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I Introduction

Economists usually evaluate the welfare impact of policy changes based on

their impact on individuals. To evaluate a policy change based on its impact on

individuals, we need to (i) define how we measure individual gains and losses, (ii)

estimate them, and (iii) take a stance on how to aggregate them. To understand

the political economy of a policy change (who would oppose it and who would

support it, based on economic self-interest), we need to characterize the sets of

winners and losers of this policy change.

The answers to these questions are important to the extent that few changes

of economic policy result in Pareto improvements; most policies, in particular

controversial ones, do generate winners and losers. Some examples help to

illustrate. Trade liberalization opposes net producers and net consumers of

goods with rising / declining prices subsequent to liberalization. Progressive

income tax reform opposes high and low income earners. (Skill biased) technical

change opposes suppliers of substitutes and complements to new technologies. A

decrease of barriers to migration opposes would-be migrants as well as suppliers

of complements to migrant labor to suppliers of substitutes to migrant labor.

The goal of this paper is to provide a general set of tools for empirical re-

searchers who wish to analyze the distributional impact of policy changes or

historical changes in settings such as these, in particular the impact of chang-

ing wages, but also of changing prices, taxes, and transfers. The framework

we propose is characterized by the following features: (i) We consider individ-

ual welfare as measured by utility. (ii) We allow for endogenous prices and

wages. (iii) We allow for (almost) unrestricted heterogeneity across individuals

in terms of preferences and in terms of policy impacts on wages, labor supply,

etc.1 Within this framework, we devise procedures to answer various questions

regarding the distributional impact of marginal policy changes: What is the

expected welfare impact on individuals conditional on their initial income and

exogenous covariates? In particular, which income groups win or lose as a con-

sequence of the policy change, and by how much? Given a choice of welfare

weights, what is the impact of the policy change on social welfare? Should we

support or oppose the policy change?

The procedures proposed here impute a money-metric expected welfare im-

1. This point is important and will be discussed in detail below. We do not restrict the
dimension of heterogeneity in any way, in contrast to “structural” approaches, but we do need
to impose some exclusion restrictions to achieve point identification.
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pact of the policy change under consideration to each individual. Based on this

imputed impact, we can estimate a number of objects of interest: We can plot

expected welfare impacts given initial earnings and demographic covariates. We

can estimate sets of winners and losers and their characteristics, such as means

of covariates within each group. Given a choice of welfare weights, finally, we

can estimate aggregate welfare impacts.

The central econometric difficulty is the first step, imputation of money-

metric expected welfare impacts to each individual. Welfare impacts have com-

ponents of the form ẇ · l (change in wage times baseline labor supply), and we

need to estimate expected welfare impacts conditional on baseline income w · l.
Welfare impacts differ from impacts on income by the behavioral effect w · l̇
(wage times change in labor supply).

More generally, we can reframe the problem of estimating E[ẇ · l|w · l, α]

as a special case of the problem of identifying the expected causal impact ẋ

of a policy change on the vector x, conditional on initial x and policy level

α, E[ẋ|x, α]. The special case we are interested in corresponds to considering

x = (w, l). We provide conditions involving exclusion restrictions under which

such conditional causal effects, and in particular expected welfare impacts, are

identified by the slopes of nonparametric quantile regressions with control func-

tions, generalizing insights of Hoderlein and Mammen (2007) and Imbens and

Newey (2009). Based on these identification results, we propose to estimate

individual welfare impacts using local linear quantile regressions. These esti-

mated expected welfare effects are then used to derive estimators for a variety

of objects, in particular (i) average expected welfare impacts as a function of

initial income, and (ii) descriptive statistics for the sets of winners and losers,

for instance covariate means and population shares.

The results discussed so far concern the problem of inferring individual wel-

fare effects from data. A second set of issues arises in normative policy analysis

when we want to aggregate, that is, infer social welfare effects from individual

welfare effects. Issues of aggregation arise both in optimal tax theory and in

the distributional decomposition literature. We provide results relating social

welfare evaluations (as in optimal tax theory) to distributional decompositions

(as in labor economics). We show that welfare weights in social welfare analysis

are formally analogous to the derivatives of influence functions as introduced

to the decomposition literature by Firpo et al. (2009). We further show that,

given welfare weights, policy impacts on social welfare differ from impacts on

distributional statistics by a “behavioral correction” term.
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The rest of this paper is structured as follows. We conclude this introduction

by reviewing some related literature. Section II presents our assumptions and

objects of interest and characterizes the effect of policy changes on individual

welfare. Our main theoretical contributions can be found in sections III and IV.

Section III presents our results on identification; section IIIA provides results on

the identification of marginal causal effects conditional on outcomes, and section

IIIB discusses the use of instruments and controls as well as of panel data for

identification of welfare effects in a nonparametric setting. Section IV discusses

aggregation and the relation between distributional decompositions and social

welfare effects. Section V proposes estimators and inference procedures based

on these identification results. Section VI applies our results to analyze the

distributional impact of the expansion of the Earned Income Tax Credit (EITC)

using CPS-IPUMS data and identifying variation from state-level top ups of the

EITC which vary over time, following the analysis of Leigh (2010). Section VII

concludes. Appendix A contains all proofs. Tables and figures are to be found

in appendix B.

IA Related literature

There are several literatures in economics aiming to empirically evaluate the

distributional impact of policies or historical changes, including the empirical

optimal tax literature in public finance (eg. Saez, 2001; Chetty, 2009), the labor

economics literature on determinants of the wage distribution (eg. Autor et al.,

2008; Card, 2009), and the distributional decomposition literature (eg. DiNardo

et al., 1996; Firpo et al., 2009). Our proposed methods build on these litera-

tures and generalize them in the following ways: (i) In contrast to most of the

empirical (income) taxation literature, we allow for endogenous prices and in

particular wages. (ii) In contrast to the wage distribution and decomposition lit-

eratures, we are interested in (unobserved) realized utility rather than observed

wages or incomes. (iii) In contrast to more structural approaches estimating de-

mand systems for the labor market, we allow for arbitrary heterogeneity across

individuals in terms of policy impacts on their wages and on their labor supply.

The optimal taxation literature in public finance usually considers utilitar-

ian social welfare functions,2 which were introduced by Samuelson (1947); the

2. The term “utilitarian” is used in this paper to describe methods evaluating welfare based
on individual realized utilities. It is not used here to imply a comparison across individuals
based on some notion of cardinal utility.

3



canonical model of redistributive income taxation was proposed by Mirrlees

(1971). More recent references that this paper draws on include Saez (2001),

Chetty (2009), Hendren (2013), and Saez and Stantcheva (2013). A large liter-

ature in labor economics analyzes the role of various determinants of the wage

distribution (technology, migration, minimum wages, ...) in causing historical

changes in wage inequality; partial reviews can be found in Autor et al. (2008)

and Card (2009). An important and popular empirical tool for analyzing dis-

tributional impacts on observed outcomes are distributional decompositions.

These originate in the work of Oaxaca (1973); a standard reference is DiNardo

et al. (1996). Recent contributions to the econometrics of such decompositions

are Firpo et al. (2009), Rothe (2010) and Chernozhukov et al. (2013).

The objects of interest we consider are inspired by questions central to the

sociological analysis of social classes (cf. Wright, 2005). Disaggregated distri-

butional analysis, in particular, allows to study both impacts of policies on in-

equality and antagonisms of interest. These are two of the main consequences of

the class structure underlying the economy emphasized by class analysis. Disag-

gregated impacts allow us to study questions of political economy, following the

research agenda proposed by Acemoğlu and Robinson (2013). Dis-aggregated

impacts also allow readers to reach aggregate conclusions based on their own

choice of welfare weights. They finally allow to recognize when policies gener-

ate both winners and losers. Deaton (1989) conducted a disaggregated analysis

similar to the one proposed here for the case of a homogenous good (rice).

Abbring and Heckman (2007) also review issues closely related to those dis-

cussed in this paper, in particular the distribution of treatment effects, and

general equilibrium effects of policy changes. Our analysis differs from Abbring

and Heckman (2007) as follows: (i) We are only interested in the conditional

expectation of marginal causal effects of a continuous treatment, conditional

on outcomes, rather than the full distribution of treatment effects of a discrete

treatment. (ii) We analyze welfare effects rather than effects on observed out-

comes. (iii) We only propose methods for the ex-post evaluation of realized

wage and price changes, rather than predicting the general equilibrium effects

of counterfactual policies.

The main econometric challenge we face is the identification of policy effects

conditional on multidimensional outcomes. The one-dimensional case has been

elegantly characterized by Hoderlein and Mammen (2007); we derive identi-

fied sets in the multidimensional case and discuss conditions sufficient for point

identification, drawing on tools from continuum mechanics (fluid dynamics) and
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the theory of differential forms (cf. Rudin, 1991, chapter 10). The estimators

we propose build on the large literatures on quantile regression and nonpara-

metric regression; important references include Koenker (2005), Newey (1994a),

Matzkin (2003), Altonji and Matzkin (2005), and Chernozhukov et al. (2013).

Our results might have applications in the estimation of consumer demand,

which similarly features multidimensional outcomes, namely households’ con-

sumption bundles. In that case, it might be of interest to exploit restrictions

imposed by revealed preference theory both for the purpose of improving finite

sample performance and for the purpose of out-of-sample extrapolation, as in

Blundell et al. (2014). Such restrictions are not available in our setting, since

the main causal effect of interest will be on wages, and this causal effect is not

restricted by general equilibrium theory in any way.

II Setup

This section presents the setup studied in this paper. We first discuss no-

tation, then state the individual’s consumption and labor supply problem, and

introduce several empirical objects of interest which we will analyze. The section

concludes with a characterization of the effect of policy changes on individual

welfare, using standard envelope condition arguments. The setup considered

is a static labor supply model with nonlinear income taxation and arbitrary

heterogeneity of preferences and wages across individuals. Policies in this setup

might affect prices, wages, and taxes.

IIA Notation

Throughout, we consider a set of counterfactual policies indexed by α ∈ R,

and a population of individuals i. Potential outcomes under policy α are denoted

by superscripts, so that wα is for instance the potential wage of an individual

under policy α. We use the potential outcome notation as a short-hand for

structural functions, as in

wα = w(α, ε),

where both the function w(., .) and individual heterogeneity ε are assumed to

be invariant as policy α changes, and where ε is of unrestricted dimension.3

3. Potential outcomes and structural functions in this paper are “reduced form” objects in
the sense that they incorporate the impact of any general equilibrium effects of policy changes.
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Letters without superscripts denote random variables in this paper, so that

w is the wage of an individual as determined by the realized policy α. When we

consider a sample of observations i = 1, . . . , N in section V (a random subset

of all individuals i), corresponding draws of random variables are denoted by a

subscript i.

We use several short-hands for derivatives. Partial derivatives are denoted

∂ with a subscript, so that ∂w is the derivative with respect to w. Derivatives

of potential outcomes with respect to α will be denoted by a superscript dot, so

that

ẇ := ∂αw
α = ∂αw(α, ε)

denotes the marginal effect of a policy change on the wage of a given individ-

ual. Our identification results in section III will use the notation ∇H(x) :=

(∂x1H, . . . , ∂xkH) for the gradient of a real valued function H of a k dimen-

sional vector x, and ∇ · h(x) :=
∑k
j=1 ∂xjh

j for the divergence with respect to

x of a vector field h : Rk → Rk.4

Probability density functions, conditional or unconditional, are denoted by

the letter f , probabilities and probability distributions by the letter P , cumu-

lative distribution functions by the letter F , and quantiles by the letter Q. If

it is clear from context which (conditional) distribution an expression refers to,

subscripts will be omitted, so that for instance f(w|l) denotes the density of w

given l.

