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Abstract

To what extent can changes in the distribution of wages be explained
by changes in labor supply of various groups (due to demographic change,
migration, or expanded access to education), and to what extent are other
factors (technical and institutional change) at work?

We develop a flexible methodology for answering this central question
of labor economics, using an empirical Bayes approach, without imposing
the restrictions on heterogeneity and on cross-elasticities of labor demand
assumed by the literature. Our approach allows to reduce the variance of
estimates by exploiting the information embodied in economic structural
models, while avoiding the inconsistency and non-robustness of misspeci-
fied structural models. This approach also allows to overcome the issues
associated with pretesting and the conventional duality of testing theo-
ries / imposing theories. We characterize the geometry and the mean
squared error of our estimator. One of our key theoretical results explic-
itly describes the risk-function of empirical Bayes under an asymptotic
approximation. Simulations confirm our characterizations and the fact
that our estimator uniformly dominates unrestricted estimation over a
large space of parameter values.

In our empirical application, we analyze changes since 2003 of the wage
distribution in the countries of the European Union, using the EU-SILC
data.
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1 Introduction

Wage inequality has increased significantly in most industrial countries since
the 1980s; see for instance Autor et al. (2008) for the case of the United States
and Gottschalk and Smeeding (2000) for evidence on incomes in other rich
countries. Various explanations have been offered for this increase in wage in-
equality, including the decline of minimum wages and unions, technical change,
demographic change, migration, and international trade. Disentangling the rel-
ative contribution of these factors is important for assessing potential policy
responses.

There is considerable disagreement regarding the contribution of these var-
ious factors; see for instance Autor et al. (2008) regarding technical change,
and Card (2009) regarding migration. We argue that part of this disagreement
has methodological roots. One of the workhorse methods of the literature on
wage inequality is the estimation of models for labor demand. The models used
are derived from a parametric specification of an aggregate production function.
Qualitative conclusions, predictions and counterfactual analyses tend to be quite
sensitive to specific choices of functional form for these production functions, as
demonstrated by Card (2009) in his review of the literature on the impact of
migration.

An alternative to the imposition of restrictions implied by structural mod-
els of labor demand would be the estimation of an unrestricted model of labor
demand, allowing for a large number of types and unrestricted own- and cross-
elasticities. The problem with such unrestricted models is that they require
estimation of a very large number of parameters using a potentially small num-
ber of observations, leading to estimates of high variance and possibly to lack
of identification.

We propose to instead use an empirical Bayes approach for the construction
of estimators avoiding the problems of both structural and unrestricted esti-
mation. The empirical Bayes approach models parameters, such as own- and
cross-elasticities, to be themselves drawn from some random distribution. This
distribution is governed by hyper-parameters that have to be estimated. We
model the elasticities (in a model with many types of workers) as being equal
to (i) the elasticities implied by a structural model plus (ii) random noise of un-
known variance. This variance has to be estimated. If this variance is estimated
to be zero, estimation of elasticities proceeds as under the structural model. If
this variance is estimated to be infinite, estimation of elasticities proceeds as
under the unrestricted model. In general, estimates will interpolate between
these two extremes in an optimal, data dependent way.

There are a number of advantages to our empirical Bayes approach: (i) The
resulting elasticity estimates are consistent, i.e. converge to the truth as sam-
ples get large, for any parameter values, in contrast to structural estimation.
(ii) The variance and mean squared error of the estimates is smaller than under
unrestricted estimation. Simulations and asymptotic approximations suggest
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this is the case uniformly over most of the parameter space.1 (iii) In contrast
to a fully Bayesian approach, no tuning parameters (features of the prior) have
to be picked by the researcher. (iv) Counterfactual predictions and forecasts
are driven by the data whenever the latter are informative. (v) The empirical
Bayes approach avoids the irregularities of pre-testing (cf. Leeb and Pötscher,
2005) which are associated with testing structural models and imposing them if
they are not rejected.

In addition to our methodological contribution, we provide new evidence on
the evolution of wage inequality in Europe and the factors driving it. We use
data from the EU Survey on Income and Living Conditions (EU-SILC). The
EU-SILC is an annual survey conducted since 2003, which covers the “old” EU-
15 member countries since 2004, and all of the EU-25, as well as some other
countries, since 2005. The EU-SILC provides detailed evidence on earnings and
labor supply as well as on a rich set of demographics for a representative sample
of individuals from these countries.

[empirical results to be discussed here]

We also provide novel insights on the behavior of empirical Bayes estima-
tors. In section 4, we characterize the mapping from unrestricted estimates to
empirical Bayes estimates, and provide visual representations. A key theoret-
ical contribution of this paper is theorem 1 in section 4.3, which provides an
explicit approximation of the risk function (mean squared error) of empirical
Bayes based on an asymptotic argument for large dimensions. This asymptotic
approximation is valid whenever the tuning parameter is estimated with small
variance relative to the parameters of interest. In contrast to classic derivations
of risk for James-Stein shrinkage, theorem 1 is only valid under this approxima-
tion, but it extends classic results to the practically relevant case where neither
normality nor (more importantly) homoskedasticity are imposed.

This paper is structured as follows: Section 1.1 provides a brief literature
review. Section 2 discusses estimation methods, first reviewing structural and
unrestricted estimation, discussing their drawbacks, and reviewing the general
empirical Bayes approach. We introduce our preferred estimator in section 2.4.
This estimator shrinks a preliminary unrestricted estimator towards a structural
model, to an extent which depends on how well the latter appears to fit the data.
We then briefly explore the properties of our preferred estimator and propose
a corresponding inference procedure. Section 3.1 introduces the EU-SILC data
used in this paper, and section 3.2 provides some preliminary empirical evi-
dence, replicating the approaches taken in the literature (which mostly focuses
on the United States) in the European context. Section 3.3 presents our main
empirical results based on the empirical Bayes estimation procedure. Section
4 explores the geometry of our proposed estimator and provides a theoretical
characterization of its risk properties. Section 5 evaluates our estimation and

1It is possible to construct counterexamples, however, see section 4.3.
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inference procedure using a range of Monte Carlo simulations, both calibrated
to the data and theoretically motivated, and evaluates the out-of-sample predic-
tive performance of our procedure using the EU-SILC data. Section 6 concludes.
Appendix A contains all proofs.

1.1 Related literature

This paper mainly builds on two distinct literatures: The literature on labor
supply/demand and wage inequality in economics, and the literature on shrink-
age and empirical Bayes estimation in statistics. Both literatures are very large
so that it is impossible to do full justice to either; we shall only discuss a few
key references.

The relevant labor literature encompasses various sub-literatures, concerned
with different factors potentially affecting wage inequality (in particular migra-
tion and technical change), but united by a common method based on estimating
the parameters of a model for labor demand. The models used are justified by
constant elasticity of substitution (CES) production functions or generalizations
thereof.

The literature on the impact of migration on native wage inequality was pio-
neered by Card (1990), who studied the “natural experiment” of a large increase
of the Cuban population in Miami, and did not find much of an effect on native
wages or employment. Card (2001) studied the same question, but took a more
structural approach based on production-function estimation, considering vari-
ation in immigration across metropolitan areas as predicted by a Bartik-type
instrument. The approach based on cross-city comparisons has been criticized
by Borjas et al. (1996), among others, who argue for considering the national
economy rather than local labor markets, and who do find some effects of im-
migration on the wages of native high-school dropouts. Card (2009) reviews
this debate, and argues that the divergent findings might be driven by different
choices of functional form (number of groups in the CES specification) rather
than the local versus national distinction. This lack of robustness to functional
form choices motivates the methods proposed in this paper. Our methods aim
to avoid such non-robustness. D’Amuri and Peri (2015), studying European ev-
idence like the present paper, even find a positive effect of migration on native
wages, mediated through a process of job upgrading.

Another, related, literature studies the impact of technical change on wage
inequality, and in particular on the college premium. Autor et al. (1998) ar-
gue that technical change lead to a continuous rise of the relative demand for
workers with college degrees, a rise which was offset partially in periods of ex-
pansion of college enrollment. They interpret the residual of a CES-regression
specification as reflecting technical change. Autor et al. (2008) review and up-
date this argument. Goldin and Katz (2009) provide an extensive historical
analysis of wage inequality in the US and how it was affected by changes in
education. More recently, Autor and Dorn (2013) argue that technical change
in recent decades has created substitutes for middle income and routine clerical

4



work, while leaving unaffected low-wage service jobs, and increasing the wages of
highly educated workers, thus leading to a polarization of the wage distribution.

The second literature relevant for us is the statistical literature on empirical
Bayes methods and shrinkage. This literature has its roots in the seminal con-
tributions of Robbins (1956), who first considered the empirical Bayes approach
for constructing estimators, and James and Stein (1961), who demonstrated the
striking result that the conventional estimator for the mean of a multivariate
normal vector with unit variance is inadmissible and dominated in terms of
mean squared error by empirical Bayes estimators. This is true whenever the
dimension of the vector is at least 3.

Empirical Bayes approaches were developed further by later contributions
such as Efron and Morris (1973). Morris (1983) was first to discuss the para-
metric version of the empirical Bayes approach. Inference in empirical Bayes
settings was discussed by Laird and Louis (1987) and Carlin and Gelfand (1990),
among others. A good introduction to empirical Bayes estimation can be found
in (Efron, 2010, chapter 1). In section 4 we provide a theoretical characterization
of the risk properties of our empirical Bayes procedure. This characterization
relies on arguments similar to those invoked by Xie et al. (2012).
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2 Estimation – structural, unrestricted, and an
empirical Bayes alternative

Suppose there are J types of workers, defined for instance by their level of
education, age, and country of origin. Consider a cross-section of labor markets
i = 1, . . . , n.2 Let Yj,i, j = 1, . . . , J be the average log wage for workers of type
j in labor market i, and let Xj,i be the log labor supply of these same workers.
Denote Yi = (Y1,i, . . . , YJ,i) and Xi = (X1,i, . . . , XJ,i). We are interested in the
structural relationship between labor supply and wages, that is in the inverse
demand function

Yi = y(Xi, εi),

where εi denotes a vector of unobserved demand shifters of unrestricted dimen-
sion.

