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Abstract

For a given choice function, a first order regularity is an ”if...then” requirement

of the form: if some alternative a1 is chosen from some choice set S1, then some al-

ternative a2 should be chosen from some choice set S2. This definition is extended

to kth-order regularity by having k many choice requirements in the precedent

part of the statement. A choice theory is kth-order regular if one can find a col-

lection of kth-order regularities that identifies this theory. We use the order of

regularity to discipline the complexity of a choice axiom. In our analysis, first

we establish a formal account of the contrast between extending rational choice

theory and having simple axiomatic characterizations. As our main result, we

consider a family of boundedly rational choice theories, and characterize all the

second order regularities that might be satisfied by any of these theories. We ob-

serve that second order regularities are sufficient to observationally disentangle

each theory from other theories in this family. J.E.L. codes: DO
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1 Introduction

In most economic models it is assumed that decision makers are rational, in that they

choose as if maximizing a preference relation. Samuelson’s classical result (Samuel-

son (1938)) characterizes rational choice theory in terms of a simple axiom, called

weak axiom of revealed preference (WARP). The simplicity of WARP provides nor-

mative appeal and ease of identification from the observables. On the other hand,

recent and growing body of literature on boundedly rational choice theory seeks to

accommodate choice behavior that a rational decision maker does not exhibit. In this

literature, choice theories that are consistent with such choice behavior are proposed.

Analysis of these choice theories provide axiomatic characterizations used to identify

the proposed choice theory from the observables. However, the used axioms turn out

to be not as simple as WARP.

In this paper, we propose a novel approach to identify choice theories from observed

choice behavior. We call this approach relative identification. To motive relative iden-

tification, consider an outside observer who has in mind a set of choice theories that

may be consistent with the observed choices of a decision maker. Put differently, the

observer starts with a set of choice theories that may or may not span the set of all

possible choice functions. Now, the problem is to identify which theories are con-

sistent with the observed choices. For each theory, one can answer this question by

verifying the axioms that characterizes the theory. Our view is that, in such a problem

instead of going through the characterization axioms for each theory, one can find

the answer by verifying some simple behavioral differences that distinguishes each

theory. If for each pair of theories in consideration, there is a simple condition that

is satisfied by one of the theories but not by the other, then for this set of theories we

achieve full relative identification.

To achieve relative identification for a given set of choice theories, we seek to find out

some simple behavioral differences that distinguishes each model. This task requires

a measure for the simplicity of a choice axiom. We propose the notion of regularities
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to measure the simplicity of a choice axiom. First, we establish a formal account

of the contrast between extending rational choice theory to accommodate choice

anomalies and having simple axiomatic characterizations. Next, we consider a family

of boundedly rational choice theories to conduct a relative identification exercise. We

investigate if we can observationally disentangle each theory from other theories in

this family via simple axioms.

We formulate the notion of regularity in the revealed preference framework in which

there is a finite alternative set, any non-empty subset of which is a choice set. A choice

function singles out an alternative from each choice set. We refer to any collection of

choice functions as a choice theory. Given a choice function c, a first order regularity

is a statement of the form:

if a = c(S1), then b = c(S2)

for some pair of alternatives a, b and choice sets S1, S2.1 A choice theory is first

order regular (1-regular) if one can find a collection of first order regularities that

identifies the theory. Put differently, a choice function satisfies all of these regularities

if and only if this choice function belongs to the theory. For example, consider the

weak axiom of revealed preference (WARP):

WARP: For each choice sets S1, S2, such that S2 ⊂ S1 and alternative a ∈ S2,

if a = c(S1), then a = c(S2).

WARP condition is a collection of first order regularities. Since a choice function c is

rational if and only if c satisfies WARP, rational choice theory is first order regular.

Next, we ask if one can formulate another theory that is first order regular and that

nests rational choice. We observe that if a theory that nests rational choice satisfies a

1-regularity, then this 1-regularity must be in the form of WARP. Roughly speaking,

it follows that any choice theory that nests rational choice and accommodates choice

anomalies is not first order regular. This observation formally clarifies the contrast
1Inspiration comes from Glazer and Rubinstein (2014).
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between extending rational choice theory to accommodate systematic choice anoma-

lies and the simplicity of the choice axioms used in characterizations.