IIB Individual problem

We discuss distributional policy evaluation in the context of labor markets,

the wage distribution, and taxes on earnings.5 All variables depend on the

policy α, as well as on unobserved individual heterogeneity ε, unless otherwise

stated. We denote an individual’s labor supply by l, her pre-tax market wage

by w, and her pre-tax earnings by z = l ·w. She pays earnings tax t = t(z) and

receives unearned income y0, so that her net income is y = z − t(z) + y0. Using

4. As we will discuss below, the divergence measures the net out-flow from a point x, when
h describes a flow.

5. Our arguments apply equally to other markets with heterogeneous goods, however, for
instance to the housing market.
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this notation, the individual’s problem is given as follows.

Assumption 1 (Individual utility maximization).

• There is a population of individuals indexed by i ∈ I , and a schedule of

counterfactual policies indexed by α ∈ R.

• Every individual i chooses c ∈ Rdc and l ∈ R to solve

max
c,l

u(c, l) s.t. c · p ≤ l · w − t(l · w) + y0, (1)

taking w, p and t(.) as given. The value of u at the maximizing (c, l) is

denoted υ.

• The utility function u(.), wage w, the consumption bundle c, and labor

supply l may vary arbitrarily across individuals.

• Prices p, wage w, unearned income y0, and taxes t(.) may depend on α, and

as a consequence so do c, l, and υ.

• For all individuals, u is differentiable, increasing in the components of c and

decreasing in l, quasiconcave, and does not depend on α.

Remarks:

• Assumption 1 states a simple static model of labor supply subject to a

budget constraint. We focus on this case for simplicity and specificity,

and since it is similar to the settings considered in the wage distribu-

tion literature and in the income taxation literature. Labor markets are

furthermore of central importance in determining the relative welfare of

individuals. They are also of particular conceptual interest: Heterogene-

ity in wages and in wage responses to policy changes poses econometric

challenges which are absent from the analysis of markets with more ho-

mogeneous goods.

• Our arguments do generalize to models with dynamics and additional

constraints, and to markets with heterogenous goods other than the labor

market, by arguments similar to those discussed in Chetty (2009). Of

particular interest is the housing market, since it is also characterized by

very heterogeneous supply, and since most individuals are consumers of

housing and many are owners of houses.
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• Even though our methods generalize to more general models allowing for

additional constraints on individual choices, they crucially rely on the as-

sumption that prices, wages, and taxes are the only constraints of the

individual which change as a function of the policy change. If other con-

straints are binding and change as a function of the policy change, this

would need to be incorporated in estimates of welfare effects. An example

of such additional constraints would be involuntary unemployment.

• To each individual in the setup of assumption 1 there corresponds a sched-

ule of counterfactual wages wα, counterfactual consumption cα etc., as

well as a realized policy α and corresponding realized wage w, realized

consumption c etc.

• We have assumed that policies are indexed by a one-dimensional param-

eter α. This is best thought of as indexing a path within the space of

feasible policies, which is in general of much larger dimension. We will be

concerned with ex-post evaluation of actually implemented policy changes,

and the path indexed by α corresponds to these policy changes.

• In order to relate our model to the canonical model of consumer choice

subject to a linear budget constraint, consider the following linearized

version of the individual’s problem. This linearized version will allow us

to restate some of our results in a more easily interpretable manner. Define

marginal net wage as

n := ∂ly = w · (1− ∂zt) ,

and virtual lump sump taxes as

t0 := t− ∂zt · z.

Denote leisure L = L − l and total endowment with time L. We can

rewrite the individual’ s utility maximization problem as

max
c,L

u(c, L− L) s.t. c · p+ L · w ≤ L · w − t(l · w) + y0.

By quasiconcavity of u, and if taxes t(.) are progressive (convex), this
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problem in turn has the same solution as6

max
c,L

u(c, L− L) s.t. c · p+ L · n ≤ L · n− t0 + y0, (2)

where n and t0 are treated as constants by the individual. This problem

has the form of a standard linear consumer problem.

IIC Objects of interest

The basic object of interest in this paper is the welfare impact of a pol-

icy change on individuals. All other objects we consider are functions of the

individual-level welfare impact. This welfare impact is given by the impact υ̇

on realized utility v. We shall re-normalize this impact to get the impact on

money-metric utility: Rescaling v̇ by the marginal utility impact of a lump-sum

transfer of money, ∂y0v, yields

ė := υ̇/∂y0υ. (3)

ė is the impact of the policy change on the expenditure function e (at baseline

prices), as defined in (Mas-Colell et al., 1995, section 3.E). Since we are consid-

ering marginal policy changes, it is also equal to the equivalent variation, the

compensating variation, and the change in consumer surplus corresponding to

these policy changes.

We are also interested in aggregate welfare functionals which depend on in-

dividuals’ realized utility v. For a finite population of N individuals, aggregate

welfare is simply a function of the vector (υ1, . . . , υN ). More generally, welfare

is a functional of (υi : i ∈ I ).With these preliminaries, and denoting by W a

vector of covariates which are not affected by α, we can define our main objects

of interest.

Definition 1 (Objects of interest – utility).

1. Expected conditional policy effect on welfare:

γ(y,W ) := E[ė|y,W,α] (4)

6. Quasiconcavity ensures that the optimum in the linearized budget set is the same as in
the smaller original budget set.
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2. Sets of winners and losers:

W := {(y,W ) : γ(y,W ) ≥ 0}

L := {(y,W ) : γ(y,W ) ≤ 0} (5)

3. Policy effect on social welfare:
˙SWF (6)

where social welfare SWF maps (υi : i ∈ I ) into R.

Remarks:

• The expected conditional policy effect γ is the fundamental object of in-

terest; it maps into all other objects we consider. Our proposed meth-

ods are based on imputing an estimate of γ(yi,Wi) to every observation

i = 1, . . . , N in the baseline sample. We propose to plot γ or objects such

as E[γ|y], the expected welfare impact given initial income. Figures VI,

VII, and IX provide examples of such plots in the context of the appli-

cation discussed in section VI. This allows to immediately visually assess

the welfare impact of a policy change across the income distribution.

• The conditional expectation defining γ conditions on income, covariates,

and the policy level. This expectation averages over the population distri-

bution of potential outcomes given observables. The expectation defining

γ corresponds to subjective expectations if (i) subjective expectations are

rational, and (ii) individuals have no (unobserved) information which is

predictive of welfare effects beyond the information captured by l, w,W .

Under the stronger condition that the dimensionality of unobservables is

no larger than the dimensionality of observables, we will show that γ = ė.

In this case our approach will recover actual rather than expected welfare

effects. Such a dimensionality restriction is imposed by most structural

estimation approaches, see for instance Matzkin (2003).

To the extent that γ corresponds to the subjective expectations of an indi-

vidual assessing whether to advocate or oppose a proposed policy change,

the sign of γ should determine her decision. The sets of winners and

losers W and L are then central objects of interest for political economy

considerations. To the extent that individuals’ political actions reflect
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their economic self-interest, these sets correspond to potential coalitions

supporting and opposing the policy change under consideration.

• The policy effect on social welfare SWF is the relevant object from an

optimal policy perspective (cf. Saez, 2001; Chetty, 2009). If this effect is

positive, the policy change should be implemented. To calculate this effect,

we need to take a stance on the relative weight assigned to the welfare of

different individuals: We show below that (under certain differentiability

conditions) ˙SWF can be written as ˙SWF = E[ω · ė] for welfare weights

ω which measure the relative value assigned to a marginal dollar for each

individual.

• The expected conditional welfare effect pins down aggregate welfare effects

if either (i) the welfare weights ω implied by SWF (and discussed in

section IV below) are functions of y,W , or (ii) the policies considered have

welfare effects which are functions of y,W . Both conditions are satisfied

in standard models of optimal taxation such as the Mirrlees (1971) model.

Under either condition E[ω · ė|y,W,α] = E[ω|y,W,α] · γ(y,W ).

An example where these conditions might be violated is as follows: (i)

Conditional on earnings, we assign higher welfare weights to sick people

than to healthy people. (ii) The policy under consideration redistributes

to sick people. (iii) Health status is not included among the covariates W .

• It is worth noting that any aggregate welfare evaluation corresponds to an

implicit or explicit choice of welfare weights; we will elaborate on this point

in section IV. Aggregation by summing up money metric utility across

individuals, in particular, corresponds to a particular choice of welfare

weights. The implied weights in that case are proportional to the inverse

of marginal utility of income and are thus presumably larger for richer

individuals.

• In this paper, we are mainly interested in welfare evaluations based on

individual realized utility. It is however quite instructive, and provides

useful connections to the distributional decomposition literature (cf. Di-

Nardo et al., 1996; Firpo et al., 2009), to consider analogous objects for

realized incomes rather than realized utility. Section IV below considers

these.
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IID Welfare effects of marginal policy changes on indi-

viduals

We consider the effects of a marginal change in α on individual welfare. In

the context of the model specified by assumption 1, such a change might affect

individuals through (i) taxes t, (ii) wages w, (iii) unearned income y0, and (iv)

prices p. Indirectly, such a change might affect individuals’ labor supply l and

consumption vector c. We first derive the welfare effect on individuals, and

compare it to the effect on net income y. Section III discusses identification

of expected individual effects. Section IV then considers aggregate effects, on

social welfare SWF as well as on statistics of the income distribution θ.

The following lemma characterizes the effect of a marginal policy change on

net income and on money-metric utility. We then discuss the difference between

these two effects.

Lemma 1 (The effect of marginal policy changes on individuals).

Consider a marginal change in α. The effect of such a marginal change on

net income y and on welfare (money metric utility) e equals

ẏ = (l̇ · w + l · ẇ) · (1− ∂zt)− ṫ+ ẏ0, (7)

ė = l · ẇ · (1− ∂zt)− ṫ+ ẏ0 − c · ṗ. (8)

We can decompose the effect ẏ of a marginal policy change on net income

into four components,

1. the behavioral effect b := l̇ · w · (1− ∂zt) = l̇ · n,

2. the wage effect l · ẇ · (1− ∂zt),

3. the effect on unearned income ẏ0,

4. and the mechanical effect of changing taxes −ṫ.

The effect ė on money metric utility is given by the sum of

1. the wage effect,

2. the effect on unearned income,

3. the mechanical effect of changing taxes

12



4. and the price effect −c · ṗ.

The difference between ẏ and ė is given by the sum of the behavioral effect and

the price effect,

ẏ − ė = l̇ · n+ c · ṗ. (9)

The empirical application in section VI assumes ṗ = 0 and ẏ0 = 0, that is, we

ignore the effects of changing prices and of changes in unearned income. In this

simplified case, we get

ė = l · (1− ∂zt) · ẇ − ṫ. (10)

Using the linearized form of the consumer problem we can alternatively write

this as

ė = ẏ − l̇ · n

= l · ṅ− ṫ0.

We can, in particular, obtain the welfare effect by subtracting the “behavioral

correction” b = l̇ · n from the effect on realized net income.

