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Abstract

The transition of the advertisement market from traditional media to the internet

has induced a proliferation of marketing agencies specialized in bidding in the auctions

used to sell advertisement space on the web. We analyze how collusive bidding can

emerge from bid delegation to a common marketing agency and how this undermines

both revenues and efficiency of both the generalized second price auction (GSP, used

by Google and Microsoft-Yahoo!) and the VCG mechanism (used by Facebook). Sur-

prisingly, we find that both in terms of revenues and efficiency the GSP auction is

outperformed by the VCG, despite the latter mechanism is known to perform poorly

under collusive bidding. We also propose a criterion to detect collusion in the data.

JEL: C72, D44, L81.

Keywords: Online Advertising, Internet Auctions, Collusion.

∗Decarolis, Department of Economics and Hariri Institute, Boston University, fdc@bu.edu. Goldmanis,
Department of Economics, Royal Holloway, University of London, Maris.Goldmanis@rhul.ac.uk. Penta, De-
partment of Economics, University of Wisconsin-Madison, apenta@ssc.wisc.edu. We are grateful for the
comments received from Susan Athey, Nicholas Bloom, Yeon-Koo Che, Ken Hendricks, Jon Levin, Massimo
Motta, Marco Ottaviani, Marc Rysman, Andy Skrzypacz and Steve Tadelis and from the participants at the
seminars at Berkeley-Haas Business School, Boston University, Columbia University, CREST-Paris, Euro-
pean Commission DG Competition, Facebook Research Lab, Harvard-MIT joint IO seminar, HEC-Lausanne,
Microsoft Research Lab, Stanford University, University of British Columbia, University of California Davis,
University of Mannheim, University of Toronto, University of Wisconsin Madison and at the conferences of
the EIEF-University of Bologna-Bocconi joint IO workshop, Society for Economic Dynamics and Toulouse
Network for Information Technology Meeting where earlier versions of this paper were presented.



1 Introduction

In two influential papers, Edelman, Ostrovsky and Schwarz (2007, EOS hereafter) and Varian

(2007) pioneered the study of the Generalized Second Price (GSP) auction, the mechanism

used to allocate advertisement space on the results web page of search engines like Google,

Microsoft Bing and Yahoo!.1 These auctions represent one of the fastest growing and most

economically relevant forms of online advertisement, with an annual growth of 10% and a

total value of 50 billion dollars in 2013 (PwC (2015), see also Blake, Nosko and Tadelis

(2015)). A recent trend in this industry, however, has the potential to alter the functioning

of these auctions – and, hence, the profits in this industry – in ways that are not accounted

for by the existing models. In particular, an increasing number of bidders are delegating their

bidding campaigns to specialized Search Engine Marketing Agencies (SEMAs).2 As a result,

SEMAs often bid in the same auction on behalf of different advertisers. But this clearly

changes the strategic interaction, as SEMAs have the opportunity to lower their payments

by coordinating the bids of their clients.

In this paper we explore the impact of bidding delegation to a common SEMA on the

performance of the GSP auction. Our theoretical analysis uncovers a striking fragility of

this mechanism to the possibility of bid coordination. This is underscored by our finding

that the GSP auction is outperformed, both in terms of revenues and efficiency, by the

Vickrey-Clarke-Groves (VCG) mechanism, recently adopted by Facebook. The superiority

of the VCG relative to the GSP is both surprising, given that the VCG is well known in the

literature to perform poorly under coordinated bidding, and noteworthy, given the sheer size

of transactions occurring under the GSP.

Studying bidding coordination in the GSP auction presents a number of difficulties, which

1Varian (2007) and EOS study a complete information environment. More rencent work by Athey and
Nekipelov (2012) maintains common knowledge of valuations but introduces uncertainty on the set of bidders
and quality scores. Gomes and Sweeney (2014) instead study an independent private values model. In related
work on the ad exchanges auctions, Balseiro, Besbes and Weintraub (2015) study the dynamic interaction
among advertisers under limited budgets constraints.

2A survey by the Association of National Advertisers (ANA) among 74 large U.S. advertisers indicates
that about 77% of the respondents fully outsource their search engine marketing activities (and 16% partially
outsource them) to specialized agencies, see ANA (2011). Analogously, a different survey of 325 mid-size
advertisers by Econsultancy (EC) reveals that the fraction of companies not performing their paid-search
marketing in house increased from 53% to 62% between 2010 and 2011, see EC (2011).
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are only partly due to the inherent complexity of the mechanism. An insightful analysis of the

problem thus requires a careful balance between tractability and realism of the assumptions.

For instance, since SEMAs in this market operate side by side with independent adver-

tisers, it is important to have a model in which coordinated and competitive bidding coexist.

But the problem of ‘partial cartels’ is acknowledged as a major difficulty in the literature

(e.g., Hendricks, Porter and Tan (2008)).3 To address this problem, our model combines

elements of cooperative and non-cooperative game theory. We thus introduce a general no-

tion of ‘Recursively-Stable Agency Equilibrium’ (RAE) which involves both equilibrium and

stability restrictions, and which provides a unified framework to study the impact of SEMAs

under different mechanisms. Second, it is well-known that strategic behavior in the GSP

auction is complex and gives rise to a plethora of equilibria (Borgers, Cox, Pesendorfer and

Petricek (2013)). Introducing a tractable and insightful refinement has been a key contri-

bution of EOS and Varian (2007). But their refinements are not defined in a context in

which some advertisers coordinate their bids. Thus, a second challenge we face is to develop

a refinement for the model with SEMA, which ensures both tractability as well as clear

economic insights.

To achieve these goals, we modify EOS and Varian’s baseline model by introducing a

SEMA, which we model as a player that chooses the bids of its clients in order to maximize the

total surplus. Bidders that do not belong to the SEMA are referred to as ‘independents’, and

place bids in order to maximize their own profits. To ensure a meaningful comparison with

EOS competitive benchmark, and to avoid the severe multiplicity of equilibria in the GSP

auction, we introduce a refinement of bidders’ best responses that distills the individual-level

underpinnings of EOS ‘lowest-revenue envy-free’ equilibrium, and assume that independents

place their bids accordingly. This device enables us to maintain the logic of EOS refinement

for the independent bidders, even if EOS equilibrium is not defined in the game with SEMA.

The SEMA in turn makes a proposal of a certain profile of bids to its clients. The proposal is

implemented if it is ‘recursively stable’ in the sense that, anticipating the bidding strategies

3The literature on ‘bidding rings’, for instance, has either considered mechanisms in which non-cooperative
behavior is straightforward (e.g., second price auctions with private values, as in Mailath and Zemski (1991)),
or assumes that the coalition includes all bidders in the auction (as in the first price auctions of McAfee and
McMillan (1992) and Hendricks et al. (2008)). Other mechanisms for collusion have been considered, for
instance, by Harrington and Skrzypacz (2007, 2011).
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of others, and taking into account the possible unraveling of the rest of the coalition, no client

has an incentive to abandon the SEMA and bid as an independent. Hence, in our model,

the outside options of the members of a coalition are equilibrium objects themselves, and

implicitly incorporate the restrictions entailed by the underlying coalition formation game.

Within this general framework, we consider different models of coordinated bidding, in

which the SEMA operates under different constraints. We first assume that the agency is

constrained to placing bids which cannot be detected as ‘coordinated’ by an external observer.

This is a useful working hypothesis, which also has obvious intrinsic interest. Under this

assumption, we show that the resulting allocation in the GSP with SEMA is efficient and

the revenues are the same as those that would be generated if the same coalition structure

was bidding in a VCG auction without any constraint. We then relax this ‘undetectability

constraint’, and show that in this case the search engine revenues in the GSP auction are

never higher, and are in fact typically lower, than those obtained in the VCG mechanism

with coordination. Furthermore, once the ‘undetectability constraint’ is lifted, efficiency in

the allocation of bidders to slots is no longer guaranteed by the GSP mechanism. Since the

VCG is famously regarded as a poor mechanism under coordinated bidding, finding that it

outperforms the GSP both in terms of revenues and allocation is remarkably negative for

the GSP. We also show that these insights persist even in the presence of multiple agencies,

and hence competition between agencies is not enough to avoid these problems.

This fragility of the GSP auction is due to the complex equilibrium effects it induces. In

particular, by manipulating the bids of its members, in equilibrium the SEMA also affects

the bids of the independents. The SEMA therefore has both a direct and an indirect effect

in the GSP auction, and hence even a small coalition may have a large impact on total

revenues. Depending on the structure of the SEMA, the indirect effect may be first order.

As we will explain, our analysis uncovers that this is especially the case if the SEMA includes

members which occupy low or adjacent positions in the ranking of valuations.

In the final part of the paper, we supplement our theoretical analysis showing how it

can be applied to search auctions data. We use simulated data to show how our theoretical

results can be used to detect potentially coordinated behavior, and to choose over alternative

models of coordinated bidding. We also argue how this detection tool can be used to quantify
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the revenue losses that collusion imposes on the search engine.

The main implication of this study is that, with SEMAs, the revenue sharing and al-

locative properties of both GSP and VCG will change. This is obviously interesting from

a market design perspective. Although the design of ad auctions has received considerable

attention in the literature (e.g., Edelman and Schwarz (2010) and Celis et al. (2015)), this

is the first study to point to the role of agencies and, importantly, to develop a methodology

capable of accommodating the joint presence of competitive and collusive bidding.