There are various alternative ways to estimate this inverse demand function.
One option, taken by the majority of contributions to the field, is to impose a
tightly parametrized structural model, based on the assumptions of a paramet-
ric aggregate production function, a small number of labor-types, and wages
which equal marginal productivity. Another option is to simply estimate a flex-
ible regression model without any of the functional form restrictions imposed
by the structural approach. We will argue that both approaches have serious
shortcomings, and that a third option – empirical Bayes estimation, with details
to be discussed below – combines some desirable features of both approaches,
while avoiding their shortcomings.

We start by reviewing structural and unrestricted estimation in sections 2.1
and 2.2, and the general empirical Bayes approach in section 2.3. Section 2.4
presents our proposed empirical Bayes estimator, and section 2.5 discusses its
advantages relative to structural and unrestricted estimation. We will initially
focus on cross-sectional data with exogenous variation of labor supply; endo-
geneity, instruments and panel data are considered in section 2.6. Section 2.7
finally discusses the construction of empirical Bayes confidence sets. In section
4 we will further explore the geometry and the risk properties of our empirical
Bayes estimator.

2.1 Structural estimation

Let us start by reviewing the most common approach in the literature, structural
estimation, and its theoretical justification.

Differenced estimates

Many papers in the literature run regressions of the following form; examples
include Autor et al. (2008) and Card (2009).

Yj,i − Yj′,i = γj,j′ + β0 · (Xj,i −Xj′,i) + εj,j′,i. (1)

2Card (2009) considers metropolitan statistical areas in the US. In our application we focus
on NUTS 1 regions in Europe.
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The coefficient β0 in this regression is interpreted as the negative of the inverse
elasticity of substitution between labor types j and j′.3 The constant γj,j′

captures factors unaffected by labor supply which do affect relative wages. In
practice, such regressions usually include additional controls for observables
and/or time trends, as well as labor market fixed effects in panel data, and
might be estimated using instrumental variables to account for the endogeneity
of labor supply. More general specifications might also include additional terms
for aggregate types of labor as motivated by nested CES models.

Justification using production functions

Denote wages by w and labor supply by N , so that Yij = log(wij) and Xij =
log(Nij). The differenced regression specification of equation (1) can be justi-
fied based on the assumption that wages equal marginal productivity for some
aggregate production function f ,

wij =
∂fi(Ni1, . . . , NiJ)

∂Nij
, (2)

and that the aggregate production function takes a constant elasticity of sub-
stitution form,

fi(Ni1, . . . , NiJ) =

 J∑
j=1

γjN
ρ
ij

1/ρ

. (3)

These two assumptions together imply

wij =
∂fi(Ni1, . . . , NiJ)

∂Nij
=

 J∑
j′=1

γjN
ρ
ij′

1/ρ−1

· γj ·Nρ−1
j .

We get that the relative wage between groups j and j′ is equal to

wij
wij′

=
γj
γj′
·
(
Nij
Nij′

)ρ−1
.

Taking logs yields

Yj,i − Yj′,i = log(γj)− log(γj′) + β0 · (Xj,i −Xj′,i),

where β0 = ρ− 1. This equation has the desired form.

Equivalence to fixed effects regression with coefficient restrictions

There are various observationally and numerically equivalent ways to rewrite
and estimate regression (1). Note first that equation (1) has the form of a

3The elasticity of substitution σ is defined as the relative change in the demand for different
factors induced by a given change in their relative prices.
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difference-in-differences regression, where differences are taken across types j
of labor, as well as across cross-sectional units i. Such difference-in-differences
regressions can equivalently be written in fixed effects form, including labor
supply of all types j′ among the regressors, but imposing restrictions across
coefficients:

Yj,i = αi + γj +
∑
j′

βj,j′Xj′,i + εj,i, (4)

βj,j′ = β0 ·
{ (

1− 1
J

)
j = j′

− 1
J j 6= j′

(5)

Equation (5) can be written more compactly, in J × J matrix form, as

β = (βj,j′) = β0 ·
(
IJ − 1

JE
)

= β0 ·MJ , (6)

where IJ is the identity matrix, E is a matrix of 1s, and MJ is the demeaning-
matrix, projecting RJ on the subspace of vectors of mean 0.

Differencing this fixed-effects regression across different values of j yields
specification (1), with γj,j′ = γj−γj′ and εj,j′,i = εj,i−εj′,i. In matrix notation,
let

∆ = (−e, IJ−1)

be the (J − 1)× J matrix which subtracts the first entry from each component
of a J vector. Differencing the matrix M yields ∆ ·MJ = ∆. Pre-multiplying
equation (4) by ∆ yields the differenced regression in matrix form,

∆ · Yi = ∆ · γ + β0 ·∆ ·Xi + ∆ · εi.

2.2 Unrestricted least-squares estimation

Rather than imposing the strong assumptions implied by the CES production
function model or its generalizations, we could instead “let the data speak.”
A natural way of doing so is to consider a specification with a large number
of types J , and unrestricted own- and cross-elasticities. Sticking to a linear
specification, we could attempt to estimate the model

Yj,i = αi + γj +
∑
j′

βj,j′Xj′,i + εj,i, (7)

using least squares, without imposing any cross-restrictions on the parameters
βj,j′ . This is the same regression model as implied by the CES production
function, except that the latter restricts the J2-dimensional parameter β to lie
in a 1 dimensional subspace.
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This general model is not identified. Differencing across types j yields a
model which is identified. The data are informative about the effect of labor
supply on relative wages:

∆ · Yi = ∆ · γ + δ ·Xi + ∆ · εi. (8)

δ = ∆ · β (9)

We thus have J · (J − 1) free slope parameters δ to be estimated. Relative to
this general linear fixed effects model, the CES production function therefore
implies J2 − J − 1 additional restrictions.

We use the notation δ↑ to denote the vectorized form of the (J − 1) × J
matrix δ, where the rows of δ have been stacked, and similarly for other such
matrices. In this vectorized notation, we have δ ·X = (IJ−1 ⊗X ′) · δ↑, where
⊗ denotes the Kronecker product. We can thus write the OLS estimator for δ
based on equation (8) as solution to the least-squares problem

δ̂ = argmin
d

En
[
‖∆Y − (IJ−1 ⊗ (X ′ − En[X ′])) · d↑‖2

]
, (10)

where the fixed effects γ have been taken care of by de-meaning X.

2.3 Empirical Bayes estimation

We have discussed two approaches to estimation, one imposing a lot of re-
strictions based on some structural model, and one leaving the model rather
unrestricted. Both of these approaches have serious disadvantages, in theory as
well as in practice, as we discuss in section 2.5 below. Estimation based on the
structural model has a small variance, but yields to non-robust conclusions and
estimates that are biased and inconsistent if the model is mis-specified. Esti-
mation using the unrestricted model leads to estimates of large variance, but is
(in principle) unbiased and consistent.

There is a paradigm in statistics, called empirical Bayes estimation, which
can in many ways be seen as providing a middle ground between these two
approaches, and which combines the advantages of both. An elegant exposition
of this approach can be found in Morris (1983). The parametric empirical Bayes
approach can be summarized as follows:4

Y |η ∼ f(Y |η) (11)

η ∼ π(η|θ), (12)

where both f and π describe parametric families of distributions, and where
usually dim(θ) ≤ dim(η) − 2. Equation (11) describes the unrestricted model
for the distribution of the data given the full set of parameters η. Equation
(12) describes a family of “prior distributions” for η, indexed by the hyper-
parameters θ.

4All of the following probability statements are conditional on our regressors X
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Estimation in the empirical Bayes paradigm proceeds in two steps. First we
obtain an estimator of θ. This can be done by considering the marginal likeli-
hood of Y given θ, which is calculated by integrating out over the distribution
of the parameters η:

Y |θ ∼ g(Y |θ) :=

∫
f(Y |η)π(η|θ)dη. (13)

In models with suitable conjugacy properties, such as the one we will consider
below, the marginal likelihood g can be calculated in closed form. A natural
estimator for θ is obtained by maximum likelihood,

θ̂ = argmax
θ

g(Y |θ). (14)

Other estimators for θ are conceivable and commonly used, as well. In the
second step, η is estimated as the “posterior expectation”5 of η given Y and θ,
substituting the estimate θ̂ for the hyper-parameter θ,

η̂ = E[η|Y, θ = θ̂]. (15)

The general empirical Bayes approach includes fully Bayesian estimation as a
special case, if the family of priors π contains just one distribution. This general
approach also includes unrestricted frequentist estimation, as in section 2.2, as
a special case, when θ = η. The general approach finally includes structural
estimation, as in section 2.1, when again θ = η, and the support of θ is restricted
to parameter values allowed by the structural model. We can think of such
support restrictions as dogmatic imposition of prior beliefs, in contrast to non-
dogmatic priors which have full support

The next section will specialize the empirical Bayes approach to our set-
ting, the section thereafter will discuss the advantages of our empirical Bayes
approach in this setting.