Remark:

• Lemma 1 illustrates the main implication of a utilitarian framework for

welfare economics: whatever choices people make are best for themselves –

by assumption. As a consequence, behavioral responses to policy changes

have to be ignored when calculating the marginal impact of policy changes

on individuals’ welfare. This holds true regardless of the specific model un-

der consideration. Note that behavioral responses can not be ignored when

calculating the effect on other individuals; behavioral responses might af-

fect other individuals through channels such as their effect on prices and

wages, their effect on the tax base, and externalities.

• The welfare effect ė corresponds to the effect of changing prices and wages

holding behavior constant. Defining an empirical counterpart of ė requires

us to specify the behavioral margins and associated prices which might be

affected by the policy change. This contrasts with the “sufficient statistic”

literature reviewed in Chetty (2009). Sufficient statistic arguments rely

on either fixed prices or known price-responses.7 In particular, we do need

7. I thank Nathaniel Hendren for discussions on this point.
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to observe the relevant labor supply margins if wages are allowed to be

endogenous.

• If ẇ = ẏ = ẏ0 = 0, then equation (8) reduces to Roy’s identity, ė = −c · ṗ.
In a precursor to the analysis proposed here and based on this identity,

Deaton (1989) considers the distributional welfare impact of changing rice

prices in Thailand.

III Identification

In this section, we discuss identification of individual expected welfare effects

γ(y,W ) = E[ė|y,W,α]. Once these are identified, we can estimate and visually

plot them, use them to characterize sets of winners and losers, or aggregate

them to obtain social welfare effects.

From the point of view of identification, the interesting (and difficult) com-

ponent of γ is the welfare effect of wage changes ẇ caused by a policy change. To

focus on this interesting (and difficult) component, consider a simplified version

of the setting of assumption 1, where we assume ṗ = ṫ = ẏ0 = ∂zt = 0, so that

welfare effects are driven solely by changing wages; we ignore welfare effects of

changing prices, taxes, or unearned income for now, and we ignore attenuation

of wage effects through redistributive taxation. Under these assumptions equa-

tion (8) of lemma 1 implies that ė = l · ẇ. Assume further for the moment that

there are no covariates W . The conditional expected welfare effect γ(y,W ) is

then equal to the wage effect,

γ(y) = E[l · ẇ|l · w,α].

The latter is identified if E[(l̇, ẇ)|l, w, α] is identified. Let x = (l, w). Our

problem is to identify

E[ẋ|x, α],

for a vector of endogenous outcomes x = x(α, ε); that is to identify marginal

causal effects conditional on a vector of endogenous outcomes. This is the prob-

lem that we address in this section.

In section IIIA, we assume that we have random (“experimental”) variation

of α. Given random variation of α, the marginal distribution of potential out-

comes xα is identified for a range of α-values, and we can focus on the question
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of what these marginal distributions tell us about conditional causal effects. We

provide conditions under which

E[ẋj |x, α] = ∂αQ(vj |v1, . . . , vj−1, α),

where vj is the control function vj = F (xj |x1, . . . , xj−1, α), F denotes the con-

ditional cumulative distribution function, and Q denotes the conditional quan-

tile function. The conditions required for this identification result to hold in-

clude some restrictions on the heterogeneity of conditional causal effects; this

will be discussed in detail below. In section IIIB, we then generalize to quasi-

experimental settings, assuming the availability of suitable controls, exogenous

instruments, or panel data.

In the special case where the dimension of the outcome x is one, our identifi-

cation results reduce to those of Hoderlein and Mammen (2007). In this paper,

we are mainly concerned with the case where the dimension of x is larger than

one.

IIIA Effects conditional on outcomes

Suppose the distribution of xα is known for a continuum of values of α

around 0. This is the case in an experimental setting, where α is independent

of unobserved heterogeneity ε and the support of α contains a neighborhood

(−δ, δ) of 0. The following series of results explores identification of E[ẋ|x, α] in

this case.

Assumption 2 (Abstract setup).

• x = x(α, ε)

• x ∈ Rk, α ∈ R, ε has support of unrestricted dimension.

• α ⊥ ε

• The observed data identify f(x|α) for α ∈ (−δ, δ).

• x is continuously distributed given α.

• x(α, ε) is differentiable in α.

• E[ẋ|x, α] · f(x|α) is continuously differentiable in x.

• The support of x given α is contained in a compact and convex set X which

is independent of α.
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Assumption 2 is stated in terms of structural functions x(α, ε). It could be

stated equivalently, though less transparently, in terms of potential outcomes,

requiring xα ⊥ α etc.

Recall that we are using the following notation: f(x|α) is the conditional

density of x given α. The letter Q denotes (conditional) quantiles. Derivatives

with respect to the policy parameter α are written ḟ = ∂αf(x|α), ẋ = ∂αx(α, ε)

etc. We further define

g(x, α) := E[ẋ|x, α], (11)

h(x, α) := g(x, α) · f(x|α). (12)

We denote the divergence of h by

∇ · h :=

k∑
j=1

∂xjh
j .

The “flow” g is identified (on the support of f) if and only if the “flow density”

h is identified, since h = g · f and the density f is known.

We will now develop a series of results characterizing the problem of iden-

tifying g (equivalently, h) based on knowledge of f . Theorem 1 shows that the

divergence of h is identified from the data via the identity ḟ = −∇ · h. The-

orem 2 shows that the reverse is also true: any flow density h that satisfies

this equation is in the identified set, absent any further restrictions. Theorem

3 characterizes the identified set. Theorem 4 imposes the additional exclusion

restrictions ∂xjE[ẋi|x, α] = 0 for j > i, and shows that under these restrictions

h and g are just-identified by nonparametric quantile regressions with control

functions. Theorem 5, finally, restricts heterogeneity further and obtains just-

identification of the structural functions x(α, ε).

The following theorem shows that knowledge of f identifies the divergence

of h under assumption 2.

Theorem 1. Suppose assumption 2 holds. Then

ḟ = −∇ · h. (13)
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[Figure I here]

Remark:

• Figure I provides some intuition for this result: Consider the density of

observations in the shaded square. This density changes, as α changes,

by (i) the difference between the outflow to the right and the inflow to

the left, ∂x1h1 ·dx1, and (ii) the difference between the outflow on the top

and the inflow on the bottom, ∂x2h2 · dx2. The sum of these changes is

equal to −
∑k
j=1 ∂xjh

j · dxj . The divergence ∇ · h thus measures the net

outflow at a point corresponding to a flow density h. If the density does

not change, or equivalently the net outflow equals 0, then the divergence

of h has to be 0.

• The setting of assumption 2 has various analogies in physics, most no-

tably in fluid dynamics. We can think of α as time, ε indexing individual

particles, and x the position of a particle in space. The function x(α, ε)

describes the trajectory of a particle over time. Then f(x|α) is the den-

sity of the gas or liquid at location x and time α. As shown in theorem

1, the change of this density over time is given by the divergence of the

flow density (net flow) h. The case ∇ · h ≡ 0 corresponds to the flow of

an incompressible fluid, the density of which is constant over time, which

is approximately true for water. The equation ∇ · h ≡ 0 characterizes the

kernel of the identified set for h in theorem 2 below.

• The source of the identification problem we face is accurately illustrated

by the following analogy: By stirring your coffee (or other beverage of

choice), you can create a variety of different flows g(x, α) which are all

consistent with the same constant density f(x|α) of the beverage being

stirred.

Our next result, theorem 2, shows that the data only identify the divergence

of h. Any h such that ḟ = −∇ · h is consistent with the observed data and

assumption 2. Theorem 2 explicitly constructs one particular function h0 which

satisfies the equation ḟ = −∇ · h. It further shows that the difference h̃ be-

tween this function and any other function h in the identified set is in the set

{h̃ : ∇ · h̃ ≡ 0}.
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Theorem 2. Suppose assumption 2 holds.

Let vj be the random variable vj = F (xj |x1, . . . , xj−1, α),8 define

h0j(x, α) = f(x|α) · ∂αQ(vj |v1, . . . , vj−1, α), (14)

and let

H = {h̃ : ∇ · h̃ ≡ 0, h̃(x, α) = 0 for x /∈ X}. (15)

Then the identified set for h is given by

h0 + H . (16)

Theorem 2 shows that the identified set for h is equal to h0 + H . Point

identification fails if H has more than one element. Our next result, theorem

3, characterizes the nature of non-identification if this is the case. This theorem

provides alternative representations of the “kernel” of the identified set which

is given by H = {h̃ : ∇ · h̃ ≡ 0}. This is the set of flows that can be generated

by “stirring the coffee,” leaving the density of x invariant. Theorem 3 uses

Poincaré’s Lemma to characterize the set H for dimensions k = 1, 2, and 3.9

The case k = 2 is of special interest in the context of this paper – recall that

x = (w, l) in the simplified version of assumption 1 considered at the outset of

this section. For the case k = 2, the characterization takes on a particularly

elegant form. In this case, the functions h̃ in the kernel are exactly those func-

tions which can be written as the gradient of some function H, rotated by 90

degrees. h̃ is thus a vector field pointing along the lines of constant height of

H. Figure II illustrates.

[Figure II here]

8. v is a random variable since it is a function of x, which is a random variable.
9. Similar results can be stated for higher dimensions, but require increasingly cumbersome

notation.
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Theorem 3. Suppose assumption 2 holds.

1. Suppose k = 1. Then10

H = {h̃ ≡ 0}. (17)

2. Suppose k = 2. Then

H = {h̃ : h̃ = A · ∇H,

H : R2 → R, H(x, α) = 0 for x /∈ X}. (18)

where

A =

(
0 1

−1 0

)
.

3. Suppose k = 3. Then

H = {h̃ : h̃ = ∇×G,

G : R3 → R3, G(x, α) = 0 for x /∈ X}. (19)

where

∇×G =

 ∂x2G3 − ∂x3G2

∂x3G1 − ∂x1G3

∂x1G2 − ∂x2G1

 .

Theorems 2 and 3 characterize the identified set for h absent any further

identifying assumptions, that is if only assumption 2 is imposed. The following

theorem shows that the additional assumption of a “triangular” structure for

∇E[ẋi|x, α] (derivatives above the diagonal are 0) yields just-identification of

h. Note that the ordering of the components of x matters if we assume such a

triangular structure! The identified h differs depending on which ordering the

triangular structure is imposed for.

Theorem 4. Suppose assumption 2 holds. Assume additionally that

∂xjE[ẋj
′
|x, α] = 0 for j > j′. (20)

10. This can be interpreted as a version of the result shown by Hoderlein and Mammen
(2007). Non-identification for the case k = 2 was recognized by Hoderlein and Mammen
(2009).
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Then g and h are point identified, and

g(x, α) = ∂αQ(vj |v1, . . . , vj−1, α), (21)

where vj = F (xj |x1, . . . , xj−1, α). The flow density h is equal to h0 as

defined in theorem 2.

There are no over-identifying restrictions implied by equation (20).

Remark:

• It is useful to discuss the triangularity assumption of equation (20) and its

implications in the context of our labor market setting. In that setting,

let x = (w, l). Equation (20) can then be rewritten as

∂lE[ẇ|w, l, α] = 0,

that is, the average effect of a policy change on wages, conditional on labor

supply and wages, does not depend on labor supply. If that is the case,

then theorem 4 tells us that

E[ẇ|l, w, α] = ∂αQ(w|α).

Recall that E[ẇ|w,α] = ∂αQ(w|α) holds without any exclusion restrictions

– this was the result of Hoderlein and Mammen (2007).