Given the pessimistic result regarding first order regularity, we focus on second order

regularities. Similarly, given a choice function c, a second order regularity is a

statement of the form:

if a = c(S1) and b = c(S2), then c = c(S3)

for some alternatives a, b, c and choice sets S1, S2, S3. A choice theory is second or-

der regular (2-regular) if one can find a collection of second order regularities that

identifies the theory. We observe that there exist second order regular choice the-

ories2 that nests rational choice. However, there are several interesting boundedly

rational choice theories that are not 2-regular. For the main result of this paper, we

focus on a particular set of boundedly rational choice theories, namely Rationaliza-

tion via Game Trees (Xu and Zhou (2007)), Sequentially Rational Choice (Manzini

and Mariotti (2007), Apesteguia and Ballester (2013)), Revealed Attention (Masatli-

oglu et al. (2012)), and List Rational Choice (Yildiz (2012)). We characterize the set

of second order regularities that at least one of these theories satisfy. As a corollary

to this result, we show that second order regularities provide sufficient statistics for

relative identification of the theories in our set. More precisely, suppose in addition

to observing the choice function of a decision maker, we know that this choice be-

havior would fit into at least one of the theories in our set. Now, instead of going

through the characterization axioms for each theory, one can find the answer via pos-

sible separations emanating from second order regularities. For example, we show

that list rational choice satisfies our weak path independence condition but revealed

attention does not. Indeed, we observe that for each pair of theories in our set, there

is at least one second order regularity that is satisfied by one of the theories but not

by the other, hence for this set we achieve full relative identification via second order

regularities.
2 Rational Shortlist Method (Manzini and Mariotti (2007)), Categorize then Choose (Manzini and

Mariotti (2012)), and Rationalization (Cherepanov et al. (2013)).

4



In the rest of the paper, we formulate and analyze the regularity notion in its full gen-

erality. We observe that any arbitrary choice theory can be identified once we allow

the highest order of regularity, which is 2n − n − 2 where n is the number of alter-

natives. This observation indicates that if we can verify enough complex statements

pertaining to observed choice behavior, then we can identify any choice theory. The

number 2n − n− 2 can be taken as an index for the complexity of any choice theory

for which there is no characterization. Now, one can argue that the characterization

of rational choice is particularly appealing since it shows the theory is 1-regular as

opposed to being (2n − n − 2)-regular. Similarly, one can measure the ”normative

appeal” or ”ease of identification” obtained out of axiomatic characterizations via the

gains in order of regularities. For such an exercise, we consider two choice theo-

ries: Revealed Attention (Masatlioglu et al. (2012)) and List Rational Choice Theory

(Yildiz (2012)). We show that axioms used in their characterizations consist of 2n−1

order of regularities where n is the number of alternatives.

2 Model

Let A be a fixed non-empty alternative set with n alternatives. Let Ω denote the

collection of all subsets of A with at least 2 elements. A choice function is a non-

empty valued mapping c : Ω→ A such that for each S ∈ Ω, c(S) ∈ S. A choice theory

τ is a collection of choice functions. By this definition two choice procedures with

possibly different formulations are considered as equivalent as far as these models

are observationally indistinguishable in the revealed preference framework.

For a choice function c, a first order regularity ( 1-reg) is a statement of the form:

if a = c(S1), then b = c(S2)

for some a, b ∈ A and S1, S2 ∈ Ω.

Definition 1 A choice theory τ is first order regular (1-regular) if one can find a
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collection of first order regularities that identifies τ , i.e. a choice function c satisfies

all of these regularities if and only if c ∈ τ .

WARP: For each S1, S2 ∈ Ω, such that S2 ⊂ S1 and a ∈ S2,

if a = c(S1), then a = c(S2).

Since, a choice function c is rational if and only if c satisfies WARP, rational choice

theory is 1-regular. At a general level, this result characterizes a choice procedure

in terms of a simple axiom. The simplicity of such an axiom provides normative

appeal for the choice theory, and facilitates the identification of the choice theory

from the observables. Given the notion of first order regularity, a natural question is:

Can we formulate another theory that is 1-regular and nests (generalizes) rational

choice. Next, we show that this is not possible. This observation formally clarifies the

contrast between accommodating choice anomalies and the simplicity of the choice

axioms used to characterize a choice theory.

Observation 1 Let τ be any choice theory that nests rational choice. If τ satisfies a

1-regularity q then q must be in the form of WARP.

Proof. Let τ be any theory such that rational choice theory τRC ⊂ τ . Consider any

1-reg q that τ satisfies:

if a = c(S1), then b = c(S2)

for some a, b ∈ A and S1, S2 ∈ Ω .

Step 1: We show that one must have S2 ⊂ S1. Suppose not, i.e. S2 \ S1 6= ∅.

Case 1: Suppose a = b. Let d ∈ S2 \ S1. Next, we show that there is a choice

function c ∈ τ that fails to satisfy q. Consider a choice function c rationalized by

a preference relation such that: d is first-ranked and a is second-ranked. Note that

c(S1) = a, but c(S2) = d.
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Case 2: Suppose a 6= b, then consider a choice function c rationalized by a prefer-

ence relation such that a is first ranked and b is bottom ranked. Note that c(S1) = a,

but c(S2) 6= b since there is at least one other alternative in S2 that is preferred to a.