2.4 An empirical Bayes model for our problem

Let us now specialize the general empirical Bayes approach to the setting con-
sidered in this paper. Rather than providing a model for the distribution of the
full data Y given X, we directly model the distribution of an unrestricted esti-
mator δ̂ of the differenced model, as in equation (10), which might be obtained
using OLS, IV, or some other method. This unrestricted estimator will then be
mapped to an empirical Bayes estimator δ̂EB . To construct a family of priors
for δ = ∆ · β, we assume that β is equal to a set of coefficients consistent with
a structural model such as the one of equation (6), plus some noise of unknown
variance.

5The quotation marks reflect the fact that this would only be a posterior expectation in
the strict sense if θ̂ had been chosen independently of the data, rather than estimated.
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Modeling δ̂

We assume that the unrestricted estimator δ̂ is normally distributed given the
true coefficients, unbiased for the true coefficient matrix δ, and has a variance
V :

δ̂↑|η ∼ N(δ↑, V ) (16)

This assumption can be justified by conventional asymptotics, letting the num-
ber n of cross-sectional units go to infinity. This assumption asymptotically
holds for the panel data and instrumental variables models discussed below, as
well. We further assume that we have a consistent estimator V̂ of V , i.e.

V̂ · V −1 →p I.

We will use an estimator V̂ robust to clustering at the level of cross-sectional
units i.6

Prior distributions

We next need to specify a family of “prior distributions.” We model β as corre-
sponding to the coefficients of the structural CES model plus some disturbances,
that is

β = (βj,j′) = β0 ·MJ + ζ

ζj,j′ ∼iid N(0, τ2),

where, as before, MJ =
(
IJ − 1

JE
)
. Differencing this model yields

δ = ∆ · β = β0 ·∆ + ∆ · ζ (17)

The term β0 ·∆ is equal to a fixed scalar β0 times ∆ ·MJ = ∆. This term cor-
responds to a set of coefficients satisfying the CES-production function model.
The term ∆ · ζ is equal to a random J × J matrix ζ pre-multiplied by ∆. The
variance of this term is given by

Var((∆ · ζ)↑) = τ2 · P ⊗ IJ ,

where P := ∆ ·∆′ = IJ−1 + E
If we were to set τ2 = 0, the empirical Bayes approach would reduce to the

structural CES model. If we let τ2 go to infinity we effectively recover the un-
restricted model. We consider τ2 to be a parameter to be estimated, however,
which measures how well a CES model fits the data.

6Denote by X the matrix stacking (IJ−1⊗ (X′i−En[X′])) across cross-sectional units, and

∆Y the correspondingly stacked differenced outcomes ∆ · Yi so that δ̂↑ = (X′X)−1X′(∆Y).

We take V̂ = (X′X)−1X′V̂ar(∆ε)X(X′X)−1. where V̂ar(∆ε)ij,i′j′ =

{
0 i 6= i′

eijei′j′ i = i′
.
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Summarizing our model in terms of the general notation introduced in sec-
tion 2.3, with δ̂↑ taking the place of Y , we get:

η = (δ, V )

θ = (β0, τ
2, V )

δ̂↑|η ∼ N(δ↑, V )

δ↑|θ ∼ N(β0 ·∆↑, τ2 · P ⊗ IJ) (18)

The variance of δ↑ in the last line is block-diagonal and equal to the variance of
the vectorized matrix (∆ · ζ)↑.

Solving for the empirical Bayes estimator

In order to obtain estimators of β2
0 and τ2, consider the marginal distribution

of δ̂ given θ. This marginal distribution is normal,

δ̂↑|θ ∼ N(β0 ·∆↑,Σ(τ2, V )), (19)

where (leaving the conditioning on θ implicit)

Σ(τ2, V ) = Var
(
δ̂↑

)
= Var

(
E
[
δ̂↑|η

])
+ E

[
Var

(
δ̂↑|η

)]
= τ2 · P ⊗ IJ + V.

Substituting the consistent estimator V̂ for V , we obtain the empirical Bayes
estimators of β0 and τ2 as solution to the maximum (marginal) likelihood prob-
lem

(β̂0, τ̂
2) = argmin

b0,t2
log
(

det(Σ(t2, V̂ ))
)

+ (δ̂↑ − b0 ·∆↑)′ · Σ(t2, V̂ )−1 · (δ̂↑ − b0 ·∆↑). (20)

We can simplify this optimization problem by concentrating out b0: Given t2,
the optimal b0 is easily seen to equal

β̂0 = (∆ · Σ(t2, V̂ )−1 ·∆′)−1 ·∆ · Σ(t2, V̂ )−1 · δ̂↑. (21)

Substituting this expression into the objective function, we obtain a function of
t2 alone which is easily optimized numerically.

Given the unrestricted estimates δ̂, as well as the estimates β̂0 and τ̂2, we
can finally obtain the “posterior expectation” of δ as

δ̂EB↑ = β̂0 ·∆↑ + P ⊗ IJ ·
(
P ⊗ IJ +

1

τ̂2
V̂

)−1
· (δ̂↑ − β̂0 ·∆↑) (22)

This is the empirical Bayes estimator of the coefficient matrix of interest.

12



Discussion

• Our approach is based upon directly modeling the distribution of the un-
restricted estimator δ̂. If δ̂ are the coefficients of an OLS regression, there
is a one-to-one mapping between (i) Y and (ii) the estimated coefficients,
fixed effects ∆ · γ, and residuals of the unrestricted model. To the extent
that residuals and fixed effects do not carry additional information about
δ, our approach does not waste any information; this is true, in particular,
for a standard parametric linear/normal model .

• It is instructive to relate the proposed empirical Bayes procedure to struc-
tural estimation of the CES model. The empirical Bayes estimator δ̂EB of
δ is not given by β̂0 ·∆. Instead we can think of it as an intermediate point
between β̂0 ·∆ and the unrestricted estimator δ̂. The relative weights of
these two are determined by the matrices τ̂2 · P ⊗ IJ and V̂ . When τ̂2 is
close to 0, we get δ̂EB ≈ β̂0 ·∆. When τ̂2 is large, we get δ̂EB ≈ δ̂.

• The estimator β̂0 · ∆ is very similar to the structural estimator of δ dis-
cussed in section 2.1; in both cases we are considering an orthogonal pro-
jection of the unrestricted estimator δ̂ onto the subspace of multiples of
∆. The projection is with respect to different norms, however. In the case
of section 2.1, the projection is with respect to the norm

‖d‖δ :=
(
d′↑ · (IJ−1 ⊗Var(X)) · d↑

)1/2
(compare proposition 1 below), in the context of our empirical Bayes ap-
proach the projection is with respect to the norm

‖d‖δ,EB =
(
d′↑ · Σ(t2, V̂ )−1 · d↑

)1/2
.

The two objective functions coincide (up to a multiplicative constant) if

and only if (i) τ2 = 0, and (ii) V̂ is estimated assuming homoskedasticity.

• Our construction of a family of priors thus implies the following: When
the structural model appears to describe the data well, then our estimate
of δ will be close to what is prescribed by the structural model. When the
structural model fits poorly, then the estimator will essentially disregard
it and provide estimates close to the unrestricted ones. A key point to
note is that this is done in a data-dependent, optimal and smooth way, in
contrast to the arbitrariness and discontinuity of pre-testing procedures.

2.5 Disadvantages of structural and unrestricted estima-
tion, and advantages of the empirical Bayes approach

Structural estimation

It is useful to discuss the economic content of the restrictions on β imposed by
the structural model and summarized by equation (6):
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1. β · e = 0 for e = (1, . . . , 1):
Proportionally increasing the labor supply of every group by the same fac-
tor does not affect wages. This is a restriction implied by constant returns
to scale, if wages are assumed to correspond to marginal productivity
based on an aggregate production function.

2. βj,j′ = βj,j′′ for j′, j′′ 6= j:
The elasticity of substitution between different groups is the same for
all groups. The CES model imposes that there are only two possible
degrees of substitutability between different workers – either they are per-
fect substitutes, when they are the same type, or they have an elasticity
of substitution of σ = −1/β0.

3. βj,j = βj′,j′ :
The own-elasticity of demand is the same for all types of labor.

In combination, these restrictions 1-3 in fact imply the CES regression
model.

4. The CES model additionally implicitly entails that changes in labor supply
do not affect within-type inequality of wages. Given the small number of
types usually imposed, this is a strong restriction.

There are obvious drawbacks to an approach based on the strong restrictions
implied by the CES model, or by its generalizations. The estimates will in
particular be inconsistent if the model is misspecified. The following proposition
provides an explicit characterization of misspecification bias.

Proposition 1 (Misspecification)

• Suppose (Xi, Yi) are i.i.d. draws from the joint distribution of the J-
vectors X and Y . Suppose that (X,Y ) have finite joint second moments
such that det(Var(X)) 6= 0.

• Let β̂0 be the least squares estimator of the structural model in equation
(6), and δ̂ the least squares estimator of the differenced unrestricted model
in equation (8).

• Let β0 be the probability limit, as sample size goes to infinity, of β̂0, and
let δ be the probability limit of δ̂.

Then we can write β0 as

β0 = argmin
b0

‖b0 ·∆− δ‖δ, (23)

where
‖d‖δ :=

(
d′↑ · (IJ−1 ⊗Var(X)) · d↑

)1/2
. (24)

In words, β0 ·∆ is the orthogonal projection of δ onto the subspace of multiples
of ∆ with respect to the norm ‖d‖δ on R(J−1)×J .
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The proof of this proposition, and of all other mathematical results, can be
found in appendix A. The result is easily generalized to other structural mod-
els, which impose for instance that β = β1 ·M1 + β2 ·M2 for some matrices M1

and M2. The matrix defining the norm ‖d‖δ is block-diagonal.

The bias induced by functional form choices in the structural model is not
only a theoretical problem, but of practical importance in various contexts. This
is reflected in non-robust findings, where qualitative conclusions depend on the
specifics of the functional form assumptions imposed.