• If, alternatively, we set x = (l, w), so that the order of w and l is reversed,

then equation (20) can be rewritten as

∂wE[l̇|w, l, α] = 0,

that is, the average effect of a policy change on labor supply, conditional

on labor supply and wages, does not depend on wages. If that is the case,

then theorem 4 tells us that

E[ẇ|l, w, α] = ∂αQ(w|v1, α),

where v1 = F (l|α).

This looks deceivingly similar to the control-function result of Imbens and

Newey (2009). The results differ both in terms of assumptions and in terms
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of interpretation, however. Imbens and Newey (2009) would propose to

use v1 = F (l|α) as a control when α is an (excluded, random) instrument,

l is an endogenous treatment, w is an outcome of interest, and first stage

heterogeneity is assumed to be one-dimensional. Their result involves

slopes of the form ∂lQ(w|v1, l), interpreted as causal effect of l on w. Our

result, in contrast, suggests to interpret slopes of the form ∂αQ(w|v1, α)

as the causal effect of α on w. We furthermore do not impose restrictions

on the dimensionality of heterogeneity.

• Is either exclusion restriction reasonable? In the context of actual appli-

cations, these exclusion restrictions will be imposed conditional on a set

of predetermined covariates W . Arguably, maintaining that the causal

effect of a policy change on wages is not predicted by the level of labor

supply, conditional on the level of wages and covariates such as age, gen-

der, education, ethnicity, geographic location, etc., is a quite reasonable

approximation; and at least as much so as is the assumption of exogeneity

of α conditional on W . Exogeneity of α conditional on W , or a similar

assumption, needs to be imposed for identification of f(xα).

• Note also that either exclusion restriction is considerably weaker than what

is maintained in the literature on determinants of the wage distribution,

such as Card (2009) or Autor et al. (2008). These papers, and all struc-

tural approaches that I am aware of, require that there is no systematic

heterogeneity in causal effects on log wages conditional on covariates:

E[ẇ/w|l, w,W, α] = E[ẇ/w|W,α].

This assumption implies that α does not affect inequality systematically

conditional on W . This might be problematic if our object of interest is

the impact of α on inequality.

Fully structural approaches tend to impose the additional and even stronger

restriction that there is no variation in unobserved heterogeneity condi-

tional on outcomes.

We conclude this section by discussing conditions which yield just-identification

of the structural functions x(., .) themselves. Such conditions have been ex-

plored by Rosa Matzkin, in particular Matzkin (2003). Point identification of

structural functions follows under the rather restrictive conditions that (i) the
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dimensionality of unobserved heterogeneity is no larger than the dimensionality

of endogenous outcomes y, and (ii) a triangular structure as in theorem 4 is

imposed.

Theorem 5. Suppose assumption 2 holds. Assume additionally that ε ∈ Rk

and that

xj(α, ε) = xj(α, ε1, . . . , εj) (22)

is strictly monotonically increasing in εj and does not depend on εj+1, . . . , εk.

Then (ε1, . . . , εj) is a one-to-one transformation of (v1, . . . , vj) for any

j ≤ k, where

vj = F (xj |x1, . . . , xj−1, α) = F (εj |ε1, . . . , εj−1) (23)

and

xj(α′, ε) = Qx
j

(vj |v1, . . . , vj−1, α′) (24)

for any α, α′.

Equation (24) allows to predict counterfactual outcomes under alternative

α, for any given unit of observation, once we know her realized x and α. This

equation tells us that we can predict counterfactual outcomes based on the

conditional vjth quantile given α and the controls v1, . . . , vj−1, which in turn

are functions of x and α – if we are willing to maintain the assumptions of

theorem 5.

Under the dimensionality restriction on unobserved heterogeneity imposed

by theorem 5, there is no heterogeneity in causal effects conditional on outcomes,

so that

ẋ = E[ẋ|x, α].

It follows that the result of theorem 4, E[ẋ|x, α] = ∂αQ(vj |v1, . . . , vj−1, α), can

be strengthened to

ẋ = ∂αQ(vj |v1, . . . , vj−1, α).

This equation is a differentiated version of the result of theorem 5.
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IIIB Controls, instruments, and panel data

In section IIIA, we considered the problem of identifying E[ẋ|x, α] under

the assumption that α is randomly assigned. Most distributional evaluations

have to rely on observational data in settings where this assumption can not

plausibly be maintained. In this section we discuss identification of E[ẋ|x,W,α]

if either (i) α is conditionally random, or (ii) there is a valid instrument Z,

or (iii) we have panel data where changes of α over time are independent of

changes of other factors affecting outcomes. This corresponds to estimation of

causal effects using controls, instrumental variables, or differences in differences.

Proposition 1 through 3 are generalizations of theorem 4 to these cases.

The following proposition 1 considers the approach taken by most of the

distributional decomposition literature whenever decompositions are given a

causal interpretation: It is assumed that treatment α is independent of unob-

served heterogeneity ε once we condition on a set of available covariates W .

This assumption might be a reasonable approximation to the truth when a rich

set of covariates is available. Proposition 1 shows that under this condition

policy effects on x (labor supply l and wage w) can be imputed using quantile

regressions with the appropriate controls W and vj
′
.

Proposition 1 (Controls). Suppose assumption 2 holds, except that in-

stead of α ⊥ ε we have α ⊥ ε|W . Assume additionally that

∂xjE[ẋj
′
|x,W,α] = 0 for j > j′.

Then E[ẋj |x,W,α] is point identified for (x,W,α) in the interior of the

support of the data, and equal to

E[ẋj |x,W,α] = ∂αQ(vj |v1, . . . , vj−1,W, α), (25)

where vj = F (xj |x1, . . . , xj−1,W, α).

In settings where conditional independence of α can not plausibly be main-

tained, we might instead have an instrument Z for which conditional indepen-

dence holds, and which affects outcomes only through its effects on α. In the

spirit of nonparametric identification, we would like identification not to depend
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on restrictions of functional form or the dimensionality of unobserved hetero-

geneity. Kasy (2014) shows identification of potential outcome distributions for

the fully nonparametric case, assuming monotonicity of the first stage in the in-

strument and sufficient support of the data; the following proposition 2 reviews

this result.

Proposition 2 (Instruments). Suppose assumption 2 holds, except that in-

stead of α ⊥ ε we have Z ⊥ (ε, η)|W . Assume additionally that α = α(Z, η),

where α(., η) is continuous and strictly increasing in Z for all η. Define the

weighting function

ϕ(α, z,W ) := −∂zF (α|z,W )

∂zF (z|α,W )
, (26)

assuming all derivatives and the ratio are well defined. Assume finally that

F (α|z,W ) has full support [0, 1] given α and W . Then

fx
α

(x|W ) = f(x|α,W ) · ϕ(α, z,W ), (27)

and proposition 1 applies to the observed data distribution reweighted by ϕ.

In practice, the support requirement that F (α|z,W ) has full support [0, 1]

given α and W might be fairly restrictive. If support is insufficient, we might

proceed using the control function approach (Imbens and Newey, 2009), using

vz := F (α|z,W ) as additional control in the quantile regressionQ(vj |v1, . . . , vj−1, vz,W, α),

and relying on linearity assumptions to extrapolate outside the support of the

data. For the case of sufficient support, it is shown in Kasy (2014) that the con-

trol function approach yields the same estimates as the reweighting approach of

proposition 2.

The following proposition considers a panel data setup, where α varies as a

function of time τ within groups s (states or metropolitan areas, for instance).

Similar to many approaches in the “Difference-in-differences” mould, such as

Chamberlain (1984), Athey and Imbens (2006), and Graham and Powell (2012),

we assume that the distribution of heterogeneity ε does not vary over time within

states s. Time τ is allowed to have a causal impact on outcomes x, which is

however assumed to not interact with the level of α.
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Proposition 3 (Panel data). Suppose assumption 2 holds, except that x =

x(α, τ, ε), and τ ⊥ ε|s,W , where α = α(s, τ). Assume additionally that

E[ẋj |x, s,W, τ, α] = E[ẋj |x1, . . . , xj ,W, α]

E[∂τx
j |x, s,W, τ, α] = E[∂τx

j |x1, . . . , xj ,W, τ ]

for j = 1, . . . , k. Then, for vj = F (xj |x1, . . . , xj−1, s,W, τ),

∂τQ(vj |v1, . . . , vj−1, s,W, τ) = ∂τα(s, τ) · E[ẋj |x,W,α]

+E[∂τx
j |x,W, τ ]

If, in particular, ∂τα(s, τ) varies across s given τ and α, then E[ẋj |x,W,α]

is identified.

The crucial identifying assumptions of this proposition are:

1. Heterogeneity is constant over time within states and given covariates.

This assumption is known as “marginal stationarity” in the nonparametric

panel literature.

2. The conditional average causal effects E[(ẋi, ∂τx
i)|x, s,W, τ, α] are the

same for every state s. This is strictly weaker than the “common trends”

assumption of Difference-in-difference models. This is also strictly weaker

than the “changes-in-changes” assumption of Athey and Imbens (2006).

IV Aggregation

Recall that one of the main goals of our analysis is to make principled nor-

mative statements about whether policy changes increase or decrease social

welfare. To do so, it is necessary to first characterize the effect of policy changes

on individual welfare, and then to identify and estimate these individual welfare

effects. We finally need to take individual welfare effects and aggregate them

into social welfare statements, trading off the welfare of different individuals.

We have already taken care of the effect of policy changes on individu-

als: Lemma 1 characterizes the effect of a policy change on individual net

income y and on money-metric utility e. Section III then provided condi-

tions which are sufficient for identification of expected individual welfare effects

γ(y,W ) = E[ė|y,W,α].
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In this section we take policy effects ẏ on individual realized income and ė

on individual welfare as given, and we discuss aggregation of these individual

effects. That is, we discuss the effect of policy changes on aggregate statistics

θ of the income distribution, and on social welfare SWF , which is a function

of individual welfare υi for all individuals i ∈ I . Under some restrictions on

welfare weights to be discussed below, policy effects on social welfare can be

written as ˙SWF = E[ω · γ] for welfare weights ω, so that identification of γ

implies identification of ˙SWF .

The purpose of this section is twofold. First, we suggest various alternative

approaches for estimating aggregate social welfare effects. These estimation

approaches are based on the identification results for individual welfare effects

discussed in section III. Second, we provide a conceptual discussion which re-

lates two literatures, the literature on social welfare evaluations in normative

public finance, and the statistical literature on distributional decompositions.

We prove the following claims:

1. For marginal policy changes, it is without loss of generality to only con-

sider social welfare functions which are can be written as weighted averages

of individual (money metric) utility. Policy effects on social welfare are

therefore given by a weighted average of policy effects on individual wel-

fare, ˙SWF = E[ωSWF · ė]. Here ωSWF is the welfare weight, or marginal

value of an additional dollar, assigned to each individual.

2. Effects on social welfare relate to effects on statistics of the income dis-

tribution in that a) welfare effects are effects on income net of behavioral

effects, and b) welfare weights correspond to the derivative of the influence

function for distributional statistics.

3. There are various equivalent ways of calculating ˙SWF which are based on

imputing either conditional expected welfare effects γ or some counterfac-

tual income to each individual. These equivalent representations can be

used for alternative estimation approaches.