It follows that we must have S2 ⊂ S1 at q.

Step 2: Now, we must have a = b, otherwise any rational choice function that

chooses a from S1 would not satisfy q. Hence the conclusion follows.

For a choice function c, a second order regularity (2-reg) is a statement of the form:

if a = c(S1) and b = c(S2), then c = c(S3)

for some a, b, c ∈ A and S1, S2, S3 ∈ Ω.

Definition 2 A theory τ is second order regular (2-regular) if one can find a collec-

tion of second order regularities that identifies τ , i.e. a choice function c satisfies all

of these regularities if and only if c ∈ τ .

Given our pessimistic observation regarding first order regularities, next we consider

second order regularities. We ask if there is any known choice theory that is second

order regular and nests rational choice. Answer is in the affirmative; for example

consider the weak WARP condition formulated by Manzini and Mariotti (2007).

wWARP: For each S1, S2 ∈ Ω such that S2 ⊂ S1, and a, b ∈ S2,

if a = c(S1) and b = c(S2), then b = c(a, b).

Note that wWARP is a collection of second order regularities. Since Rationalization

(Cherepanov et al. (2013)) and Categorize then Choose Procedures (Manzini and

Mariotti (2012)) are characterized by wWARP condition, these are 2-regular choice

theories that nest rational choice theory.3

3Similarly, one can also easily observe that Rational Shortlist Method (Manzini and Mariotti

(2007)) is also 2-regular, since wWARP and expansion axioms constitute a collection of second or-

der regularities.
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3 Relative Identification via 2-regularities

Our previous results indicates the contrast between formulating a theory that ac-

commodates choice anomalies and having axiomatizations in terms of first order

regularities. In this section, we consider a particular set of boundedly rational choice

theories. Next, we provide a brief description for each theory that we will consider.

Rationalizability by Game Trees (Xu and Zhou (2007)) The primitive of this choice

procedure is an extensive form gameG. Each player has a preference relation�i over

the outcomes of the game.4 Each alternative appears as an end node of the associated

game tree only once. For each choice set S, consider the reduced game G|S derived

from G by retaining the paths that only lead to the terminal nodes having outcomes

in S. The decision maker chooses from each choice set S, the subgame perfect Nash

equilibrium outcome of the game G|S.

Choice with Limited Attention (Masatlioglu et al. (2012)) This choice procedure

has two primitives an attention filter Γ and a welfare preference �. From each choice

set S, a decision maker first commits to the alternatives in Γ(S) and then chooses

the �-best alternative among these, where Γ is such that for each choice set S and

z 6∈ Γ(S), Γ(S \ z) = Γ(S).5

Sequential rationalizability by binary rationales (Manzini and Mariotti (2007),

Apesteguia and Ballester (2013)): The primitive of this procedure is a set of binary

rationales such that each rationale compares only a pair of alternatives. decision

maker remove inferior alternatives by sequentially applying this set of binary ratio-

nales according to a fixed order.

List Rationalizable Choice (Yildiz (2012)): LRC procedure has two primitives; an

4From a decision theoretic perspective each player can be interpreted as a different self of the same

decision maker, concentrating on the different aspects of the alternatives
5 Salant and Rubinstein (2008) present a choice procedure that has similar features in Section 5.
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ordering of the alternatives, namely a list, and a binary relation6 used to compare

pairs of alternatives. A list rational decision maker chooses from a choice set as

follows. First, he orders the alternatives according to the list. Then, by using the

binary relation, he compares the first and second alternatives in the list and records

the winner to be compared to the next alternative. This process of carrying the

current winner to the next round continues until the last alternative in the list is

compared to the winner from the previous round. Winner of the last round is the

alternative chosen from the entire set. A list rational decision maker uses the same

non-observable list and the same binary relation to make a choice from each choice

set.

3.1 Result

As our main result we aim to identify all second order regularities that can be satisfied

by these theories. Put differently, we provide the set of second order regularities

such that each one is satisfied by at least one of these theories. Let us consider the

following second order regularities which are not only simple to verify, but also might

be normatively appealing. As for ease of identification, note that only WPI and NPC

conditions are pertaining to choice sets with possibly more than two alternatives.

Weak Path Independence (WPI): For each S ∈ Ω, and a, b ∈ S,

if a = c(S) and b = c(S \ {a}), then a = c(a, b).

Never Pairwise Chosen (NPC): For each a, b, c ∈ A, and S ∈ Ω such that a, b ∈ S,

if a = c(a, b, c) and b = c(S), then a = c(a, c).

Rival Monotonicity (RM): For each distinct a, b ∈ A and S, T ∈ Ω such that S ⊂ T

and b ∈ S,

if a = c(S) and b = c(T ), then a = c(S \ {b}).
6We assume it is complete and asymmetric.
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Binary Expansion (BE): For each a, b, c ∈ A,

If a = c(a, b) and a = c(a, c), then a = c(a, b, c).

