combination of the hypotheses [C], [T] and [CC]. Three of these have already been established
in the literature (at least in the case where X is compact). Obviously, if we posit all three of
these hypotheses, we get the von Neumann-Morgenstern Theorem. The case where we assume
only [C] and [T] was settled (in the form of a �lexicographic expected multi-utility theorem,�)
by Hausner and Wendel (1952), and the case where we assume only [T] and [CC] was dealt
with (in the form of a �vector expected multi-utility theorem,�) by Dubra, Maccheroni and
Ok (2004). The remaining four cases are settled in Section 3.3.
Of particular interest among the results presented in this paper is one in which only [C]

and [CC] are imposed on %. This result, given in Section 3.3.6, tells us exactly how the von
Neumann-Morgenstern Theorem alters when we drop transitivity from its set of hypotheses
(when X is compact). In addition, this result also serves as a stepping stone for determining
the impact of weakening the transitivity axiom in the von Neumann-Morgenstern Theorem, as
opposed to omitting it entirely. We present two results of this nature here. First, we show how
the von Neumann-Morgenstern Theorem modi�es if we replace [T] with [QT] quasitransitivity

5This theorem has appeared �rst in an appendix of the 2nd edition of the opus von Neumann and Morgen-
stern (1947), albeit in the special case where X is �nite. To our knowledge, the general version of the theorem
as we state here was put on record �rst in Grandmont (1972).
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(Section 3.3.7), and then carry out the same exercise for the case where [T] is replaced with
[A] acyclicity (Section 3.3.8). Insofar as optimization- and game-theoretic applications are
concerned, we �nd (in Section 4) that the latter result is surprisingly useful.
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Figure 1 (in which Ti refers to Theorem i below) is meant to illustrate which of our
theorems corresponds to which combination of the hypotheses imposed on %.6 As such, this
�gure is meant to provide a roadmap for Section 3.3.

3.2 Coalitional Expected Utility Representations

All of the representation theorems we present in this paper (with the exception of the treatment
given in Appendix B) are couched in terms of a new notion of expected utility representation.
This section is devoted to a preliminary discussion of this notion.

3.2.1 Coalitional Minmax Expected Utility Representation

For purposes of interpretation, let us refer to a person whose preference relation on �(X)
is a complete, continuous and a¢ ne preorder as a �von Neumann-Morgenstern agent.� In
this jargon, for instance, the von Neumann-Morgenstern Theorem says that the preferences
of a von Neumann-Morgenstern agent on �(X) admits an expected utility representation
(with a continuous and bounded cardinal utility function). Now consider an individual whose
preferences on �(X) are modeled by means of an arbitrarily given a¢ ne relation R on �(X):
This individual may not be a von Neumann-Morgenstern agent, because her preference relation
may fail to be complete, transitive, and/or continuous. However, it is possible that the
preferences of this individual still arise from some type of aggregation of the preferences of
several �von Neumann-Morgenstern agents.�

6Not every theorem we report below works with an arbitrary separable metric space X: But we can still
look at these results from a uni�ed perspective, for each of them remains valid when X is compact. Formally
speaking, then, one should presume that Figure 1 is based on an a¢ ne (preference) relation on �(X); where
X is a compact metric space.
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To illustrate, suppose there is a collection U of continuous and bounded real maps on X
such that

p R q i¤ E(u; p) � E(u; q) for each u 2 U (1)

for every p and q in �(X): In this case, it makes good sense to think of our individual as
consisting of several �rational selves,� each of whom is a von Neumann-Morgenstern agent.
The representation maintains that this person prefers a lottery p over another lottery q i¤
every one of her �rational selves� says that p is better than q: This is exactly the notion
of expected multi-utility representation advanced by Dubra, Maccheroni and Ok (2004). It
corresponds to those (a¢ ne) preferences on �(X) which are transitive and continuous, but
not necessarily complete. (If there is a disagreement about the desirability of p and q among
some of these selves, that is, E(u; p) > E(u; q) and E(v; q) > E(v; p) for some u; v 2 U , then
the agent remains indecisive about the ranking of p and q:)
This is of course not the only way of representingR by means of multiple expected utilities.

Another interesting alternative obtains if we choose a collection V of continuous and bounded
real maps on X such that

p R q i¤ E(v; p) � E(v; q) for some v 2 V (2)

for every p and q in �(X): In this case too we can think of our individual as consisting
of several �rational selves,� each of whom is a von Neumann-Morgenstern agent. For this
individual, it is enough to �justify�a decision from the perspective of only one of her selves,
that is, she prefers p over q i¤ at least one of her �rational selves�says that p is better than q:
This is very much in the spirit of the justi�able preference representation studied by Lehrer
and Teper (2011). It corresponds to those (a¢ ne) preferences on �(X) which are complete,
quasitransitive and continuous, but not necessarily transitive (due to the potential �thickness�
of indi¤erence curves).
What of (a¢ ne) preferences on �(X) that may fail to be both complete and transitive? It

turns out that we can again think of such preferences as arising from the aggregation of several
�rational selves,�but the representation notion to be used here must be more general than
those in (1) and (2). What we need is to view the individual�s preferences as an aggregation
of the preferences of groups of von Neumann-Morgenstern agents where the preferences of
each group itself is determined by aggregating the preferences of its members. To put this
precisely, let U be a collection of nonempty convex subsets of Cb(X) such that

p R q i¤ [for every U 2 U there is a u 2 U such that E(u; p) � E(u; q)] (3)

for every p and q in �(X): This representation generalizes both of the representation notions
we considered above. (If every element of U is a singleton, (3) reduces to (1), and if U is itself
a singleton, then (3) reduces to (2).) And, just as in those cases, it is as if our individual has
multiple �selves,�where each �self�is a von Neumann-Morgenstern agent. But, unlike those
cases, her decision making is now guided by coalitions of these �selves.�More precisely, there
is a set S of coalitions of von Neumann-Morgenstern agents such that

R =
\
S2S

[
f%i;S: i 2 ISg; (4)

10



where %i;S is the preference relation of the �self i in the coalition S.� (Here, S is the index
set (of the coalitions), and for each S 2 S; IS is the index set (of the members of the coalition
S).) Thus, our individual ranks p over q i¤ in any coalition of her von Neumann-Morgenstern
�selves,�there is at least one �self�that says p is better than q, or put di¤erently, p R q i¤
no coalition of her totally rational �selves�may block the lottery p in favor of q.
Suppose R satis�es (3) for every p and q in �(X): Then, clearly,

p R q implies inf
U2U

supfE(u; p)� E(u; q) : u 2 Ug � 0 (5)

for every p; q 2 �(X): While the converse of this implication is in general not valid, we will
prove in Section 3.3.4 that one can choose U in such a way that it holds whenX is compact and
R is continuous. What is more, we can do this in a way that allows us to replace the operators
inf and sup with those of min and max, respectively. Motivated by these observations, we
will refer to the representation notion of (3) in what follows as a coalitional minmax expected
utility representation for R.

De�nition. Let R be a binary relation on �(X): We say that R admits a coalitional
minmax expected utility representation if there is a collection U of nonempty convex
subsets of Cb(X) such that (3) holds for every p and q in �(X): In turn, we refer to any such
collection U as a coalitional minmax expected utility for R:

The main thesis of the present paper is that this representation notion provides a unifying
structure for expected utility theory at large. Indeed, in our �rst result below we will see
that any re�exive binary relation on �(X) which satis�es the Independence Axiom admits a
coalitional minmax expected utility representation. As we introduce more structure on such
a relation, say, in the form of [C], [CC], [T], [QT] and/or [A], the representing collection U
becomes more and more concrete. In particular, the von Neumann-Morgenstern Theorem
says that if we impose [C], [CC] and [T] jointly, we can choose U as a singleton collection that
consists of a singleton set.

3.2.2 Coalitional Maxmin Expected Utility Representation

There is a natural alternative to coalitional minmax expected utility representation for a¢ ne
relations on �(X). Speci�cally, we can also consider a dual representation notion for R
which is of �maxmin� form; this is obtained by switching the order of quanti�ers in (3).
(The resulting representation notion is in the same spirit to what Lehrer and Teper (2011)
call �Knightian-justi�able�preferences in the context of preferences over Anscombe-Aumann
acts.) This dual representation would ask for a collection V of nonempty convex subsets of
Cb(X) such that

p R q i¤ [there is a V 2 V such that E(v; p) � E(v; q) for each v 2 V] (6)

for every p and q in �(X): (In what follows, we refer to this notion as coalitional maxmin
expected utility representation.) Adopting the jargon and notation introduced above, this is
the same thing as saying that

R =
[
T2T

\
fDi;T : i 2 JTg

11



where T and JT (for each T 2 T ) are index sets, and each Di;T is a continuous and complete
a¢ ne preorder on X: Thus, the individual whose preferences are modeled by R prefers p
to q i¤ there is at least one coalition of her von Neumann-Morgenstern �selves�that surely
recommends choosing p over q in the sense that every single �self�that belongs to that coalition
says p is better than q: The preference relation R is thus rationalized in the same sense that is
proposed by Cherepanov, Feddersen and Sandroni (2013), albeit, rationalization takes place
here through coalitions of �selves�as opposed to the �selves�themselves.7

In the abstract, coalitional minmax and maxmin expected utility representations are equiv-
alent. In fact, we can always transform a given setU (of sets of utility functions) that represents
a relation in the former sense into another collection V that represents the same relation in
the latter sense, and conversely.8 (In particular, the word �minmax� can be replaced with
�maxmin�in Theorem 1 below.) However, as we put further conditions on R; say [C], [QT],
[A], etc., the mathematical structure of the representing set of sets of utilities exhibits di¤erent
characteristics depending on which type of coalitional expected utility representation notion
is adopted. One should thus make a choice in this regard, and as such, we work exclusively
with the notion of coalitional minmax expected utility representation in this paper.

3.3 Representation Theorems

3.3.1 A¢ ne Relations

Our �rst result identi�es what remains of the von Neumann-Morgenstern Theorem if we delete
the hypotheses of completeness, transitivity and continuity from its statement. Its main
purpose is to exhibit the fundamental nature of the notion of coalitional minmax expected
utility representation.

Theorem 1. Let X be a separable metric space and R a binary relation on �(X): Then, R
is an a¢ ne relation on �(X) if, and only if, it admits a coalitional minmax expected utility
representation.

We can thus �nd a coalitional minmax expected utility U for any a¢ ne relation R on
�(X). This is remarkable because every (utility) function in any member of U is continuous
and bounded, even though R itself need not be continuous. This fact may help working with
a¢ ne preference relations in general. Conversely, Theorem 1 speci�es a general method of
de�ning an arbitrary a¢ ne relation on �(X). Using a set of sets of continuous and bounded
real functions as in (3), apparently, exhausts all such binary relations. We will provide some
applications of this observation in Section 4.

7Put more accurately, if we agree to refer to a continuous a¢ ne preorder on �(X) as a �rationale,�
and understand from the statement p R q that the agent chooses p from the feasible set fp; qg; then our
representation notion reduces to what Cherepanov, Feddersen and Sandroni (2013) call rationalization of a
choice correspondence (on pairwise sets).

8Suppose R is a relation on �(X) which admits a coalitional minmax expected utility representation U.
For any (p; q) 2 R and any U 2 U; pick a function up;q;U in U such that E(up;q;U ; p) � E(up;q;U ; q): Then, for
any (p; q) 2 R; de�ne Up;q := cofup;q;U : U 2 Ug; and �nally, set V := fUp;q : (p; q) 2 Rg: It is routine to check
that (5) holds for every p; q 2 �(X); thus R admits a coalitional maxmin expected utility representation. The
converse implication is proved analogously.
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3.3.2 Complete A¢ ne Relations

We now ask how the representation obtained in Theorem 1 would modify if we knew that the
preferences of the agent were complete. Or put di¤erently, the issue is to understand what
happens to the von Neumann-Morgenstern Theorem if we delete the hypotheses of transitivity
and continuity from its statement.
Intuitively, given the interpretation of �coalitional minmax expected utility representa-

tion,�we would expect that the completeness of preferences would imply some sort of consis-
tency across coalitions. (For instance, if ffug; fvgg is a coalitional minmax expected utility
for the preference relation R with E(u; p) > E(u; q) and E(v; q) > E(v; p); then R would be in-
decisive about the ranking of p and q.) Fortunately, there is an easy way of formalizing exactly
what sort of consistency must there be across the members of its coalitional minmax expected
utility U when R is complete. In the setting of Theorem 1, it turns out that completeness of
R would be captured fully if we posit that, given any two coalitions U and V in U; there is
a member of U and a member of V whose (von Neumann Morgenstern) preferences are fully
aligned. More concretely, but equivalently, we require that any two coalitions in U overlap,
and hence say that a collection U of nonempty subsets of Cb(X) is coherent if U \V 6= ; for
every U ;V 2 U. Our next result shows that completeness of R allows us to choose a coherent
coalitional minmax expected utility for it.

Theorem 2. Let X be a separable metric space and R a binary relation on �(X): Then, R
is a complete a¢ ne relation on �(X) if, and only if, it admits a coherent coalitional minmax
expected utility representation.