IVA Preliminaries

In addition to effects on social welfare, we discuss in this section effects

on aggregate statistics θ of the income distribution. Typical examples of such
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distributional statistics are mean and variance, quantiles, and measures of in-

equality such as the Gini coefficient:

Definition 2 (Objects of interest – income).

1. Expected conditional policy effect on net income: β(y,W ) := E[ẏ|y,W,α]

2. Policy effect on a distributional statistic: θ̇,

where the distributional statistic θ maps Py into R.

In order to elegantly characterize and relate θ̇ and ˙SWF , we need to im-

pose additional differentiability conditions on either functional; the following

assumption 3 does so. Definition 2 assumes θ is a statistic of the income dis-

tribution Py. We can also, however, think of it as a functional of the random

variable (yi : i ∈ I ).11 The random variable y has a probability distribution

Py, where the latter “forgets” about the index i – who earns how much. The fol-

lowing assumption imposes differentiability of θ for either representation. This

assumption also refers to the influence function IF (y) of θ. The influence func-

tion allows to approximate θ by an expectation, θ(α) ≈ θ(0) + E[IF (yα)], in a

neighborhood of α = 0.

Assumption 3 (Differentiability).

1. SWF is Gateaux-differentiable12 on the set of random variables v, equipped

with the L2 norm.

θ is Gateaux-differentiable on the set of random variables y, equipped with

the L2 norm.

2. θ is Gateaux-differentiable on the set of probability distributions Py, equipped

with some norm, so that the influence function IF (y) of θ exists.

3. The influence function IF (y) of θ is differentiable in y.

11. The random variables y and v map the underlying probability space I of individuals i,
endowed with the uniform distribution, into R.

12. A functional is “Gateaux-differentiable” if it is differentiable along paths in the spaces
of random variables or probability measures. For finite populations i = 1, . . . , N , “Gateaux-
differentiability” corresponds to the usual notion of differentiability.
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IVB Characterizing aggregate policy effects

The following theorem 6 characterizes marginal policy effects on SWF and

on θ, using differentiability assumption 3. This theorem provides, in particular,

two representations of θ̇, the first in terms of welfare weights and the second

in terms of the influence function. These two representations correspond to the

two ways of thinking about θ, as a functional of the random variable y and as

a functional of the distribution Py.

Theorem 6 (Welfare weights and influence functions).

Suppose that assumption 1 holds. Let ẏ and ė be the impact of a marginal

policy change on individuals’ income and welfare at α = 0, and consider the

corresponding impact on θ and SWF .

1. Welfare weights:

Suppose that assumption 3.1 holds. Then there exist random variables

ωSWF and ωθ such that13

˙SWF = E[ωSWF · ė] (28)

θ̇ = E[ωθ · ẏ]. (29)

2. Influence function:

Suppose that assumption 3.2 holds. Then

θ̇ = ∂αE [IF (yα)] = ∂α

∫
IF (y)dFyα(y). (30)

3. Relating the two:

Suppose that assumptions 3.1-3.3 hold. Then

ωθ = ∂yIF (y). (31)

Remarks:

• It is instructive to consider the case of a finite population. In that case,

13. More precisely, (ωSWF
i : i ∈ I ) and (ωθi : i ∈ I ).
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the welfare weights of equation (28) are equal to

ωi = ∂υiSWF (υ) · ∂y0vi. (32)

This is the relative value attached to a marginal dollar for a given in-

dividual. Saez and Stantcheva (2013) argue for a direct specification of

such weights (without the detour over some social welfare function), in or-

der to reflect distributional preferences. In the majority of public finance

applications, ωSWF is a function of y.

• Differentiability of the influence function of θ, as required for the identity

ωθ = ∂yIF (y), is violated for some distributional statistics of interest,

most notably quantiles. We can think of quantiles as assigning “infinite

weight” to the welfare (income) of individuals right at the quantile. Differ-

entiability holds for moments of the form ν = E[G(y)] for differentiable G,

and for statistics which are locally well approximated by such moments.

• There are two ways for estimating θ̇ proposed in the distributional de-

composition literature, reweighting DiNardo et al. (1996) and RIF regres-

sion Firpo et al. (2009). Reweighting corresponds to directly estimating

∂αθ (Pyα) after constructing the counterfactual distributions Pyα . RIF re-

gression corresponds to estimating E [IF (yα)] by suitable regressions of

IF (y) on α and controls.

The following theorem provides alternative representations of ˙SWF under

the assumption that the welfare weights ωSWF are a function of income y and

covariates w, and that ωSWF = ωθ, which allows to relate ˙SWF to θ̇.

Theorem 7 (Counterfactual income and behavioral correction).

Suppose that assumptions 1 and 3 hold. Assume further that ωSWF = ωθ =

ω and that ṗ = 0. Define the counterfactual income ỹα = l0 · wα − tα(l0 ·
wα) + yα0 . and the behavioral effect b = l̇ · n.

Then

ė = ˙̃y = ẏ − b, (33)

and ˙SWF can be rewritten in the following ways.
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1. Welfare weights:

˙SWF = E[ω · ˙̃y]

= E[ω · γ] (34)

with γ as in definition 1.

2. Counterfactual income distribution:

˙SWF = ∂αθ (Pỹα) . (35)

3. Influence function:

˙SWF = ∂αE [IF (ỹα)] = ∂α

∫
IF (y)dFỹα(y). (36)

4. Behavioral correction of distributional decomposition:

θ̇ − ˙SWF = E[ω · b]

= ∂αθ (Py̆α)

= ∂αE [IF (y̆α)] . (37)

where y̆α = lα · w0 − t0(lα · w0) + y0
0 .

Remarks:

• Theorem 7 defines two counterfactual income variables, ỹα and y̆α.

ỹα is the income an individual would receive given baseline (α = 0) labor

supply and policy α wages , taxes, and unearned income. The derivative

of ỹα with respect to α at α = 0 gives the welfare effect ė.

y̆α is the income an individual would receive given policy α labor supply

and baseline (α = 0) wages, taxes, and unearned income. The derivative

of y̆α with respect to α at α = 0 gives the “behavioral correction” b = l̇ ·n.

• The equivalent representations of ˙SWF in theorem 7 suggest several al-

ternative ways of estimating ˙SWF :

1. We can impute an estimate of γ(y,W ) = E[ė|y,W,α] to every ob-

servation, and then use ˙SWF = E[ω · γ], where welfare weights ω

are directly specified. This is the route we will pursue.
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2. We can impute ỹα, based on counterfactual wages, taxes, and un-

earned income to individuals in the baseline sample. Or impute ỹα,

based on counterfactual labor supply to individuals in the policy

α sample. Either way, we can apply distributional decomposition

methods such as reweighting or RIF regression for statistics of the

distribution of ỹα.

3. We can impute y̆α, similarly to imputing ỹα, and apply one of the

decomposition methods to the distribution of y̆α. We can then use
˙SWF = θ̇−∂αθ (Py̆α) and thus obtain ˙SWF by applying a “behav-

ioral correction” to a standard decomposition.

The first of these approaches has three important advantages. First, it is

possible to identify γ under weaker conditions than necessary to identify

counterfactual outcomes such as ỹα and y̆α. Second, this approach allows

to directly construct estimates of the sets of winners and losers, W and

L , and to plot the conditional expectation of ė given baseline income

or other variables. Third, it allows the researcher to be agnostic about

welfare weights, and lets readers aggregate reported welfare effects γ using

their own welfare weights.

V Estimation

This section discusses estimation based on the identification results of section

III and the aggregation results of section IV. We first consider the baseline case

as discussed in section IIIA, with random variation in α and no covariates W .

We provide an estimator for g(x, α) = E[ẋ|x, α] in this baseline case, using

the identification-result of theorem 4. The proposed procedure estimates ∂αQ

by local linear quantile regression, and replaces the “control-functions” vj by

estimated versions thereof. We then generalize this estimation procedure to the

settings considered in section IIIB, using controls, instrumental variables, or

panel data.

No matter how g is estimated, we can impute estimated values of g for every

individual in a baseline sample. These estimated values can in turn be used to

construct estimates of γ, W , L , and ˙SWF . This is discussed in section VC. In

section VD we discuss estimation of the structural functions x(α, ε) under the

more restrictive identifying assumptions of theorem 5. The section concludes
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with a brief discussion of inference. Analytic standard errors are complicated

to construct in our setting and require re-derivation of influence functions for

every object of interest and every identification approach; we opt instead for a

procedure based on the Bayesian bootstrap. This is described in section VE.

VA Estimation of g in the baseline case

Suppose that the assumptions of theorem 4 hold, so that gj(x, α) = E[ẋj |x, α] =

∂αQ(vj |v1, . . . , vj−1, α), where vj = F (xj |x1, . . . , xj−1, α). Denote sample aver-

ages by EN , so that for instance EN [x] = 1/N
∑
i xi. Then g(x, α) = E[ẋ|x, α]

can be estimated by iterating the following procedure over the components

j = 1, . . . , k of g:

1. Fix a point (x, α) and take (v̂1, . . . , v̂j−1) as given.

2. Define the following local weights around (α, v̂1, . . . v̂j−1).

Kj
i =

1

ρj
·K

(
1

ρ

∥∥∥αi − α, v̂1
i − v̂1, . . . , v̂j−1

i − v̂j−1
∥∥∥) (38)

for a kernel function K14 and a suitably chosen bandwidth ρ.15

3. Let

v̂j =
EN [Kj

i · 1(xji ≤ xj)]
EN [Kj

i ]
. (39)

4. Let, finally,

ĝj = argmin
gj

EN

[
Kj
i · U

j
i · (v̂

j − 1(U ji ≤ 0))
]
, where (40)

U ji = xji − x
j − α · gj . (41)

Then v̂j is an estimate of vj = F (xj |x1, . . . , xj−1, α) and ĝj is an estimate of

gj(x, α) = E[ẋj |x, α] = ∂αQ(vj |v1, . . . , vj−1, α).

14. For instance the Epanechnikov-kernel K(a) = max(0, 1− a2).
15. We use a common bandwidth ρ for all variables for simplicity of notation; in general

different bandwidth for different variables might be desirable.
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VB Estimation of g using controls, instruments, or panel

data

In the context of most applications of interest for distributional policy eval-

uation, experimental variation of α will not be available. The estimator just

sketched immediately generalizes, however, to the more general settings consid-

ered in IIIB. The estimator has to be modified as follows to be used in these

settings.

1. Controls

Suppose that the assumptions of proposition 1 hold. Then the estimator

of section VA can be used to estimate g(x,W,α) = E[ẋj |x,W,α] once we

replace the local weights by

Kj
i =

1

ρdim(W )+j

·K
(

1

ρ

∥∥∥αi − α,Wi −W, v̂1
i − v̂1, . . . , v̂j−1

i − v̂j−1
∥∥∥) . (42)

2. Instruments

Suppose that the assumptions of proposition 2 hold. Then the estimator

for the case of controls can be used to estimate g(x,W,α) after reweighting

the data by ϕ̂(α, z,W ), where

ϕ̂(α, z,W ) := −∂zF̂ (α|z,W )

f̂(z|α,W )
. (43)

We can use a kernel density estimator for the denominator,

f̂(z|α,W ) =
1

ρ

∑
iK

(
1
ρ (αi − α)

)
·K

(
1
ρ ‖Wi −W,Zi − z‖

)
∑
iK

(
1
ρ ‖αi − α,Wi −W‖

) ,

and a local linear regression estimator for the numerator,

∂zF̂ (α|z,W ) = argmin
b

min
a

∑
i

(L ((α− αi)/ρα)− a− b · (Zi − z))2

·K
(

1

ρ
‖Wi −W,Zi − z‖

)
. (44)

In the latter expression, L is the cumulative distribution function of a
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smooth symmetric distribution with support [−1, 1], and ρα is a further

bandwidth parameter. The “dependent variable” L ((α− αi)/ρα) in this

regression is a smoothed version of the indicator 1 (α− αi ≤ 0).