From an applied perspective, the growing relevance of the risk of collusion though SEMAs

is underscored by the increased concentration in the ad agency market. Although several

hundreds agencies operate in the US, the majority of them currently belongs to one of the

seven large ad agency networks which, in turn, all have a single “agency trading desk” to

conduct all bidding activities.4 These desks are the centralized units within a network,

that collect the data and design the algorithms required to optimize the purchase of online

advertisement space for “programmatic” (i.e., algorithmic or “biddable”) media like Google,

Bing, Twitter, iAd, and Facebook. In a complementary study, Decarolis, Goldmanis and

Penta (2016), we empirically analyze ad auctions confirming both that bidding delegation

to agencies is pervasive and that a common agency placing bids in a single auction on

behalf of different advertisers occurs in an economically relevant amount of auctions. While

that study seeks to look at multiple aspects of marketing agencies that go beyond collusive

bidding, such as their role in attracting new customers and improving ad quality, the model

of collusive bidding developed here is the crucial building block to understand the incentives

that a SEMA faces whenever two or more of its clients are interested in the same keyword.

Finally, our results are also relevant from an antitrust perspective. Our characterization

of the agency behavior is analogous to that of buying consortia, which have been sanctioned

in the past.5 Nevertheless, the specificities of the market suggest a more nuanced view of the

harm to consumers. We discuss this point and other policy implications in the conclusions.

4The networks are: Aegis-Dentsu, Publicis Groupe, IPG, Omnicom Group, WPP/Group M, Havas, MDC.
Their corresponding trading desks are: Amnet, Vivaki, Cadreon, Accuen, Xaxis, Affiperf and Varick Media.

5See, for instance, the case of the tobacco manufacturers consortium buying in the tobacco leaves auctions,
United States v. American Tobacco Company, 221 U.S. 106 (1911).
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2 The GSP auction

In this section we introduce the GSP auction and the necessary notation. The only original

result in this section is Lemma 1, which shows that EOS lowest-revenue envy-free (LREF)

equilibrium – originally defined as a refinement of the Nash equilibrium correspondence –

can be equivalently defined as the fixed point of a refinement of individuals’ best responses.

This result will play an important role in the next sections. That is because, by distilling

the individual underpinnings of EOS refinement, it enables us to extend EOS approach to

the analysis of the GSP auction with SEMA, in which LREF equilibrium is not defined.

Consider the problem of assigning agents i ∈ I = {1, . . . , n} to slots s = 1, . . . , S, where

n ≥ S. In our case, agents are advertisers, and slots are positions for ads in the page for a

given keyword. Slot s = 1 corresponds to the highest position, and so on until s = S, which is

the slot in the lowest position. For each s, we let xs denote the ‘click-through-rate’ (CTR) of

slot s, that is the number of clicks that an ad in position s is expected to receive, and assume

that x1 > x2 > · · · > xS > 0. We also let xt = 0 for all t > S. Finally, we let vi denote the

per-click-valuation of advertiser i, and we label advertisers so that v1 > v2 > · · · > vn.

In the GSP auction, each advertiser submits a bid bi ∈ R+. The advertiser who submits

the highest bid obtains the first slot and pays a price equal to the second highest bid every

time his ad is clicked; the advertiser with the second highest bid obtains the second slot and

pays a price-per-click equal to the third highest bid, and so on. We denote bid profiles by

b = (bi)i=1,...,n and b−i = (bj)j 6=i. For any profile b, we let ρ (i; b) denote the rank of i’s bid in

b (ties are broken according to bidders’ labels).6 When b is clear from the context, we omit

it and write simply ρ (i). For any t = 1, . . . , n and b or b−i, we let bt and bt−i denote the

t-highest component of the vectors b and b−i, respectively.

The rules of the auction are formalized as follows. For any b, if ρ (i) ≤ S bidder i obtains

position ρ (i) at price-per-click pρ(i) = bρ(i)+1. If ρ (i) > S, bidder i obtains no position.7 We

maintain throughout that advertisers’ preferences, the CTRs and the rules of the auction are

6Formally, ρ (i; b) := |{j : bj > bi} ∪ {j : bj = bi and j < i}| + 1. This tie-breaking rule is convenient for
the analysis of coordinated bidding. It can be relaxed at the cost of added technicalities (see footnote 15).

7In reality, bidders allocation to slots is determined adjusting advertisers’ bids by some ‘quality scores’.
To avoid unnecessary complications, we only introduce quality scores in section 5 (see also Varian (2007)).
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common knowledge. We thus model the GSP auction as a game G (v) =
(
Ai, u

G
i

)
i=1,...,n

where

Ai = R+ denotes the set of actions of player i (his bids), and payoff functions are such that,

for every i and every b ∈ Rn
+, uGi (b) =

(
vi − bρ(i)+1

)
xρ(i). Although it may seem unrealistic,

EOS complete information assumption has been shown to be an effective modeling proxy

(e.g., Athey and Nekipelov (2012), Che, Choi and Kim (2013) and Varian (2007)).

Note that any generic profile b−i = (bj)j 6=i partitions the space of i’s bids into S + 1

intervals. The only payoff relevant component of i’s choice is in which of these intervals

he should place his own bid: any two bids placed in the same interval would grant bidder

i the same position at the same per-click price (equal to the highest bid placed below bi).

So, for each b−i ∈ Rn−1
+ , let πi (b−i) denote i’s favorite position, given b−i.

8 Then, i’s best-

response to b−i is the interval BRi (b−i) = (b
πi(b−i)
−i , b

πi(b−i)−1
−i ). This defines the best-response

correspondence BRi : Rn−1
+ ⇒ R+, whose fixed points are the set of (pure) Nash equilibria:

EG0(v) := {b ∈ Rn
+ : bi ∈ BRi (b−i) ∀i ∈ I}.

It is well-known that the GSP auction admits a multiplicity of equilibria (Borgers et

al. (2013)). For this reason, EOS introduced a refinement of the set EG0(v), the LREF

equilibrium. As anticipated above, we consider instead a refinement of individuals’ best

response correspondence: for any b−i ∈ Rn−1
+ , let

BR∗i (b−i) =
{
b∗i ∈ BRi (b−i) :

(
vi − bπi(b−i)

−i

)
xπi(b−i) = (vi − b∗i )xπi(b−i)−1

}
. (1)

In words, of the many bi ∈ BRi (b−i) that would grant player i his favorite position πi (b−i),

he chooses the bid b∗i that makes him indifferent between occupying the current position

and climbing up one position paying a price equal to b∗i . The set of fixed points of the BR∗i

correspondence are denoted as EG (v) = {b ∈ RN
+ : bi ∈ BR∗i (b−i) for all i ∈ I}.

Lemma 1. For any b ∈ EG (v), b1 > b2, bi = vi for all i > S, and for all i = 2, . . . , S,

bi = vi −
xi

xi−1
(vi − bi+1) . (2)

Hence, the fixed points of the BR∗ correspondence coincide with EOS’ LREF equilibria.

8 Allowing ties in individuals’ bids or non-generic indifferences complicates the notation, without affecting
the results and the main insights. We thus ignore these issues here and leave the details to Appendix ??.
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In section 4 we will assume that independents in the GSP auction bid according to

BR∗i , both with and without the agency. Since, by Lemma 1, this is precisely the same

assumption on individuals’ behavior that underlies EOS’ analysis, our approach ensures a

meaningful comparison with the competitive benchmark. Lemma 1 obviously implies that

our formulation inherits the many theoretical arguments in support of EOS refinement (e.g.

EOS, Edelman and Schwarz (2010), Milgrom and Mollner (2014)). But it is also important

to stress that, independent of equilibrium restrictions, this individual-level refinement is

particularly compelling because it conforms to the tutorials on how to bid in these auctions

provided by the search engines.9 This formulation is thus preferable from both a conceptual

and a practical viewpoint.

For later reference, it is useful to rearrange (2) to obtain the following characterization

of the LREF equilibrium testable implications (cf. EOS and Varian (2007)):

Corollary 1. For any b ∈ EG (v), for all i = 2, . . . , S:

bix
i−1 − bi+1x

i

xi−1 − xi︸ ︷︷ ︸
=vi

>
bi+1x

i − bi+2x
i+1

xi − xi+1︸ ︷︷ ︸
=vi+1

(3)

The main alternative to the GSP auction is represented by the VCG: it is used by

Facebook, as well as by Google for a subset of its auctions, and it also represents the standard

benchmark for the GSP auction in the theoretical literature (e.g., EOS, Varian (2007) and

Athey and Nekipelov (2012)). Given valuations v, the VCG mechanism is formally defined as

a game V (v) =
(
Ai, u

V
i

)
i=1,...,n

, where Ai = R+ and uVi (b) = vix
ρ(i) −

∑S+1
t=ρ(i)+1 b

t(xt−1 − xt)

for each i and b ∈ Rn
+.

It is well-known that bidding bi = vi is a dominant strategy in this game. In the resulting

equilibrium, advertisers are efficiently assigned to positions. Furthermore, EOS (Theorem 1)

showed that the position and payment of each advertiser in the dominant strategy equilibrium

of the VCG are the same as in the LREF equilibrium of the GSP auction.

The next example will be used repeatedly throughout the paper to illustrate the relative

performance of the GSP and VCG mechanisms:

9See, for instance, the Google Ad Word tutorial in which Hal Varian teaches how to maximize profits by
following this bidding strategy: http://www.youtube.com/watch?v=jRx7AMb6rZ0.
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Example 1. Consider an auction with four slots and five bidders, with the following valua-

tions: v = (5, 4, 3, 2, 1). The CTRs for the five positions are the following: x = (20, 10, 5, 2, 0).