Card (2009, p5f) discusses an important example, the estimated impact of
past migration on wage inequality in the US. One side of the literature on
this question argues that there were large effects. Their CES specifications
assume (i) migrants and natives are perfect substitutes in the labor market,
while (ii) the elasticity of substitution between high school dropouts and high
school graduates is the same as between either of those and college graduates or
those with a postgraduate degree. The other side of this literature argues that
there were negligibly small effects. Their CES specifications assume that (i)
natives and migrants are imperfect substitutes, while (ii) high school dropouts
and high school graduates are perfect substitutes.7

We can interpret these diverging results in light of proposition 1. Suppose
that types 1 and 2 (dropouts and high school graduates) are in fact perfect
substitutes, and that the share of type 1 in the population is small. This implies
a coefficient β1,1 close to 0. Suppose that for other types j, the own-elasticity
is negative, βj,j � 0. The structural CES-model imposes all own-elasticities to

be the same, so that β̂0 � 0. An increase of the population of type 1 is then
predicted to depress type 1’s wages significantly, in contrast to what the correct,
unrestricted model would have predicted.

Unrestricted estimation

The key drawback of estimating an unrestricted model, on the other hand, is
its large variance. Fitting the differenced model requires the estimation of J2

parameters (including the fixed effects ∆·γ), using observations of only n·(J−1)
outcomes. When the number n of cross-sectional units is not much larger than
the number J of types, least squares will tend to over-fit, producing estimates
with a very large variance. When the number of types exceeds the number of
cross-sectional units, the model is actually not identified anymore. Presumably
this is the main reason why the literature resorts to highly restrictive structural
models, which reduce variance by heavily reducing the number of parameters
to be estimated.

Advantages of empirical Bayes

The approach we propose has a number of advantages relative to structural and
unrestricted estimation approaches, some of which we shall discuss next. An

7Card argues that the assumptions of such a specification are justified by statistical tests.
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additional and more extensive analysis of the underlying geometric structure
and risk properties of our empirical Bayes estimator can be found in section 4.

Consistency

In contrast to structural estimation in the misspecified case, the empirical Bayes
estimator of δ is consistent as sample size goes to infinity:

Proposition 2 (Consistency)

• Suppose (Xi, Yi) are i.i.d. draws from the joint distribution of the J-
vectors X and Y . Suppose that (X,Y ) have finite joint second moments
such that det(Var(X)) 6= 0.

• Let δ̂ be the least squares estimator of the unrestricted model in equation
(7), and let δ be the probability limit of δ̂.

• Let δ̂EB be the empirical Bayes estimator of δ discussed in section 2.4.

Then
δ̂EB →p δ

as sample size n goes to infinity.

The proof of this proposition can again be found in appendix A.

Data-driven predictions

Our proof of consistency relies on the fact that the variance V of δ̂, es well as
the corresponding estimate V̂ , go to 0. In the limiting case, the empirical Bayes
estimator becomes equal to the unrestricted estimator.

Now suppose that instead of Var(δ̂) ≈ 0 we only have that the variance

Var(δ̂ · x′) of the predicted value at some point x is small. The following
argument shows that for such points x the predicted value ŷ using empirical
Bayes is again close to the predicted value using unrestricted estimation – and
thus also to the predicted value using the true coefficients δ, since the latter
is estimated with small variance. This insight is particularly valuable when
considering historical counterfactuals (“how much did migration affect wage in-
equality?”), which might rely on variation which is actually observed in the data.

Consider again the formula for the empirical Bayes estimator δ̂EB of δ, equa-
tion (22). Rearranging this equation, we can write δ̂EB↑ as

δ̂EB↑ = δ̂↑ + V̂ ·
(
τ̂2 · P ⊗ IJ + V̂

)−1
· (β̂0 ·∆↑ − δ̂↑).

Recall that (IJ−1 ⊗ x′) · δ↑ = δ · x. Consider a point x such that

(IJ−1 ⊗ x′) · V̂ · (IJ−1 ⊗ x′)′ ≈ 0.
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Because V̂ is a symmetric matrix, this condition holds if and only if (IJ−1 ⊗
x′) · V̂ ≈ 0. For this point x we get

δ̂EB · x = (IJ−1 ⊗ x′) · δ̂EB↑

= (IJ−1 ⊗ x′) ·
[
δ̂↑ + V̂ ·

(
τ̂2 · P ⊗ IJ + V̂

)−1
· (β̂0 ·∆↑ − δ̂↑)

]
≈ (IJ−1 ⊗ x′) · δ̂↑ = δ̂ · x.

For what points x can we expect the condition (IJ−1⊗x′) · V̂ ·(IJ−1⊗x′)′ ≈ 0 to
hold? For least squares estimation, this will happen whenever x′·Varn(X)−1·x ≈
0.

James-Stein shrinkage and dominance

Empirical Bayes estimators are generalizations of the famous James-Stein shrink-
age estimator; see for instance Efron and Morris (1973), Morris (1983), and
Stigler (1990). James-Stein shrinkage applies to the setting where Yi|η ∼
N(ηi, 1), the goal is to estimate η, and loss is evaluated in terms of mean squared
error, summed across i. The empirical Bayes estimator in this setting, based on
a family of normal i.i.d. priors for η, caused a great deal of surprise in statistics
when it was demonstrated that it uniformly dominates the maximum likelihood
estimator η̂ = Y : The empirical Bayes estimator has smaller mean squared er-
ror, no matter what the true η is, as long as dim(Y ) ≥ 3. We show in section
4.3, using an asymptotic approximation, that this dominance result generalizes
subject to some qualifications.

We will also demonstrate numerically that dominance relative to both the
unrestricted estimator and the structural estimator seems to hold for a wide
range of values for η in our setting; see section 5 below.

2.6 Extensions

When we introduced our empirical Bayes estimator, we took as our point of
departure some (asymptotically) normal unrestricted estimator δ̂, in combina-

tion with some estimator V̂ of its variance. This point of departure could be
justified by an assumption of exogenous cross-sectional variation of labor supply
X, which implies that δ̂ could be obtained using ordinary least squares.

In this section we consider two extensions, instrumental variables and panel
data, which both yield unrestricted estimators δ̂ and V̂ satisfying the same as-
sumptions. Based on such unrestricted estimators, all our subsequent discussion
in sections 2.4 and 2.5 applies verbatim. After considering IV and panel data,
we also discuss an extension of the CES model which is close in spirit to the
nested CES specification.
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Instrumental variables

Assume that we have data generated by the structural relationship considered
in section 2.2, that is

∆ · Yi = ∆ · γ + δ ·Xi + ∆ · εi,
δ = ∆ · β.

If we imposed the assumption that the regressors X are exogenous, so that
Cov(Xi,∆ · εi) = 0, then an unrestricted estimator of δ could be obtained by
cross-sectional OLS. Assume now instead that there are instruments Z at our
disposition which satisfy

Cov(Zi,∆ · εi) = 0. (25)

This condition implies the estimating equation

En

[
(IJ−1 ⊗ Z ′)′ · (∆Y − (IJ−1 ⊗ (X ′ − En[X ′])) · δ̂↑)′

]
= 0.

If the model is just-identified given the available instruments, so that in partic-
ular dim(Z) = dim(X), this implies that we can estimate δ by

δ̂↑ = En [(IJ−1 ⊗ Z ′)′ · (IJ−1 ⊗ (X ′ − En[X ′]))′] · En [(IJ−1 ⊗ Z ′)′ ·∆Y ] . (26)

This is just the conventional two-stage least squares formula for suitably ex-
panded regressors and instruments. Under standard asymptotics, this gives an
asymptotically normal estimator with a variance that can be consistently es-
timated by V̂ = (Z′X)−1Z′V̂ar(∆ε)Z(X′Z)−1, where X and Z are regressors
and instruments stacked across observations. We are thus back to the setting
imposed at the outset of section 2.4.

An interesting case arises if some of the instruments appear to be weak. In
that case there are values x such that x′ · En[Z · (X ′ − En[X ′])] ≈ 0, which in

turn implies (IJ−1 ⊗ X ′) · V̂ −1 ≈ 0. This is in some sense the reverse case of
the one we discussed when considering data-driven predictions:

δ̂EB · x = (IJ−1 ⊗X ′) · δ̂EB↑
= (IJ−1 ⊗X ′) ·

[
β̂0 ·∆↑+

V̂ −1 · P ⊗ IJ ·
(
P ⊗ IJ · V̂ −1 +

1

τ̂2
I

)−1
· (δ̂↑ − β̂0 ·∆↑)

]
≈ β̂0 · (IJ−1 ⊗X ′) ·∆↑ = β̂0 ·∆x.

We thus get that for coefficients such that the variation in the data is unin-
formative, predictions are driven entirely by extrapolation from well-identified
coefficients based on the structural model. This argument carries over to the
limiting case of underidentified models, where dim(Z) < dim(X), if we allow

some elements of V̂ to be infinite. This can be made formal by writing all
expressions in terms of V̂ −1.
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Panel data

If panel data are available, we can allow for additional forms of endogenous un-
observed heterogeneity, such as time-invariant market-level effects, and common
time-trends across markets. We could for instance consider the model

∆ · Yit = γt + γi + δ ·Xi + ∆ · εit,
δ = ∆ · β,

where
E[εit|X] = 0,

γt denotes time fixed effects, and γi market fixed effects. As before, we can
estimate this model by OLS and will obtain an asymptotically normal estimator
δ̂ as well as a corresponding estimator V̂ of its variance.