3. Panel data

Suppose that the assumptions of proposition 3 hold. Then g(x,W,α) can

be estimated using a two-stage approach:

(a) Estimate ∂τQ(vj |v1, . . . , vj−1, s,W, τ) using the exact same estima-

tor as for the case of estimation with controls, with τ taking the

place of α.

(b) Then regress ∂τQ(vj |v1, . . . , vj−1, s,W, τ) on ∂τα(s, τ) across values

of s and τ . The slope of this regression provides an estimator of

g(x,W,α).

As an alternative to this approach, and this is indeed the route we take in

the context of the application discussed in section VI, one might estimate a

(flexible) parametric model for Q(vj |v1, . . . , vj−1, s,W, α, τ) of the form16

qj(W,α, v1, . . . , v
j) + δjs(vj) + δjτ (vj).

This model restricts state and time to enter in the form of additive fixed

effects δs and δτ that are not interacted with each other nor with α, but

which might vary across quantiles vj . The slope of this regression with

respect to α, ∂αq
j(W,α, v1, . . . , v

j), provides an estimator of g(x,W,α).

VC Estimation of γ, W , L , and ˙SWF

Ultimately, we are not interested in g(x,W,α) = E[ẋ|x,W,α] itself, but

rather in derived objects such as γ, W , L , and ˙SWF as introduced in definition

1. To estimate γ, we need to calculate a conditional average, given income y and

covariates W , of the estimated effects of the policy change on wages w (scaled

by labor supply), unearned income y0 and taxes and transfers t. Assume for

simplicity, as in section III, that only wages are affected by policy changes, so

that we can ignore unearned income and taxes. In that case welfare effects

16. Note that this is more restrictive than necessary from the point of view of identification.
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simplify to ė = l · ẇ, and we can estimate γ by

γ̂(y,W ) = EN

[
Ki · l · (1− ∂zt) · ̂̇w] /EN [Ki] (45)

where ̂̇w = ĝj is estimated using any of the approaches we discussed (experi-

mental variation, controls, instruments, panel data), and

Ki =
1

ρ2+dim(W )
·K

(
1

ρ
‖αi − 0, yi − y,Wi −W‖

)
. (46)

We can finally plug our estimate of γ into the definitions of W and L , and into

the first characterization of ˙SWF in theorem 7 to obtain

Ŵ = {(y,W ) : γ̂(y,W ) ≥ 0}

L̂ = {(y,W ) : γ̂(y,W ) ≤ 0}
̂̇SWF = EN [ωi · γ̂(yi,Wi)]. (47)

We can furthermore obtain estimates of objects characterizing the sets of win-

ners and losers, for instance the moments of covariates for each of these sets,

Ê[W |W ] =
EN [W · 1(γ̂(yi,Wi) > 0)]

EN [1(γ̂(yi,Wi) > 0)]
. (48)

VD Estimation of x(., ε) under stronger restrictions of

heterogeneity

So far we have discussed estimation of g(x, α) = E[ẋ|x, α], and of objects

which are functions of g. If we are willing to put stronger restrictions on hetero-

geneity, as in theorem 5, we can identify and estimate the structural functions

x(α, ε) themselves, using nonparametric quantile regressions. Assume that the

assumptions of theorem 5 hold, and that w.l.o.g. εj = vj ; this is just a normal-

ization of scale for ε. Under the assumptions of theorem 5, this normalization

implies

εj = F (xj |x1, . . . , xj−1, α) = F (εj |ε1, . . . , εj−1).
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We can then estimate x(α, ε) by

x̂j(α′, ε) = Q̂x
j

(εj |ε1, . . . , εj−1, α′)

= argmin
xj

EN

[
Kj
i · (x

j
i − x

j) · (εj − 1(xji − x
j ≤ 0))

]
(49)

where

Kj
i =

1

ρj
·K

(
1

ρ

∥∥∥αi − α, v̂1
i − ε1, . . . , v̂

j−1
i − εj−1

∥∥∥) (50)

and v̂ is as in section VA.

It is worth noting that under the assumptions of theorem 4 the slope of

x(., ε), estimated in this way, identifies g. This is true even if the additional

assumption of restricted heterogeneity imposed in theorem 5 is incorrect.

VE Standard errors and confidence sets

Inference on all parameters of interest ϑ we consider could proceed using

the standard approach of deriving a linear (first-order) approximation to the

statistic of interest, and estimating the variance of the corresponding “influence-

function,” plugging in estimators of any relevant nuisance-parameters; see for

instance Newey (1994a). The asymptotic variance of cn · (ϑ̂ − E(ϑ̂)) (rescaled

by an appropriate diverging sequence cn), in particular, can be consistently

estimated by c2n/n times the sample variance of the influence function of ϑ̂, so

that

Var
(
ϑ̂
)
≈ 1

n2

∑
i

ψ̂2
i ,

where ψ̂i = ∂ϑ̂
∂pn(wi,li,Wi,...)

. The derivative in the last expression is to be under-

stood as the derivative of ϑ̂ with respect to the mass pn put by the empirical

distribution on the ith observation. Details and background can be found in

(van der Vaart, 2000, chapter 20) and Newey (1994b).

While possible in principle, such an approach requires a separate derivation

of influence functions for each object of interest and each identification approach.

This is rendered cumbersome, in particular, by the presence of the generated

regressors v̂ji ; cf. Hahn and Ridder (2013).

We opt for an alternative approach, the Bayesian bootstrap introduced by

Rubin (1981), and discussed by Chamberlain and Imbens (2003). This approach

proceeds as follows:
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1. Draw i.i.d. exponentially distributed random variables Bi.

2. Reweight each observation by Bi/
∑
i′ Bi′ .

3. Estimate the object of interest for the reweighted distribution.

4. Iterate the entire procedure, to obtain a set of R replicate estimates

(ϑ̂r)
R
r=1 for the object of interest.

The estimates ϑ̂r obtained by this procedure are draws from the posterior distri-

bution for the object of interest when the prior over the joint distribution of all

observables is a Dirichlet process with parameter 0.17 This allows, in particular,

to construct Bayesian credible sets for the object of interest, using quantiles of

the sampling distribution (ϑ̂r)
R
r=1 as boundary values of the credible sets.

The re-sampling distribution of the object of interest can also be considered

as an approximation to the frequentist asymptotic distribution for objects sat-

isfying certain regularity conditions, in particular sample moments and smooth

functions thereof. This allows to interpret the Bayesian credible sets as frequen-

tist confidence sets. All our objects of interest are functions of sample moments,

for given (fixed) bandwidth parameters.

VI Application

We shall now turn to an application of the proposed methods. This sec-

tion re-evaluates the welfare impact of the extension of the Earned Income Tax

Credit (EITC) during the 1990s. The EITC is a refundable tax credit for low to

moderate income working individuals and couples. The amount of EITC benefit

depends on a recipient’s income and number of children. Figure III plots the

schedule of federal EITC payments in 2002 as a function of earnings and of the

number of children in a household.

[Figure III here]

A large literature documents that the EITC expansion increased labor sup-

ply, see for instance Meyer and Rosenbaum (2001) and Chetty et al. (2013).

Rothstein (2010) and Leigh (2010) note that these increases in labor supply are

17. Strictly speaking, this is an improper prior which is the limit of a sequence of proper
Dirichlet processes.

37



likely to depress wages in the labor markets affected. If this is so, the effective

incidence of the EITC might be quite different from the nominal incidence.

Following up on this argument, this section provides a disaggregated welfare-

evaluation of the wage-effects of the EITC expansion using the framework in-

troduced in section II. We estimate the impact of the EITC expansion using

variation across states and time in state-level supplements to the federal EITC,

as in Leigh (2010).

VIA Data and background

For our analysis we use the same subsample of the Current Population Survey

Merged Outgoing Rotation Group as Leigh (2010). We restrict the sample to the

14-year period 1989-2002, and to individuals aged 25-55 and not self-employed.

Extreme observations with reported earnings less than half the federal minimum

wage, or more than 100 times the federal minimum wage are excluded. This

leaves us with 1346058 observations.

Hourly wage, for those not reporting it directly, is calculated by dividing

weekly earnings by usual weekly hours. Wages are converted to wages in 2002

dollars using the CPI. Labor supply is set to “usual hours worked” for those

working, and zero for those not employed. The individual-level controls we use

include age as well as dummies for gender, whether the respondent identified as

black or as hispanic, educational attainment, and number of children.

Table I, which reproduces table 2 from Leigh (2010), shows the variation

of state supplements to federal EITC payments across states and time, for

those states that do provide supplements. Effective EITC payments to any

given household are equal to (federal EITC payments to this household) times

(1+state EITC supplement). We use variation of these supplements, interacted

with the federal expansion of EITC payments over the period considered, in

order to identify the impact of the EITC expansion on wages and on welfare,

conditional on initial incomes. Both the expansion of federal payments and state

supplements take essentially the form of a proportional increase of payments,

so that this setting is well described by a one-dimensional policy parameter α,

despite the fact that EITC schedules depend on several parameters governing

phase in and phase out of payments. Our definition of treatment α, indexing

the generosity of EITC payments, is

α := log(maximum attainable EITC payments in a state and year).
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If, for a example, a state provides a supplement of 10% to the federal EITC,

this implies that our value for treatment α is increased by 0.095 ≈ 10% relative

to what it would be in the absence of a state supplement.

[Table I here]

Table II reproduces the main estimates from table 4 and 5 of Leigh (2010).

These estimates imply that the expansion of the EITC increased labor supply

and depressed wages of high school dropouts and of those with a high school

diploma only, while only having a small effect on the rest of the population.

Notice the large magnitude of these effects. The reported coefficient for

wages suggests that a 10% expansion of EITC payments results in a 5% drop

of wages for high school dropouts, and in a 2% drop of wages for those with

a high school diploma only. Wage effects of this size might more than cancel

the increase in EITC payments. While large, these magnitudes are in line with

standard estimates of labor demand elasticities of around −0.3, given the esti-

mated labor supply effects of the EITC. What is somewhat surprising – but is

in line with other studies estimating the effects of the EITC expansion – is the

magnitude of labor supply effects. This magnitude is surprising to the extent

that the reduction in wages effectively cancels the subsidy of work provided by

the EITC. Table III reports analogous estimates, but drops the state-level policy

controls used by Leigh. The results remain qualitatively the same.

[Tables II and III here]

We will next estimate disaggregated welfare effects of the EITC expansion,

using the identification result for panel data of proposition 3. Our specifications

will use the same variation and controls as the regressions used for estimating

wage effects in table III; we control, in particular, for the same set of demo-

graphic covariates, and state and time fixed effects.

VIB Results

We shall now turn to our estimates of disaggregated welfare impacts. Re-

call that our approach relies on two crucial identifying assumptions: (i) Quasi-

random changes of α over time within states, as in difference-in-difference ap-

proaches to the identification of causal effects. This assumption is necessary
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to guarantee that we correctly identify the distribution of potential outcomes

(wα, lα) given covariates.