Path Existence (PE): For each a, b, c ∈ A,

If a = c(a, b, c) and b = c(a, b), then c = c(b, c).

Proposition 1 Consider the following boundedly rational choice theories: Rationaliza-

tion via Game Trees, Sequentially Rational Choice , Revealed Attention, and List Rational

Choice. If any of these theories satisfies a second order regularity, then it must be in the

form of WPI, NPC, RM, BE or PE. In the following table, we show the second order

regularities that each theory satisfies.

WPI NPC BE RM

GT + + + −

SRC − + + −

RA − − − −

LRC + + + +

Discussion: The following are possible insights from this exercise:

1. We obtain a better comparison among these models by observing simple behav-

ioral differences that distinguishes each model. These differences might be difficult

to infer from the characterization results.

2. One can not find an axiomatization of any of these choice theories such that

the used axioms are second order regularities. Put differently, any other behavioral

difference among these models can only be represented in terms of a third or higher

order of regularity.

3. Given that the observed choice behavior is consistent with one of these theo-

ries, second order regularities provide sufficient statistics for relative identification.
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More precisely, suppose in addition to observing the choice data of a decision maker,

we know that his choice behavior would fit into at least one of the theories in our

set. Now, the problem is to find out which ones are those. Instead of going through

the characterization axioms for each theory, one can find the answer via possible sep-

arations emanating from second order regularities. For example, list rational choice

satisfies weak path independence but revealed attention does not. Indeed, as shown

in the table, for each pair of theories in our collection, there is at least one second

order regularity that is satisfied by one of the theories but not by the other, hence for

this set we achieve full relative identification via second order regularities.

4 kth-order regularities

In this section, we formulate and analyze the regularity notion in its full generality:

For any choice function c, a kth-order regularity (k-reg) is a statement of the form:

If a1 = c(S1) and a2 = c(S2) · · · and ak = c(Sk), then ak+1 = c(Sk+1)

for some a1, . . . , ak+1 ∈ A and S1, . . . Sk+1 ∈ Ω.

Definition 3 A theory τ is k-regular if one can find a collection of k-regs that identifies

τ , i.e. a choice function c satisfies all of these regularities if and only if c ∈ τ .

Our next result shows that any arbitrary choice theory can be identified once we

allow any arbitrary degree of regularity. This observation indicates that the notion of

regularity might be rich enough to serve as a complexity measure for the classification

of choice theories.

Observation 2 Let A be an alternative set with n elements. Any choice theory is (2n −

n− 2)-regular.

Proof. Let τ be any choice theory. First, fix any distinct a, b ∈ A, and let Ω \ {a, b} =

{S1, . . . , Sm}, where m = 2n − n − 2. Next, consider any choice function c′ 6∈ τ .
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Assume w.l.o.g. that a = c′({a, b}). Now, formulate a 2n − n − 2-regularity qc′ such

that:

c′(S1) = c(S1) ∧ c′(S2) = c(S2) · · · ∧ c′(Sm) = c(Sm)⇒ b = c({a, b})

Finally, consider the collection of these regs {qc′}c′ 6∈τ . We argue that {qc′}c′ 6∈τ identifies

τ . To see this, first note that for each c′ 6∈ τ , by construction, c′ does not satisfy qc′.

Next, we argue that for each c ∈ τ and c′ 6∈ τ , c satisfies qc′. Suppose not, then it

follows that there exists c′ 6∈ τ such that c satisfies the precedent part of the statement

qc′, but not the consequent part. By the construction of qc′, this means that for each

S ∈ Ω, c(S) = c′(S). Hence we obtain a contradiction.

It follows from this result that if we can verify enough complex statements regarding

choice data, then any choice theory can be identified. The number 2n − n − 2 can

be taken as an index for the complexity of any choice theory for which there is no

characterization. Now, one can argue that the characterization of rational choice

is particularly appealing since it shows the theory is 1-regular as opposed to being

(2n − n − 2)-regular. Similarly, we can measure the ”normative appeal” or ”ease

of identification” obtained out of axiomatic characterizations in terms of the gain

in regularities. For such an exercise, we consider two choice theories: Revealed

Attention (Masatlioglu et al. (2012)) and List Rational Choice Theory (Yildiz (2012)).

We show that characterization of these models provides identification via 2n − 1

regularities.

Observation 3 Let A be an alternative set with n elements. The list rational choice

theory, and the theory of revealed attention are (2n− 1)-regular.