In the VCG mechanism, bids are bi = vi for every i, which induces total expected revenues

of 96. Bids in the LREF of the GSP auction instead are as follows: b5 = 1, b4 = 1.6,

b3 = 2.3 and b2 = 3.15. The highest bid b1 is not uniquely determined, but it does not affect

the revenues, which in this equilibrium are exactly the same as in the VCG mechanism: 96.

Clearly, also the allocation is the same in the two mechanisms, and efficient.

3 Search Engine Marketing Agencies

Our analysis of the Search Engine Marketing Agencies (SEMAs) focuses on their opportunity

to coordinate the bids of different advertisers. We thus borrow the language of cooperative

game theory and refer to the clients of the agency as ‘members of a coalition’ and to the

remaining bidders as ‘independents’. In this Section we focus on environments with a single

SEMA. We will extend the analysis to multiple SEMAs in Section 4.4.

Modeling coordinated bidding, it may seem natural to consider standard solution con-

cepts such as Strong Nash or Coalition Proof Equilibrium. Unfortunately, these concepts

have no bite in the GSP auction, as it can be shown that the LREF equilibrium satisfies

both refinements. As already shown by EOS in the competitive setting, resorting to non-

standard solution concepts is a more promising route to generate meaningful insights on the

elusive GSP auction. We thus model the SEMA as a player that makes proposals of binding

agreements to its members, subject to certain stability constraints. The independents then

play the game which ensues from taking the bids of the agency as given. We assume that

the agency seeks to maximize the coalition surplus, but is constrained to choosing proposals

that are stable in two senses: first, they are consistent with the independents’ equilibrium

behavior; second, no individual member of the coalition has an incentive to abandon it and

play as an independent. We also assume that, when considering such deviations, coalition

members are farsighted in the sense that they anticipate the impact of their deviation on

both the independents and the remaining members of the coalition (cf. Ray and Vohra

(1997, 2014)). The constraint for a coalition of size C thus depends on the solutions to the
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problems of all the subcoalitions of size C − 1. Therefore, the solution concept for the game

with the agency will be defined recursively.

Besides overcoming the afore-mentioned limitations of standard solution concepts, our

approach also addresses some important questions in the theoretical and applied literature,

such as: (i) provide a tractable model of partial cartels, a well-known difficulty in the litera-

ture on bidding rings;10 (ii) deliver sharp results on the impact of coordinated bidding on the

GSP auction, vis-à-vis the lack of bite of standard solution concepts; (iii) provide a model of

coordinated bidding that can be applied to different mechanisms; (iv) bridge the theoretical

results to the data, by generating easy-to-apply testable predictions to detect coordination

and select between different models of bidding coordination.

Another obvious alternative to our approach would be to model bidders’ choice to join the

SEMA explicitly. This would also be useful from an empirical viewpoint, as it would generate

extra restrictions to further identify bidders’ valuations. But once again, the structure of the

GSP auction raises non trivial challenges. First, it is easy to see that without an exogenous

cost of joining the agency, the only outcome of a standard coalition formation game would

result in a single agency consisting of the grand-coalition of players. Thus, the ‘obvious’

extension of the model would not be capable of explaining the lack of grand coalitions in

the data. Hence, at a minimum, some cost of joining the coalition should be introduced.

Clearly, there are many possible ways in which participation costs could be modeled (e.g.,

costs associated to information leakage, management practices, agency contracts, etc.). But

given the still incomplete understanding of SEMAs in online advertising, it is not obvious

which should be preferable. Regardless of the specific modeling choices, however, the cost of

joining the SEMA would ultimately have to be traded-off against the benefit, which in turn

presumes solving for the equilibrium of the auction given the resulting coalition structure.

Our work can thus be seen as a necessary first step in developing a full-blown model of

10That literature typically focuses on the incentives that members of the coalition have to share their
private information, which is not an issue in our setting. But more importantly, allowing for the co-presence
of coordinated and independent bidding is a well-known difficulty in that literature, which either considers
mechanisms in which non-cooperative behavior is straightforward (e.g., second price auction with private
values, as in Graham and Marhsall (1987) and Mailath and Zemski (1991)), or assumes that the coalition
includes all bidders in the auction (as in the first price auctions of McAfee and McMillan (1992) and Hendricks
et al. (2008)). Our equilibrium notion enables us to combine cooperative and non-cooperative interaction in
general mechanisms, even if non-cooperative behavior is complex, as in the GSP auction.
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endogenous agency participation, which also clarifies that participation costs must be taken

into account, to make sense of the empirical evidence.

In the next section we introduce a general definition of the ‘Recursively Stable Agency

Equilibrium’ (RAE), which allows for arbitrary underlying mechanisms. This is useful in that

it provides a general framework to analyze the impact of SEMAs under different mechanisms.

We then specialize the analysis to the GSP and VCG mechanisms in Section 4.

3.1 The Recursively Stable Agency Equilibrium

Let G (v) =
(
Ai, u

G
i

)
i=1,...,n

denote the baseline game (without a coalition) generated by the

underlying mechanism (e.g., the GSP (G = G) or the VCG (G = V) mechanism), given the

profile of valuations v = (vi)i∈I . For any C ⊆ I with |C| ≥ 2, we let C denote the agency, and

we refer to advertisers i ∈ C as ‘members of the coalition’ and to i ∈ I\C as ‘independents’.

The coalition chooses a vector of bids bC = (bj)j∈C ∈ ×j∈CAj. Given bC, the independents

i ∈ I\C simultaneously choose bids bi ∈ Ai. We let b−C := (bj)j∈I\C and A−C := ×j∈I\CAj.

Finally, given profiles b or b−C, we let b−i,−C denote the subprofile of bids of all independents

other than i (that is, b−i,−C := (bj)j∈I\C:j 6=i).

We assume that the agency maximizes the sum of the payoffs of its members,11 denoted

by uC (b) :=
∑

i∈C ui (b), under three constraints. Two of these constraints are stability

restrictions: one for the independents, and one for the members of the coalition. The third

constraint, which we formalize as a set RC ⊆ AC, allows us to accommodate the possibility

that the agency may exogenously discard certain bids (this restriction is vacuous if RC = AC.).

For instance, in section 4.2.1 we will consider the case of an agency whose primary concern

is not being identified as inducing coordinated bids. In that case, RC would be comprised of

only those bids that are ‘undetectable’ to an external observer as coordinated. We denote

the collection of exogenous restrictions for all possible coalitions as R = (RC)C⊆I:|C|≥2.

Stability-1: The first stability restriction on the agency’s proposals is that they are stable

11This is a simplifying assumption, which can be justified in a number of ways. From a theoretical
viewpoint, our environment satisfies the informational assumptions of Bernheim and Whinston (1985, 1986).
Hence, as long as the SEMA is risk-neutral, this particular objective function may be the result of an
underlying common agency problem. More relevant from an empirical viewpoint, the agency contracts most
commonly used in this industry specify a lump-sum fee per advertiser and per campaign. Thus, the SEMA’s
ability to generate surplus for its clients is an important determinant of its long run profitability.
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with respect to the independents. For any i ∈ I\C, let BRG
i : A−i ⇒ Ai denote some

refinement of i’s best response correspondence in G (v) (e.g., BR∗i in G (v) or weak dominance

in V (v)). Define the independents’ equilibrium correspondence BRG
−C : AC ⇒ A−C as

BRG
−C (bC) =

{
b−C ∈ A−C : ∀j ∈ I\C, bj ∈ BRG

j (bC, b−j,−C)
}
. (4)

If the agency proposes a profile bC that is not consistent with the equilibrium behavior

of the independents (as specified by BRG
−C), then that proposal does not induce a stable

agreement. We thus incorporate this stability constraint into the decision problem of the

agency, and assume that the agency can only choose bid profiles from the set

SC =
{
bC ∈ AC : ∃b−C s.t. b−C ∈ BRG

−C (bC)
}
. (5)

Clearly, the strength of this constraint in general depends on the underlying game G(v)

and on the particular correspondence BRG
−C that is chosen to model the independents’ behav-

ior. This restriction is conceptually important, and needed to develop a general framework

for the analysis of coordinated bidding in arbitrary mechanisms. Nonetheless, the restriction

plays no role in our results for the GSP and VCG mechanisms, because (5) will be either

vacuous (Theorem 1) or a redundant constraint (Theorems 2 and 3).

Stability-2: When choosing bids bC, the agency forms conjectures about how its bids would

affect the bids of the independents. We let β : SC → A−C represent such conjectures of the

agency. For any profile bC ∈ SC, β (bC) denotes the agency’s belief about the independents’

behavior, if she chooses profile bC. It will be useful to define the set of conjectures β that

are consistent with the independents playing an equilibrium:

B∗ =
{
β ∈ ASC−C : β (bC) ∈ BRG

−C for all bC ∈ SC
}
. (6)

The second condition for stability requires that, given the conjectures β, the members of

the coalition have no incentives to leave the agency and start acting as independents. Hence,

the outside option for coalition member i ∈ C is determined by the equilibrium outcomes of

the game with coalition C\ {i}. This constraint thus requires a recursive definition.
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Let EC
′ (
BRG,R

)
denote the set of Recursively Stable Agency Equilibrium (RAE) out-

comes for the game with coalition C ′ (given restrictions R and refinement BRG). For coali-

tions of size C = 1 (that is, the coalition-less game G (v)), define the set of equilibria as

E1
(
BRG

)
=
{
b ∈ Rn

+ : bi ∈ BRG
i (b−i) for all i ∈ I

}
. (7)

Now, suppose that EC
′ (
BRG,R

)
has been defined for all subcoalitions C ′ ⊂ C. For each

i ∈ C, and for each C ′ ⊆ C\ {i}, define

ūC
′

i =

 minb∈E1(BRG) ui (b) if |C ′| = 1

minb∈EC′ (BRG,R) ui (b) if |C ′| ≥ 2
.