The interpretation of this result is identical to that of Theorem 1, with the proviso that U
has now a bit more structure (in the form of coherence). However, thanks to its completeness,
we now have a nice characterization of the strict part of the preference relation R as well.
Indeed, if R is complete and U is a coalitional minmax expected utility for R; then

p R> q i¤ [there is a U 2 U such that E(u; p) > E(u; q) for each u 2 U ] (7)

for every p and q in �(X): In terms of our �coalitional representation�interpretation, there-
fore, an individual who has a complete (but possibly non-transitive and discontinuous) prefer-
ence relation on �(X) which satis�es the Independence Axiom strictly prefers a lottery p over
q i¤ each of her von Neumann-Morgenstern �selves�in at least one of her (mental) coalitions
likes p strictly better than q: When p R> q; then, choice of q over p would surely be blocked
by that coalition (in the �mind�of the agent).

3.3.3 (Complete) A¢ ne Preorders

Let R be an a¢ ne relation on �(X): Then, by Theorem 1, there is a coalitional minmax
expected utility U for R. If we assume further that R is transitive, U must have a particular
structure. Unfortunately, unlike the case we considered in the previous section, we were unable
to �nd an applicable way to characterize this structure. We presently leave this matter as an
open problem. (See Section 5.)
It is worth noting here that there is another approach that one can adopt for studying

a¢ ne preorders. Indeed, complete and a¢ ne partial orders (on an arbitrary mixture space)
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were studied in the earlier literature. In particular, Hausner and Wendel (1952) have proved
a rather deep characterization theorem for such partial orders in the form of a lexicographic
multi-utility representation. It is trivial to extend this result to the case of a¢ ne preorders
on �(X) where X is any metric space. With a little bit more e¤ort, one can even deduce
a version of it that applies in the absence of the completeness hypothesis, thereby providing
a coalitional lexicographic expected multi-utility theorem. While they are couched in terms
of a di¤erent representation notion for a¢ ne preorders than the one we focus on here, these
�ndings nevertheless accord fully with the primary objective of the present paper. Not to deter
from the uni�ed perspective of the exposition, but still to provide a comprehensive coverage,
we thus postpone the related discussion to Appendix B which contains a precise statement
of the Hausner-Wendel Theorem, and a formalization of how one may drop the completeness
hypothesis in the statement of that theorem.

3.3.4 Continuous A¢ ne Relations

We now turn to the continuous (and re�exive) preference relations on �(X) which satisfy the
Independence Axiom. This is the problem of determining how the von Neumann-Morgenstern
Theorem would modify if we deleted the hypotheses of completeness and transitivity from its
statement.
We again take the �coalitional (multi-utility) representation�as our target. As such, the

question is to �nd out what sort of a structure continuity would entail for the coalitional
minmax expected utility U found in Theorem 1. At least when X is compact, there is quite a
nice answer to this question. In the context of that theorem, but with X compact, continuity
of R, which is often viewed in decision theory as a technical, but duly reasonable, hypothesis,
allows us to guarantee that every element of U is a compact collection of continuous and
bounded (utility) functions on X: In fact, we can do a bit better than this. In this case we
can even choose U itself as a compact collection (relative to the Hausdor¤ metric).9

Theorem 3. Let X be a compact metric space and R a binary relation on �(X): Then, R is a
continuous a¢ ne relation on �(X) if, and only if, there is a compact collection U of nonempty
compact and convex subsets of C(X) such that (3) holds for every p and q in �(X):

The interpretation of this result is identical to that of Theorem 1, but now U has some
topological structure. In particular, this allows us to express the representation (3) alterna-
tively as

p R q i¤ min
U2U

max
u2U

(E(u; p)� E(u; q)) � 0

for every p and q in �(X): This justi�es the �minmax� in the term �coalitional minmax
expected utility representation.�

9Let Z be a metric space, and denote the set of all nonempty compact subsets of Z by k(Z):We denote the
Hausdor¤metric, and convergence with respect to this metric, on k(Z) by dH and!H ; respectively. We recall
that dH is a uniform metric in the sense that dH(S; T ) = supfjd(z; S)� d(z; T )j : z 2 Zg for any nonempty
compact subsets S and T of Z; where d is the metric of the underlying space Z: (In the present discussion, Z
is C(X); and d is the sup-metric.)
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3.3.5 Continuous A¢ ne Preorders

Of the remaining two variations of the von Neumann-Morgenstern Theorem, one concerns the
identi�cation of the structure of continuous, re�exive and transitive preference relations that
satisfy the Independence Axiom. Starting with the pathbreaking work of Aumann (1962), this
case has actually received quite a bit of attention in the literature. In particular, the following
theorem of Dubra, Maccheroni and Ok (2004) identi�es exactly what happens if we drop the
completeness hypothesis in the statement of the von Neumann-Morgenstern Theorem (when
X is compact).

The Dubra-Maccheroni-Ok Theorem. Let X be a compact metric space and % a binary
relation on �(X): Then, % is a continuous and a¢ ne preorder on �(X) if, and only if, there
exists a compact subset U of C(X) such that

p % q i¤ E(u; p) � E(u; q) for each u 2 U

for every p and q in �(X):10

This theorem is sometimes referred to as the �expected multi-utility theorem�in the liter-
ature. As it is discussed in Dubra, Maccheroni and Ok (2004) in detail, we will not elaborate
on it here. Su¢ ce it to say that the coalitional minmax expected utility representation (3)
reduces to the representation of the Dubra-Maccheroni-Ok Theorem if each element of U is a
singleton.11

3.3.6 Complete and Continuous A¢ ne Relations

We now ask what happens if we drop only the hypothesis of transitivity in the statement of
the von Neumann-Morgenstern Theorem. Given Thereoms 2 and 3, there is a straightforward
conjecture in this regard. Let R be an a¢ ne relation on �(X), where X is compact. By
Theorem 1, we know that there is a coalitional minmax expected utility U for R. Theorem
2 says that we can choose U as coherent, provided that R is complete, and Theorem 3 says
that we can choose it as a compact collection of compact sets (of cardinal utility functions),
provided that R is continuous. Thus, it is only natural to conjecture that we can choose U
as a coherent and compact collection of compact and convex sets, provided that R is both
complete and continuous. While this is by no means an immediate consequence of Theorems
2 and 3, it is nevertheless correct. This is the content of our next result.

Theorem 4. Let X be a compact metric space and R a binary relation on �(X): Then, R
is a continuous and complete a¢ ne relation on �(X) if, and only if, there is a coherent and
compact collection U of nonempty compact and convex subsets of C(X) such that (3) holds
for every p and q in �(X):12

10It is known that compactness cannot be relaxed to separability in this theorem (unless we choose the
cardinal utilities as Borel measurable instead of continuous). See Evren (2008) for details.
11The �only if�part of the above theorem is a bit sharper than the original statement of the expected multi-

utility theorem in that we are now able to guarantee that the set U of utilities is in fact compact (relative to
the sup norm).
12In this theorem, we can take U as countable instead of compact, while in Theorem 3 we can take U as

countable and compact. In fact, it is these stronger assertions that we prove in Appendix A.
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This result provides a complete characterization of preferences over lotteries (with a com-
pact prize space) where all hypotheses of expected utility theory, with the exception of tran-
sitivity, hold. As such, it provides an exhaustive method of constructing non-transitive, but
complete and continuous, preferences that satisfy the Independence Axiom.

3.3.7 Justi�able Preferences

It is natural at this point to inquire how we may strengthen the representation obtained in
Theorem 4 further if we introduce some �partial� transitivity properties into the model. In
this and the next section, we look at this issue by means of the properties of quasitransitivity
and acyclicity. While the former property is suitable if we wish to model a situation in which
preference cycles arise only due to �nontransitive indi¤erence,�the latter property is essential
for optimization-theoretic exercises.13

Let us begin by noting that, in the context of Theorem 4, quasitransitivity property is
equivalent to the apparently more basic property of strict convexity. Formally, we say that a
binary relation R on �(X) is strictly convex if

fp; qg R> r implies 1
2
p+ 1

2
q R> r

for any p; q; r 2 �(X): Clearly, this property has more of the �avor of the Independence Axiom,
and its normative justi�cation is self-evident. Moreover, as the following result demonstrates,
it re�nes the representation we obtained in Theorem 4 in an appealing manner.

Theorem 5. Let X be a compact metric space and % a binary relation on �(X): Then, R is
a continuous, complete and strictly convex a¢ ne relation on �(X) if, and only if, there exists
a compact and convex subset V of C(X) such that

p R q i¤ E(v; p) � E(v; q) for some v 2 V

for every p and q in �(X):

This representation notion complements that found in the Dubra-Maccheroni-Ok Theorem.
The latter is the special case of our minmax �coalitional multi-utility representation�where
each (of the possibly many) coalitions has a single member, while the representation above
corresponds to the case where there is a single coalition (of possibly many members).
The characterization identi�ed in Theorem 5 also relates closely to the recent work of

Lehrer and Teper (2011). In that paper, for preferences over Anscombe-Aumann acts (horse
race lotteries), an axiomatic characterization is obtained in terms of multiple priors, but a
single cardinal utility function. The representation maintains that an act is preferred to
another i¤ for at least one prior the (subjective) expected utility of the former is at least as
large as that of the latter. Such preferences, which are aptly called justi�able preferences by
Lehrer and Teper (2011), are not transitive (but they are quasitransitive), and possess an
analogous structure to the one we obtained in Theorem 5. In fact, it makes good sense to
think of the preferences characterized in Theorem 5 as the counterpart of Lehrer and Teper�s
justi�able preferences in the context of risk.14

13In the case of more concrete scenarios, one may consider other types of �partial�transitivity properties.
We look at two such properties in the context of monetary lotteries in Section 4.5.3.
14Lehrer and Teper (2011) does not provide such a counterpart, because they assume in their model that
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3.3.8 Acyclic Preferences over Lotteries

Even a �nite set may not possess a maximal element with respect to a nontransitive binary
relation; this is but one of the main di¢ culties with working with such relations. However, one
does not need the full power of transitivity to escape this di¢ culty. In particular, it is well-
known that every nonempty �nite subset of a given nonempty set A has a maximal element
with respect to a binary relation on A i¤ that relation is acyclic. As such, it makes sense to
think of acyclicity as the strongest relaxation of transitivity which is suitable for optimization
theoretic applications.
With this motivation in the background, we now ask how the representation obtained in

Theorem 4 would alter if we added acyclicity to its hypotheses. There is actually a rather
pleasant answer to this query. Recall that Theorem 4 shows that adding completeness to the
setting of Theorem 3 allows us to choose a coherent coalitional minmax expected utility U for
the a¢ ne relation R under consideration. By de�nition, this means that any two elements of
U have a nonempty intersection. It turns out that if, in addition, we posit acyclicity, then we
can choose U in such a way that all of its members intersect.
We say that a collection U of nonempty subsets ofCb(X) is strongly coherent if

T
U 6= ;.

Our next result shows that, in the context of Theorem 4, acyclicity of R is equivalent to the
strong coherence of U.

Theorem 6. Let X be a compact metric space and R a binary relation on �(X). Then, R is
a continuous, complete and acyclic a¢ ne relation on �(X) if, and only if, there is a strongly
coherent and compact collection U of nonempty compact and convex subsets of C(X) such
that (3) holds for every p and q in �(X):

This characterization is likely to be useful in optimization-theoretic applications of ex-
pected utility theory. We will provide several such applications in Section 4.

Remark. If we relax the compactness requirement to separability, and omit the continuity
hypothesis in this result, the same characterization remains valid, except that instead of
strong coherence, we would then have that any �nitely many elements of U overlap. �

4 Applications

4.1 On Constructions of A¢ ne Preferences

The representation theorems we presented in Section 3.3 provide exhaustive methods of con-
structing certain types of a¢ ne relations. These methods may be helpful in settling problems
about such preferences which may be di¢ cult to tackle in the abstract. To illustrate, let us
recall the well-known facts that a quasitransitive binary relation need not be transitive, and
an acyclic binary relation need not be quasitransitive. But is this still the case for complete
and continuous a¢ ne relations on a lottery space? In other words, is it the case that tran-
sitivity and quasitransitivity and/or quasitransitivity and acyclicity are equivalent properties

preferences over constant acts are transitive. In fact, if there is only one state in that model (so the preferences
are over �(X)), their characterization theorem reduces to the von Neumann-Morgenstern Theorem.
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for complete and continuous a¢ ne binary relations? It turns out that the answer is no on
both accounts, but it does not seem to be easy to construct the sought counterexamples from
the primitives. Yet, the representations we found for such relations in Sections 3.3.7 and 3.3.8
make the problem a walk in the park.

Example 1. Let u and v stand for the maps t 7! t and t 7! t2 on [0; 1]; and let R be the
binary relation on �[0; 1] which is represented by V := cofu; vg as in Theorem 5. Then, R is
a continuous, quasitransitive and a¢ ne relation on �[0; 1], and we have

p R q i¤ either E(u; p) � E(u; q) or E(v; p) � E(v; q)

for any p; q 2 �[0; 1]. This relation is not transitive. For instance, if p and r are degenerate
lotteries which pay 0.5 and 0.6, respectively, and q is the lottery that pays 0 with probability
1
2
and 1 with probability 1

2
; we have p R q R r and yet r R> p: �

We can similarly use the representation obtained in Theorem 6 to construct a simple
example which shows that a continuous, acyclic and complete a¢ ne relation need not be
quasitransitive. Instead, however, we will obtain this fact as an immediate consequence of a
more general observation in the next section.