Proof. It follows from the characterization result in Masatlioglu et al. (2012) that

a choice function c belongs to the theory of revealed attention if and only if the

following binary relation P is acyclic.

x P y if there exists T ∈ Ω such that c(T ) = x and x 6= c(T \ y).
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Note that acyclicity condition in particular requires for each x, y ∈ A, if x P y, then

y 6P x. Let S1, S2 ∈ Ω be given, then this requirement can be obtained via a collection

of 3-regs {qz}z∈S1\x such that for each z ∈ S1 \ x, qz is written as:

x = c(S1) ∧ z = c(S1 \ y) ∧ y = c(S2)⇒ y = c(S2 \ x).

First note that each cycle can be decomposed into non-intersecting cycles. Further,

the length of a such a cycle is bounded by the number of alternatives, n. To describe

each x P y we add two regs. It follows that to rule out the the longest cycle we can

form a collection (2n− 1)− regs.

Similarly, it follows from Yildiz (2012) that a choice function c is list rational if

and only if together with the above relation, another similarly defined binary relation

is acyclic. Derivation of the result for list rational choice theory is similar.

5 Proof of Proposition 1

It follows from Yildiz (2012) that list rational choice theory is nested by all the other

three theories we consider. Hence, it would suffice to find out the 2-regularities

satisfied by list rational choice theory. Consider any 2-reg, q, satisfied by τLRC: if a =

c(S1) and b = c(S2), then c = c(S3) for some a, b, c ∈ A, and distinct S1, S2, S3 ∈ Ω.

Lemma 1 If a = b then q is in the form of BE, i.e. we have S1 = {a, b}, S2 = {a, c}, S3 =

{a, b, c} for some c ∈ A \ {a, b}.

Proof. First we show it is impossible to have a = b 6= c. Suppose not, then consider

the following list rational, c: c < .... < a. Since for each x ∈ S1 ∪ S2 ∪ S3, we have

x < a, we obtain a = c(S1) = c(S2). But since S3 contains an alternative other than

c, that one eliminates c, so we have c 6= c(S3).

Next, we show that it is possible to have a = b = c, only if q is in the form of BE. We

first show that S3 ⊂ S1 ∪S2. Suppose there is x ∈ S3 \ (S1 ∪S2), then consider the list
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rational c : ...a < x. For any choice of S1, S2, S3 ∈ Ω, we have a = c(S1) = c(S2), but

c 6= c(S3).

Second, we show that S3 \ S1 6= ∅ and S3 \ S2 6= ∅. Suppose S3 ⊂ S1 ∩ S2. Let

x ∈ S1 \ S3, y ∈ S2 \ S3, and z ∈ S3 \ {a}. Since S1 6= S2, we can assume that x 6= y.

Now, consider the list rational c : ...z < y < x < a, and also z > a, a > y, x > z.

Note that in S1 or S2, z can eliminate a. However, x eliminates z in S1, y eliminates

z in S2. Hence, we have a = c(S1) = c(S2). But, since x, y 6∈ S3, z is compared to a in

the final round and eliminates a. So, we have a 6= c(S3).

Now, we know that there is c ∈ S3 \ S1 and b ∈ S3 \ S2, such that b 6= c, b ∈ S1,

c ∈ S2. Finally we show that S1 ∪ S2 ⊂ {a, b, c}. Suppose there is z ∈ S1 \ {a, b, c}.

Next, consider the list rational c : ... z < c < b < a, and also z > b, a > z, a > c.

Since c 6∈ S1 and z > b, z is compared to a in the final round and we have a = c(S1).

Since b 6∈ S2 and c eliminates z, c is compared to a in the final round and we have

a = c(S2). But, since b, c ∈ S3, c eliminates z, b eliminates c and then eliminates a in

the final round. Hence, we have b = c(S3).

Since S3 ⊂ S1 ∪ S2 ⊂ {a, b, c} and a, b, c ∈ S3, we have S3 = {a, b, c}, S1 = {a, b} and

S2 = {a, c}. It follows that q is in the form of BE.

For the next three lemmas consider any 2-reg q′ satisfied by τLRC which requires:

if a = c(S1) and b = c(S2), then a = c(S3) for some distinct a, b ∈ A and distinct

S1, S2, S3 ∈ Ω.

Lemma 2 We have b ∈ S1.

Proof. Suppose b /∈ S1. As in the previous case first suppose there is x ∈ S3 \ S1,

and let us pretend as if x 6= and consider the c : ...b > a < x and b > x. Note that

irrespective of x = b or not, we have a = c(S1) and b = c(S2), but since x eliminates a

in S3, a 6= c(S3). So, there is y ∈ S1 \ S3. Now, let z ∈ S3 \ {a}. If z = b, then consider

c : ...y < a < b, and also b > y. If z 6= b, then consider c : ...z < y < a < b, and also

z > a, b > {y, z}. In both cases we have a = c(S1) and b = c(S2), but since b and z
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respectively eliminates a in S3, a 6= c(S3).