The set of RAE of the game with coalition C is defined as follows:

Definition 1. A Recursively Stable Agency Equilibrium (RAE) of the game G with coalition

C, given restrictions R and independents’ equilibrium refinement BRG, is a profile of bids

and conjectures (b∗, β∗) ∈ AC ×B∗ such that:12

1. The independents play a mutual best response: for all i ∈ I\C, b∗i ∈ BRG
i

(
b∗−i
)
.

2. The conjectures of the agency are correct: β∗ (b∗C) = b∗−C.

3. The agency best responds to the conjectures β∗, given the exogenous restrictions (R)

and the stability restrictions about the independents and the coalition members (S.1 and S.2,

respectively):

b∗C ∈ arg max
bC

uC (bC, β
∗ (bC))

subject to : (R) bC ∈ RC

: (S.1) bC ∈ SC

: (S.2) for all i ∈ C, ui (bC, β
∗ (bC)) ≥ ū

C\{i}
i

12Note that, by requiring β∗ ∈ B∗, this equilibrium rules out the possibility that the coalition’s bids are
sustained by ‘incredible’ threats of the independents.
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The set of RAE outcomes for the game with coalition C (given BRG and RC) is:

EC
(
BRG,R

)
= {b∗ ∈ A : ∃β∗ s.t. (b∗, β∗) is a RAE} . (8)

In section 4 we will apply the RAE to study the impact of a SEMA on the GSP auction,

and compare it to the benchmark VCG mechanism. The RAE in the GSP and the VCG

mechanism are obtained from Definition 1, once the game G, the correspondence BRG and

the exogenous restrictions R are specified accordingly. After presenting the main results

below, we return in section ?? to discuss how the RAE relates to the existing literature.

In the meantime, it is useful to note that RAE outcomes in general are not Nash Equilibria

of the baseline game, nor of the game in which the coalition is replaced by a single player:

similar to Ray and Vohra (1997, 2014, RV) ‘equilibrium binding agreements’, the stability

restrictions do affect the set of equilibrium outcomes, not merely as a refinement.13

4 Analysis

In the previous section we developed a machinery (the general notion of RAE) to study bid

coordination in arbitrary mechanisms. In the following we apply it to the GSP auction and

to the VCG mechanism, the traditional benchmark for the GSP auction in the literature.

Definition 2. The RAE-outcomes in the GSP and VCG mechanism are defined as follows.

Given constraints R:

1. The RAE of the GSP auction is obtained setting G (v) and BRG
i in Definition 1 equal

to G (v) and to BR∗i , respectively.

2. The RAE of the VCG mechanism are obtained from Definition 1 letting G (v) = V (v)

and letting BRG
i be such that independents play the dominant (truthful) strategy.

13There are two main differences between RV and our model. First, our stability restriction (S.2) only
allows the agency’s proposal to be blocked by individual members. In contrast, RV’s solution concept
presumes that the coalition’s proposals may be blocked by the joint deviation of any set of members of
the coalition. That advertisers can make binding agreements outside of the SEMA, and jointly block its
proposals, seems unrealistic in our context. Second, the underlying model of non-cooperative interaction is
Nash equilibrium in RV (this can be accommodated in our setting letting BRG

i in Definition 1 coincide with
the standard best-response correspondence), whereas we allow for refinements, which in the next Section
will be used for the analysis of the VCG and GSP.
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For both mechanisms, we will refer to the case where R is such that RC′ = AC′ for all

C ′ ⊆ I as the ‘unconstrained’ case.14

We first present the analysis of RAE in the VCG mechanism (section 4.1), and then

proceed to the analysis of the GSP auction (section 4.2). Our main conclusion is that, when

a SEMA is present, the VCG mechanism outperforms the GSP auction both in terms of

revenues and allocative efficiency. These results therefore uncover a striking fragility of the

GSP mechanism with respect to the possibility of coordinated bidding.

In some of the results below we have that the equilibrium bid for some i is such that

bi = bi+1. Since ties are broken according to bidders’ labels (cf. footnote 6), in this case

bidder i obtains the position above i+ 1. To emphasize this, we will write bi = b+i+1.
15

4.1 Coordinated Bidding in the VCG mechanism

As anticipated in Definition 2, we apply RAE to the game V (v), assuming that the indepen-

dents play the dominant strategy (truthful bidding), and letting the exogenous restrictions

R be vacuous (i.e., such that RC = AC for every C ⊆ I). It is easy to check that, under

this specification of the independents’ equilibrium correspondence, the set SC = AC. Hence,

constraint (S.1) in Definition 1 plays no role in the results of this subsection.

Theorem 1. For any C, the unconstrained RAE of the VCG is unique up to the bid of the

highest coalition member. In this equilibrium, advertisers are assigned to positions efficiently

(ρ (i) = i), independents’ bids are equal to their valuations and all the coalition members

(except possibly the highest) bid the lowest possible value that ensures their efficient position.

14Under this definition, the RAE-outcomes for the coalitions of size one (eq.7) coincide precisely with the
non-agency equilibria introduced in section 2. Namely, the LREF (EOS) equilibria in the GSP and the
dominant strategy equilibrium in the VCG.

15Without the tie-breaking rule embedded in ρ (footnote 6), the SEMA’s best replies may be empty valued.
In that case, our analysis would go through assuming that SEMA’s bids are placed from an arbitrarily fine

discrete bid (i.e., AC = (R+ ∩ εZ)
|C|

where ε is the minimum bid increment). In such alternative model, the
case bi = b+i+1 can be thought of as i bidding the lowest feasible bid higher than bi+1, i.e. bi = bi+1 + ε. All
our results would hold in such a discrete model, once the equilibrium bids in the theorems are interpreted as
the limit of the equilibria in the discrete model, letting ε→ 0 (the notation b+i+1 is thus reminiscent of this

alternative interpretation, as the right-hand limit b+i+1 := limε+→0 (bi+1 + ε)). Embedding the tie-breaking
rule in ρ allows us to avoid these technicalities, and focus on the key economic insights.
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Formally, in any RAE of the VCG mechanism, the bid profile b̂ is such that

b̂i


= vi if i ∈ I\C;

= b̂+i+1 if i ∈ C\ {min (C)} and i ≤ S;

∈
(
b̂+i+1, vi−1

)
if i = min (C) and i ≤ S.

(9)

where we denote v0 :=∞ and b̂n+1 := 0.

The RAE of the VCG mechanism therefore are efficient, with generally lower revenues

than in the VCG without a SEMA. Moreover, the presence of a SEMA has no impact on

the bids of the independents (this follows from the strategy-proofness of the mechanism).

The efficiency result in Theorem 1 is due to the stability restrictions in RAE, which

limits the SEMA’s freedom to place bids. Restriction (S.2), in particular, requires that the

agency’s proposal gives no member of the coalition an incentive to abandon it and bid as an

independent. A recursive argument further shows that the payoff that any coalition member

can attain from abandoning the coalition is bounded below by the equilibrium payoffs in the

baseline (coalition-less) game, in which assignments are efficient. The ‘Pigouvian’ logic of the

VCG payments in turn implies that such (recursive) participation constraints can only be

satisfied by the efficient assignment of positions. It is interesting to notice that the recursive

stability restriction is key to this result. As shown by the next example, without the recursive

stability restriction (S.2), inefficiency is possible in the VCG with bid coordination:

Example 2. Let n = 5, v = (40, 25, 20, 10, 9). The CTRs for the five positions are x =

{20, 10, 9, 1, 0}, and suppose that C = {1, 2, 5}. If 2 remains in the coalition and keeps his

efficient position, RAE-bids are b̂ = (b̂1, 20+, 20, 10, 0), the coalition’s payoff is 650, and 2

obtains 150 (again, b̂1 is not pinned down, but revenues and payoffs are). If 2 were to stay

in, but drop one position down, the bids would be b̂ = (b̂1, 10+, 20, 10, 0), and payoffs for the

coalition and 2 would be equal to 655 and 145, respectively. If 2 abandons the coalition, the

bids in the game in which C ′ = {1, 5} are b̂ = (b̂1, 25, 20, 10, 0), and 2 obtains a payoff of

150. Thus, the coalition would benefit from lowering 2’s position, but the recursive stability

condition does not allow such a move. Note also that the recursive definition matters: If the
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outside option were defined by the case with no coalition at all, 2 would not drop out even

when forced to take the lower position, since 2’s payoff in that case would be 141 < 145.

Whereas the presence of a SEMA does not alter the allocation of the VCG mechanism,

it does affect its revenues: in any RAE of the VCG mechanism, the SEMA lowers the bids

of its members (except possibly the one with the highest valuation) as much as possible,

within the constraints posed by the efficient ranking of bids. Since, in the VCG mechanism,

lowering the i-th bid affects the price paid for all slots s = 1, ...,min {S + 1, i− 1}, even a

small coalition can have a significant impact on the total revenues.

Example 3. Consider the environment in Example 1, and suppose that C = {1, 3}. Then,

the RAE of the VCG mechanism is b̂ =
(
b̂1, 4, 2

+, 2, 1
)

. The resulting revenues are 86, as

opposed to 96 of the non-agency case.