4.2 The Preference Reversal Phenomenon

Among the many experimental observations that refute the basic premises of expected utility
theory, a particularly striking one is the so-called preference reversal (PR) phenomenon. This
phenomenon was �rst demonstrated by Slovic and Lichtenstein (1968), and then explored by
Grether and Plott (1979) in meticulous detail. Let us formalize the PR-phenomenon in terms
of lotteries on [0; 1]: Let R be a binary relation on �[0; 1] which models the preferences of an
individual over such lotteries. For any p 2 �[0; 1]; we de�ne

SR(p) := inffa 2 [0; 1] : �a R> pg;

the minimum selling price of p for the individual. Now, for any real numbers m; M; �
and � in (0; 1) with M > m and � > �, consider the lotteries

pm;� := ��m + (1� �)�0 and pM;� := ��M + (1� �)�0:

(So, pm;� is a lottery that yields a �small� return with high probability, and pM;� one that
yields a �large� return with small probability.) We say that R exhibits the preference
reversal (PR) phenomenon if there exist such numbers m; M; � and � such that pm;� R>

pM;� and yet SR(pm;�) < SR(pM;�): The experimental works we mentioned above have found
that the preferences of many subjects indeed exhibit this phenomenon (for some choice of m;
M; � and �).
Intuitively speaking, the PR-phenomenon suggests an intrinsic nontransitivity in the eval-

uation of lotteries by an individual.15 Indeed, if R is quasitransitive, then for any two lotteries
15While later studies by Holt (1986), Karni and Safra (1987), Segal (1988), and Safra et al. (1990) have

shown that the problem may in fact be the violation of a certain aspect of the independence axiom, the
experimental works of Tversky et al. (1990) and Loomes et al. (1991) have shown that the PR-phenomenon
indeed points to something deeper than this.
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p and q on [0; 1] with pR> q; we have fa : �a R> pg � fa : �a R> qg and hence SR(p) � SR(q):
Thus, any �explanation� of choice data of the form �p R> q and SR(p) < SR(q)�necessi-
tates a nontransitive model of preferences over risk. In fact, one of the major motivations
behind the SSB utility theory was precisely this fact; Fishburn (1984) has shown that the
PR-phenomenon is consistent with this utility theory. But recall that the SSB utility theory
relaxes both the transitivity and independence hypotheses of expected utility theory. A nat-
ural question is if the PR-phenomenon is consistent with nontransitive risk preferences that
are otherwise rational. And even if this is the case, how unrealistic would such a model be?
More concretely, we ask: Can a continuous, re�exive, complete, and acyclic preference

relation which satis�es the Independence Axiom (and which is consistent with �rst order
stochastic dominance) exhibit the PR-phenomenon? It is somewhat intuitive to expect that
the answer would be no, because such a preference relation is endowed with many traits of
rationality. Its only lack of rationality arises from its potential nontransitivity, but that is
tamed as well, for this relation can never entail strict cycles. At any rate, it seems quite
di¢ cult to answer the question from the primitives. The representation obtained in Theorem
6, on the other hand, provides ample structure for such preferences, and this allows us to
settle the matter fairly easily. And, to our surprise, the answer turns out to be a¢ rmative.

Observation. For any real numbers m; M; � and � in (0; 1) with M > m and � > �; there
is a continuous, complete and acyclic a¢ ne relation R on �[0; 1] such that pm;� R> pM;�
and yet SR(pm;�) < SR(pM;�): To prove this, take any such numbers m; M; � and �; and
�x some t in (0;m): We consider the continuous real maps u; v and w on [0; 1] whose graphs
are depicted in Figure 2. Let R be the binary relation for which U := fcofu; vg;cofv; wgg is
a coalitional minmax expected utility. We know from Theorem 6 that this is a continuous,
complete and acyclic a¢ ne relation on �[0; 1].16 Notice that E(u; pm;�) = � = E(v; pm;�)
and E(w; pm;�) = ��

2
; while the expectation of any of these functions with respect to pM;� is

�: By the representation, therefore, we see that pm;� R> pM;�. On the other hand, by the
representation, SR(pM;�) is the in�mum of the set fa : either (u(a) > � and v(a) > �) or
(v(a) > � and w(a) > �)g: It follows that

SR(pM;�) = minfmaxfu�1(�); v�1(�)g;maxfv�1(�); w�1(�)gg = minfu�1(�); w�1(�)g;

and hence, SR(pM;�) > t: But a similar computation shows that

SR(pm;�) = minfu�1(�); w�1(��2 )g = w
�1(��

2
) < t;

and our assertion is proved. �

Corollary. A continuous, acyclic and complete a¢ ne relation on �[0; 1] need not be quasitran-
sitive.
16It is readily checked that we have p R q whenever p �rst-order stochastically dominates q: (We can also

replace the maps u; v and w by strictly increasing functions in this example so as to guarantee that p R> q
whenever p strictly �rst-order stochastically dominates q.) In fact, R is even transitive with respect to the
�rst-order stochastic dominance in the sense that if p �rst-order stochastically dominates q and q R r; we have
p R r: (We call such R FSD-transitive, and provide a characterization for them in Section 4.5.3.)
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While our main objective here is to demonstrate the potential �use� of Theorem 6, we
should note that this observation is of economic substance. About the PR-phenomenon,
Grether and Plott (1979), p.623, says that �... this behavior is not simply a violation of
some type of expected utility hypothesis. The preference measured one way is the reverse of
preference measured another and seemingly theoretically compatible way. If indeed preferences
exist and if the principle of optimization is applicable, then an individual would place a
higher reservation price on the object he prefers. The behavior as observed appears to be
simply inconsistent with this basic theoretical proposition.�The observation above shows that
this �basic theoretical proposition�is misleading at best. Indeed, the preference relation we
considered above is continuous, complete and acyclic, and hence the principle of optimization
is very much applicable to it. (See Section 4.3.) Moreover, it is rational in every other sense; it
is consistent with stochastic dominance and the Independence Axiom. Apparently, contrary to
the view of Grether and Plott (1979), the PR-phenomenon is simply a violation of an expected
utility hypothesis, namely, transitivity. But, curiously, this violation is not excessive, in that
the PR-behavior is consistent with the hypothesis of �acyclic choice.�

4.3 Optimization with Acyclic Preferences

It is well-known (and easily proved) that a maximum exists in any given nonempty �nite subset
of a nonempty set A with respect to a binary relation on A if (and only if) that relation is
complete and acyclic. There are numerous results in optimization theory (with far reaching
applications in the context of, say, general equilibrium theory) which extends this observation
to the case of compact sets and continuous, complete and acyclic relations. The following
result is very much in this spirit, but it works with continuous, complete and acyclic a¢ ne
relations. Providing a direct proof for this result seems (to the authors) quite di¢ cult, but
the representation of such relations we found in Section 3.3.8 makes the required argument
rather straightforward.

Proposition 1. Let X be a compact metric space and R a continuous, complete and acyclic
a¢ ne relation on �(X). Then, any nonempty closed subset P of �(X) possesses an extreme
point which is a maximum element of P with respect to R:17

17A slight modi�cation of the proof yields the following more general statement: Let X be a metric space
and R a continuous, complete and acyclic a¢ ne relation on �(X). Then, a nonempty closed subset P
of �(X) possesses an extreme point which is a maximum element of P with respect to R, provided thatS
fsupp(p) : p 2 Pg is relatively compact.
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Proof. By Theorem 6, there is a strongly coherent collection U of nonempty compact
subsets of C(X) such that (3) holds for every p and q in �(X): Take any nonempty closed
subset P of�(X); and pick an arbitrary element u of

T
U: It is well-known that compactness of

X implies that we can view�(X) as a nonempty compact subset of a locally convex topological
linear space (namely, ca(X)); see the opening of Appendix A for details. Moreover, E(u; �) is
the restriction of a continuous linear functional on this space. By the Extreme Point Theorem,
therefore, there is an extreme point p� of P such that E(u; p�) � E(u; p) for each p 2 P: But p�
is a maximum element of P with respect toR; for otherwise, that is, if p R> p� for some p 2 P;
there would exist a V 2 U such that E(v; p) > E(v; p�) for each v 2 V ; which is impossible
since u 2 V : �

For any binary relation R on �(X); let us denote the set of all maximal and maximum
elements of a given nonempty subset P of �(X) by MAX(P;R) and max(P;R); respectively.18

The Bergstrom-Walker Theorem says that every nonempty compact metric space A has a
maximal element with respect to a re�exive and acyclic binary relation on A whose asymmetric
part is open in A � A:19 An immediate application of this result shows that max(P;R) 6= ;
under the conditions of Proposition 1. (Indeed, a¢ nity of R plays no role in securing this
conclusion.) The novelty of Proposition 1 is instead to show that at least one member of
max(P;R) must come from the extreme points of P (even when P is not convex). Clearly,
this would be useful in linear programming type problems in which optimization takes place
with respect to an acyclic binary relation on�(X) which satis�es the conditions of Proposition
1. We provide two illustrations.

Example 2. Let X be a metric space and R a continuous, complete and acyclic a¢ ne relation
on �(X). Take any nonempty compact subset Y of X: Then, by the Bergstrom-Walker
Theorem, there is a maximum element of �(Y ) with respect to R. On the other hand,
Proposition 1 says that there is an extreme point of �(Y ) which belongs to max(�(Y );R):
But it is well-known that any extreme point of �(Y ) is a degenerate lottery on Y: Thus,
Proposition 1 allows us to conclude that there is a y 2 Y such that �y R p for every lottery p
on Y:20 �

Example 3. Let R be a continuous, complete and acyclic a¢ ne relation on �[0; 1]. Take any
positive integer m; and real numbers �1; :::; �m. Suppose we wish to �nd a best lottery p on
X with respect to R such that the ith moment of p equals �i for each i 2 [m]:21 To avoid
trivialities, let us assume that there is at least one such p; so

P :=

�
p 2 �[0; 1] :

Z
[0;1]

tip(dt) = �i for each i 2 [m]
�

18That is, MAX(P;R) := fp 2 P : q R> p for no q 2 Pg and max(P;R) := fp 2 P : p R Pg:
19See, Bergstrom (1975) and Walker (1977).
20This result is a triviality when R is known to be transitive, for then there is sure to be a maximum element

of f�y : y 2 Y g with respect to R; and the a¢ nity and transitivity of R allow us to conclude that this element
must belong to max(�(Y );R). The problem is that the second step of this argument fails when all we know
is that R is acyclic. In that case the claim is hardly trivial, but it is nevertheless an easy consequence of
Proposition 1 (and hence of Theorem 6).
21Notational Convention. We write [m] to denote the set f1; :::;mg for any positive integer m:
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is nonempty. Now notice that P = �[0; 1] \ H1 \ � � � \ Hm where Hi := f� 2 ca[0; 1] :R
[0;1]

ti�(dt) = �ig; which is a closed hyperplane in ca[0; 1]. As �[0; 1] is a convex and compact
subset of ca[0; 1] (in the weak� topology), a well-known theorem of convex analysis says that
any one extreme point of P can be expressed as a convex combination of at most m + 1
many extreme points of �[0; 1]:22 But it is well-known that any extreme point of �[0; 1] is a
degenerate lottery on [0; 1]: In view of Proposition 1, we may thus conclude that there is at
least one best lottery p on X with respect to R such that the ith moment of p equals �i for
each i 2 [m], and that the support of p has at most m+ 1 elements. �

In passing, we note that there is a way of �computing�max(P;R) by using the coalitional
minmax expected utility representation of R, at least when P is convex. To see this, let X; R
and P be as in Proposition 1, but assume now that P is convex as well. Let U be a strongly
coherent set of nonempty compact subsets of C(X) which is a coalitional minmax expected
utility for R, and for each U in U; de�ne the binary relation �U on �(X) by p �U q i¤
E(u; p) > E(u; q) for every u 2 U : Clearly, �U is an irre�exive and transitive binary relation
on �(X) which is open in �(X)��(X); and hence, given that P is convex, Proposition 1 of
Evren (2014) says that MAX(P;�U) equals

S
u2U argmaxfE(u; p) : p 2 Pg; for each U in U:

But, since R is complete, we have max(P;R) = MAX(P;R>); while it is easy to check that a
lottery p belongs to MAX(P;R>) i¤ p 2 MAX(P;�U) for every U 2 U: In sum,

max(P;R) =
\
U2U

[
u2U

argmaxfE(u; p) : p 2 Pg;

a formula which allows one to compute max(P;R) by using the coalitional minmax expected
utility U for R:

4.4 Existence of Nash Equilibrium with Acyclic Preferences

Take any positive integer n; and let Xi be a compact metric space for each i 2 [n]:We envision
a strategic situation in which Xi is the (pure) action space of player i; and hence the (pure)
outcome space is X := X1 � � � � � Xn: Each player is allowed to use mixed strategies, that
is, the (mixed) action space of player i is �(Xi); and hence the (mixed) outcome space is the
set of all product Borel probability measures

Nn pi on X: But, by contrast to standard game
theory, we do not subscribe to the expected utility hypothesis here. Instead, we postulate
that the preferences of each player i is given in the form of a continuous and complete a¢ ne
relationRi on �(X): In turn, we say that an n-vector (p�1; :::; p

�
n) of lotteries on X is a (mixed

strategy) Nash equilibrium of G := fXi;Rigi2[n] ifNn(p�i ; p
�
�i) Ri

Nn(pi; p
�
�i) for every pi 2 �(Xi) and i 2 [n]:23 (8)

The set of all (mixed strategy) Nash equilibria of G is denoted by NE(G).
Clearly, this speci�cation generalizes the classical notion of (mixed strategy) Nash equilib-

rium. If each Ri is transitive, then the von Neumann-Morgenstern Theorem applies, and we
22As for the de�nition of ca[0; 1]; we refer the reader to the preminaries section of Appendix A. We also note

that �[0; 1] can be replaced with any nonempty, convex and compact subset of ca[0; 1] in the argument so far.
23We adopt the standard notation of game theory here. For instance,

Nn
(p1; p

�
�1) stands for the product

Borel probability measure p1 
 p�2 
 � � � 
 p�n; and so on.
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recover the standard situation. And, in that case, a fundamental theorem of game theory, due
to the late John Nash, says that NE(G) is not empty. The point of the present application is
that we do not need the full power of transitivity to guarantee the existence of equilibrium;
it turns out that the acyclicity of each Ri is enough for this purpose.