A generalization of the CES model

In our application, we will consider specifications involving many types j. For
such specifications, shrinking towards the CES model seems problematic. The
CES model implies that all other types of labor are complements for a given
type, with the same elasticity of substitution, including types very similar in
their demographics to the given type.

In a spirit close to the nested CES models, our preferred specification will
thus take the following, slightly more general form.

β = (βj,j′) = β0 ·M1 + β1 ·M2 + ζ

ζj,j′ ∼iid N(0, τ2), (27)

where M1 = M as before, and

M2,j,j′ =

{
−
(

1
kj
− 1

J

)
j′ ∈ Bj

1
J else

, (28)

and where Bj denotes a set of size kj of types j′ which are considered to be
similar to j; analogous to the “nests” in the nested CES production function.
All of our previous discussion immediately generalizes to this model.

2.7 Inference

Inference in our setting is easily implemented, though conceptually somewhat
subtle. We shall construct empirical Bayes confidence regions C for δ. Such
confidence regions are required to satisfy

P (δ ∈ C|θ) ≥ 1− α, (29)

and were first proposed by Morris (1983) and analyzed further by Laird and
Louis (1987) and Carlin and Gelfand (1990). Definition (29) arguably captures
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the natural notion of inference corresponding to empirical Bayes estimation.
Empirical Bayes confidence regions are intermediate between frequentist con-
fidence sets (which satisfy P (δ ∈ C|η) ≥ 1 − α), and Bayesian pre-posterior
inference. The requirement of definition (29) is slightly weaker than the re-
quirement of frequentist coverage.

We follow Laird and Louis (1987) in constructing such an inference proce-

dure, using the bootstrap to capture sampling variation of the estimates δ̂EB ,
and posterior inference to capture uncertainty about δ given these estimates.
The proposed procedure obtains a predictive distribution for δ which is similar
to a posterior distribution of the form

P
(
δ
∣∣δ̂, V̂ ) =

∫
P
(
δ
∣∣δ̂, V̂ , θ)P (θ∣∣δ̂, V̂ ) dθ,

but replaces the posterior for the hyperparameter θ by the distribution QR for
θ̂ obtained using the bootstrap, thus obtaining a mixture distribution

M
(
δ|δ̂, V̂

)
=

∫
P
(
δ
∣∣δ̂, V̂ , θ)QR (θ∣∣δ̂, V̂ ) dθ. (30)

Our proposed procedure can be summarized as follows:

1. Draw r = 1, . . . , R i.i.d. bootstrap samples from the empirical distribution
of (Yi, Xi).

2. For each of these R samples, obtain estimates

• δ̂r using differenced OLS (or IV, panel data with fixed effects,...),

• V̂r using clustering-robust variance estimation,

• and θ̂r = (β̂0,r, τ̂
2
r ) by maximizing the marginal likelihood,

as discussed in section 2.4.

3. Calculate

• the posterior mean δ̂EBr and variance V EBr for δ

• conditional on δ̂r and θ̂r,

• using equation (22) and

V EBr = Var(δ|δ̂ = δ̂r, θ = θ̂r)

= τ̂2 · P ⊗ IJ − τ̂2 · P ⊗ IJ ·
(
τ̂2 · P ⊗ IJ + V̂

)−1
· τ̂2 · P ⊗ IJ

= τ̂2 · P ⊗ IJ ·
(
τ̂2 · P ⊗ IJ + V̂

)−1
· V̂ .

4. Consider the mixture distribution

M
(
δ|δ̂, V̂

)
:=

1

R

∑
r

N
(
δ̂EBr , V EBr

)
. (31)

5. Obtain confidence intervals for components of δ using the appropriate

quantiles of the mixture distribution M
(
δ|δ̂, V̂

)
.
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Discussion

Empirical Bayes confidence sets need to take into account two types of variation.
This is best illustrated by first considering two invalid inference procedures, both
of which ignore one of these two sources of variation. First, one might consider
sets with the right coverage under the pseudo-posterior distribution, so that
P (δ ∈ C|δ̂, θ = θ̂) ≥ 1−α. Such sets are similar to Bayesian credible sets. Such
sets ignore the fact that θ had to be estimated, and therefore might undercover in
the empirical Bayes sense. Second, one might estimate the sampling variation of
δ̂EB , for instance using the bootstrap. Confidence sets obtained in this way are
similar to frequentist confidence sets, but ignore the fact that there is residual
uncertainty about δ conditional on δ̂ and θ.

The situation is analogous to the forecasting of outcomes using a linear
regression. Forecast uncertainty involves uncertainty about regression slopes
(analogous to θ in our case, and captured by the bootstrap), and uncertainty
about the outcome around its conditional expectation (analogous to the pseudo-
posterior distribution in our setting). A correct inference procedure combines
both aspects.
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3 Empirical analysis – wage inequality in Eu-
rope

3.1 The EU-SILC data

Our empirical analysis uses the EU Survey of Income and Living Conditions
(EU-SILC) data. These data are provided by Eurostat, the statistical agency of
the European Union. Background on these data can be found on the website of
EU-SILC8, a very detailed description is available in Eurostat (2014). The EU-
SILC project was launched in 2003 in six member states of the European Union
(Belgium, Denmark, Greece, Ireland, Luxembourg and Austria) and Norway.
Since 2004, the survey covers the old EU-15 member countries (except Germany,
the Netherlands, and the United Kingdom), as well as Estonia, Norway and
Iceland. All countries of the EU-25 are covered since 2005.

The EU-SILC aims to collect comparable microdata on income, poverty, so-
cial exclusion and living conditions. EU-SILC participation is compulsory for
all EU member states. The survey is based on a “common framework,” defined
by harmonised lists of variables, by a recommended design for implementing
EU-SILC, by common requirements (for imputation, weighting, sampling er-
rors calculation), common concepts (household and income) and classifications
aiming at maximising comparability of the information produced.

The EU-SILC provides two types of annual data, cross-sectional data with
variables on income, poverty, social exclusion and other living conditions, and
longitudinal data pertaining to individual-level changes over time, observed pe-
riodically over a four year period. We only use the cross-sectional data. Social
exclusion and housing condition information is collected mainly at the household
level while labour, education and health information is obtained for all persons
in the survey that are aged 16 and over. Income with detailed components is
mainly collected at the personal level.

We use variables constructed in a way as close as possible to the existing
literature on wage inequality, which mainly focuses on the United States and
uses data from the US Current Population Survey (CPS) (Autor et al., 2008),9

as well as from the US Census (Card, 2009). We map the variables available in
the EU-SILC data to those of the models of labor supply considered in section
2 as follows:

• For our main analysis, the cross-sectional units i considered are NUTS 1
regions; we perform additional analyses on the country- and EU-level, as
well as on the level of NUTS 2 regions, however.

Most NUTS 1 regions have between 3 million and 7 million inhabitants,
most NUTS 2 regions between 800.000 and 3 million. Regional boundaries
are defined based on existing administrative subdivisions; figure 1 shows
maps of all these regions.

8EU-SILC homepage, accessed February 17 2015
9More specifically, the March CPS, May CPS, and Outgoing Rotation Group samples.
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• We employ various specifications for labor-types j. For our baseline re-
sults, which are replicating approaches from the literature, we classify
workers by education (2 or 4 subgroups), and possibly by migrant/native
status.

For our preferred specifications, based on the empirical Bayes methodol-
ogy proposed, we consider various richer sets of sub-types which classify
workers additionally by age, work experience, and occupation, and use a
model with super- and sub-types, as discussed toward the end of section
ssec:ourempiricalBayes.

• Wages of each employed individual in the micro-data are calculated as
12
52 times gross monthly earnings, divided by the number of hours usually
worked per week in their main job.

Type-specific wages wj,i,t are then calculated as averages (appropriately
weighted using survey weights) for all individuals of a given type j in
region i and year t. Outcomes Yj,i,t are defined as Yj,i,t = log(wj,i,t).

• Following Card (2009), we take labor supply Nj,i,t to equal the total hours
worked per year for type j, region i, and year t. Regressors Xj,i,t are
defined as Xj,i,t = log(Nj,i,t).

As a robustness check, we alternatively define labor supply N as the esti-
mated total number of people of a given type in a given region and year.

[Figure 1 here]

3.2 Replication of Card (2009) for Europe

3.3 Main empirical results
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4 The geometry of our empirical Bayes estima-
tor and its risk function

In this section, we study the geometry of the empirical Bayes estimator pro-
posed in section 2.4, as well as its risk properties. This estimator can be seen as
providing a mapping from an unrestricted (preliminary) estimate δ̂ to an empir-

ical Bayes estimate δ̂EB . Understanding this mapping is key for understanding
the behavior of our estimator.

To avoid dealing with distracting ancillary issues, we make the following
simplifying assumptions:

1. We consider a vector of regression coefficients β for a regression that has
not been differenced, with prior variance Var(β) = τ2 · I.

2. The variance V of the corresponding estimated coefficients β̂, conditional
on β, is diagonal, V = diag(v).

Both of these assumptions can be achieved in more general settings through a
change of basis. Under these assumptions, and assuming (solely for notational

simplicity) that V̂ = V , we get

β̂|β ∼ N(β,diag(v)) (32)

β|β0, τ2 ∼ N(β0 · µ, τ2 · I), (33)

where µ = M↑ in the context of the structural model discussed in section 2.4.

The implied marginal distribution of β̂ is given by

β̂|β0, τ2 ∼ N(β0 · µ,diag(v) + τ2 · I).

Since both Var(β̂|β) and Var(β|β0, τ2) are diagonal, we obtain the empirical

Bayes estimator of β by component-wise shrinkage of β̂ toward β̂0 · µ,

β̂EB = β̂0 · µ+ diag

(
τ̂2

τ̂2 + vk

)
· (β̂ − β̂0 · µ). (34)

This expression equivalent equation (22) for an appropriate choice of coordi-
nates.