4.2 Coordinated Bidding in the GSP auction

We turn next to the GSP auction. According to the refinement of the best responses intro-

duced above, we set BRG
i in equation (4) equal to the marginally envy-free best response

correspondence (eq. 1). The resulting correspondence BRG
−C therefore assigns, to each pro-

file bC in the set of exogenous restrictions RC, the set of independents profiles that are fixed

points of the BR∗i correspondence for all i /∈ C.

We begin our analysis characterizing the RAE when the agency is constrained to plac-

ing bid profiles that could not be detected as ‘coordinated’ by an external observer (the

‘undetectable coordination’ restriction). Theorem 2 shows that the equilibrium outcomes

of the GSP with this restriction are exactly the same as the unrestricted RAE of the VCG

mechanism. We consider this problem mainly for analytical convenience, but the result of

Theorem 2 also has independent interest, in that it characterizes the equilibria in a market

in which ‘not being detectable as a bid coordinator’ is a primary concern of the SEMA.

We lift the ‘undetectable coordination’ restriction in section 4.2.2. We show that, unlike

the VCG mechanism, the unrestricted RAE of the GSP auction in general may be inefficient

and induce strictly lower revenues than their counterparts in the VCG mechanism. In light of

the efficiency of the VCG mechanism we established earlier (Theorem 1), it may be tempting
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to impute the lower revenues of the GSP auction to the inefficiencies that it may generate. To

address this question, in section 4.2.2 we also consider the RAE of the GSP auction when the

agency is constrained to inducing efficient allocations. With this restriction, we show that

the equilibrium revenues in the GSP auction are always lower than in the VCG mechanism

(Theorem 3). The revenue ranking therefore is not a consequence of the allocative effects.

4.2.1 The ‘Undetectable Coordination’ Restriction: A VCG-Equivalence Result

Consider the following set of exogenous restrictions: for any C ⊆ I s.t. |C| > 1,

RUC
C :=

{
bC ∈ AC : ∃v′ ∈ R|C|+ , b−C ∈ Rn−|C|

+ s.t. (bC, b−C) ∈ EG (v′C, v−C)
}
.

These exogenous restrictions have a clear interpretation: the set RUC
C is comprised of all

bid profiles of the agency that could be observed as part of a LREF equilibrium in the GSP

auction without the agency, given the valuations of the independents v−C = (vj)j∈I\C. For

instance, consider a SEMA whose primary interest is not being detectable as inducing bid

coordination by an external observer. The external observer (e.g., the search engine or the

anti-trust authority) can only observe the bid profile, but not the valuations (vi)i∈C. Then,

RUC
C characterizes the bid profiles that ensure the agency would not be detected as inducing

coordination, even if the independents had revealed their own valuations. The next result

characterizes the RAE of the GSP auction under these restrictions, and shows its revenue

and allocative equivalence to the unrestricted RAE of the VCG mechanism:

Theorem 2. For any C, in any RAE of the GSP auction under the ‘undetectable coordina-

tion’ (UC) restriction, the bids profile b̂ is unique up to the highest bid of the coalition and

up to the highest overall bid. In particular, let vfn+1 = 0, and for each i = n, ..., 1, recursively

define vfi := vfi+1 if i ∈ C and vfi = vi if i /∈ C. Then, for every i,

b̂i

 = vfi − xi

xi−1

(
vfi − b̂i+1

)
, if i 6= 1 and i 6= min (C);

∈
[
vfi − xi

xi−1

(
vfi − b̂i+1

)
, b̂i−1

)
otherwise

, (10)

where b̂0 := ∞ and xi/xi−1 := 0 whenever i > S. Moreover, in each of these equilibria,
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advertisers are assigned to positions efficiently (ρ (i) = i), and advertisers’ payments are the

same as in the corresponding ‘unrestricted RAE’ of the VCG mechanism (Theorem 1).

Note that, in the equilibrium of (10), every bidder i other than the highest coalition

member and the highest overall bidder bids as an independent with valuation vfi would

bid in the baseline competitive model (first line of eq. 10). For the independent bidders

(i /∈ C), such vfi coincides with the actual valuation vi. For coalition members instead,

vfi 6= vi is a ‘feigned valuation’. Though notationally involved, the idea is simple and provides

a clear insight on the SEMA’s equilibrium behavior: intuitively, in order to satisfy the

UC-restriction, the SEMA’s bids for each of its members should mimic the behavior of

an independent in the competitive benchmark, for some valuation. The SEMA’s problem

therefore boils down to ‘choosing’ a feigned valuation, and bid accordingly. The optimal

choice of the feigned valuation is the one which, given others’ bids, and the bidding strategy

of an independent, induces the lowest bid consistent with i obtaining the i-th position in the

competitive equilibrium of the model with feigned valuations, which is achieved by vfi = vfi+1.

Note that the fact that bidder i cannot be forced to a lower position is not implicit in the UC-

restriction, but the result of the equilibrium restrictions.16 The last line of (10) corresponds

to the bid of the highest coalition member and the highest overall bidder, required to be

placed in their efficient position. The logic of the equilibrium implies that it results in an

efficient allocation. Moreover, these equilibria induce the same individual payments (hence

total revenues) as the unrestricted RAE of the VCG mechanism.

To understand the implications of this equilibrium, notice that in the GSP auction, the

i-th bid only affects the payment of the (i− 1)-th bidder. Hence, the ‘direct effect’ of bids

manipulation is weaker in the GSP than in the VCG mechanism, where the payments for all

positions above i are affected. Unlike the VCG mechanism, however, manipulating the bid

of coalition member i also has an ‘indirect effect’ on the bids of all the independents placed

above i, who lower their bids according to the recursion in (10).

Example 4. Consider the environment of Example 3, with C = {1, 3}. Then, the UC-

RAE is b̂ =
(
b̂1, 2.9, 1.8, 1.6, 1

)
, which results in revenues 86. These are the same as in

16The reason is similar to that discussed for Theorem 1, only here is more complicated due to the fact
that, in the GSP auction, the bids of the SEMA alter the bids placed by the independents.
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the VCG mechanism, and 10 less than in the non-agency case (Example 1). Note that the

bid b̂3 = 1.8 obtains setting vf3 = v4 = 2, and then applying the same recursion as for the

independents. Also note that the ‘direct effect’, due to the reduction in b̂3, is only equal to(
bEOS3 − b̂3

)
·x2 = 5 (where bEOS3 denotes 3’s bid in the non-agency benchmark). Thus, 50%

of the revenue loss in this example is due to the SEMA’s ‘indirect effect’ on the independents.

Thus, despite the simplicity of the payment rule in the GSP auction, the equilibrium

effects in (10) essentially replicate the complexity of the VCG payments: once the direct and

indirect effects are combined, the resulting revenue loss is the same in the two mechanisms.

This result also enables us to simplify the analysis of the impact of the SEMA on the GSP,

by studying the comparative statics of the unconstrained RAE in the VCG mechanism. We

can thus obtain simple qualitative insights for this complicated problem:

Remark 1. Both in the VCG mechanism and in the UC-RAE of the GSP auction:

1. Holding everything else constant, the revenue losses due to the SEMA increase with

the differences (xi−1 − xi) associated to the SEMA’s clients i ∈ C.

2. Holding (xs − xs+1) constant (i.e., if it is constant in s), the revenue losses due to the

SEMA are larger if: (i) The coalition includes members that occupy a lower position in the

ranking of valuations; (ii) The coalition includes members that occupy adjacent positions in

the ranking of valuations; (iii) The difference in valuations between members of the coalition

and the independents immediately below them (in the ranking of valuations) is larger.

Part 1 is immediate from Theorem 1 and the transfers of the VCG payment (section 2).

Part 2 is also straightforward: point (i) follows from the fact that, for any given decrease of

the bid of a single bidder, the total reduction in revenues of the VCG mechanism increases

with the number of agents placed above him. Point (ii) is due to the fact that, for any

i 6= min {C}, if i+1 also belongs to the coalition, then the SEMA can lower i’s bid below vi+1,

still preserving an efficient allocation. Point (iii) follows because, the lower the valuations of

the independents ranked below a member of the coalition, the more the SEMA has freedom

to lower the bid of that member without violating the efficient ranking of bids (Theorem 1).

We conclude the analysis of the UC-RAE of the GSP auction providing a characterization

of its testable implications. In particular, the equilibrium characterization in Theorem 2
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involves bidders’ valuations. But since valuations are typically not observable to an external

analysts, the conditions in (10) may appear to be of little help for empirical analysis. Those

terms, however, can be rearranged to obtain a characterization that only depends on the

CTRs and the individual bids.

Corollary 2. For any C, in any RAE of the GSP auction under the ‘undetectable coordina-

tion’ (UC) restriction, the bids profile b̂ satisfies the following conditions:

• if i /∈ C:
b̂ix

i−1 − bi+1x
i

xi−1 − xi︸ ︷︷ ︸
=vi

>
b̂i+1x

i − b̂i+2x
i+1

xi − xi+1
(11)

• if i ∈ C and i 6= min (C):

b̂ix
i−1 − b̂i+1x

i

xi−1 − xi︸ ︷︷ ︸
=vfi (≤ vi)

=
b̂i+1x

i − b̂i+2x
i+1

xi − xi+1
(12)

These conditions are easily comparable to the analogous characterization obtained for

the competitive benchmark (equation 3), and will provide the basic building block for the

applications to ad auctions data in Section 5.