Lemma 3 We have S3 ⊂ S1.

Proof. Suppose not, i.e. there exists y ∈ S3 \ S1. Since b ∈ S1, y 6= b. First

suppose S1 \ S2 6= ∅, and let x ∈ S1 \ S2. If x 6= a, then consider the list rational c:

... b < x < a < y, and b > {a, y}. Since x ∈ S1, x eliminates b, and compared to a

in the final round, so we have a = c(S1). Since x 6∈ S2, and b eliminates a and y, we

have b = c(S2). But since y eliminates a, we have a 6= c(S3).

If x = a, then consider the list rational c: ... b < a < y, and b > y. Since y /∈ S1,

we have a = c(S1). Since a 6∈ S2, and b eliminates y, we have b = c(S2). But since y

eliminates a, we have a 6= c(S3).

Next, suppose S2 \ S1 6= ∅, and let z ∈ S2 \ S1. Now, consider the list rational c:

... a < z < b > y, and also a > b, y > a. Since z, y 6∈ S1, we have a = c(S1). Since z

eliminates a in S2, and b eliminates z and y, we have b = c(S2). But since y eliminates

a, we have a 6= c(S3).

Lemma 4 If q′ is not in the form of NPC or RM, then we have S2 ⊂ S1.

Proof. Suppose q′ is not in the form of NPC or RM but there exists x ∈ S2 \ S1. By

Lemma 2, we have b ∈ S1, so x 6= b. Since, by Lemma 3, S3 ⊂ S1 and S1 6= S3, there

is y ∈ S1 \ S3. Since x /∈ S1, we have x 6= y.

A. Suppose there is c ∈ S3 with c 6∈ {a, b}. Since S3 ⊂ S1 and x /∈ S1, we have c 6= x.

Since y /∈ S3, c 6= y either. Now, we are left with two possibilities. If y 6= b, then

a, b, x, y, c are all distinct. If we must have y = b, then it follows that S1 = S3 ∪ {b}.

A1. Suppose y 6= b, so a, b, x, y, c are all distinct. Now, consider the list rational c:

...c < y < a < x < b, also c > a, a > b, and {x, b} > {c, y}. Since y ∈ S1, y eliminates

c. For c(S1), since x 6∈ S1, a eliminates b, and we have a = c(S1). For c(S2), note that

x is compared to b in the final round, so we have b = c(S2). For c(S3), since y 6∈ S3, c
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always eliminates a.

A2. Now, suppose S1 = S3 ∪ {b}. First, suppose that S3 = {a, c}. Then S1 = {a, b, c}.

Since q′ is not in the form of NPC, we have a /∈ S2. Now, consider the list rational c:

...c < b < a, and also c > a. We have a = c(S1) and b = c(S2), but since c eliminates

a, a 6= c(S3).

Second, suppose that there is z ∈ S3 \ {a, c}. Since S3 ⊂ S1 and x /∈ S1, z 6= x.

Since b /∈ S3, z 6= b. So, we know that a, b, c, x, z are all distinct. Moreover, we

have S3 = S1 \ {b}. Since q′ is not in the form of RM, there must be w ∈ S1 \ S2.

Now, there are two possibilities w = a or w 6= a. First suppose w = a and consider

cl : ...c < x < b < a, also c > {a, w}, and {x, b} > c. For c(S1), b eliminates c, a

eliminates b, and we get a = c(S1). For c(S2), x eliminates c, b eliminates x. Since

a /∈ S2, we have b = c(S2). For c(S3), since x, b 6∈ S3 and c eliminates a, a 6= c(S3).

Next, suppose w 6= a. Now we might have w ∈ S3, but either w 6= c or w 6= z. Assume

w.l.o.g. that w 6= c and consider cl: ...c < x < b < w < a, also c > {a, w} b > a, and

{x, b} > c. For c(S1), b eliminates c, w eliminates b, and we get a = c(S1). For c(S2), x

eliminates c, b eliminates x and a. Since w /∈ S2, we have b = c(S2). For c(S3), since

x, b 6∈ S3 and c eliminates w and a, a 6= c(S3).

B. Suppose S3 = {a, b}. Since we assume that S3 = {a, b} and x /∈ S1, we have

y 6∈ {a, b, x}. So, we know that a, b, x, y are all distinct. Now, consider the list rational

c: ...y < x < b > a, and also y > b, a > y. For c(S1), y eliminates b and compared

to a in the final round. Since a eliminates y, we have a = c(S1). For c(S2), since

x eliminates y and b eliminates x and a, we have b = c(S2). But for c(S3), since b

eliminates a, a 6= c(S3).

Now, let us consider any 2-reg satisfied by τLRC . We focus on two cases separately

First we consider the case where at least one of S1, S2, S3 contains more than three

alternatives.