(ii) The restriction on heterogeneity imposed by theorem 4, that either causal

effects of policy on wages w do not vary systematically with labor supply condi-

tional on wages and covariates, or reversely that causal effects on labor supply

l do not vary systematically with wages conditional on labor supply and co-

variates. This assumption is necessary to guarantee that we correctly identify

conditional causal effects from the distribution of potential outcomes (wα, lα)

given covariates. It is worth emphasizing again that this assumption is restric-

tive, but (a) less restrictive than what is imposed in the existing literature on

the impact of policies on wages, and (b) plausible given that we control for both

the endogenous outcome itself as well as for a fairly rich set of covariates.

We estimate disaggregated welfare impacts by implementing a semi-parametric

version of the 3-step estimation procedure proposed in section V. In the first

step, we impute estimates of v1 and v2 to every observation, using nonparamet-

ric kernel regression. The control function v1 is given by the conditional cdf of

labor supply (hours worked; set to 0 for those without employment) given de-

mographic covariates (gender, race, age, education, number of children), state,

and year. The variable v2 is given by the conditional cdf of hourly wages given

v1, demographic covariates, state, and year.

In the second step, we implement a parametric version of our estimator for

panel data. For every value v2, we run linear quantile regressions of wages on

the generosity of EITC benefits, the control variable v1, demographic covariates,

state and year fixed effects. These quantile regressions are analogous to the mean

regression estimates reported in table III, except that we now allow policy effects

to vary with education, gender, age, and v1.

In the third step, we use the estimates from the second step in order to im-

pute wage effects of a 10% expansion of EITC benefits to everyone in a baseline

sample; we choose observations in 2002 (the last year in our sample) as the base-

line. These imputed wage effects vary across individuals, since the coefficient

on α varies by demographics, v1, and v2. Under our identifying assumptions,

these imputed effects are consistent estimates of the true effects given w, l, and

covariates. Multiplying imputed wage effects by labor supply yields estimates

of E[ė|w, l,W, α], the estimated welfare impact of a 10% expansion of the EITC

on a given individual through it’s impact on wages.
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Let us now turn to the results. Figure IV plots estimates of E[ė|w, l,W, α],

the expected welfare impact of a 10% expansion of the EITC induced by chang-

ing wages, given annual pre-tax earnings, for a random subsample of 1000 house-

holds.18 These estimated welfare impacts are “pre tax,” as well. In order to

obtain actual welfare impacts, they should be multiplied by 1 minus the marginal

tax rate, which is negative in the phase in range of the EITC and positive in the

phase-out range. Since household income, which is necessary for computation of

marginal tax rates, is unobserved for most of our sample, we report only pre-tax

effects.

Figure V shows estimates of E[ė|w, l,W, α] for the subgroups of high school

dropouts and those with a high school diploma only. We can summarize these

estimated welfare effects by plotting kernel regression estimates of expected

conditional welfare effects for the various educational subgroups given earnings.

This is done in figure VI. Figure VII shows the same estimates as figure VI

in separate plots, including pointwise 95% confidence bands obtained using the

Bayesian bootstrap as described in section VE.

[Figures IV, V, VI, and VII here]

From these figures we learn the following. Average welfare losses due to re-

duced wages are substantial and largest for high school dropouts earning 20.000

US$ or more, who lose the equivalent of 900 US$. These results are quite close

to the values that a “back of the envelope” calculation based on Leigh’s esti-

mates would suggest: His estimates imply that a 10% expansion of the EITC

would lead to a 4% reduction in wages.

Those with just a high-school diploma similarly experience large losses.

Losses rise with earnings for earnings between 0 and 20.000 US$ per year, and

then decline slightly for higher earnings. This reflects two counteracting effects:

On the one hand, those with little or no initial earnings have “little left to

lose,” in US$ terms, even for large percentage drops in their wages. On the

other hand, the negative impact on wages appears to be concentrated among

those with low wages, as economic intuition would suggest. People with higher

earnings experience, therefore, a smaller loss in percentage terms.

To put these estimated welfare effects into context, let us consider the effect

18. More draws would result in a plot that is visually too cluttered – there are almost 160.000
observations in our baseline sample.
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of a 10% EITC expansion on realized earnings (as opposed to welfare), as well

as the welfare effects of the observed historical changes of wages for the period

1989-2002.

The effect of a 10% increase in EITC payments on earnings is shown in figure

VIII.19 The results in this figure are consistent with the intuition about the

difference between ẏ and ė provided by lemma 1, and with the empirical results

of Leigh (2010). The effects of an EITC expansion on earnings are of the same

sign, but attenuated magnitude relative to the effects on realized welfare. The

reason is that the EITC increases labor supply, which affects earnings positively,

that is w · l̇ is positive. This term enters ẏ but does not enter ė, by the envelope

theorem argument.

The welfare effects of historical changes shown in figure IX clearly show that

high school dropouts did worse over this period than the rest of the population.

These results do not reflect a clear pattern of “polarization” in the labor market,

as discussed by Autor and Dorn (2013) and others. The latter would manifest

itself in a decline in middle-incomes and simultaneous rise of incomes for those

at the bottom, decreasing inequality within the poor, while increasing overall

inequality.

[Figures VIII and IX here]

VIC Discussion

We conclude this section by discussing, first, the relationship of our approach

to alternative measures of the individual-level welfare impact of the EITC. We

then mention some potential shortcomings of our analysis.

Various approaches to evaluate the individual-level impact of the EITC ex-

pansion seem possible:

1. Evaluation based on income:

A perspective which is interested in the realized incomes of the poor might

consider the EITC to be desirable both (i) because it provides transfer

income, and (ii) because increased labor supply implies increased earnings.

In our notation, both −ṫ > 0 and l̇ · n > 0.

2. Evaluation based on utility, assuming fixed wages:

A perspective in the tradition of the Mirrlees model of income taxation

19. Note that this figure is on a different scale relative to figure VI.
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might consider the EITC as less desirable than transfers to the unem-

ployed poor (i) because it does not reach those most in need, and (ii) the

increase in labor supply has a zero first order effect on private welfare, but

a negative effect on public revenues. The induced increases in labor supply

cause “deadweight loss.” This is because marginal taxes are negative for

low incomes due to the EITC.

In our notation, l̇ · n figures in the expression for ẏ given in lemma 1, but

not in the expression for ė.

3. Evaluation based on utility, with endogenous wages:

Work in the Mirrleesian tradition has assumed wages to be exogenously

given and unaffected by policy changes. This contrasts with much of the

literature in labor economics, as noted by Rothstein (2010) and Leigh

(2010). We follow up on their argument. Our results suggest endogenous

wages to be an important channel for the distributional welfare impact of

the EITC expansion; we otherwise adopt the utility-based perspective of

optimal tax theory.

In the terminology introduced in our discussion of lemma 1, our empirical

findings suggest that the EITC has a positive mechanical effect for the working

poor eligible to receive EITC payments, a positive labor supply effect for the

same, and a negative wage effect for both those eligible, and for those ineligible

but competing in the same labor markets. The three approaches to evaluating

the EITC expansion correspond to

1. Evaluation based on income:

mechanical + wage + labor supply effect, −ṫ+ l · ẇ · (1− ∂zt) + l̇ · n

2. Evaluation based on utility, assuming fixed wages:

mechanical effect, −ṫ

3. Evaluation based on utility, with endogenous wages:

mechanical + wage effect, −ṫ+ l · ẇ · (1− ∂zt).

Case 3, which corresponds to our analysis, makes the EITC look worse than

both the income based, and the utility based, fixed-wage evaluation.

Our analysis (like any “sufficient-statistic” type analysis) has an important

limitation – we do not account for the welfare effects of involuntary unemploy-

ment. As mentioned before, the result of lemma 1 relies on the assumption that
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only monetary constraints of individuals are affected by the policy change. Non-

monetary constraints of various kinds can be allowed for, but they may not be

affected by the policy change. The non-monetary constraint which is the biggest

concern in the context of labor markets is involuntary unemployment. Policies

that shift labor supply or demand likely not only impact the wage distribution

but also the degree of involuntary unemployment. Empirical results such as the

ones discussed in this section should be interpreted as only capturing welfare

effects mediated through transfers as well as wages. Effects through involuntary

unemployment, in our context, are likely to make the EITC look less desirable.

VII Conclusion

In this paper, a set of tools is provided for estimation of individual expected

welfare impacts (impacts on realized utility) of policy changes. We consider a

framework which allows for a large degree of heterogeneity across individuals as

well as for endogenous prices and wages.

Conditional expected welfare effects, given earnings and demographic co-

variates, can be plotted using the estimators we proposed. Such disaggregated

welfare effects are relevant for both normative and positive statements. For

normative statements, as in optimal policy theory, individual welfare effects can

be aggregated to social welfare effects. Given a choice of social welfare weights

that trade off the welfare of different individuals, such aggregation allows to

make statements about the social desirability of a given policy change. For pos-

itive statements, as in the field of political economy, individual welfare effects

allow to construct and characterize sets of winners and losers. To the extent

that political actions reflect economic self-interest, the latter correspond to the

potential advocates and opponents of a policy change.

The main technical contribution of this paper is to characterize identification

of individual welfare effects. In a baseline case, these take the form E[ẇ · l|w ·
l, α]. This requires identification of causal effects on a vector of endogenous

outcomes x = (w, l), conditional on x itself, that is identification of E[ẋ|x, α].

We characterize identification of such conditional causal effects borrowing tools

from continuum mechanics (fluid dynamics), and derive estimators based on our

identification results. These estimators take the form of local linear quantile

regressions with control functions.
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A Proofs

Proof of lemma 1 The expression for ẏ follows by simple differentiation

of

y = w · l − t(w · l) + y0.

The expression for ė = υ̇/∂y0υ follows from a variant of Roy’s identity (cf. Mas-

Colell et al., 1995, p73); see also Chetty (2009): Assuming w.l.o.g. an interior

solution, we can obtain it using

1. υ̇ = ∂(c,l)u · (ċ, l̇) and ∂y0υ = ∂(c,l)u · (∂y0c, ∂y0 l),

2. the individual’s first order condition ∂(c,l)u = λ·(p,−n) for some Lagrange

multiplier λ, and

3. Walras’ law (c · p = l · w − t(l · w) + y0)), which implies

(p,−n) · (ċ, l̇) = l · ẇ · (1− ∂zt)− ṫ+ ẏ0 − c · ṗ,

and (p,−n) · (∂y0c, ∂y0 l) = 1.

�

Proof of theorem 1: Let

A(α) := E[a(x(α, ε))|α] =

∫
a(x(α, ε))dP (ε)

=

∫
a(x)f(x|α)dx.

for any differentiable a with bounded support. Corresponding to the last two

representations of A(α), there are two representations for Ȧ(α). Using the first

representation and partial integration, we get

Ȧ(α) = E[∂xa · ẋ|α] =

k∑
j=1

E[∂xja · ẋj |α]

=

k∑
j=1

E[∂xja · hj/f |α] =

k∑
j=1

∫
∂xja · hjdx

= −
∫
a ·

k∑
j=1

∂xjh
jdx = −

∫
a · (∇ · h)dx.
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We can alternatively write

Ȧ(α) = ∂α

∫
a(x)f(x|α)dx

=

∫
a(x)ḟ(x|α)dx.