Proposition 2. Take any positive integer n, and for each i 2 [n]; let Xi be a compact metric
space and Ri a continuous, complete and acyclic a¢ ne relation on �(X). Then, there exists
a (mixed strategy) Nash equilibrium of G := fXi;Rigi2[n].
Proof. By Theorem 6, for each i 2 [n] there is a strongly coherent collection U(i) of

nonempty compact subsets of C(X) such thatNn pj Ri

Nn qj i¤ inf
U2U(i)

max
u2U

(E(u;
Nn pj)� E(u;

Nn qj)) � 0 (9)

for every pj; qj 2 �(Xj) and j 2 [n]: For each i in [n]; we pick an arbitrary ui in
T
U(i): By

Nash�s Existence Theorem, there is a (p�1; :::; p
�
n) in �(X1)� � � � ��(Xn) such that

E
�
ui;
Nn(p�i ; p

�
�i)
�
� E

�
ui;
Nn(pi; p

�
�i)
�

for every pi 2 �(Xi) and i 2 [n]:

Since ui belongs to every member of U(i); therefore,

max
u2U

(E(ui;
Nn pj)� E(ui;

Nn qj)) � 0

for each U 2 U(i) and i 2 [n]: Given (9), it follows that (8) holds, and we are done. �

Remark. The only other result on the existence of Nash equilibria with nontransitive prefer-
ences that we are aware of is the existence theorem of Fishburn and Rosenthal (1986). That
result says that a strategic game with �nitely many players and �nite action spaces has a
mixed strategy Nash equilibrium, provided that the preferences of each player (over mixed
strategy pro�les) is represented by an SSB utility (à la Fishburn (1982)). This theorem and
Proposition 2 are not nested. Indeed, as we have noted earlier, an a¢ ne relation that is rep-
resented by an SSB utility must be of the expected utility form. Thus, the intersection of the
Fishburn-Rosenthal theorem and Proposition 2 is precisely Nash�s original existence theorem.
�

4.5 Preferences over Monetary Lotteries

In this set of applications we concentrate on monetary lotteries (with compact support), and
hence set X := [0; 1]: Our immediate objective is to characterize the structure of (stochasti-
cally) monotonic and/or risk averse preferences over such lotteries which need not be either
transitive or complete. We then look at the structure of such preferences when they satisfy
a stronger monotonicity condition with respect to (any sort of) stochastic dominance order-
ing. Finally, we put these �ndings in use by investigating if and when such preferences �nd
portfolio diversi�cation desirable.
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4.5.1 Stochastic Monotonicity

Let us denote the �rst-order stochastic dominance relation on �[0; 1] by �FSD, and recall
that p �FSD q i¤ E(u; p) � E(u; q) for every increasing u 2 C[0; 1]: In turn, we say that a
binary relation R on �[0; 1] is stochastically monotonic if p �FSD q implies p R q for any
p and q in �[0; 1].

Lemma 1. Let U be a nonempty collection of nonempty compact and convex subsets of
C[0; 1], and let R be the binary relation on �[0; 1] which satis�es (3) for every p and q in
�[0; 1]: Then, R is stochastically monotonic if, and only if, each U 2 U contains an increasing
function.

Proof. The �if�part of the claim is straightforward. To prove its �only if�part, assume
that R is stochastically monotonic. Let V stand for the set of all continuous and increasing
real maps on [0; 1]; and suppose U \ V = ; for some U 2 U. Since U is a nonempty compact
and convex set, and V is a closed convex cone, in C[0; 1]; we can strongly separate U and V
by a closed hyperplane in C[0; 1]; that is, there is a nonzero continuous linear functional L on
C[0; 1] such that L(u) > 0 � L(v) for every (u; v) 2 U�V :24 But, by the classical Riesz-Radon
Representation Theorem and the Jordan Decomposition Theorem,

L(f) =

Z
[0;1]

fd��
Z
[0;1]

fd� for every f 2 C[0; 1]

where � and � are two Borel measures on [0; 1]: As L is nonzero, we have � 6= � and
minf�(X); �(X)g > 0: Moreover, since the constant functions 1[0;1] and �1[0;1] belong to
V ; both L(1[0;1]) and �L(1[0;1]) are nonpositive, which implies that �(X) = �(X) > 0: Conse-
quently, p := �=�(X) and q := �=�(X) are two lotteries on [0; 1] such that

E(u; p)� E(u; q) > 0 � E(v; p)� E(v; q) for every (u; v) 2 U � V.

In view of the de�nition of R; the �rst part of these inequalities implies that q R p does
not hold. On the other hand, the second part of these inequalities entails q �FSD p: As R is
stochastically monotonic, then, q R p; a contradiction. �

Remark. We say that a binary relation R on �[0; 1] is stochastically strictly monotonic
if p >FSD q implies p R> q for any p and q in �[0; 1]. It is an easy exercise to show that, under
the conditions of Lemma 1, R is stochastically strictly monotonic i¤ (a) each U 2 U contains
an increasing function; and (b) for every x; y 2 [0; 1] with x > y, there is a U 2 U such that
u(x) > u(y) for each u 2 U : �

Combining Lemma 1 with Theorem 4 yields the characterization we are after.

Proposition 3. Let R be a binary relation on �[0; 1]: Then, R is a stochastically monotonic
and continuous a¢ ne relation on �[0; 1] if, and only if, there is a compact collection U of
nonempty compact and convex sets of continuous real maps on [0; 1] such that (i) U is a
coalitional minmax expected utility for R; and (ii) each U 2 U contains an increasing function.
24See, for instance, Theorem 5.58 in Aliprantis and Border (2006).
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Remark. This result extends the characterization provided in Proposition 2 of Dubra, Mac-
cheroni and Ok (2004) for (possibly incomplete) stochastically monotonic a¢ ne preorders by
dropping the transitivity assumption. �

4.5.2 Risk Aversion

Let us denote the mean of any lottery p on [0; 1] by e(p); that is, e(p) := E(id[0;1]; p) where
id[0;1] is the identity map on [0; 1]. A binary relation R on �[0; 1] is said to be weakly risk
averse if �e(p) R p for every p 2 �[0; 1]: There are useful characterizations of weakly risk
averse binary relations that admit an expected utility representation, but it is well-known
that weak risk aversion becomes an unduly weak property the moment we leave the classical
expected utility paradigm (cf. Cohen (1995)). Instead, the behavioral notion of risk aversion
in nonexpected utility theory is often modeled by what is called �strong risk aversion,�which
corresponds to the idea that any mean-preserving spread of a lottery makes that lottery less
desirable. There is no di¤erence between weak and strong risk aversion in the context of
expected utility theory, but the latter is amenable to analysis in the case of more general
preference relations on risky prospects. The present framework is no exception to this.
We say that a binary relation R on �[0; 1] is strongly risk averse if p R q for any p

and q in �[0; 1] such that e(p) = e(q) and E(u; p) � E(u; q) for every concave u 2 C[0; 1]: In
the context of preferences that admit a coalitional minmax expected utility representation,
we have the following analogue of Lemma 1.

Lemma 2. Let U be a nonempty collection of nonempty compact and convex subsets of
C[0; 1], and let R be the binary relation on �[0; 1] which satis�es (3) for every p and q in
�[0; 1]: Then, R is strongly risk averse if, and only if, each U 2 U contains a concave function.
Proof. The �if�part of the assertion is immediate from (3) and the de�nition of strong

risk aversion. To prove the �only if�part, let V stand for the set of all continuous and concave
real maps on [0; 1]; and suppose U \ V = ; for some U 2 U. Proceeding exactly as in the
proof of Lemma 1, then, we �nd two lotteries p and q on [0; 1] such that

E(u; p)� E(u; q) > 0 � E(v; p)� E(v; q) for every (u; v) 2 U � V.

Evaluating the second part of these inequalities with id[0;1] and�id[0;1]; we see that e(p) = e(q);
so it follows from this part that q R p would hold if R were strongly risk averse. Yet (3) and
the �rst part of these inequalities imply that q R p does not hold. �

Once again, combining Lemma 2 with Theorem 4 yields the characterization we are after.

Proposition 4. Let R be a binary relation on �[0; 1]: Then, R is a strongly risk averse
and continuous a¢ ne relation on �[0; 1] if, and only if, there is a compact collection U of
nonempty compact and convex sets of continuous real maps on [0; 1] such that (i) U is a
coalitional minmax expected utility for R; and (ii) each U 2 U contains a concave function:

Remark. It is plain that every strongly risk averse binary relation R on �[0; 1] is weakly
risk averse. We can use the representation obtained in Theorem 5 to show that the converse
of this is false even when R is continuous, quasitransitive and a¢ ne. Indeed, we can easily

25



distort the identity function to obtain two increasing, continuous and nonconcave real maps
on [0; 1] such that the convex hull U of fu; vg does not contain any concave functions while
for each p 2 �[0; 1]; either u(e(p)) = e(p) � E(u; p) or v(e(p)) = e(p) � E(v; p).25 Now put
U := fUg and de�ne R by (3). Then, by Theorem 5, R is continuous, strictly convex and
a¢ ne (and hence quasitransitive). On the other hand, while it is plain that it is weakly risk
averse, Lemma 2 says that R is not strongly risk averse. �

4.5.3 Transitivity with respect to Stochastic Dominance

Suppose that � is a partial order on�[0; 1] which we take as some sort of a dominance relation
on the space of monetrary lotteries. The interpretation is that if p � q; we think of p is a
better lottery than q in some objective sense. Now consider an individual whose preferences
are modeled by means of a binary relation R on �[0; 1]; and suppose that this individual
recognizes � indeed as an unambigous, albeit partial, ordering of the lotteries. Then, clearly,
p � q would imply p R q for any two lotteries p and q on [0; 1]: But, given the interpretation
of �, it makes sense to ask for the consistency of R with � in a stronger sense. Suppose we
know that p � q and q R r. In this case, p is better than q in some �obvious�sense, while
q is preferred to r by this individual. Even if her preferences may exhibit cycles, it is not
unreasonable to limit the structure of such cycles, and presume that we would have p R r in
this case. When this holds for every p; q and r in [0; 1]; we say that R is transitive with
respect to �.
The suitability of �transitivity with respect to ��as a behavioral property depends on the

kind of application that one is interested in, and of course, in the exact nature of �. One case
that is of obvious interest is when � is the �rst-order stochastic dominance ordering. When R
is transitive with respect to �FSD; we say that it is FSD-transitive: Another case of interest
is when � is the second-order stochastic dominance ordering. (We denote the second-order
stochastic dominance relation on �[0; 1] by �SSD, and recall that p �SSD q i¤ E(u; p) �
E(u; q) for every increasing and concave u 2 C[0; 1]:) When R is transitive with respect to
�SSD; we say that it is SSD-transitive.
The following result characterizes the structure of all FSD- and SSD-transitive continuous

a¢ ne relations on �[0; 1].

Proposition 5. Let R be a binary relation on �[0; 1]: Then, R is an FSD-transitive (SSD-
transitive) and continuous a¢ ne relation on�[0; 1] if, and only if, there is a compact collection
of nonempty compact and convex sets of continuous, increasing (and concave) real maps on
[0; 1] which is a coalitional minmax expected utility for R:

As we shall see in the next section, this proposition makes it quite easy to work with FSD-
and SSD-transitive continuous a¢ ne relations on �[0; 1]. In passing, we note that we focus on
these two partial transitivity conditions here only for concreteness. The proposition extends
easily to cover the case of continuous and a¢ ne relations on �[0; 1] that are transitive with
respect to kth order stochactic dominance ordering (for any positive integer k).

25To give a concrete example, let u(t) := t for each t 2 [0; 12 ); u(t) :=
1
2 for each t 2 [

1
2 ;

3
4 ); and u(t) := 2t�1

for each t 2 ( 34 ; 1]: Then set v(t) := 0 for each t 2 [0;
1
4 ); v(t) := 2t �

1
2 for each t 2 [

1
4 ;

1
2 ); and v(t) := t for

each t 2 ( 12 ; 1]:
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4.5.4 Portfolio Diversi�cation with Non-transitive Preferences

By an asset, we mean a random variable on the measure space ([0; 1];B; `); where B is
the Borel �-algebra on [0; 1] and ` is the Lebesgue measure on [0; 1]: We denote the Borel
probability measure that an asset x induces on [0; 1]; that is, the distribution of x; by px.
(That is, px := ` �x�1.) Given any binary relation R on �[0; 1]; which models the preferences
of an investor over lotteries on [0; 1]; we de�ne the investor�s preferences over the set A of all
assets by means of the binary relation R� on A with

x R� y i¤ px R py

for every x; y 2 A. Adopting the formulation of Dekel (1989), then, we say that a binary
relation R on �[0; 1] exhibits preference for two-asset portfolio diversi�cation if

x R=
� y implies �x+ (1� �)y R� fx; yg

for every x; y 2 A and � 2 [0; 1]: If R admits an expected utility representation, and is
risk averse, then a straightforward application of Jensen�s Inequality shows that it exhibits
preference for two-asset portfolio diversi�cation. We now show that this fact remains true in
the context of a large class of risk averse preference relations that need not be either complete
or transitive.