Lemma 5 For each 2-reg, q, satisfied by τLRC , if at least one of S1, S2, S3 contains more
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than three alternatives, then q is in the form of WPI, NPC or RM.

Proof. Consider any 2-reg, q, that requires: if a = c(S1) and b = c(S2), then c =

c(S3) for some a, b, c ∈ A and distinct S1, S2, S3 ∈ Ω where at least one of them

contains more three alternatives. Since at least one of the sets contains more three

alternatives, q is not BE. It follows from Lemma 1 that a 6= b. In the rest of the proof

we show that if q is not in the form of NPC or RM, then q must be in the form of WPI.

Step 1: We show that c ∈ {a, b}. Suppose this is not true. Since S1 6= S2, assume

w.l.o.g. that S1 \ S2 6= ∅. Now, there are two possibilities:

A. Suppose there is x ∈ S1 \ S2 such that x 6= c. Now, there are two possibilities:

x = a or x 6= a. If x = a, then consider cl : ...c < b < a. If x 6= a, then consider

cl : ...c < b < x < a, and also a > x, b > a. Note that in both cases we have a = c(S1)

and b = c(S2) = b, but c 6= c(S3).

B. Suppose S1 \ S2 = {c}. Since for some i ∈ {1, 2, 3}, Si has more than three

alternatives, there exists d ∈ Si such that d 6∈ {a, b, c}.

B1. Suppose d ∈ S3. Then, consider cl : ...c > b > d < a, also a > c, and b > a.

Regardless of which other choice set might also contain d, and whether b ∈ S1 or

not: For c(S1), first c eliminates b, then a eliminates c and d, so we have a = c(S1).

For c(S2), since c 6∈ S2, b eliminates d and a, so we have b = c(S2). For c(S3), since d

eliminates c, c 6= c(S3).

B2. Suppose there is no such d ∈ S3, but d ∈ S2. It follows that S3 ⊂ {a, b, c}

i. If d 6∈ S1, then consider cl : ...a < d < b, and a > b. For c(S1), since d 6∈ S1 and

a eliminates b, we have a = c(S1). For c(S2), first d eliminates a, then b eliminates d

and we have b = c(S2). For c(S3), since S3 ⊂ {a, b, c} and both a and b eliminate c,

c 6= c(S3).

ii. If d ∈ S1, then consider cl: ...d < c < a > b also d > a, b > c and b > d For

c(S1), since c ∈ S1, first c eliminates d, then a eliminates c and possibly b, so we have
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a = c(S1). For c(S2), since c 6∈ S2 and d ∈ S2, first d eliminates a, then b eliminates

d, so we have b = c(S2). For c(S3), since S3 ⊂ {a, b, c} and both a and b eliminate c,

c 6= c(S3).

B3. Suppose there is no such d ∈ S3 ∪ S2, but d ∈ S1. It It follows that S2 ∪ S3 ⊂

{a, b, c} Now consider cl : ...b < d < a, and b > a. For c(S1), since d ∈ S1, first d

eliminates b, then a eliminates d, and we get c(S1) = a. For c(S2), since d /∈ S2, b

eliminates a, and we get c(S2) = b. For c(S3), since S3 ⊂ {a, b, c} and both a and b

eliminate c, c 6= c(S3).

Finally, we can conclude that c ∈ {a, b}. For the rest assume w.l.o.g. that c = a, where

a = c(S1).

Step 2: Since q is not in the form of NPC or RM, it follows from Lemma 3 and Lemma

4 that S2 ∪ S3 ⊂ S1.

Step 3: We show that S3 = {a, b}. Suppose not, i.e. there is c ∈ S3 \ {a, b}. By the

previous step, we know that S2 ⊂ S1 and S3 ⊂ S1.

A. Suppose there is x ∈ S1 \ (S2 ∪ S3), so x 6= c. Since b = c(S2) and a = c(S3),

x 6∈ {a, b} either. It follows that a, b, c, x are all distinct. Now, consider cl : ...b < x >

c > a, also b > {c, a} and a > x. For c(S1), since x ∈ S1, first x eliminates b and c,

then a eliminates x, and we get a = c(S1). For c(S2), since x 6∈ S2, b eliminates a and

c, and we get b = c(S2). But, for c(S3) since x 6∈ S2 and both b and c eliminate a, we

get a 6= c(S3).