4.2.2 Lifting the UC-Restriction: Revenue Losses and Inefficiency

As discussed in section 4.1, the revenues generated by the VCG may be largely affected

by the presence of a SEMA, even if it comprises a small number of members. Theorem 2

therefore already entails a fairly negative outlook on the sellers’ revenues in the GSP auction

when a SEMA is active, even when it cannot be detected as explicitly inducing any kind of

‘coordinated bidding’. In this section we show that, when the undetectability constraint is

lifted, a SEMA may induce larger revenue losses as well as inefficient allocations in the

GSP auction. Before doing that, however, we first consider a weaker set of exogenous

restrictions, which force the SEMA to induce efficient allocations. This is useful to isolate the

price-reducing effect of bidding coordination separately from its potential allocative effect.
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Theorem 3 shows that, even with this restriction, the auctioneer’s revenues are no higher

than in the unrestricted equilibria of the VCG mechanism.

Formally, let REFF =
{
REFF
C

}
C⊆I:|C|≥2 be such that, for each non trivial coalition C ⊆ I,

REFF
C :=

{
bC ∈ AC : ∃b−C ∈ BR∗−C(bC) s.t. ρ(i; (bC, b−C)) = i ∀i ∈ I

}
.

Definition 3. An efficiency-constrained RAE of the GSP auction is a RAE of the GSP

auction where the exogenous restrictions are given by R = REFF and the agency’s conjectures

β∗ satisfy ρi(bC, β
∗(bC)) = i for all bC ∈ REFF

C and all i ∈ I.

Theorem 3. Efficiency-constrained RAE of the GSP auction exist; in any such RAE: (i)

the agency’s payoff is at least as high as in any RAE of the VCG mechanism, and (ii) the

auctioneer’s revenue is no higher than in the corresponding equilibrium of the VCG auction.

Furthermore, there exist parameter values under which both orderings are strict.

By imposing efficiency as an exogenous constraint, Theorem 3 shows that the structure

of the payments in the GSP auctions determines a fragility of its performance in terms of

revenues, independent of the allocative distortions it may generate. The intuition behind

Theorem 3 is simple, in hindsight: In the VCG mechanism, truthful bidding is dominant

for the independents, irrespective of the presence of the SEMA. Hence, by manipulating the

bids of its members, the agency cannot affect the bids of the independents (though it may

affect their payments, as seen in Example 3). The SEMA’s manipulation of the bids of its

members therefore only has a direct effect on the total revenues. In the GSP auction, in

contrast, the SEMA has both a direct and an indirect effect on the total revenues. The latter

is due to its ability to affect the equilibrium bids of the independents.

Under the UC-restrictions, the two effects combined induce exactly the same revenue-

loss as in the VCG mechanism. Since the RAE with the UC-restriction also induce efficient

allocations, it may seem that Theorem 3 follows immediately from the efficiency constraint

being weaker than the UC-restriction. This intuition is incorrect for two reasons. First, the

UC-constraint requires the existence of feigned valuations which can rationalize the observed

bid profile, but does not require that they preserve the ranking of the true valuations.

Second, when the exogenous restrictions R = (RC)C⊆I:|C|≥2 are changed, they change for all
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Table 1: Summary of Results in Examples

Valuations VCG GSP (EOS) RAE in VCG UC-RAE in GSP (Eff.) RAE in GSP
5 5 b1 b1 b1 b1

4 4 3.15 4 2.9 2.8
3 3 2.3 2+ 1.8 1.6+

2 2 1.6 2 1.6 1.6
1 1 1 1 1 1

Revenues 96 96 86 86 82
Summary of results in examples 1, 3-5. Coalition members’ bids and valuations are in bold. The

VCG and GSP columns represent the competitive equilibria in the two mechanisms as described in

example 1. The RAE in VCG and the revenue equivalent UC-RAE in the GSP are from examples

3 and 4 respectively. The last column denotes both the Efficient RAE and the unrestricted RAE

of the GSP auction, which coincide in example 5.

coalitions: hence, even if RC is weaker for any given C, the fact that it is also weaker for

the subcoalitions may make the stability constraint (S.2) more stringent. Which of the two

effects dominates, in general, is unclear. Hence, because of the ‘farsightedness assumption’

embedded in constraint (S.2), the proof of the theorem is by induction on the size of the

coalition.

The next example illustrates the Eff-RAE in the environment of Examples 3 and 4. Table

1 compares the bid profiles and revenues of the equilibria illustrated in our leading examples.

Example 5. Consider the environment of Examples 3 and 4, with C = {1, 3}. The efficiency-

constrained RAE is b̂ =
(
b̂1, 2.8, 1.6

+, 1.6, 1
)

, which results in revenues 82, which are lower

than the RAE in VCG mechanism (86). Note that, relative to the UC-RAE in Example

4, the coalition lowers b3 to the lowest level consistent with the efficient ranking. This in

turn induces independent bidder 2 to lower his bids, hence the extra revenue loss is due to

further direct and indirect effects. We note that the efficiency restriction is not binding in

this example, and hence the Eff-RAE and the unconstrained RAE coincide.

Since, under the efficiency restriction, the GSP auction induces the same allocation as

the VCG mechanism, the two mechanisms are ranked in terms of revenues purely due to the

SEMA’s effect on prices. Obviously, if allocative inefficiencies were introduced, they would

provide a further, independent source of revenue reduction. As already noted, this is not

the case in Example 5, in which the efficiency constraint is not binding. Unlike the VCG

mechanism, however, the unrestricted RAE of the GSP auction can be inefficient as well:
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Example 6. Consider a case with n = 8, CTRs x = (50, 40, 30.1, 20, 10, 2, 1, 0) and val-

uations v = (12, 10.5, 10.4, 10.3, 10.2, 10.1, 10, 1). Let C = {5, 6}. The unrestricted RAE

is essentially unique (up to the highest overall bid) and inefficient, with the coalition bid-

ders obtaining slots 4 and 6. Equilibrium bids (rounding off to the second decimal) are

b = (b1, 9.91, 9.76, 9.12, 9.5, 7.94, 5.5, 1). The inefficiency arises as follows. The agency dras-

tically reduces the bid of its lower-valued member to benefit the other member. This, however,

creates incentives for the independents i < 5 to move down to the position just above bidder

6, in order to appropriate some of the rents generated by the reduction of its bid. In order to

prevent these independents from doing so, 5’s bid must also be reduced, to make the higher

positions more attractive. But in this example, the reduction of 6’s bid is large enough that

the undercut of 4 is low enough that the coalition actually prefers giving up slot 5 to the

independent, and climb up to the higher position. Thus, the coalition does not benefit directly

from the reduction of 6’s bid, but indirectly, by attracting 4 to the lower position.

Similarly to what done before, we conclude this discussion with some testable implications

of the Efficiency Constrained RAE in the GSP auction, which will be useful to the empirical

analysis in Section 5.

Corollary 3. For any C, in any Eff-RAE of the GSP auction under, the bids profile b̂

satisfies the following conditions:

• if i /∈ C:
b̂ix

i−1 − b̂i+1x
i

xi−1 − xi︸ ︷︷ ︸
=vi

>
b̂i+1x

i − b̂i+2x
i+1

xi − xi+1
(13)

• if i ∈ C and i 6= min (C):

b̂ix
i−1 − b̂i+1x

i

xi−1 − xi︸ ︷︷ ︸
less than vi

<
b̂i+1x

i − b̂i+2x
i+1

xi − xi+1
(14)

4.3 Discussion of the theoretical results

The VCG mechanism is typically regarded as a poor mechanism under collusion. Yet, we

have shown that, in the presence of a SEMA, it outperforms the GSP auction both in
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terms of revenues and allocative efficiency. On the one hand, this conclusion provides a

remarkably negative result for the GSP auction, which highlights an important fragility of

this mechanism with respect to the possibility of coordinated bidding. On the other hand,

the efficiency result in Theorem 1 shows that the desirable allocative properties of the VCG

mechanism are robust to the introduction of a SEMA, suggesting that the VCG mechanism

may be more resilient than we might have expected.

Independent of the efficiency result, which we discuss below, a key source of the resilience

of the VCG mechanism is its strategy-proofness: if individual bidders have a dominant

strategy, then a SEMA may have at most a direct effect on the total revenues, as independents

have no reason to adjust their bids as a function of the strategy and composition of the

agency. In the GSP auction, in contrast, the SEMA can manipulate the bids of its members

and induce lower bids also amongst the independents. As shown in Example 4, the resulting

indirect effect may be significant: due to the complex equilibrium effects of the GSP auction,

even a small manipulation of the coalition’s bids may have a large effect on total revenues.

In general, indirect effects can be completely avoided only if independents’ best responses

are unaffected by the bids of the agency. This suggests that strategy-proofness may be a

desirable property in the presence of a SEMA.

The efficiency result of Theorem 1 clearly relies on the assumptions of our model. As il-

lustrated in Example 2, without the recursive stability constraint (S.2), coordinated bidding

in the VCG mechanism may induce inefficiencies. But as soon as individuals’ incentives to

abandon the coalition are taken into account, efficiency is restored.17 Thus, the significance

of the efficiency result depends on whether or not we believe that a mechanism’s perfor-

mance should be evaluated taking into account the underlying coalition formation process.

For a medium or long-run perspective, we think that this is important, hence we built a

‘farsigthedness assumption’ into our model.