4.1 Special case: µ = 0

We shall first discuss the case where µ = 0, so that we can ignore estimation of
β0. In this case, the expression for β̂EB simplifies further to

β̂EB = diag

(
τ̂2

τ̂2 + vk

)
· β̂.
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This expression does not quite reveal the mapping from β̂ to β̂EB , since τ̂2 itself
is a function of β̂. This latter function is complicated; τ̂2 minimizes the negative
log likelihood ∑

k

log(t2 + vk) +
∑
k

β̂2
k

t2 + vk
,

and thus solves the first order condition∑
k

1

t2 + vk
=
∑
k

β̂2
k

(t2 + vk)2
.

Suppose that the minimizing value is given by τ̂2. The first order condition
then implies that β̂ must be somewhere on the surface of an ellipsoid with
semi-axes that have length

(τ̂2 + vk) ·
√∑

k′

1

τ̂2 + vk′
(35)

along the kth dimension. This implies in turn that the length of β̂EB is given
by

τ̂2 ·
√∑

k′

1

τ̂2 + vk′
. (36)

Note that this value does not depend on β̂ beyond its effect on τ̂2. All estimates
β̂EB corresponding to a given value of τ̂2 are on the surface of a sphere with

this radius! Note finally that there is a natural lower boundary on τ̂2 of 0.10 In

particular, we have that τ̂2 is equal to 0 for any values of β̂ inside the ellipsoid
with semi-axes of length

vk ·
√∑

k′

1

vk′
. (37)

4.2 Visual representation

We can illustrate the mapping from β̂ to τ̂2 and β̂EB graphically when dim(β) =
2. Suppose that v1 = 2 and v2 = 1. The top part of figure 2 shows τ̂2 as a
function of β̂. This function is flat and equal to 0 inside the white ellipsoid; it
rises smoothly and approaches a circular cone for large β̂. The bottom part of
this same figure shows (i) β̂EB − β̂ as a vector field (arrows are proportional to,
but smaller than, this difference), and (ii) a contour plot of the length of these
vectors, that is of the amount of shrinkage relative to the unrestricted estimator.

The structure of this mapping gets more transparent when considering the
analytic characterizations we just derived. Figure 3, in particular, plots, for

10Since we impose this boundary, our estimator resembles the positive-part James Stein
estimator.
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various values of τ̂2, (i) which values of β̂ would imply such values of τ̂2, and

(ii) the corresponding estimates β̂EB .

How can we interpret these figures? For small β̂, the estimator concludes
that the “theory” is essentially correct, where the theory in this case reduces to
the assumption β = 0. As β̂ gets larger, so does the estimated τ̂2 – the theory
is considered less correct. Deviations from 0 in the direction of the first coor-
dinate are weighted less heavily, since β̂1 has a larger variance (is less precisely

estimated). β̂1 is shrunk most heavily if β̂2 seems to confirm the theory while

β̂1 violates it moderately, as evident in the bottom right plot of figure 2. When
β̂ is large, so is τ̂2, and the theory is essentially disregarded; β̂EB is basically
equal to the unrestricted estimator, as evident in the bottom plots of figure 3.

[Figures 2 and 3 here]

4.3 Likelihood, loss, and risk

Our estimator is based on estimation of τ2 using the marginal likelihood (MLLH)

of β̂. Alternative ways of choosing τ2 are conceivable, for instance using the
method of moments (MOM).11 We shall also consider the infeasible choice of τ2

minimizing the loss (squared error) of the empirical Bayes estimator (SE-EB).
The objective functions for these three alternatives are as follows, where we
omit multiplicative constants and normalize by 1/K.

1

K
·
∑
k

(
log(τ2 + vk) +

β̂2
k

τ2 + vk

)
(MLLH) (38)

1

K
·
∑
k

(
τ2 + vk − β̂2

k

)2
(MOM) (39)

1

K
·
∑
k

(
τ2

τ2 + vk
β̂k − βk

)2

(SE-EB) (40)

The minimizer of each of these objective functions satisfies the following
first-order conditions.

1

K
·
∑
k

1

(τ2 + vk)2

(
τ2 + vk − β̂2

k

)
= 0 (MLLH) (41)

1

K
·
∑
k

(
τ2 + vk − β̂2

k

)
= 0 (MOM) (42)

1

K
·
∑
k

v2k
(τ2 + vk)3

·
(
τ2

vk

(
β̂2
k − βk · β̂k

)
− βk · β̂k

)
= 0 (SE-EB) (43)

11Additional options are cross validation, generalized cross validation, and minimization of
Stein’s unbiased risk estimate. We will not discuss these here.
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The frequentist expectation of each of these first order conditions, condi-
tional on the true parameter β, is given as follows.

1

K
·
∑
k

1

(τ2 + vk)2
(
τ2 − β2

k

)
= 0 (MLLH) (44)

1

K
·
∑
k

(
τ2 − β2

k

)
= 0 (MOM) (45)

1

K
·
∑
k

v2k
(τ2 + vk)3

·
(
τ2 − β2

k

)
= 0 (SE-EB) (46)

These expressions allow us (i) to relate our setting to the one by consid-
ered by James and Stein, and (ii) to gain a better understanding of the risk
properties of our estimator. The James-Stein setting is a special case of our’s,
where James-Stein impose the additional restriction that all the vk are the same
(homoskedasticity). In that case maximum likelihood and method of moments
yield the same estimator τ̂2, as is evident from the first order conditions (41)
and (42). The original justification for the James-Stein estimator was in fact
based on a method of moments argument. These expressions also give some
intuition for the optimality of empirical Bayes in the homoskedastic case. In
expectation, the first order condition for empirical Bayes, (44), and the first
order condition for loss minimization, (46), are the same in this case.

Risk

Now consider the risk (expected squared error given β) of our empirical Bayes
estimator. We motivated our empirical Bayes procedure by a comparison to
two alternative estimators, the unrestricted one (corresponding to a choice of
τ̂2 =∞), and the one imposing the theory (corresponding to a choice of τ̂2 = 0.)
More generally, we might compare our procedure to the class of estimators
for β based on arbitrary first-stage estimators of τ2. Clearly, none of these
estimators can have lower risk than the “oracle” estimator based on a choice
of τ2 minimizing the loss (squared error) of empirical Bayes given by equation
(40), and thus satisfying the first order condition (43).

The classic characterization of the risk-properties of the James-Stein esti-
mator relies on an explicit derivation of its risk function, using the normality
assumption as well as homoskedasticity (constant vk). This derivation does not
generalize to the case of heteroskedasticity (non-constant vk).

In the more general case, where neither normality nor homoskedasticity is
imposed, we can still obtain insightful characterizations of risk using the fol-
lowing asymptotic approximation:12 For large dimension K and under mild
regularity conditions the variability in τ̂2 can be ignored relative to the variabil-
ity in β̂. This approximation relies on the consistency of maximum likelihood

12An elegant characterization of risk for estimators based on Stein’s unbiased risk esti-
mate using similar asymptotic arguments is discussed in Xie et al. (2012). Related intuitive
arguments for the dominance of James-Stein can also be found in Stigler (1990).
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(or alternative estimation approaches such as MOM) for the properly defined
pseudo-true parameter τ2. Ignoring the variability of τ̂2, we can evaluate the
risk (mean squared error) of empirical Bayes at this pseudo-true parameter.
Risk for non-stochastic τ2 is given by the expectation of expression (40) given
β and τ2, as a sum of variance and squared bias,

MSE(τ2) :=
∑
k

[(
τ2

τ2 + vk

)2

· vk +

(
vk

τ2 + vk

)2

· β2
k

]
. (47)

For large K, our τ̂2 is (up to negligible error) equal to the maximizer of the
expected log likelihood,

ELLH(τ2) :=
1

K
·
∑
k

(
log(τ2 + vk) +

β2
k + vk
τ2 + vk

)
(48)

and satisfies the first order condition (44).
The following theorem formalizes this argument and states sufficient regu-

larity conditions which guarantee that the squared error at the ML estimate of
τ2, SE(τ̂2), is asymptotically equivalent to the mean squared error evaluated
at the pseudo true τ2, MSE(τ2). The latter can be explicitly calculated and
compared to the mean squared error of alternative procedures, in particular
restricted and unrestricted estimation.

Theorem 1 (Asymptotic risk) Let τ̂2 be the maximizer of the log likelihood
in equation (38), and τ2 the maximizer of ELLH(τ2). Let SE(τ2) be the
squared error in equation (40).

Suppose that β̂k has mean βk and variance vk such that vk ≤ C1 and |βk| ≤
C2 for all k, and that E[β̂4

k]/v2k < C3. Suppose further that all β̂k are jointly
independent. Assume that τ2 → τ∗2 as K →∞.

Then
SE(τ̂2)−MSE(τ2)→ 0, (49)

in probability and in L1.

Theorem 1 implies that empirical Bayes asymptotically dominates unre-
stricted and restricted estimation under conditions on on β and V which are
easy to check algebraically:

Corollary 1 Under the assumptions of theorem 1 and for large enough K,
empirical Bayes has lower mean squared error than unrestricted estimation if

MSE(τ2) < MSE(∞) =
1

K

∑
k

vk,

and larger mean squared error if this inequality is reversed. It has lower mean
squared error than restricted estimation for large K if

MSE(τ2) < MSE(0) =
1

K

∑
k

β2
k,

and larger mean squared error if this inequality is reversed.
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This theorem also suggests how dominance of empirical Bayes can be re-
versed, using the fact that the weighting of the asymptotic first order conditions
(44) and (46) is different. The following corollary constructs an example.