B. Suppose S1 = S2 ∪ S3. Let x ∈ S1 \ S2 and y ∈ S1 \ S3. We know that x 6= y,

x ∈ S3 and y ∈ S2. It follows that x 6= b and y /∈ {a, c}. Moreover since S1 must have

at least four elements we can not both have x = a and y = b.

i. Suppose that x = a but y 6= b, and consider cl : ...c < y > b < a and c > a. For

c(S1), first y eliminates c and b, then a eliminates y and we get a = c(S1). For c(S2),

since y ∈ S2 and a 6∈ S2, first y eliminates the rest, then b eliminates y and we get
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b = c(S2). But, for c(S3) since c eliminates b and a, we get a 6= c(S3).

ii. Suppose that x 6= a but y = b, and consider cl : ...c < b < x < a, also c > {a, x},

and b > a For c(S1), we clearly have a = c(S1). For c(S2), since x 6∈ S2 and b

eliminates c and a, and we have b = c(S2). But, For c(S3) since b 6∈ S3 and c eliminates

both x and a, we have a 6= c(S3).

iii. Finally suppose both x 6= a and y 6= b, and consider cl : ...c < y > b < x < a, also

c > a, c > x, b > a, and c > b. For c(S1), note that x is the alternative compared to a

in the last round. Since a eliminates x, we have a = c(S1). For c(S2), first y eliminates

c and b eliminates y, then since x 6∈ S2, b eliminates a and we get b = c(S2). But, for

c(S3) since y 6∈ S3 and c eliminates a, b and x, we have a 6= c(S3).

Step 4: We show that S2 = S1 \ {a}. We already know that S2 ⊂ S1. Suppose there

is x ∈ S1 \ S2 such that x 6= a. Consider cl : ...b < x < a and b > a. We clearly have

a = c(S1), b = c(S2). For c(S3), since by Step 3 S3 = {a, b}, b eliminates a and we get

a 6= c(S3). It follows that S1 = S2 ∪ {a}. Since S1 6= S2, we have S2 = S1 \ {a}.

Lemma 6 For each 2-reg, q, satisfied by τLRC , if S1, S2 and S3 contains at most three

alternatives, then q must be in the form of WPI , NPC, PE or BE.

Proof. First suppose that a = b. It follows from Lemma 1 that q is in the form of

BE. Next, let us consider any 2-reg, q where a 6= b. Now, suppose c ∈ {a, b}. Assume

w.l.o.g. that c = a. By Lemma 2, we have S2 ∪ S3 ⊂ S1. Since S1 contains at most

three alternatives, we have S1 = {a, b, c} for some c ∈ A \ {a, b}. Moreover, since

S1, S2, S3 are distinct, there are two possibilities, either S2 = {a, b} and S3 = {a, c} or

S2 = {b, c} and S3 = {a, b}. For the first possibility, we obtain a 2-reg in the form of

NPC, for the second we obtain a 2-reg in the form of PE.

Next, suppose c 6∈ {a, b}. We show that q must be in the form of PE. We first show

that a ∈ S2. Suppose not, then consider the list rational c: c < ... < b < a, a > c.

Clearly we have a = c(S1). Since, a 6∈ S2, we have b = c(S2). But since each

alternative can eliminate c, c 6= c(S3). Next, we show that b ∈ S1. Suppose not,
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then consider the choice function above with b > a. Similarly, we obtain the desired

contradiction.

Next, we show that either S1 ⊂ S2 or S2 ⊂ S1. Suppose not, and let x ∈ S1 \ S3 and

y ∈ S2 \ S1. Since each set has at most three alternatives, we have S1 = {a, b, x} and

S2 = {a, b, y}. If c 6= x, then consider the list rational c : c < ... < b < x < a, b > a.

If c = x, then consider the list rational c : c < ... < a < y < b, a > b. By similar

reasoning, we have a = c(S1) and b = c(S2), but c 6= c(S3).

Assume w.l.o.g. that S2 ⊂ S1. It follows that there is x ∈ S1 \ {a, b}. Next, we show

that x = c. Suppose not, then consider the list rational c : c < ... < b < x < a, b > a.

Once more we get a contradiction. Hence, we obtain S1 = {a, b, c} and S2 = {a, b}

Finally, we show that S3 ⊂ S1. Suppose not and let x ∈ S3 \S1. Then consider the list

rational c : ...x < b < c < a, b > a, x > c. Once more we get a contradiction. Hence,

we obtain S3 ⊂ {a, b, c}. Now, we can have S3 = {a, c} or S3 = {b, c}. If the former

holds then q contradicts NPC. It follows that S3 = {b, c} and q is in the form of PE.

Proof of Theorem 1. Consider any 2-reg, q, satisfied by τLRC that requires: If

a = c(S1) and b = c(S2), then c = c(S3) for some a, b, c ∈ A, and distinct S1, S2, S3 ∈

Ω. First suppose that at least one of S1, S2, S3 contains more than three alternatives,

then, it follows from Lemma 4 that q is in the form of WPI, NPC or RM. Next suppose

each of S1, S2 and S3 contains at most three alternatives, then it follows from Lemma

6 that q is in the form of WPI, NPC, PE or BE.
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