17Bachrach (2010) studies collusion in the VCG mechanism in a classical cooperative setting (i.e. with-
out distinguishing the SEMA clients from the independents, and without Ray and Vohra’s farsightedness
assumption), finding that the VCG is vulnerable to this form of collusion.
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4.4 Extension: Competition between Agencies

The case of multiple SEMAs placing bids for multiple advertisers, ignored in the analysis of

the previous sections, rarely happens in the data.18 Nevertheless, it is interesting to consider

how the presence of multiple SEMAs would affect our results.

In this section we show that competition between agencies may have mixed effects on

the market. On the one hand, for most configurations of the coalition structure, our earlier

results extend to the case with multiple SEMAs essentially unchanged. Clearly, the revenue

losses for the search engines will be less pronounced when the same set of coordinating

bidders is divided into two (or more) competing subsets of SEMAs, but they would still

be substantial. On the other hand, for many configurations of coalitions, equilibria in pure

strategies will either not be unique or stop existing altogether. This means that, for certain

configuration of coalitions, bidding cycles are likely to emerge under the current mechanism

– a phenomenon that had been observed for the earlier mechanisms used in this market, and

which is considered to be the main reason of the transition from such earlier mechanisms to

the GSP auction.19 Hence, while competition between agencies may produce the expected

result of mitigating the revenue losses due to bidding coordination, it may also impair the

working of the current mechanisms in a more fundamental way, with the potential to disrupt

the current market arrangement.

For simplicity, we consider the case with two SEMAs (the extension to more than two

agencies is cumbersome but straightforward). We also assume that the highest-placed bidder

within any coalition bids as if he were an independent. Since his bid does not affect the

coalition’s payoff, we had left this bid unrestricted in the earlier analysis. With more than

one coalition, however, this way of breaking the indifference helps to characterize the set of

equilibria. The next Theorem shows that, for certain coalition structures, the results of the

previous sections extend essentially unchanged to the multiple agencies case. But for other

coalition structures, bidding cycles may emerge:

18Decarolis, Goldmanis and Penta (2016) document that, consistent with the agencies’ specialization, it is
almost never the case that more than one agency bids on behalf of multiple bidders in the same auction.

19See Edelman and Ostrovsky (2007) for a discussion of bidding cycles in the Overture’s first price auctions,
and Ottaviani (2003) for an early assessment of the transition from first price to GSP auctions.
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Theorem 4. 1. If no members of different coalitions occupy adjacent positions in the order-

ing of valuations, and all members of one coalition are above all members of the

other, then the UC-RAE of the GSP with multiple coalitions is unique. In this equilibrium,

the allocation is efficient and the search engine revenues are weakly higher than those of the

UC-RAE in which all members of the different coalitions bid under the same SEMA, but no

higher than under full competition. Moreover, both the allocation and the associated revenues

are identical to those resulting in the equilibrium of a VCG mechanism.

2. If non-top members of different coalitions occupy adjacent positions in the ordering of

valuations, then no unconstrained RAE of the VCG and no UC-RAE of the GSP exist.

The first part of the theorem extends Theorems 1 and 2 to the case of multiple SEMAs.

The result therefore shows that competition between agencies may mitigate, but not solve,

the loss in revenues due to coordinated bidding. In fact, if coalitions have bidders in adjacent

positions (part 2 of the Theorem), further problems arise, such as non-existence of pure-

strategy equilibria and bidding cycles. Hence, the overall message from the previous section

is essentially unaffected by the possibility of competition between agengies: the diffusion

of SEMAs is doomed to alter the functioning of the existing mechanisms in a fundamental

way, and especially so the GSP auction, which is particularly fragile to the possibility of

coordinated bidding.

We illustrate both these points with the following example. Consider once again our

workhorse example of Table 1. Table 2 reports the EOS equilibrium bids (second column)

as well as the bids under different coalition structures. First, we look at the case of a single

coalition C = {1, 2, 4, 5}. According to our earlier results, in the UC-RAE under this SEMA

the bottom two bidders bid zero. This has an indirect effect on the independent bidder (3),

who lowers his bid from 2.3 to 1.5, thereby lowering the payments and bids for bidders 1

and 2. If we split this coalition into two separate coalitions, however, things will change

depending on the way we partition these four bidders. Suppose the split is that in the fourth

column of the table: C1 = {1, 2} and C2 = {4, 5}. In this case, the two coalitions have no

adjacent members, hence part 1 of Theorem 4 applies. In equilibrium, the revenues amount

to 88 which is above what found for the case of a single coalition (60), but still well below
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the EOS case, in which all bidders are independent (96).20

Table 2: Competition between Agencies

Valuations GSP Single Two Two
(EOS) Coalition: Coalitions: Coalitions:

C = {1, 2, 4, 5} C1 = {1, 2}, C2 = {4, 5} C1 = {1, 4}, C2 = {2, 5}
5 b1 5 5 b1

4 3.15 2.75 3.05 b2

3 2.3 1.5 2.1 b3
2 1.6 0+ 1.2 b4

1 1 0 0 b5

Revenues 96 60 88 −

Suppose next that the coalition of four instead is split as in the last column of Table 2:

C1 = {1, 4} and C2 = {2, 5}. In this case, C2 would ideally like to set b5 = 0. If it does

so, however, C1 will find optimal to set b4 = 0+. This, however, is incompatible with an

equilibrium because once b4 = 0+, the player in position 5 will prefer to leave the coalition

and climb one position up by placing a bid above b4. On the other hand, if b4 is set sufficiently

high that the bidder in position 5 does not want to jump up, then, conditional on b4, C2
would like to place b5 equal to zero. But then, a strictly positive b4 cannot be optimal for

C1. Part 2 of Theorem 4 says that this instability is widespread, and that bidding cycles

will likely emerge for all those configurations in which two bidders from separate coalitions

(that are not the top bidder of their respective coalitions) are contiguous in the ordering

of valuations. Interestingly, the economics behind this phenomenon is nearly identical to

that explained by Edelman and Ostrovsky (2007) in their characterization of the original

Generalized First Price (GFP) auction system with which the market started: the same

type of bidding cycles that characterized the GFP – and that lead to introduction of the

GSP – emerge under the GSP with multiple SEMAs. This is a troubling result for the GSP,

showing that competition between agencies, instead of fixing the problems, could exacerbate

the instability of the system.

20Note that, if the highest placed member of the lower coalition (i.e., the bidder with a value of 2 in
this example) were to slightly increase/decrease his bid, his coalition’s payoffs would not change, but the
revenues of the other coalition would correspondingly decrease/increase. Hence, it is evident that without the
assumption that top coalition members behave as an independents, a multiplicity of equilibria might arise.
Different selections from the best-response correspondence may be used to model other forms of behavior,
such as spiteful bidding (e.g., Levin and Skrzypacz, 2016).

27



5 Applications to Ad Auctions

In this section, we show how our model can be used with typical data available to a search

engine to detect collusion in its ad auctions. We first present the method and then illustrate

its application through simulated data.

The data observed by search engines like Google or Microsoft-Yahoo! include information

on all the variables entering our model, with the exception of advertisers’ valuations. In

particular, search engines record the advertisers’ identity, their SEMA (if any), bids, positions

and clicks received. These data would also allow a search engine to estimate CTRs as click

frequencies. A major feature of the typical data is that they also record ‘quality scores’.

This would indeed be the case for Google or Microsoft-Yahoo! (but not, for instance, for

Taobao) where a variant of the GSP auction is used: these quality scores are the advertisers’

idiosyncratic score assigned by the search engine to account for various quality dimensions,

including the CTRs. Quality scores concur in determining the assignment of advertisers to

slots and prices: advertisers are ranked by the product of their bid and quality score, and

pay a price equal to the minimum bid consistent with keeping that position.

Formally, letting ei denote the score of bidder i, advertisers are ranked by ei · bi, and

CTRs are equal to ei ·xρ(i), the product of a ‘quality effect’ and a ‘position effect’. The price

paid by bidder i in position ρ(i) is pi = eρ(i+1)bρ(i+1)/ei.
21 Relabeling advertisers so that

eivi > ei+1vi+1, the competitive (EOS) equilibrium bids are such that, for all i = 2, ..., S,

eivi =
eibix

i−1 − ei+1bi+1x
i

xi−1 − xi
>
ei+1bi+1x

i − ei+2bi+2x
i+1

xi − xi+1
= ei+1vi+1. (15)

This is the analogue, with quality scores, of what is implied by equation (2) in Lemma 1 and

by Corollary 1. As shown below, similar modifications apply to the equilibria with agency

coordination and this formulation is the basis for our proposed criterion to detect collusion.

21In extending the model to accommodate quality scores, we again follow EOS and Varian (2007). Clearly,
the baseline model of the previous sections obtains letting ei = 1 for all i.
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5.1 Detecting Coordination: Strategy

We seek to devise a criterion that allows a search engine to say whether the data are more

likely to be generated by competitive (EOS) bidding or by one of the models of agency

coordination (UC-RAE, Eff-RAE and RAE). The latter models differ from EOS in that the

bids of all agency bidders, with the exception of the highest value coalition member, are ‘too

low’. This property of the coordination models leads to the following classification criterion

that we present for the case of a 2-bidder coalition (the extension to larger coalitions is

straightforward): let j denote the lowest value agency bidder, then an EOS-compatible bid

profile requires that:

ejbjx
j−1 − ej+1bj+1x

j

xj−1 − xj
>
ej+1bj+1x

j − ej+2bj+2x
j+1

xj − xj+1
.