Proposition 6. Let R be a continuous and SSD-transitive a¢ ne relation on �[0; 1]. Then, R
exhibits preference for two-asset portfolio diversi�cation.

Proof. By Proposition 5, there is a coalitional minmax expected utility U for R such that
every member of

S
U is increasing and concave. Take any x; y 2 A with x R=

� y: Then, for
every U 2 U there is a uU 2 U such that E(uU ; py) � E(uU ; px). Then, for each U 2 U; using
the concavity of uU and the Change of Variables Formula yields

E(uU ; p�x+(1��)y) = E(uU � (�x+ (1� �)y); `)
� �E (uU � x; `) + (1� �)E (uU � y; `)
= �E(uU ; px) + (1� �)E(uU ; py)
� E(uU ; px);

that is, �x+ (1� �)y R� x; for any � 2 [0; 1]: Replacing the roles of x and y in this argument
completes the proof. �

In the case of expected utility theory, restricting attention to two-asset portfolios is without
loss of generality. To wit, let us say that a binary relation R on �[0; 1] exhibits preference
for n-asset portfolio diversi�cation if

xi R=
� x

j for each i; j 2 [n] implies �1x
1 + � � �+ �nxn R� fx1; :::; xng

for every x1; :::; xn 2 A and �1; :::; �n � 0 with �1+ � � �+�n = 1: A classical result of expected
utility theory, which goes back to Tobin (1958), says that if R is risk averse, and has an
expected utility representation, then it exhibits preference for n-asset portfolio diversi�cation
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for any positive integer n: At �rst glance, it appears that transitivity hypothesis is not of the
essence for the validity of this fact. Indeed, Proposition 6 supports this intuition. Surprisingly,
however, this result does not extend beyond two-asset portfolios. In fact, even in the context
of risk averse justi�able preferences, preference for portfolio diversi�cation does not hold in
general. As our �nal application, we prove this by using Theorem 5.

Observation. A continuous and SSD-transitive a¢ ne relation on �[0; 1] need not exhibit
preference for three-asset portfolio diversi�cation. To see this, consider the real concave maps
u and v on [0; 1] de�ned as:

u(t) :=

�
4t; if 0 � t < 1

8
4
7
t+ 3

7
; if 1

8
� t � 1 and v(t) := t:

Let R be the binary relation on �[0; 1] for which fcofu; vgg is a coalitional minmax expected
utility. Then, by Theorem 5 and Proposition 5, R is a continuous, complete, strictly convex
and SSD-transitive (hence strongly risk averse) a¢ ne relation on �[0; 1]. (Moreover, this
relation is strictly monotonic with respect to �rst-order stochastic dominance in the sense
that p �FSD q implies p R> q for any distinct p and q in �[0; 1].) However, R does not
exhibit preference for three-asset portfolio diversi�cation. To see this, consider the assets
x := 1

8
1[0;1]; y :=

1
2
1[0;5=8); and z := 1[0;3=8). The distributions of these assets are px := �1=8;

py :=
5
8
�1=2 +

3
8
�0 and pz := 3

8
�1 +

5
8
�0; respectively. Easy computations show that

E(u; px) > E(u; py) > E(u; pz) and E(v; pz) > E(v; py) > E(v; px);

which means that px R= py R
= pz R

= px: Now let l := 1
3
x+ 2

3
z: Then, pl := 3

8
�17=24 +

5
8
�1=24;

and another easy computation yields

E(u; py) > E(u; pl) and E(v; py) > E(v; pl);

which means py R> pl. But then, by continuity, we can choose a small enough " > 0 so that
py R

> p"l+(1�")y; that is, y R>
� "l + (1� ")y: As "l + (1� ")y is a convex combination of x; y

and z; our assertion is proved. �

5 Open Problems

We conclude our exposition by putting on record some of the open problems that arise from
the present work.

O1. Theorems 5 and 6, respectively, characterize justi�able and acyclic continuous a¢ ne
relations, albeit under the completeness hypothesis. The proofs of these results utilize this
hypothesis in a crucial way, and it remains an open problem to �nd what e¤ect dropping
completeness assumption would have on these results. (At present, we do not even have
a conjecture on this matter.) As Theorems 5 and 6 have proved extremely useful in the
applications of Section 4, this appears to be a worthwhile task.

O2. Let R be an a¢ ne preorder, or a complete a¢ ne preorder, on �(X); where X is, say,
a separable (or compact) metric space. We know from Theorem 1 that there is a coalitional
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minmax expected utility U for R. We do not know, however, what exactly is the structure of
U: (Put another way, we do not know what sort of a coalitional representation we would get
if we added the transitivity hypothesis to Theorems 1 and/or 2. Once again, we do not have
a conjecture on this matter.) See Appendix B for more on this problem.

O3. Dubra, Maccheroni and Ok (2004) report a rather nice uniqueness result for their ex-
pected multi-utility representation (which generalizes the notion of �unique up to positive
a¢ ne transformations.�) A similar uniqueness result is valid for our characterization of jus-
ti�able preferences in Theorem 5. To put this precisely, let X be a compact metric space,
and let K(X) be the collection of all nonempty compact and convex subsets of C(X). De�ne
�(U) := fau + b : a > 0; b 2 R and u 2 Ug for any U 2 K(X): Theorem 5 says that for
every continuous, complete, and strictly convex a¢ ne relation R on �(X), there is a V in
K(X) such that fVg is a coalitional minmax expected utility for R: Then, fUg is a coalitional
minmax expected utility for R for some other U in K(X) i¤ �(U) = �(V). (We leave the
proof as an exercise.) Obtaining similar uniqueness results for Theorems 1-4 turn out to be
signi�cantly more challenging. This task remains an open problem.

O4. We have carried out our analysis in this paper exclusively in the context of risk, tak-
ing the von Neumann-Morgenstern expected utility theorem as our starting point. It is a
natural problem to extend this analysis to the context of uncertainty, where one would in-
stead take the Anscombe-Aumann expected utility theorem as the starting point. Indeed,
Lehrer and Teper (2011) have provided the formulation of justi�able preferences in this setup.
Similarly, Nau (2006), Galaabaatar and Karni (2013) and Riella (2015) prove versions of the
Anscombe-Aumann Theorem without the completeness hypothesis (albeit strengthening the
monotonicity axiom and with �nite state and prize spaces). Nothing is known at present
about the structure of a¢ ne and monotonic (and state independent) preferences over (�nite)
acts (on a �nite state space) which fail to satisfy continuity, completeness and/or transitivity.
The theorems of the present paper are likely to be instrumental in the study of this problem
(for they settle the matter for constant acts), but needless to say, much more work remains
to be done.

APPENDIX A:

This appendix contains the proofs of our main results. We begin, however, with a brief review of some of the
mathematical notions that we will use below.

A.1: Preliminaries

Convex Cones. A nonempty subset C of a (real) linear space Y is said to be a cone if �C � C for every
� � 0: If, in addition, C + C � C; then C is a convex set, and we then say that it is a convex cone.26 The
intersection of an arbitrary nonempty collection of convex cones in Y is a convex cone in Y; and the union
of an arbitrary chain of convex cones in Y is a convex cone in Y . Thanks to the former property, for any
nonempty set S in Y; there is a (unique) smallest convex cone that contains S; which we denote by cone(S):
It is easily checked that cone(S) equals the set of all elements of the form

Pn
�iyi where n is any positive

integer, �1; :::; �n are nonnegative real numbers, and y1; :::; yn 2 S: In particular, conefyg = f�y : � � 0g for
any y 2 Y; and more generally, cone(S) = f�y : � � 0 and y 2 Sg for any nonempty convex subset S of Y: If
S is a nonempty �nite set and C = cone(S); we say that C is �nitely generated. It is well-known that every
�nitely generated convex cone in a Hausdor¤ topological linear space is closed.

26As is standard, by �A + �B we mean the set f�a + �b : (a; b) 2 A � Bg for any real numbers � and �;
and any subsets A and B of the linear space Y:
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We will need the following simple observation about convex cones in the sequel.

Lemma A.1. Let C be a convex cone in a linear space Y and take any x 2 Y nC: Then, there is a convex cone
Cx in Y such that (i) C � Cx; (ii) x 2 Y nCx; and (iii) Cx [ �Cx = Y:

Proof. Let D stand for the set of all convex cones in Y such that C � D and x 2 Y nD: As it contains C;
this set is not empty. As the union of any chain of convex cones in Y is a convex cone in Y; we may apply
Zorn�s Lemma to �nd a maximal element, say, Cx; of D (with respect to set containment). As it belongs to D;
the cone Cx satis�es (i) and (ii). Next, to derive a contradiction, suppose Y n(Cx [�Cx) is not empty. Then,
there is a y 2 Y such that neither y nor �y belongs to Cx. De�ne

D1 := cone(Cx [ fyg) and D2 := cone(Cx [ f�yg):

By the maximality of Cx; both D1 and D2 must contain x: It follows that x = z1 + �y and x = z2 + �(�y)
for some z1; z2 2 Cx and �; � > 0. But then z2 � z1 = (�+ �)y; and hence y = 1

�+� (z2 � z1); which implies

x = z1 + �y = z1 +

�
�

�+ �

�
(z2 � z1) =

�

�+ �
z2 +

�
1� �

�+ �

�
z1.

As Cx is convex, this implies that x 2 Cx; a contradiction. Conclusion: Cx satis�es (iii). �

ca(X): In what follows ca(X) stands for the linear space of signed �nite Borel measures on X: We view this
space as a normed linear space relative to the total variation norm k�kTV , where k�kTV := j�j (X); and denote
its closed unit ball by B; that is, B := f� 2 ca(X) : k�kTV � 1g: Let us now assume that X is a compact
metric space. Under this hypothesis, the normed linear space ca(X) is isometrically isomorphic to C(X)�.
(This is the Radon-Riesz Representation Theorem.) We use this duality to topologize ca(X) with the weak�-
topology. Those subsets of ca(X) that are open (closed) with respect to this topology are said to be w�-open
(w�-closed). Note that a net (��) in ca(X) converges to a signed �nite Borel measure � on X relative to the
weak�-topology i¤ Z

X

fd�� !
Z
X

fd� for every f 2 C(X):

We will also need to use another topology on ca(X); namely, the bounded weak� topology on ca(X): By
de�nition, this topology is the strongest (i.e. �nest) topology on ca(X) which agrees with the weak� topology
on every bounded subset of ca(X): Put di¤erently, a set O � ca(X) is open (closed) with respect to this
topology �we say in this case that O is bw�-open (bw�-closed) �i¤ O \ �B is w�-open (w�-closed) in �B for
every � > 0: More generally, for any nonempty subset S of ca(X); a set O � S is bw�-open (bw�-closed) in S
i¤ O \ �B is w�-open (w�-closed) in S \ �B for every � > 0:

It is known that topologizing ca(X) with the bounded weak�-topology is the same as topologizing this
linear space with the topology of uniform convergence on compact subsets of C(X): (Relative to the latter
topology, a net (��) in ca(X) converges to a � 2 ca(X) i¤

sup
f2F

����Z
X

fd�� �
Z
X

fd�

����! 0 for any nonempty compact F � C(X):)

As such, ca(X) is an Hausdor¤ locally convex topological linear space relative to the bounded weak�-topology.
Moreover, a linear functional on ca(X) is continuous with respect to the weak� topology i¤ it is continuous
with respect to the bounded weak� topology. This fact leads to the famous Krein-�mulian Theorem: A convex
subset of ca(X) is w�-closed i¤ it is bw�-closed.27

S(X): In what follows, we put
S(X) := f� 2 ca(X) : �(X) = 0g

which is a linear subspace of ca(X): A straightforward application of the Jordan Decomposition Theorem
shows that this space is equal to the linear span of �(X)��(X). When ca(X) is given a particular topology,

27All of the facts we have stated in this paragraph are standard, but none is trivial. For proofs of them, see,
for instance, Section 8.8 of Aliprantis and Tourky (2007).
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we consider S(X) as a topological space itself by endowing it with the subspace topology. In particular, when
ca(X) is endowed with either the weak� or the bounded weak� topology, S(X) becomes a Hausdor¤ locally
convex topological linear space.

Aumann Cones. An extremely useful idea in the study of a¢ ne relations on a mixture space is to think of
such relations as cones in a suitable linear space. This idea was introduced by Aumann (1962) in the special
case of a¢ ne preorders, and since then became a common method of analysis in expected utility theory.

Let X be a metric space and R a binary relation on �(X). We de�ne

C(R) := f�(r � s) : � � 0 and r R sg

and
C0(R) := f�(r � s) : � > 0 and r R sg,

notations that we will use throughout this appendix. Clearly, both C(R) and C0(R) [ f0g; where 0 stands
for the zero Borel measure on X; are cones in ca(X): The following two observations are building blocks of
every result that we report in this paper.

Lemma A.2. Let X be a metric space and R a binary relation on �(X) which satis�es the Independence
Axiom.

(a) If R is irre�exive, then p R q i¤ p� q 2 C0(R); for any p; q 2 �(X):
(b) If R is irre�exive, then C0(R) [ f0g is a convex cone in S(X) if, and only if, R is transitive.
(c) If R is re�exive, then p R q i¤ p� q 2 C(R); for any p; q 2 �(X):
(d) If R is re�exive, then C(R) is a convex cone in S(X) if, and only if, R is transitive.