As these equations hold for any differentiable a with bounded support and h is

continuous by assumption, we get ḟ = −∇ · h. �

Proof of theorem 2:

1. h satisfies ḟ = −∇ · h if and only if it is in the identified set:

The “if” part follows from theorem 1. To show the “only if” part, taking h

as given we need to construct a distribution of ε and structural functions x

consistent with h, the observed data distribution, and assumption 2: Let

ε = x(0, ε), and thus f(ε) = f(x|α = 0), and let x(., ε) be a solution to the

ordinary differential equation

ẋ = h(x, α), x(0, ε) = ε.

Such a solution exists by Peano’s theorem. It is easy to check that this

solution satisfies all required conditions.

2. h0 satisfies ḟ = −∇ · h0:

Consider the model xj(α, ε) = Qx
j |vi,...,vj−1,α(vj |v1, . . . , vj−1, α) where

ε = (v1, . . . , vk). Then this model implies E[ẋ|x, α] · f(x) = h0(x), where

h0 is defined as in the statement of the theorem. This model is further-

more consistent with the observed data distribution, and thus in particular

satisfies ḟ = −∇ · h0 by theorem 1.

3. h satisfies ḟ = −∇ · h if and only if h ∈ h0 + H :

For any h in h0 + H , we have ∇ · h = ∇ · h0 +∇ · h̃ = −ḟ + 0.

Reversely, for any h such that ḟ = −∇ · h, let h̃ := h− h0. Then h̃ ∈H .

�

Proof of theorem 3:
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1. k = 1: In this case, ∇ · h = ∂xh = 0. Since h has its support contained in

X, integration immediately yields h ≡ 0.

2. k = 2: This result is a special case of Poincaré’s Lemma, which states

that on convex domains differential forms are closed if and only if they

are exact; cf. Theorem 10.39 in Rudin (1991). Apply this lemma to

ω = h1dx2 − h2dx1.

Then

dω = (∂x1h1 + ∂x2h2)dx1 ∧ dx2 = 0

if and only if

ω = dH = ∂H/∂x1dx1 + ∂H/∂x2dx2

for some H.

3. This follows again from Poincaré’s Lemma, applied to

ω = h1dx2 ∧ dx3 + h2dx3 ∧ dx1 + h3dx1 ∧ dx2

and

λ =
∑
j

Gjdxj .

�

Proof of theorem 4:

1. h0 is consistent with this assumption:

Consider again the model xj(α, ε) = Qx
j |v1,...,vj−1,α(vj |v1, . . . , vj−1, α)

where ε = (v1, . . . , vk), as in the proof of theorem 2. Then this model im-

plies ∂xjE[ẋj
′ |x, α] = 0 for j > j′. This model is furthermore consistent

with the observed data distribution and satisfies E[ẋ|x, α] · f(x) = h0(x).

2. The only h̃ ∈H consistent with this assumption is h̃ ≡ 0:

As we have already shown h0 to be consistent with this assumption, it is

enough to show that ∇ · h̃ = 0 implies h̃ ≡ 0 if h̃ is consistent with this

assumption. We proceed by induction in j.

Consider the model where we only observe x1, . . . , xj , and define h̃ ac-

cordingly. Suppose we have shown (h̃1, . . . , h̃j−1) = (0, . . . , 0). Applying
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theorem 1 to the j dimensional model immediately implies ∂xj h̃
j = 0.

Integrating with respect to xj , and using the fact that the support of h̃ is

contained in the support X of x implies h̃j ≡ 0.

Equation (20) implies

E[ẋj
′
|x1, . . . , xk, α] = E[ẋj

′
|x1, . . . , xj , α]

for j ≥ j′. As a consequence, h̃j
′

= 0 in the j dimensional model imme-

diately implies h̃j
′

= 0 in the j + 1 dimensional model. The claim now

follows by induction.

�

Proof of theorem 5:

We proceed by induction in j. Assume the statements of the theorem hold for

j−1. For j = 0 the claims hold trivially. Equation (22) immediately implies that

xj(α, ε) ≤ xj(α, ε′) if and only if εj ≤ εj′ when (ε1, . . . , εj−1) = (ε1′, . . . , εj−1′).

By the induction assumption we get

vj = F (xj |x1, . . . , xj−1, α) = F (xj |ε1, . . . , εj−1, α)

= F (εj |ε1, . . . , εj−1, α) = F (εj |ε1, . . . , εj−1)

independent of α. The claims regarding v follow. As for the second claim, we

get

Qx
j

(vj |v1, . . . , vj−1, α′) = Qx
j

(vj |ε1, . . . , εj−1, α′)

= Qx
j

(F (xj |x1, . . . , xj−1, α′)|ε1, . . . , εj−1, α′)

= xj(α′, ε).

�

Proof of proposition 1:

This is an immediate consequence of theorem 4. �
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Proof of proposition 2:

This is an immediate consequence of proposition 1 in Kasy (2014). �

Proof of proposition 3:

This is again an immediate consequence of theorem 4. �

Proof of theorem 6:

1. Assumption 3.1 implies that there exists a linear map dθ such that θ̇ =

dθ(ẏ(.)). This map is furthermore continuous with respect to the L2 norm

of ẏ. Riesz’ representation theorem then implies existence of ωθ ∈ L2,

such that θ̇ = E[ωθ · ẏ].

For SWF , assumption 3.1 similarly implies existence of ω̃ such that ˙SWF =

E[ω̃ · υ̇]. We can renormalize and define

ωSWF := ω̃ · (−∂t0υ), (51)

which immediately implies ˙SWF = E[ωSWF · ė].

2. Assumption 3.2 immediately implies that

θ(α) = θ(0) + E[IF (yα)] + o(‖Pyα − Py0‖),

where ‖.‖ is the appropriate norm on the space of probability distributions;

see also (cf. van der Vaart, 2000, p291ff). The claim follows.

3. By 2, we have θα = θ0 + E[IF θ(yα)] + o(α). Differentiating this expres-

sion yields θ̇ = E [∂yIF (y) · ẏ]. Comparing this expression to the first

representation of θ̇ yields

E[ωθ · ẏ] = E [∂yIF (y) · ẏ] .

As this equation holds for any direction of change ẏ(.), ωθ = ∂yIF (y)

follows.

�
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Proof of theorem 7:

The equations ė = ˙̃y = ẏ − b follow from simple differentiation and lemma 1.

1. ˙SWF = E[ω · ˙̃y] follows from theorem 6 and the identity ė = ˙̃y. E[ω · ė] =

E[ω · γ] holds by the law of iterated expectations, since ω is a function of

y by assumption:

E[ω · ė] = E[E[ω · ė|y,W ]] = E[ω · E[ė|y,W ]] = E[ω · γ].

2. Note that ˙SWF = E[ω · ˙̃y]. ˙SWF = ∂αθ (Pỹα) follows by analogy to

θ̇ = E[ωθ · ẏ] = ∂αθ (Pyα).

3. By theorem 6, θ̇ = ∂αE [IF (yα)]. Apply this result to ỹ instead of y.

4. θ̇ − ˙SWF = E[ω · b] holds since ẏ − ė = b. The other claims follow

analogously to item 2 and 3 of this theorem, once we note that ˙̆y = b.

�
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B Tables and figures

Figure I: Divergence of flow and change of density

h1+d
x1
h1h1

h2

h2+d
x2
h2

Notes: This figure illustrates theorem 1. It relates the change of density f
(mass in the square) to the divergence of h (difference in flow on different
sides).
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Figure II: Incompressible flow and rotated gradient of potential
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Notes: This figure illustrates the characterization of H in theorem 3 for the
case k = 2. The vector field h̃ (first graph) is given by a 90 degree rotation of
the gradient of some function H (third graph), and thus points along the lines
of equal level of the function H (second graph).
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Figure III: Federal EITC schedule 2002
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Notes: This figure plots federal EITC payments in 2002 as a function of
household income and number of children.
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TABLE II: Effect of EITC expansion on average wages and labor
supply

All adults High school High school College
dropouts diploma only graduates

dependent variable: Log real hourly wage
Log maximum -0.121 -0.488 -0.221 0.008
EITC

[0.064] [0.128] [0.073] [0.056]
Fraction EITC- 9% 25% 12% 3%
eligible

dependent variable: whether employed
Log maximum 0.033 0.09 0.042 0.008
EITC

[0.012] [0.046] [0.019] [0.022]
Fraction EITC- 14% 34% 17% 4%
eligible

dependent variable: Log hours per week
Log maximum 0.037 0.042 0.011 0.095
EITC

[0.019] [0.040] [0.014] [0.027]
Fraction EITC- 9% 25% 12% 3%
eligible

Notes: Estimates from Table 4 and 5 of Leigh (2010), for workers with and
without children.
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TABLE III: Effect of EITC expansion without policy controls

All adults High school High school College
dropouts diploma only graduates

dependent variable: Log real hourly wage
Log maximum -0.125 -0.380 -0.221 -0.018
EITC

[0.081] [(0.135] [0.097] [0.055]
Fraction EITC- 9% 25% 12% 3%
eligible

dependent variable: whether employed
Log maximum 0.044 0.09 0.059 0.013
EITC

[0.014] [0.047] [0.022] [0.027]
Fraction EITC- 14% 34% 17% 4%
eligible

dependent variable: Log hours per week
Log maximum 0.035 0.035 0.015 0.083
EITC

[0.020] [0.037] [0.012] [0.027]
Fraction EITC- 9% 25% 12% 3%
eligible
Notes: This table replicates the results of table II without state-level controls

for changes in other policies.
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Figure IV: Welfare effects of wage changes induced by a 10%
expansion of the EITC

0 1 2 3 4 5

x 10
4

−2000

−1500

−1000

−500

0

500

1000

1500

2000

annual earnings

E
[ė
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Notes: This figure shows the estimated welfare effect l ·ẇ for a subsample of 1000 households,
plotted against their earnings.
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Figure V: Welfare effects of wage changes induced by a 10%
expansion of the EITC

(a) high school dropouts
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(b) high school diploma only
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Notes: These figures, similarly to figure IV, show the estimated welfare effect
l·ẇ for a subsample of 1000 households for the subgroups of high school dropouts
and those with a high school diploma only. (Please note the different scales
across figures!)
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Figure VI: Welfare effects of wage changes induced by a 10%
expansion of the EITC
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Notes: This figure shows kernel regressions of the estimated welfare effect l · ẇ on pre-tax
earnings, for the entire baseline sample and for educational subgroups.
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Figure VII: Welfare effects of wage changes induced by a 10%
expansion of the EITC
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(b) high school dropouts
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(c) high school diploma only
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Notes: These figures show kernel regressions of the estimated welfare effect
l · ẇ on pre-tax earnings, for the entire baseline sample and for educational
subgroups, as in figure VI, including 95% confidence bands obtained using the
Bayesian bootstrap, as described in section VE. (Please note the different scales
across figures!)
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Figure VIII: Earnings effects of wage and labor supply changes
induced by a 10% expansion of the EITC
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Notes: This figure shows kernel regressions of the estimated earnings effect ẏ = l · ẇ + l̇ · w
on pre-tax earnings, for the entire baseline sample and for educational subgroups.

Figure IX: Welfare effects of wage changes over the period
1989-2002
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Notes: This figure shows kernel regressions of the estimated welfare effect for historical wage
changes over the period 1989-2002 on pre-tax earnings, for the entire baseline sample and for
educational subgroups.
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