The key idea of our criterion is immediately evident from the comparison of the testable

implication of the EOS model above with those of our collusive models. As shown by

equations (12) and (14), under our coordination models, bidder j will lower its bid relative

to the EOS case so that the above inequality is violated: either it holds as an equality, in

the UC-RAE case, or it is inverted, in Eff-RAE and RAE cases. Importantly, for all other

bidders i 6=j, our coordination models do not imply any observable difference relative to EOS,

as shown by equations (11) and (14). Thus, a criterion based on the above inequality for

bidder j captures the only feature which differentiates coordinated from competitive EOS

bidding.

Thus, if we have as set of T auctions, t = 1, 2, ..., T for the same keyword/coalition and for

which we observe quality scores, bids, CTRs and positions for all bidders, we can construct

a quantity which captures the realization of the above inequality in each auction t as follows:

Jt =
ejbjx

j−1 − ej+1bj+1x
j

xj−1 − xj
− ej+1bj+1x

j − ej+2bj+2x
j+1

xj − xj+1
.

If across many auctions for the same keyword we have evidence in favor of a positive Jt,

this will be evidence in favor of competition. Otherwise, the evidence will be in favor of

collusion. We next turn to simulated data to illustrate how to operationalize this idea.
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5.2 Simulation

Consider once again the example in Table 1. We hold fixed the valuations, CTRs and

coalition structure as in Table 1 and construct 100,000 simulated replicas of this auction

by randomly drawing quality scores. For each auction and bidder, we take independent

draws from a Normal distribution with mean 1 and s.d. 0.03. Since, as reported in Table

1, the lowest value member of the coalition is the bidder with a value of 3, we thus proceed

to calculate the value of Jt for this bidder for all simulated auctions under three different

equilibrium scenarios and report the resulting distribution of Jt in panel (a) of Figure 1:

EOS (solid line), UC-RAE (dashed line) and Eff-RAE (dotted line).

Figure 1: Simulation

(a) No Noise (b) Small Noise (c) Big Noise

The distributions in panel (a) show that, as expected, Jt is never negative when we

simulate EOS, it always equals zero when we simulate UC-RAE and it is never positive when

we simulate Eff-RAE.22 Under the ideal conditions of the simulation, the observation of the

distribution of Jt thus allows us to unambiguously separate the bidding models. Clearly,

with real data, this tool should be expected to face some limits.

For instance, search engines update quality scores in real time. Hence, even if bidders can

frequently readjust bids, it is not the case that bids are always optimized for the ‘true’ quality

scores. Albeit small, the presence of belief errors about quality scores can impact Jt. To

illustrate this point, in plot (b) and (c) of Figure 1 we repeat the previous simulation under

22Detecting bids as coming from UC-RAE, in which coordinated bids were defined as ‘undetectable’, may
strike as oxymoronic. The reason is that UC-RAE is undetectable in a single auction, but because it entails
that Jt is exactly zero, it becomes detectable once many auctions are considered: Jt = 0 in every auction
would be possible only if valuations where changing with the quality scores in an ad hoc way, hence the
detectability of UC-RAE across auctions.
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two scenarios. In both cases, we consider a belief error that enters multiplicatively: for each

bidder i and auction t the true quality score is eit, but bidders believe the true score to be ẽit,

where ẽit = dit ·eit. Panel (b) considers the case of a small error, with dit ∼ N (1, 0.052), while

panel (c) considers the case of a larger error, with dit ∼ N (1, 0.12). These two cases illustrate

that, with any belief error, the distribution of Jt under UC-RAE is no longer degenerate at

zero. This implies the need to search for UC-RAE cases by looking at an interval around

zero, thus introducing some arbitrariness in the use of the Jt criterion. Moreover, overlaps

in the three distributions make it more ambiguous to discriminate between the different

models. In panel (b), the relatively small amount of noise still allows us to correctly classify

the bidding models by looking at whether most of the mass of the distribution lies to the left

of zero, around zero or to the right of zero. In practice, this can be operationalized in many

ways by looking, for instance, at the smallest interval including majority of the mass, or,

alternatively, by looking at some summary measure like mean, median or mode. As shown

by panel (c), however, when the amount of noise is big, none of these methods will give rise

to a satisfactory classification. Nevertheless, based on the empirical findings in Varian (2007)

and Athey and Nekipelov (2012), it is reasonable to expect that the amount of belief noise

is often rather small in the data so that our proposed criterion will typically be a useful tool

to detect potential collusion.

Finally, for those cases where the above approach reveals the likely presence of collusion, a

simple approach can be followed to invert bids and recover estimates of the potential revenue

losses, even in the presence of belief errors about quality scores. To see this, suppose that

we observe a 2-bidder coalition that bids according to one of our models of coordination.

Then, if j is the lowest valued agency member, his value is bounded below by the value of

the bidder in position ρ(j+ 1) and above by the bidder in position ρ(j−1) (or by the bidder

in position ρ(j − 2), if the two agency bidders are contiguous). Therefore, if we assume that

the data are generated by one of our equilibrium models, the one-to-one mapping that these

equilibria imply between the independents’ bids and their valuations can be used to retrieve

their values and, hence, the bounds for the values of the coalition members.23 Although no

23To reconcile this approach with the belief errors discussed above, when inverting bids into valuations, an
approach similar to Varian (2007) can be followed assuming that the realized belief errors are the smallest
errors required to rationalize the data as coming from equilibrium bidding.
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bound can be derived when the coalition occupies the top two slots or when its lowest valued

member has no bidder below it, in all other cases this approach will be informative and will

allow a search engine to compute counterfactual revenues under competitive bidding.

6 Conclusions

This is the first study to focus on the role of agencies on sponsored search auctions, and

in particular on their role in coordinating the bids of different advertisers. Our theoretical

results uncover a striking fragility of the GSP auction to bid coordination. This is confirmed

by the empirical analysis in Decarolis, Goldmanis and Penta (2016), which reveals that even

the small 2-bidder coalitions frequently observed in the data can have large effects on rev-

enues. Aside from its theoretical interest, this is a first order finding since most of the online

marketing is still passing through GSP auctions. Our finding might also provide a rationale

for why Facebook has recently adopted the VCG and Google is said to be considering the

transition. Shifts between one mechanism and the other are of tremendous interest given

the large stakes involved and the fact that the proper functioning of this market is essential

for both advertisers to reach consumers and consumers to learn about products.

From a methodological perspective, we note that the notion of RAE – and particularly

the ‘farsightedness’ idea – has been key to obtain clear results in this complicated auction,

in which competitive and coordinated bidding coexist. This suggests that this broader

approach, which combines cooperative and non-cooperative ideas, may be fruitful to address

the important problem of partial cartels, an outstanding challenge in the literature.

Clearly, our results are also interesting from a market design perspective. While beyond

the scope of this paper, our analysis suggests some possible guidelines for research in this

area. For instance, our analysis of the GSP auction with ‘undetectable coordination’ con-

straints implicitly suggests a way of deriving reservation prices to limit the impact of bids

coordination. This kind of intervention would thus reinforce the resilience of the GSP auc-

tion, without entailing major changes in the mechanism. More radical modifications of the

mechanism may be pursued as well. Theorem 1 shows that, in this setting, the VCG mecha-

nism performs surprisingly well in the presence of bid coordination. As discussed in section
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4, this is largely due to the strategy-proofness of this mechanism. While the complexity of

the VCG payments is often seen as an impediment to the actual implementability of this

mechanism, our analysis suggests that strategy-proofness may be a desirable property for a

mechanism to perform well in the presence of bid coordination. Thus, variations of uniform

price auctions may also be simpler and more viable options to address bid coordination.

Furthermore, from a broader perspective, we note that our findings are important to

understand recent developments in online advertising. In this respect, they complement other

the recent work, like Blake, Nosko and Tadelis (2015) and Einav, Farronato and Sundaresan

(2014). The former paper explores, through large scale experiments, how eBay could benefit

from a more nuanced bidding behavior that distinguishes between brand and non-brand

keyword ads. The latter study, instead, focuses on the consumers’ side documenting a

decline in the importance of consumers’ bidding in the eBay auctions with a progressive

shift towards purchasing at posted prices. Our results, instead, focus on the advertisers’

side analyzing the ongoing switch from advertisers’ bidding to delegated bidding via SEMA.

Altogether, it emerges the picture that bidding behavior in online marketing platforms is

undergoing important transformations that still need careful analysis.

Finally, as pointed out earlier, our findings are also potentially relevant from an antitrust

perspective. In particular, the agency behavior in our model is analogous to that of buy-

ing consortia, which have been sanctioned in the past (see footnote 5). Nevertheless, the

specificities of the sponsored search advertisements market suggest a more nuanced view

of the harm to the consumers. First, although multiple search engines exist, the degree of

competition between them is likely substantially less than that between most of the adver-

tisers. Since the lower auction prices imply a reduction in the marginal cost advertisers pay

to reach consumers, advertiser competition would thus imply that some savings are passed

on to consumers. Therefore, harm to consumers would result only if the agency engages in

coordinating not only the auction bids, but also the prices charged to consumers. Second,

bid coordination can negatively affect the quality of the service received by consumers by

exacerbating further the advantage of dominant search engines relative to fringe ones. In

Europe, for instance, where 90% of the searches pass via Google, agencies might be rather

careful not to harm Google given the risk of being excluded from its results page. Smaller
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search engines cannot exert such a threat because agencies are essential to attract new cus-

tomers. The shift of revenues from small search engines to marketing agencies could thus

deprive the former of the essential resources needed for technology investments. Thus, to

the extent that competing search engines exert pressure for quality improvements, bid coor-

dination poses a potential threat to consumer welfare.24 All these considerations represent

potentially fruitful directions for future research.
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