Proof. Suppose R is irre�exive, and take any p; q 2 �(X): Obviously, p R q implies p � q 2 C0(R):
Conversely, suppose p� q = �(r � s) for some � > 0 and r R s: Then, by a¢ nity of R,

1

1 + �
p+

�

1 + �
s =

1

1 + �
q +

�

1 + �
r R

1

1 + �
q +

�

1 + �
s;

which, again by a¢ nity of R, yields p R q; and part (a) is established. Moreover, if R is re�exive, we can
allow � to take value 0 in this argument, so part (c) is established as well. To prove (d), assume that R is
re�exive, and suppose �rst that C(R) is a convex cone in S(X): Then, for any p; q; r 2 �(X) with p R q R
r, part (c) entails that p � r = (p � q) + (q � r) 2 C(R) + C(R) � C(R); and hence, again by part (c), we
�nd p R r; as we sought. Conversely, suppose R is a preorder on �(X); and take any �1 and �2 in C(R): We
assume that neither of these signed measures is the zero measure, for otherwise �1 + �2 is trivially in C(R):
Then, for each i 2 f1; 2g; there are �i > 0 and (ri; si) 2 R such that �i = �i(ri � si): Let � := �1

�1+�2
; and

note that
�r1 + (1� �)r2 R �r1 + (1� �)s2 R �s1 + (1� �)s2

because R satis�es the Independence Axiom. As R is transitive, therefore, �r1+ (1� �)r2 R �s1+ (1� �)s2;
and hence, by part (c), �(r1 � s1) + (1� �)(r2 � s2) belongs to C(R): Thus:

�1 + �2 = (�1 + �2) (�(r1 � s1) + (1� �)(r2 � s2)) 2 (�1 + �2)C(R) � C(R):

We thus conclude that C(R)+C(R) � C(R); and part (d) is proved. It remains to prove part (b), but this case
is deduced readily from part (d) by using the fact that C(S) = C0(R)[f0g; where S = R[f(p; p) : p 2 �(X)g:
�
Lemma A.3. Let X be a compact metric space and R a binary relation on �(X) which satis�es the Indepen-
dence Axiom.

(a) If R is w�-open and irre�exive, then C0(R) is bw�-open in S(X).
(b) If R is w�-closed and re�exive, then C(R) is bw�-closed in S(X).28

Proof. Assume that R is w�-open. To prove part (a), we need the following fact.

28This observation relates closely to the main lemma of Dubra, Maccheroni and Ok (2004) who prove that
if R is a w�-closed a¢ ne preorder, then C(R) is w�-closed in S(X).
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Claim A.3.1. C0(R) \ �B is w�-open in S(X) \ �B; for every � > 0:

Proof of Claim A.3.1. Take any � > 0; and put K := S(X) \ �B to simplify the notation. Let (�m)
be any sequence in KnC0(R) which converges to some � 2 K: We wish to show that � 2 KnC0(R): If
�m = 0 for in�nitely many m; then � = 0; and we are done. Otherwise, we may assume without loss of
generality that �m 6= 0 for every m: By the Jordan Decomposition Theorem, for each m 2 N there exists a
(�m; pm; qm) 2 R++��(X)��(X) such that �m = �m(pm� qm) and kpm � qmkTV = 2: Since k�mkTV � �;
this implies that sup �m � �

2 ; that is, (�m) is bounded. As compactness of X ensures that �(X) � �(X)
is weak�-compact in ca(X)� ca(X); therefore, there is a strictly increasing sequence (mk) in N such that
(�mk

) and (pmk
; qmk

) converge in R+ and in �(X) � �(X), respectively. Of course, where � := lim �mk
;

p := lim pmk
and q := lim qmk

; we have � = �(p� q): But pmk
� qmk

does not belong to C0(R); so by part (b)
of Lemma A.2, (pmk

; qmk
) is a sequence in (�(X) ��(X))nR: As this is w�-closed by hypothesis, it follows

that it contains (p; q) as well, that is, p � q does not belong to C0(R); as we sought. Conclusion: C0(R) is
sequentially weak�-open in K: As it is well-known that weak� topology on �B is metrizable, we are done. k

Now, �x an arbitrary � > 0; and write again K := S(X)\�B:We know from Claim A.3.1 that C0(R)\�B
is w�-open in K; that is, Kn(C0(R) \ �B) is w�-closed in K: Since

(S(X)nC0(R)) \ �B = Kn(C0(R) \ �B);

we �nd that (S(X)nC0(R)) \ �B is w�-closed in K: Since, being the intersection of two w�-closed sets, K is
w�-closed in ca(X); we may conclude that (S(X)nC0(R)) \ �B is w�-closed in ca(X): As this is true for any
� > 0; therefore, S(X)nC0(R) is bw�-closed in ca(X); which obviously implies that S(X)nC0(R) is bw�-closed
in S(X); thereby proving part (a) of the lemma.

To prove part (b), assume that R is w�-closed and re�exive, and de�ne S := (�(X) ��(X))nR. Then,
S is an irre�exive and w�-open binary relation on �(X) which satis�es the Independence Axiom. Moreover,
using Lemma A.2, one can easily check that C(R) = S(X)nC0(S). Applying part (a) to S; therefore, we �nd
that C(R) is bw�-closed in S(X). �

A¢ ne Duality. We will use the following duality theorem frequently in the subsequent arguments.

The A¢ ne Representation Lemma. Let X be a separable metric space, and F a continuous and a¢ ne real
map on �(X). Then, there is a continuous and bounded u : X ! R such that

F (p) =

Z
X

udp for every p 2 �(X):

Although we do not know a concrete reference to give for it, it is safe to say that this theorem is well-known
in the decision theory folklore. We thus omit its proof here, but note that the argument would proceed by
setting u(x) := F (�x) for each x 2 X: It is plain that u is continuous. One would then �rst verify the desired
equation for simple lotteries (by induction), then use this fact to show that u is bounded, and �nally establish
the general case by using the fact that the set of all simple lotteries is dense in �(X):

A.2: Proofs of Main Results

Proof of Theorem 1

We only need to prove the �only if�part of the assertion. We begin with de�ning

� := f(r; s) 2 �(X)��(X) : not r R sg

and
Ur;s := fu 2 Cb(X) : E(u; s) > E(u; r)g

for any (r; s) 2 �. Finally, we put
U := fUr;s : (r; s) 2 �g:
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Now, �x an arbitrary p and q in �(X): If p R q is false, then (p; q) 2 �; so, trivially, E(u; q) > E(u; p) for
every u 2 Up;q. Consequently,

p R q if [for every U 2 U there is a u 2 U such that E(u; p) � E(u; q)].

To prove the converse implication, assume that p R q; and de�ne C := conefp� qg, which is a closed convex
cone in ca(X). Now take any (r; s) 2 �: (We wish to �nd a u 2 Ur;s such that E(u; p) � E(u; q).) As
C � C(R) and r R s is false, part (c) of Lemma A.2 entails that r � s 2 ca(X)nC: We may then apply
the Separating Hyperplane Theorem to �nd a continuous linear functional L on ca(X) and a real number �
such that inf L(C) � � > L(r � s); that is, �(L(p) � L(q)) � � > L(r) � L(s) for each � � 0: Then, clearly,
L(p) � L(q): Moreover, 0 � �; and hence, L(s) > L(r): Now apply the A¢ ne Representation Lemma to
conclude the proof. �

Proof of Theorem 2

Suppose that there is a coherent collection U of nonempty convex subsets of Cb(X) such that (3) holds for
every p and q in �(X): It is obvious that R is an a¢ ne relation on �(X): Now take any p and q in �(X) such
that p R q does not hold. By the representation of R, this means that there is a U in U such that E(u; q) >
E(u; p) for each u 2 U . But, as U is coherent, U \ V 6= ; for each V 2 U: It follows that for every V 2 U there
is a v 2 V such that E(v; q) > E(v; p); which means q R p: In view of the arbitrariness of p and q; we conclude
that R is complete.

To prove the �only if� part of the assertion, we continue using the notation introduced in the proof of
Theorem 1. We wish to use the completeness of R to show that U is coherent. To this end, take any (r1; s1)
and (r2; s2) in �: As R is complete, we have s1 R> r1 and s2 R> r2. As U is a coalitional minmax expected
utility for R; therefore, there must exist a u 2 Ur1;s1 with E(u; s2) � E(u; r2); and a v 2 Ur2;s2 with E(v; s1) �
E(v; r1): Moreover, by de�nition of Ur1;s1 and Ur2;s2 ; we have E(u; s1) > E(u; r1) and E(v; s2) > E(v; r2);
respectively, and it follows that 12u+

1
2v 2 Ur1;s1 \ Ur2;s2 . �

Proof of Theorem 3

To prove the �if� part of the theorem, assume that there is a collection U of nonempty compact subsets of
Cb(X) such that (3) holds for every p and q in �(X): Clearly, this implies that R is an a¢ ne relation on
�(X): To see that R is continuous as well, take any sequence (pm; qm) in R which converges to (p; q) (relative
to the product topology on �(X) � �(X) induced by the topology of weak convergence). As �(X); and
hence �(X)��(X); is metrizable, we will be done if we can show that (p; q) belongs to R. To this end, take
an arbitrary U 2 U. For each positive integer m, (3) implies that there is a um 2 U such that E(um; pm) �
E(um; qm): Since U is compact, there is a subsequence, say, (umk

); of (um) which converges to some u 2 U .
But it is well-known that E is a continuous real map on C(X)��(X): It follows that E(um; pm)! E(u; p) and
E(um; qm)! E(u; q); and hence, E(u; p) � E(u; q): In view of the arbitrary choice of U ; and the representation
(3), we conclude that p R q; as we sought.

Conversely, assume that R is a continuous a¢ ne relation on �(X): If R = �(X) � �(X); we are done
by picking any constant real map u on X and setting U := ffugg; so we assume in what follows that R is a
proper subset of �(X)��(X): We may then de�ne the binary relation S on �(X) by

p S q i¤ not q R p:

Clearly, R> = S>, while S is irre�exive and it satis�es the Independence Axiom. By part (a) of Lemma A.2,
therefore, p S q i¤ p� q 2 C0(S); for any p; q 2 �(X): Moreover, S is an w�-open subset of �(X)��(X); for
it is the complement of the w�-closed set f(p; q) : q R pg in �(X)��(X):

Claim 3.1. For any (r; s) 2 S, there is a subset C of C0(S) such that (i) r � s 2 C; (ii) C [ f0g is a convex
cone in S(X); and (iii) C is bw�-open in S(X):

Proof of Claim 3.1. Take any r; s 2 �(X) with r S s; and note that r � s 2 C0(S): Since S(X) is a
Hausdor¤ locally convex topological linear space relative to the bounded weak� topology, and we know from
part (a) of Lemma A.3 that C0(S) is an open subset of this space, therefore, there is a convex bw�-open set
O in S(X) such that r � s 2 O � C0(S): Put C := cone(O)nf0g; which obviously satis�es (i) and (ii) of the
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claim. As a vector � in any convex cone in a topological linear space is in the interior of that cone i¤ �� is
also in the interior of that cone for any � > 0; it is evident that C satis�es (iii) as well. k

For any (r; s) 2 S; let Cr;s be a subset of C0(S) that satis�es the conditions (i), (ii) and (iii) of Claim
3.1. Notice that any � in C0(S) can be written as �(r � s), and hence belongs to Cr;s; for some � > 0 and
(r; s) 2 S. Conversely, r � s 2 Cr;s � C0(S) for any (r; s) 2 S: Therefore,

C0(S) =
S
fCr;s : (r; s) 2 Sg: (10)

Next, take an arbitrary (r; s) 2 S, and de�ne the binary relation �r;s on �(X) by

p �r;s q i¤ p� q 2 Cr;s: (11)

By construction, �r;s is an asymmetric and transitive binary relation on�(X) which satis�es the Independence
Axiom. Moreover, since Cr;s is bw�-open, �r;s is bw�-open, and hence w�-open, in �(X) � �(X): We may
thus apply Theorem 1 of Evren (2014) to �nd a compact subset Ur;s of C(X) such that

p �r;s q i¤ E(u; p) > E(u; q) for each u 2 Ur;s (12)

for any p; q 2 �(X). We can in fact replace Ur;s with its closed and convex hull, which we denote by co(Ur;s);
in this statement. Indeed, if p and q are two lotteries on X such that p �r;s q; then compactness of Ur;s and
(12) imply that

" := min
u2Ur;s

(E(u; p)� E(u; q)) > 0;

and hence E(v; p) � E(v; q)+ " for each v 2 co(Ur;s); which, in turn, entails that E(w; p) � E(w; q)+ " for each
w 2 cl(co(Ur;s)): Combining this observation with (12), therefore, we have

p �r;s q i¤ E(u; p) > E(u; q) for each u 2 co(Ur;s) (13)

for any p; q 2 �(X).
Now for any lotteries p and q on X; by using (10), (11) and (13), we �nd that q�p does not belong to C0(S)

i¤ for every (r; s) 2 S there is a u 2 co(Ur;s) with E(u; p) � E(u; q): But, by de�nition, p R q holds i¤ q S p does
not, which happens exactly when q � p does not belong to C0(S). Thus, setting U0 := fco(Ur;s) : (r; s) 2 Sg;
we may conclude:

p R q i¤ [for every U 2 U0 there is a u 2 U such that E(u; p) � E(u; q)] (14)

for any p; q 2 �(X): Moreover, by Mazur�s Compactness Theorem, co(Ur;s) is a compact set in C(X) for each
(r; s) 2 S; so U0 lies within k(C(X)):29

To conclude our proof, we recall that compactness of X implies the separability of C(X). As the set of all
nonempty compact subsets of a separable metric space is separable relative to the Hausdor¤ metric topology,
it follows that k(C(X)); and hence U0, is separable. Pick any countable dense subset U1 of U0.