Corollary 2 Under the assumptions of theorem 1,

vk = βk =

{
0 k even
2 k odd

(50)

Then

τ̂2 →p 0

E[SE(τ̂2)]→ 2

MSE(∞)→ 1,

so that unrestricted estimation has lower mean squared error than empirical
Bayes for large samples.

The preceding corollary constructs an example where unrestricted estimation
has smaller mean squared error than empirical Bayes. The intuition behind
this example is that the variation in variances vk puts most of the weight for
estimation of τ̂2 on those observations where βk is small, leading to a small τ̂2

and large bias for those observations where βk is large.
To construct an example where restricted estimation has lower mean squared

error than empirical Bayes estimation, simply choose β = 0. Note however that,
remarkably, this dominance does not hold for large K, where τ̂2 →p 0.

4.4 Geometry in the general case: µ 6= 0

Let us now turn to the general case where µ 6= 0 and estimation of β0 has thus
to be accounted for. This can be analyzed using the same “trick” as in section
4.1, where we consider τ̂2 and β̂0 to be given and derive the corresponding sets
of β̂ and β̂EB .

Given τ̂2, β̂0 minimizes the quadratic form

∑
k

(β̂k − β̂0 · µk)2

τ̂2 + vk
,

so that

β̂0 =

∑
k β̂k ·

1
τ̂2+vk∑

k µk ·
1

τ̂2+vk

. (51)

This equation defines a hyperplane in the space of β̂. As before, the first order
condition for τ̂2 implies

∑
k

1

τ̂2 + vk
=
∑
k

(β̂k − β̂0 · µk)2

(τ̂2 + vk)2
.
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This equation describes an ellipsoid centered at β̂0 · µ with semi-axes of length

vk ·
√∑

k′
1
vk′

along dimension k . Given τ̂2 and β̂0 we thus get that β̂ has to lie

on the surfaces of this ellipsoid, intersected with a hyperplane through the center
of this ellipsoid. β̂EB is then obtained from β̂ by shrinking on the hyperplane
towards the center of the ellipsoid, where β̂EB again ends up on a sphere of

radius τ̂2 ·
√∑

k′
1

τ̂2+vk′
around this center.

We can rephrase this argument by considering only τ̂2 to be given. Condi-
tional on τ̂2, we get that β̂ has to lie on the surface of a hyper-cylinder with
ellipsoid basis and axis going through the origin and pointing in the direction
of the vector (

1

τ̂2 + v1
, . . . ,

1

τ̂2 + vK

)
.

The corresponding estimates β̂EB are on the surface of a hypercylinder with
spherical basis and the same axis. Note that the tilt of the axis depends on τ̂2

and varies between (1, . . . , 1) for large τ̂2 and
(

1
v1
, . . . , 1

vK

)
for τ̂2 = 0.
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5 Demonstrating the performance of the empir-
ical Bayes estimator

In this section, we present a series of simulation and evaluation exercises com-
paring the performance of our empirical Bayes procedure to its competitors,
structural estimation and unrestricted estimation. Section 5.1 presents simula-
tions corresponding to the empirical Bayes paradigm, fixing the hyperparameter
θ and drawing from the implied distributions of the parameters η and data Y .
Section 5.2 presents simulations corresponding to the frequentist paradigm, fix-
ing the parameter η and drawing from the implied distribution of the data Y .

We then discuss results based on our application. Section 5.3 considers
simulations similar to section 5.2, but governed by parameters calibrated to
match our empirical application. Section 5.4 implements split-sample exercises
to evaluate the out-of-sample performance of alternative forecasting procedures.

5.1 Monte Carlo results, fixing θ, drawing from the dis-
tribution of η and Y

Corresponding to the different paradigms of statistical inference (Bayesian, fre-
quentist, empirical Bayes), there are different notions of the performance of an
estimator. The Bayesian perspective considers expected loss averaged over pos-
sible values of both θ and η. The frequentist perspective considers expected loss
conditional on η, averaging just over repeated draws of the data. The empirical
Bayes perspective considers expected loss averaging over η but conditional on
θ. Let us first consider simulations based on the empirical Bayes perspective,
where we repeatedly draw values for η (in particular, own- and cross-elasticities
β), and data generated by the parameter η.

In our simulations, we vary the sample size n, the number of regressors J ,
the residual variance σ2, and the parameter τ2 which measures how well the
structural model describes the data generating process. For all simulations, the
regressors Xij are i.i.d. draws from the uniform distribution on [0, 1], and the
regression residuals are normally distributed with variance σ2. Results are based
on 1.000 Monte Carlo draws for each design. Table 1 shows the results of these
simulations. For each design we show the mean squared error, calculated as
an average over Monte Carlo draws of β and Y , for four alternative estimation
procedures, relative to the proposed empirical Bayes procedure

At one extreme of the designs considered are those with a small sample
size, a large number of regressors, a high variance of residuals, and a good
fit of the structural model (small τ2). In these designs we would expect the
structural model to work well and to potentially outperform the empirical Bayes
procedure, since it exploits additional correct information. And indeed we do
find that structural estimation dominates empirical Bayes at the very extreme
of the range of designs considered.

At the other extreme of the designs considered are those with large sample
size, small number of regressors, small variance of residuals, and poor fit of the
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structural model (large τ2). In these designs we would expect the unrestricted
estimator to work well, since it has a small variance and does not shrink to-
ward the incorrect structural model. Nonetheless, we do find that unrestricted
estimation never dominates empirical Bayes for any of the designs considered.
It does seem like unrestricted estimation is uniformly dominated by empirical
Bayes in the sense of average mean squared error given θ.

Over almost the entire range of the simulations considered, empirical Bayes
performs very well and better than either of the alternatives structural / un-
restricted estimation. For designs where τ2 is large, estimation based on the
structural model yields estimates that perform very poorly relative to empirical
Bayes, as to be expected. And for all designs considered, the variance reduction
achieved by empirical Bayes implies that empirical Bayes performs better than
unrestricted estimation, sometimes significantly so.

The last column of table 1 shows, for purposes of comparison, the infeasible
oracle empirical Bayes estimator, where τ2 is assumed to be known rather than
estimated. As this column shows, knowledge of τ2 does not appear to result in
any improvements of performance.

[Table 1 here]

5.2 Monte Carlo results, fixing η, drawing from the dis-
tribution of Y

The last subsection considered simulations where θ was fixed but η was drawn
repeatedly, an approach which corresponds to the empirical Bayes paradigm.
We shall now turn to simulations in the spirit of the frequentist paradigm,
where η is fixed and we repeatedly sample from the distribution of Y .

Specifically, we are considering coefficient matrices of the form

β = β00 ·MJ0 + β01 ·MJ1 + β02 ·MJ2,

where MJ0 is equal to MJ in the first J/4 columns, and zero elsewhere, MJ2 is
equal to MJ in the last J/4 columns, and zero elsewhere, and MJ1 is equal to
MJ in the middle J/2 columns, and zero elsewhere. This design implies that
the structural model is correct if and only if β00 = β01 = β02. Table 2 shows
the results of these simulations. The values for n, J , and σ2 are the same as
considered before, as are the distributions of Xij and of the residuals. For each
combination of these values, we consider different combinations of β00, β01, and
β02.

Structural estimation dominates empirical Bayes when the structural model
is correctly specified, that is when β00 = β01 = β02. Not very surprisingly, the
reduction in MSE by imposing the structural model relative to empirical Bayes
estimation can be made arbitrary large when the model is exactly right, the
number of parameters J is large, and estimates are noisy (small sample size n,
large residual variance σ2). On the other hand, structural estimation performs
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significantly worse when the structural model is violated and the variance of
unrestricted estimation is not too large.

The analogy to the famous result of James-Stein (that empirical Bayes dom-
inates unrestricted estimation in the “many means” setting) naturally leads to
the conjecture that empirical Bayes might dominate unrestricted estimation in
the present setting, as well. The results in table 2 suggest that this is indeed
the case; over the range of parameters considered empirical Bayes seems to
uniformly dominate unrestricted estimation. These numerical results are quite
encouraging. Further theoretical exploration will be necessary to see whether
uniform dominance indeed holds over all parameters.

[Table 2 here]

5.3 Calibrated Monte Carlo simulations

5.4 Split sample results

6 Conclusion
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A Proofs

Proof of proposition 1:

• As discussed in section 2.2, we can rewrite either estimator as solution to
a least-squares problem after projecting out location means (i.e., the fixed
effects α) and regressor means (to take care of the fixed effects γ) for each
location i, that is, we can write

δ̂ = argmin
d

En
[
‖∆Y − (IJ−1 ⊗ (X ′ − En[X ′])) · d↑‖2

]
and

β̂0 = argmin
b0

En
[
‖∆Y − b0 · (IJ−1 ⊗ (X ′ − En[X ′])) ·∆↑‖2

]
,

where En denotes sample averages.

• The usual arguments for consistency of m-estimators (cf. van der Vaart
2000, chapter 3) yield probability limits of

δ = argmin
b

E
[
‖∆Y − (IJ−1 ⊗ (X ′ − E[X ′])) · d↑‖2

]
and

β0 = argmin
b0

E
[
‖Y − b0 · (IJ−1 ⊗ (X ′ − E[X ′])) ·∆↑‖2

]
.

• Both probability limits are orthogonal projections. The estimand β0 re-
sults from an orthogonal projection on a linear subspace of the space
projected onto for the unrestricted estimator δ. The law of iterated pro-
jections thus yields

β0 = argmin
b0

E
[
‖(IJ−1 ⊗ (X ′ − E[X ′]) · (δ↑ − b0 ·∆↑)‖2

]
,

which shows that our claim holds for

‖d‖2δ = d′↑ · E [(IJ−1 ⊗ (X ′ − E[X ′]))′ · (IJ−1 ⊗ (X ′ − E[X ′]))] · d↑.