Claim 3.2. U1 is a coalitional minmax expected utility for R.

Proof of Claim 3.2. Take any lotteries p and q on X: As U1 is a subset of U0; if p R q; then we must have
maxv2V(E(v; p)�E(v; q)) � 0 for every V 2 U1. Suppose, then, p R q is false. Then, since U0 is a coalitional
minmax expected utility for R (and every element of U0 is compact), there is a U 2 U0 such that

" := min
u2U

(E(u; q)� E(u; p)) > 0:

Let us pick any V in U1 such that the Hausdor¤ distance between U and V is strictly less than "
2 . Then, for

every v 2 V there is a uv 2 U such that kv � uvk < "
2 ; which implies jE(v; r)� E(uv; r)j <

"
2 for any r 2 �(X):

Therefore,

E(v; q)� E(v; p) = (E(v; q)� E(uv; q)) + (E(uv; q)� E(uv; p)) + (E(uv; p)� E(v; p))
> � "

2 + "�
"
2

29Recall that k(C(X)) is the metric space of all nonempty compact subsets of C(X) relative to the Hausdor¤
metric induced by the sup-metric.
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for any v 2 V: We have proved that if p R q is false, then there is a V in U1 such that E(v; q) > E(v; p) for
each v 2 V: This proves our claim. k

Let us enumerate U1 as fV1;V2; :::g: In view of Claim 3.2,

p R q i¤ max
v2Vi

(E(v; p)� E(v; q)) � 0 for each i = 1; 2; :::

for every p; q 2 �(X): On the other hand, for each positive integer i; Vi is a compact, and hence bounded,
subset of C(X); and hence Ki := supfkvk1 : v 2 Vig is a real number. Furthermore, obviously,

p R q i¤ max
v2Vi

�
E(v; p)
iKi + 1

� E(v; q)
iKi + 1

�
� 0 for each i = 1; 2; :::

for every p; q 2 �(X): Now let 0X denote the zero function on X; de�ne U := ff0Xg; 1
K1+1

V1; 1
2K2+1

V2; ; :::g;
and note that

p R q i¤ max
v2U

(E(u; p)� E(u; q)) � 0 for each U 2 U

for every p; q 2 �(X): But it is readily checked that 1
mKm+1

Vm !H f0Xg, and hence U is a compact set in
k(C(X)), and every member of it is convex. Proof of Theorem 3 is now complete. �

Proof of Theorem 4

Let U be a compact and coherent collection of nonempty compact and convex subsets of C(X), which is a
coalitional minmax expected utility for R. Then, by Theorems 2 and 3, R is a continuous and complete a¢ ne
relation on �(X). Conversely, suppose R is such a relation on �(X), and to focus on the nontrivial case,
assume that R> 6= ;. By Theorem 3, there is a compact collection U0 of nonempty compact and convex
subsets of C(X) which is a coalitional minmax expected utility for R. In fact, as the proof of Theorem 3
shows, we can choose this collection as countable. Let us now drop all members of this collection that contain
a constant function, and denote the resulting collection by U1. As R> 6= ;, U1 is not empty. Moreover, it is
countable collection of nonempty compact and convex subsets of C(X) which is a coalitional minmax expected
utility for R.

For any nonempty subset U of C(X) we de�ne

�(U) :=
[

(�;�)2R+�R

�U + �f1Xg and �0(U) :=
[

(�;�)2R++�R

�U + �f1Xg:

(Notice that adjoining the constant maps on X to �0(U) we obtain precisely �(U).) The following observation
is the key step of the proof.

Claim 4.1. U \ �(V) 6= ; for any U ;V 2 U1.
Proof of Claim 4.1. Take any U and V in U1, and suppose that U \ �(V) = ;: We may then strongly

separate U and �(V) � see Theorem 5.58 of Aliprantis and Border (2006) � to �nd a nonzero continuous
linear functional L on C(X) such that L(u) > 0 � L(v) for every u 2 U and v 2 �(V). By the Riesz-Radon
Representation Theorem, therefore, there is a nonzero � 2 ca(X) such thatZ

X

ud� > 0 �
Z
X

vd� for each (u; v) 2 U � �(V): (15)

On the other hand, U \�(V) = ; implies �(U)\V = ;; so we may repeat this argument to �nd a nonzero � 2
ca(X) such that Z

X

ud� � 0 >
Z
X

vd� for each (u; v) 2 �(U)� V: (16)

As 1X and �1X belong to both �(U) and �(V); (15) and (16) imply that �(X) = 0 = �(X): We may then
apply the Jordan Decomposition Theorem to the signed measure �+� to �nd a constant � > 0 and p; q 2 �(X)
such that �+ � = �(p� q): In turn, combining (15) and (16) yieldsZ

X

udp�
Z
X

udq > 0 >

Z
X

vdp�
Z
X

vdq for each (u; v) 2 U � V:
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But, as U1 is a coalitional minmax expected utility for R; this means that neither p R q nor q R p holds,
contradicting R being complete. k

To focus on the less trivial case, we assume that U1 is not �nite, and enumerate this collection as
fU1;U2; :::g. For any integer m > 1; Claim 4.1 allows us to pick continuous real maps u1;m; :::; um�1;m
on X such that

u1;m 2 U1 \ �(Um); :::; um�1;m 2 Um�1 \ �(Um):

We then de�ne

V1 := U1; V2 := co(U2 [ fu1;2g); V3 := co(U3 [ fu1;3; u2;3g); V4 := co(U4 [ fu1;4; u2;4; u3;4g); :::

Recall
S
U1; hence no Ui, may contain a constant map on X. Therefore, fu1;m; :::; ui�1;ig � �0(Ui) for every

positive integer i: As Ui � �0(Ui) and �0(Ui) is convex, it follows that Vi � �0(Ui) for each i 2 N: In particular,
no Vi may contain a constant map on X:

Now, by construction, U2 := fV1;V2; :::g is a coherent collection of compact and convex subsets of C(X).
It is also obvious that

p R q implies inf
i2N
max
v2Vi

(E(v; p)� E(v; q)) � 0

for every p and q in �(X): Conversely, take any p; q 2 �(X) such that for every positive integer i; there is a
vi 2 Vi such that E(vi; p) � E(vi; q): But for each i 2 N; given that Vi � �0(Ui); we have vi = �iui + �i for
some ui 2 Ui and (�i; �i) 2 R++ � R, and hence E(ui; p) � E(ui; q). As U1 is a coalitional minmax expected
utility for R; therefore, we �nd p R q: Conclusion: U2 is a coherent and countable collection of nonempty
compact and convex subsets of C(X) such that

p R q i¤ inf
V2U2

max
v2V

(E(v; p)� E(v; q)) � 0 (17)

for every p and q in �(X):
We now de�ne U := cl(U2); where the closure operator is applied within the metric space k(C(X)): As

the Hausdor¤ limit of a sequence of compact and convex sets in a normed linear space must be convex, it is
plain that every element of U is nonempty, compact and convex. Moreover, by construction, each V 2 U2 is
a subset of co(

S
U0). In other words, U2 is a subset of k(co(

S
U0)): But

S
U0 is a compact subset of C(X);

because U0 is a compact subset of k(C(X)): (See Theorem 2.5 of Michael (1951).) Therefore, by Mazur�s
Compactness Theorem, co(

S
U0) is a compact subset of C(X). As the set of all nonempty compact subsets

of a compact metric space is compact relative to the Hausdor¤ metric, therefore, k(co(
S
U0)) is a compact

subset of k(C(X)): Being a closed subset of k(co(
S
U0)); therefore, U is compact in k(C(X)): In fact, this

collection is also coherent. To see this, take any U and V in U: Then, by de�nition of U; there are sequences
(Um) and (Vm) in U2 such that Um !H U and Vm !H V: As U2 is coherent, there is a um in Um\Vm for each
m: Since (um) is a sequence in the compact set co(

S
U0); it has a subsequence, say, (umk

); that converges to
some u 2 C(X). As Um !H U and Vm !H V; it must be the case that u belongs to both U and V: Thus,
U \ V 6= ;; and we conclude that U is coherent.

It remains to verify that U is a coalitional minmax expected utility for R; that is,

p R q if and only if inf
V2U

max
v2V

(E(v; p)� E(v; q)) � 0 (18)

for every p and q in �(X): Since U2 � U; the �if� part of this statement is immediate from (17). Take,
then, any two lotteries p and q on X with p R q: Fix an arbitrary U 2 U: By de�nition of U; there is a
sequence (Um) in U2 such that Um !H U . As we apply the closure operator within k(C(X)); U is obviously
a nonempty compact set in C(X): Finally, by (17), for each positive integer m; there is a um 2 Um such that
E(um; p) � E(um; q): Again, since (um) is a sequence in the compact set co(

S
U0); it must have a subsequence,

say, (umk
); that converges to some u 2 C(X). Moreover, since Umk

!H U ; it must be the case that u 2 U .
As E(umk

; p) � E(umk
; q) for each k; and umk

! u uniformly, therefore, we �nd E(u; p) � E(u; q): We have
proved (18). �

Proof of Theorem 5
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The �if�part of the assertion is readily proved, so we focus on its �only if�part. Assume thatR is a continuous,
strictly convex and a¢ ne preorder on �(X).

Claim 5.1. R is quasitransitive.

Proof of Claim 5.1. Take any p; q; r 2 �(X) with p R> q R> r: Then, by the Independence Axiom,

1
2p+

1
2r R

> 1
2q +

1
2r and q R> 1

2q +
1
2r;

so, by strict convexity,
1
2q +

1
2

�
1
2p+

1
2r
�
R> 1

2q +
1
2r.

It then follows from the Independence Axiom that 1
2p +

1
2r R

> r; and applying this axiom one more time
yields p R> r; as we sought. k

Our main assertion is trivially true if R> = ;; so we assume that this is not the case. In view of Claim 5.1,
then, R> is an irre�exive and transitive binary relation on �(X). Moreover, as R is complete and continuous,
R> is open in �(X) � �(X). Therefore, we may apply Theorem 1 of Evren (2014) to �nd a nonempty
U � k(C(X)) such that

q R> p i¤ E(u; q) > E(u; p) for each u 2 U

for every p; q 2 �(X). Finally, we put V := co(U); and note that this is a compact and convex subset of
C(X); thanks to Mazur�s Compactness Theorem. Moreover, for any (q; p) 2 R>; compactness of U ensures
that " := minfE(u; q)� E(u; p) : u 2 Ug > 0 so that E(v; q) � E(v; p) + " > E(v; p) for every v 2 V. Thus:

q R> p i¤ E(v; q) > E(v; p) for each v 2 V

for every p; q 2 �(X). As R is complete, this is equivalent to say that

p R q i¤ E(v; p) � E(v; q) for some v 2 V

for every p; q 2 �(X). �

Proof of Theorem 6

To see the �if�part, suppose that the said representation holds. Take any integer k � 2 and p1; :::; pk 2 �(X)
such that p1 R> � � � R> pk. Then, there must exist U1; :::;Uk in U such that for each i 2 [k� 1] and u 2 Ui we
have E(u; pi) > E(u; pi+1). So, if v 2

T
U, we have E(v; p1) > � � � > E(v; pk); and hence, E(v; p1) > E(v; pk).

It follows from the representation that p1 R pk: Conclusion: R is acyclic. In view of Theorem 4, we are done.
To prove the �only if�part of the theorem, we now assume that R is a continuous, complete and acyclic

a¢ ne relation on �(X). We begin with a preliminary observation:

Claim 6.1. co(C0(R>)) does not contain 0:

Proof of Claim 6.1. To derive a contradiction, let us assume that 0 2 co(C0(R>)): Then, there is an integer
k � 2; nonnegative real numbers �1; :::; �k and �1; :::; �k 2 C0(R>) such that

Pk
�i = 1 and

Pk
�i�i = 0. In

turn, by de�nition of C0(R>); for each i 2 [k]; there is a positive real number �i and (pi; qi) 2 R> such that
�i = �i(pi � qi): Putting �j := �j�j=

Pk
�i�i for each j; therefore, we have

kX
i=1

�ipi =
kX
i=1

�iqi:

We de�ne

r0 :=
kX
i=1

�ipi and rj :=

jX
i=1

�iqi +
kX

i=j+1

�ipi for each j 2 [k];

with the understanding that
Pk

i=k+1 �ipi = 0. Then, r1; :::; rk 2 �(X); and by the Independence Axiom, r0
R> � � � R> rk = r0, which contradicts R being acyclic. k
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Now, R> is an irre�exive binary relation on �(X) that satis�es the Independence Axiom. Moreover, as
R is complete, R> is the complement of the closed set f(p; q) : q R pg in �(X) ��(X): It is thus an open
subset of �(X)��(X): Part (a) of Lemma A.3 thus applies to R>; that is, C0(R>) is a bw�-open subset of
S(X): It follows that co(C0(R>)) is a bw�-open subset of S(X), because the convex hull of any open set in a
topological linear space is open. In view of the Claim 6.1, and as any point outside an open convex set in a
topological linear space can be strongly separated from that set �this is sometimes called Tukey�s Separating
Hyperplane Theorem �there is a continuous linear functional L on S(X) such that L(�) > 0 for each � 2
co(C0(R>)): By part (a) of Lemma A.2, therefore, p R> q implies L(p) > L(q); for every p; q 2 �(X): We
now apply the Hahn-Banach Extension Theorem (for locally convex topological linear spaces) to extend L to
a continuous linear functional L� on ca(X): Then, L�j�(X) is a continuous and a¢ ne real map on �(X); so,
by the A¢ ne Representation Lemma, there is a u 2 C(X) such that L�j�(X) = E(u; �); and hence

p R> q implies E(u; p) > E(u; q) (19)

for every p; q 2 �(X): Now let V be a closed subset of C(X) such that (14) holds for every p; q 2 �(X); and
de�ne

U := fco(V [ fug) : V 2Vg:

Obviously,
T
U 6= ; and the �only if�part of (3) holds for every p; q 2 �(X): Moreover, if p R q is false, then

q R> p (because R is complete), so there is a V 2 V such that E(v; q) > E(v; p) for each v 2 V: Combining
this with (19) shows that the �if�part of (3) holds for every p; q 2 �(X) as well. �

Proof of Proposition 5

The �if�part of the proposition is straightforward. To prove its �only if� part, let R be an FSD-transitive
and continuous a¢ ne relation on �[0; 1]: (The case where R is SSD-transitive is analogously settled.) If
R = �[0; 1]��[0; 1]; we are done by picking any constant real map u on [0; 1] and setting U := ffugg; so we
assume in what follows that R is a proper subset of �[0; 1]��[0; 1]:

For any � 2 C(R); we de�ne

�(�) := cl(cone(f�g [ C(�FSD )));

where the closure operator is applied with respect to the bounded weak�-topology on S(X):

Claim 5.a. For every � 2 C(R); �(�) is w�-closed subset of S(X) such that �(�) � C(R).

Proof of Claim 5.a. Take an arbitrary � in C(R), and notice that �(�) is convex, because the closure of
any convex set is convex in a Hausdor¤ topological linear space. But the Krein-�mulian Theorem says that
a convex subset of ca(X) is w�-closed i¤ it is bw�-closed. As S(X) is closed in ca(X) with respect to both
w�- and bounded w�-topologies, therefore, a convex subset of S(X) is w�-closed i¤ it is bw�-closed in S(X).
Conclusion: �(�) is w�-closed subset of S(X):

Now take any � in C(�FSD ). Then, there are nonnegative numbers � and � such that � = �(p� q) and
� := �(r � s) for some lotteries p; q; r and s on [0; 1] such that p R q and r �FSD s: Fix an arbitrary � > 0:
Let us put � := ��

��+� ; and note that by a¢ nity of R and �FSD , we have

�p+ (1� �)r R �q + (1� �)r �FSD �q + (1� �)s:

So, by FSD-transitivity of R, we �nd �p+ (1� �)r R �q + (1� �)s: By Lemma A.2.c, therefore,

�(p� q) + (1� �)(r � s) 2 C(R):

But

��+ � = (��+ �)

�
��

��+ �
(p� q) + �

��+ �
(r � s)

�
= (��+ �) (�(p� q) + (1� �)(r � s)) ;

and it follows that ��+� 2 C(R): In view of the arbitrariness of � and �; then, cone(f�g[C(�FSD )) � C(R):
Since, by part (b) of Lemma A.3, C(R) is bw�-closed in S(X); it follows that �(�) � C(R). k
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We now invoke Theorem 3 to �nd a compact collection U of nonempty compact and convex subsets of
C[0; 1]; which is a coalitional minmax expected utility for R:

Claim 5.b. For any (p; q) 2 R and any U 2 U; there is an increasing u 2 U with E(u; p) � E(u; q):
Proof of Claim 5.b. Take any (p; q) 2 R and U 2 U. De�ne the binary relation % on �[0; 1] by

r % s i¤ r � s 2 �(p� q):

Since �(p � q) is a w�-closed convex cone in S(X); % is a continuous and a¢ ne preorder on �[0; 1]. (Note
that p % q.) We may thus apply the Dubra-Maccheroni-Ok Theorem to �nd a closed subset V of C[0; 1] such
that

r % s i¤ E(v; r) � E(v; s) for each v 2 V
for every r and s in �[0; 1]: De�ne

W := cl(cone(V) + f�1X : � 2 Rg);

and note that W is a closed convex cone in C[0; 1] such that

r % s i¤ E(w; r) � E(w; s) for each w 2 W

for every r and s in �[0; 1]: We wish to show that W \ U is nonempty. This is enough to complete the proof
of our claim, because if there is a u 2 U which belongs to W; then we have E(u; p) � E(u; q) (because p % q
and u 2 W). Moreover, for any a and b in [0; 1] with a � b; we have �a �FSD �b; and hence �a % �b; which
implies u(a) � u(b) (because u 2 W); that is, u is increasing.

It remains to prove that W \ U is nonempty. The argument for this is analogous to the one we gave for
Lemma 1. Assume W \ U = ;; and strongly separate U and W by a closed hyperplane in C[0; 1]: We use
the classical Riesz-Radon Representation Theorem and the Jordan Decomposition Theorem, and the fact that
1[0;1] and �1[0;1] belong to W; to obtain two lotteries r and s on [0; 1] such that

E(u; r)� E(u; s) > 0 � E(w; r)� E(w; s) for every (u;w) 2 U �W.

(The details are presented in the proof of Lemma 1.) As U is a coalitional minmax expected utility for R;
the �rst part of these inequalities implies that s R r does not hold. On the other hand, the second part of
these inequalities entails s % r: But then, s � r 2 �(p � q); so, by Claim 5.a, s � r 2 C(R); that is, s R r; a
contradiction. k

We now letM stand for the set of all continuous and increasing real maps on [0; 1]; and put V := fU \M :
U 2 Ug: Notice that, in view of Claim 5.b,

inf
V2V

max
v2V

(E(v; p)� E(v; q)) � 0 i¤ inf
U2U

max
u2U

(E(u; p)� E(u; q)) � 0

for every p and q in �[0; 1]: Thus, V is a collection of nonempty compact and convex sets of continuous,
increasing (and concave) real maps on [0; 1] which is a coalitional minmax expected utility for R: Now put
W := cl(V); and note thatW is also a collection of nonempty compact and convex sets of continuous, increasing
(and concave) real maps on [0; 1]. Moreover, compactness of U implies that of

S
U; and hence that of k(

S
U);

in k(C[0; 1]). As W is a closed subset of k(
S
U); therefore, it is compact in k(C[0; 1]): By routine arguments,

it is also shown that W is a coalitional minmax expected utility for R; and we are done. �

APPENDIX B: Lexicographic Representation of A¢ ne Preorders

As promised in Section 3.3.3, we now inquire how one may drop the hypothesis of completeness and continuity
from the von Neumann-Morgenstern Theorem. To this end, we �rst show that it is possible to extend any
given a¢ ne preorder on a lottery space to a complete a¢ ne preorder on that space. As the representation of
the latter type of preorders is known, this will provide an answer to our present query.

Lemma B.1. Let X be a metric space and % a binary relation on �(X): Then, % is an a¢ ne preorder on
�(X) if, and only if, there is a collection R of complete a¢ ne preorders on �(X) such that % =

T
R.
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Proof. We only need to prove the �only if�part of the assertion. Let % be an a¢ ne preorder on �(X)
and note that C(%) is a convex cone in S(X) by part (d) of Lemma A.2. If % equals �(X)��(X); then the
proof is completed upon setting R = f%g; so we assume this is not the case. This means that

� := f(r; s) 2 �(X)��(X) : not r % sg

is not empty. Pick any (r; s) 2 �; and note that part (c) of Lemma A.2 says that r�s lies outside of C(%). By
Lemma A.1, then, there is a convex cone Cr�s in ca(X) such that (i) C(%) � Cr�s; (ii) r � s 2 ca(X)nCr�s;
and (iii) Cr�s [ �Cr�s = ca(X): We de�ne the binary relation Dr;s on �(X) by p Dr;s q i¤ p � q 2 Cr�s.
As Cr�s is a convex cone, Dr;s is an a¢ ne preorder on �(X). Moreover, by (iii), it is complete. Thus,
R := fDr;s: (r; s) 2 �g is a nonempty collection of complete a¢ ne preorders on �(X). Besides, given any p
and q in �(X) with p % q, we have p� q 2 C(%) � Cr�s; and hence p Dr;s q; for each (r; s) 2 �: Conversely,
given any p and q in �(X) such that p % q is false, we have (p; q) 2 �; so p�q 2 ca(X)nCp�q; that is, p Dp;q q
is false. Conclusion: % =

T
R. �

Remark. This result is independently proved by Borie (2014), but the proof we provide for it here is substan-
tially shorter. The main representation theorem of Shapley and Baucells (1998) is also related to this result.30

In the setting of Lemma B.1, that result says that % is an a¢ ne preorder on �(X) such that the convex cone
generated by fp � q : p % qg has a nonempty relative interior in the linear span of �(X) � �(X) i¤ there
is a collection R of complete a¢ ne preorders on �(X) such that (i) % =

T
R, and (ii) each D in R can be

represented by an a¢ ne functional on �(X). �

While this is not apparent from its statement, Lemma B.1 actually allows us to look at an arbitrary a¢ ne
preorder on �(X) also from the perspective of �expected multi-utility.�Indeed, such a perspective is provided
by Hausner and Wendel (1952) in the case of complete a¢ ne preorders.

The Hausner-Wendel Theorem is not widely known in decision theory, let alone microeconomics at large
(despite the expository articles by Hausner (1954) and Fishburn (1971)). This is partly due to the fact that
Hausner and Wendel (1952) is written in the language of ordered linear spaces; its terminology is outdated
even in that context. As such, it is not immediately clear how to translate this result into the language of
modern expected utility theory. In the hope of highlighting the depth of this result, and because we need it
to give a �multi-utility�perspective to Lemma B.1, we provide one such translation next.

Let I be a loset, and recall that RI stands for the set of all real functions on I: (This set is a (real) linear
space relative to the usual (coordinatewise de�ned) addition and scalar multiplication operations.) For any
f 2 RI ; the support of f is the set fi 2 I : f(i) 6= 0g; which we denote by supp(f): We de�ne

RI� := ff 2 RI : supp(f) is well-orderedg,

and for any nonempty set A; say that an (a¢ ne) function U : A ! RI is an I-dimensional (a¢ ne) map
on A if U(a) 2 RI� for each a 2 A:31 Finally, we de�ne the binary relation >I on RI� as

f >I g i¤ f = g or f(j) > g(j);

where j is the minimum element of fi 2 I : f(i) 6= g(i)g with respect to the linear order of I. As the latter set
is a subset of supp(f)[ supp(g); this relation is well-de�ned. Moreover, it is plain that >I is a partial order
on RI�: (Notice that when I is a set of the form [n] with the usual ordering of integers, we may identify RI�
with Rn: Thus, in that case, the notion of an I-dimensional map on A reduces simply to that of Rn-valued
map on A, and >I to the familiar lexicographic order on Rn:)

With these preliminaries at hand, we may state the embedding theorem of Hausner and Wendel (1952) in
the context of expected utility theory as follows:

30A revised version of this working paper is published as Baucells and Shapley (2008), but that version
focuses much more on �group preferences,�and it does not report this representation theorem.
31If A is a loset (with the underlying linear order >), and B is a nonempty subset of A such that every

nonempty subset of B possesses a minimum element with respect to >, we say that B is well ordered (by
>).
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The Hausner-Wendel Theorem. Let X be a metric space and % a binary relation on �(X): Then, % is a
complete and a¢ ne preorder on �(X) if, and only if, there exist a loset I and an I-dimensional a¢ ne function
U on �(X) such that

p % q i¤ U(p) >I U(q)
for every p and q in �(X):32

As the representing function U found in this theorem is vector-valued, we can interpret the component
functions of U as �utility functions.�These �utility functions��t well to the expected utility paradigm, as
each of them is a¢ ne. (These functions are not guaranteed to possess an �expected utility� form, but this
is a fair price to pay for not imposing any continuity conditions on %.) Consequently, we may think of
an agent whose preference relation over lotteries on X is a complete and a¢ ne preorder as one who again
has �multiple selves,� each of whom evaluates lotteries by means of an a¢ ne utility function. In this case
the agent�s preference relation arises from lexicographically aggregating these utility functions. As such, the
Hausner-Wendel Theorem is very much a �multi-utility theorem,�even though it considers complete preference
relations.

While this matter is not at all discussed in Hausner-Wendel (1952) and the literature that has followed
it, we can easily see how the theorem above would modify if we were to drop completeness as a hypothesis.
Indeed, combining this result with Lemma B.1 readily yields the following �multi-utility�theorem.

Theorem B.1. Let X be a metric space and % a binary relation on �(X): Then, % is an a¢ ne preorder on
�(X) if, and only if, there exist a nonempty collection I of losets and a map U : �(X)� I !

S
I2I RI such

that U(�; I) is an I-dimensional a¢ ne function on �(X) for each I 2 I; and

p % q i¤ U(p; I) >I U(q; I) for each I 2 I

for every p and q in �(X):

While it is technically a bit more complicated than the one we obtained in Theorem 1, this representation
notion too enjoys a similar interpretation. It suggests viewing a person who has a re�exive and transitive pref-
erence relation on �(X) which satis�es the Independence Axiom as arising from the aggregation of coalitions
of �selves.�In this case, the preference relation of these �selves�need not be of an expected utility form (due
to lack of continuity), but they are represented by an a¢ ne utility function over lotteries (as in Shapley and
Baucells (1998)). Within each coalition, these utility functions are aggregated lexicographically (with respect
to endogenously found linear orders, which may di¤er from coalition to coalition). So, �coalitional preferences�
in this as if interpretation are complete. In turn, the agent prefers one lottery p over another lottery q i¤
every coalition of her �selves�say that p is better than q: In the case of disagreement between the coalitions,
the agent remains indecisive.
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