• Algebraic manipulation of this expression finally yields

‖d‖2δ := d′↑ · (IJ−1 ⊗Var(X)) · d↑.

�

Proof of proposition 2:
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• By definition of δ we have δ̂ →p δ. For the usual reasons, we have V =
Var(β̂) = 1

nV1, and thus V̂ = Op(1/n).

• By the standard arguments for consistency of m-estimators van der Vaart
(2000, chapter 3), we get convergence of the hyperparameters,

(β̂0, τ̂
2)→p argmin

b0,t2
log
(
det(Σ(t2, 0))

)
+ (δ̂↑ − b0 ·∆↑)′ · Σ(t2, 0)−1 · (δ̂↑ − b0 ·∆↑).

The required conditions for applicability of the general consistency result
are uniform consistency of the objective function and well-separatedness
of the maximum. Both are easily verified to hold given convergence of β̂
and V̂ .

• Combining these results (p lim τ̂2 > 0, p lim V̂ = 0, and p lim δ̂ = δ), the
claim follows from

δ̂EB↑ = β̂0 ·∆↑ + P ⊗ IJ ·
(
P ⊗ IJ +

1

τ̂2
V̂

)−1
· (δ̂↑ − β̂0 ·∆↑)

by Slutsky’s theorem.

�

Proof of theorem 1: We can bound

|SE(τ̂2)−MSE(τ2)| ≤ |SE(τ̂2)−MSE(τ̂2)|
+ |MSE(τ̂2)−MSE(τ2)|.

This decomposition implies that convergence in probability follows if we can
show that

1. τ̂2 − τ2 →p 0, which in turn (by a slight modification of theorem 5.7 in in
van der Vaart (2000)) follows from

(a) supτ2 |LLH(τ2)− ELLH(τ2)| →p 0

(b) sup|τ2−τ2|>ε lim supK −ELLH(τ2) < −ELLH(τ2).13

2. |SE(τ∗2)−MSE(τ∗2)| →p 0

3. MSE(.) is continuous at τ∗2.

Let us now proof these claims in turn.

13The minus sign is necessary since we dropped constants earlier.
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1. (a) We need to show that

D1 := sup
τ2

∣∣∣∣∣ 1

K
·
∑
k

(
vk

τ2 + vk
· β̂

2
k − E[β̂2

k]

vk

)∣∣∣∣∣→p 0

as K → ∞. For a given K, assume without loss of generality that
v1 ≥ v2 . . . ≥ vK , so that

D1 ≤ sup
1≥c1≥c2≥...≥cK≥0

∣∣∣∣∣ 1

K
·
∑
k

(
ck ·

β̂2
k − E[β̂2

k]

vk

)∣∣∣∣∣ .
Lemma 2.1 of Li (1986) (or basic linear programming), implies that
the supremum on the right hand side is equal to

max
K̃≤K

∣∣∣∣∣∣ 1

K
·
K̃∑
k=1

(
β̂2
k − E[β̂2

k]

vk

)∣∣∣∣∣∣ .
This maximum is taken over the values of a martingale, so that
Doob’s martingale inequality (equivalently: Kolmogorov’s inequal-
ity) applies, which yields

P (D1 ≥ ε) ≤
1

ε2
· E


 1

K
·
K̃∑
k=1

(
β̂2
k − E[β̂2

k]

vk

)2


=
1

(Kε)2
·
∑
k

E

( β̂2
k − E[β̂2

k]

vk

)2
 .

Our assumed bounds on the moments of β̂k now immediately yield
the claim.

(b) ***

2. That SE(τ2)−MSE(τ2∗)→ 0 in L2 is immediate by our bounds on the

momets of β̂k.

3. Continuity of MSE is immediate from equation (40).

Convergence in probability then implies convergence in L1 by theorem 2.20
in van der Vaart (2000) since SE can be bounded as follows:

SE(τ̂2) =
1

K
·
∑
k

(
τ2

τ2 + vk
β̂k − βk

)2

≤ 1

K
·
∑
k

max

((
β̂k − βk

)2
, β2
k

)
≤ 1

K
·
∑
k

((
β̂k − βk

)2
+ β2

k

)
.
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This last expression has expectation MSE(0) +MSE(∞) and is uniformly in-

tegrable by our assumptions bounding the moments of β̂k. �

Proof of corollary 1: Immediate from theorem 1. �

Proof of corollary 2: For even K, we have

τ2 = 0

MSE(τ2) =
1

2
(β2

1 + β2
2) = 2

MSE(∞) =
1

2
(v1 + v2) = 1.

For odd K the same equations hold up to a remainder of order 1/K. The claim
now follows immediately from theorem 1. �
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B Figures and tables

Figure 1: NUTS regions of the EU
NUTS 1 regions

NUTS 2 regions

Note: Map of the European Union NUTS 1 and NUTS 2 regions, 2007.
Source: Wikipedia, March 28, 2015.
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Figure 2: The mapping from β̂ to τ̂2 and β̂EB

τ̂2 as a function of β̂
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Figure 3: The geometry of empirical Bayes
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Table 1: Mean Squared Error of alternative estimators relative to empirical
Bayes conditional on θ

design parameters MSE relative to empirical Bayes estimation
n J σ2 β0 τ2 structural unrestricted emp. Bayes oracle e.B.
50 4 1.0 1.0 0.2 1.66 1.70 1.00 0.98
50 16 1.0 1.0 0.2 0.83 1.20 1.00 1.00
200 4 1.0 1.0 0.2 4.37 1.19 1.00 0.99
200 16 1.0 1.0 0.2 4.15 1.11 1.00 1.01
50 4 0.5 1.0 0.2 2.39 1.35 1.00 0.98
50 16 0.5 1.0 0.2 1.55 1.15 1.00 1.01
200 4 0.5 1.0 0.2 8.16 1.09 1.00 0.98
200 16 0.5 1.0 0.2 7.76 1.04 1.00 1.00

50 4 1.0 1.0 0.5 2.42 1.39 1.00 0.99
50 16 1.0 1.0 0.5 1.55 1.13 1.00 1.01
200 4 1.0 1.0 0.5 7.92 1.10 1.00 1.00
200 16 1.0 1.0 0.5 7.93 1.04 1.00 1.00
50 4 0.5 1.0 0.5 4.14 1.18 1.00 0.99
50 16 0.5 1.0 0.5 2.91 1.06 1.00 1.01
200 4 0.5 1.0 0.5 15.43 1.05 1.00 1.00
200 16 0.5 1.0 0.5 14.94 1.01 1.00 1.00

50 4 1.0 1.0 1.0 4.03 1.19 1.00 1.00
50 16 1.0 1.0 1.0 2.91 1.07 1.00 1.01
200 4 1.0 1.0 1.0 15.33 1.05 1.00 1.00
200 16 1.0 1.0 1.0 15.49 1.01 1.00 1.00
50 4 0.5 1.0 1.0 7.47 1.08 1.00 1.00
50 16 0.5 1.0 1.0 5.59 1.02 1.00 1.01
200 4 0.5 1.0 1.0 30.54 1.03 1.00 1.00
200 16 0.5 1.0 1.0 30.04 1.00 1.00 1.00

Notes: This table compares the performance of alternative estimators based
on 1.000 Monte Carlo draws given θ. For details, see description in section 5.1.
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Table 2: Mean Squared Error of alternative estimators relative to empirical
Bayes conditional on η

design parameters mean squared error
n J σ2 β00 β01 β02 structural unrestricted emp. Bayes
50 4 1.0 1.0 1.0 1.0 0.24 2.11 1.00
50 16 1.0 1.0 1.0 1.0 0.02 1.32 1.00
200 4 1.0 1.0 1.0 1.0 0.18 1.47 1.00
200 16 1.0 1.0 1.0 1.0 0.04 2.30 1.00
50 4 0.5 1.0 1.0 1.0 0.20 1.71 1.00
50 16 0.5 1.0 1.0 1.0 0.02 1.32 1.00
200 4 0.5 1.0 1.0 1.0 0.16 1.27 1.00
200 16 0.5 1.0 1.0 1.0 0.09 5.09 1.00

50 4 1.0 1.0 1.0 6.0 3.83 1.15 1.00
50 16 1.0 1.0 1.0 6.0 0.61 1.20 1.00
200 4 1.0 1.0 1.0 6.0 15.04 1.03 1.00
200 16 1.0 1.0 1.0 6.0 3.11 1.12 1.00
50 4 0.5 1.0 1.0 6.0 6.89 1.05 1.00
50 16 0.5 1.0 1.0 6.0 1.15 1.13 1.00
200 4 0.5 1.0 1.0 6.0 28.41 1.02 1.00
200 16 0.5 1.0 1.0 6.0 5.84 1.05 1.00

50 4 1.0 0.0 1.0 6.0 4.61 1.04 1.00
50 16 1.0 0.0 1.0 6.0 0.81 1.18 1.00
200 4 1.0 0.0 1.0 6.0 19.37 1.01 1.00
200 16 1.0 0.0 1.0 6.0 4.08 1.08 1.00
50 4 0.5 0.0 1.0 6.0 9.06 0.99 1.00
50 16 0.5 0.0 1.0 6.0 1.51 1.11 1.00
200 4 0.5 0.0 1.0 6.0 37.64 1.01 1.00
200 16 0.5 0.0 1.0 6.0 7.77 1.03 1.00

Notes: This table compares the performance of alternative estimators based
on 1.000 Monte Carlo draws given η. For details, see description in section 5.2.
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