
Consistent Indices ∗

Ran Shorrer

Harvard University

Job Market Paper

This version: November 11, 2014

Abstract

In many decision problems, agents base their actions on a simple objective index, a single

number that summarizes the available information about objects of choice independently of

their particular preferences. This paper proposes an axiomatic approach for deriving an index

which is objective and, nevertheless, can serve as a guide for decision making for decision makers

with different preferences. Unique indices are derived for five decision making settings: the

Aumann and Serrano [2008] index of riskiness (additive gambles), a novel generalized Sharpe

ratio (for a standard portfolio allocation problem), Schreiber’s [2013] index of relative riskiness

(multiplicative gambles), a novel index of delay embedded in investment cashflows (for a standard

capital budgeting problem), and the index of appeal of information transactions [Cabrales et al.,

2014]. All indices share several attractive properties in addition to satisfying the axioms. The

approach may be applicable in other settings in which indices are needed.

1 Introduction

In many decision problems, agents base their actions on a simple objective index, a single number

that summarizes the available information about objects of choice and does not depend on the

agent’s particular preferences.1 Agents might choose to do this due to difficulties in attaining

and interpreting information, or due to an overabundance of useful information. For example, the

Sharpe ratio [Sharpe, 1966], the ratio between the expected net return and its standard deviation,

is frequently used as a performance measure for portfolios [Welch, 2008, Kadan and Liu, 2014].

This paper proposes an axiomatic approach for deriving an index that is objective and, nev-

ertheless, can serve as a guide for decision making for decision makers with different preferences.

The approach is unifying and may be used in a variety of decision making settings. I present

∗Thanks to Mitra Akhtari, Nageeb Ali, Robert Aumann, Dany Bahar, Oren Danieli, Dean Foster, Mira Frick,
Drew Fudenberg, Ben Golub, Jerry Green, Sergiu Hart, Divya Kirti, Peter Klibanoff, Scott Kominers, David Laibson,
Jacob Leshno, Annie Liang, Fabio Maccheroni, Mark Machina, Eric Maskin, Moti Michaeli, Assaf Romm, Alvin Roth,
Amnon Schreiber, Philipp Strack, Tomasz Strzalecki, William Thomson and Yufei Zhao. Financial support from the
Geneva Association is greatfully acknowledged. The author can be contacted at rshorrer@hbs.edu.

1As shown by Luca [2011], for the case of online restaurant star ratings.
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five applications: for a setting of additive gambles, which like lottery tickets change the baseline

wealth of the owner independently of its level (an index of riskiness); for a standard portfolio al-

location problem (a generalized Sharpe ratio); for a setting of multiplicative gambles, which change

the wealth of the owner proportionally to its baseline level (an index of relative riskiness); for a

standard capital budgeting problem (an index of the delay embedded in investment cashflows); and

for a setting of information acquisition by investors in an Arrovian [Arrow, 1972] environment (an

index of appeal of information transactions). In each of the settings I study, a unique index emerges

that is theoretically appealing and often improves upon commonly used indices. The approach may

be applicable in other settings in which indices are needed.2

In my setting, agents choose whether to accept or reject a transaction (a gamble, a cashflow,

etc.). The starting point of this paper is a given decision problem and the requirement that (at

least) small decisions can be made based on the index. This is the content of the local consistency

axiom. The axiom states, roughly, that all agents can make acceptance and rejection decisions

for small, “local,” transactions using the index and a cut-off value (which is the only parameter

that depends on their preferences), without knowing other details about the transaction, so that

the outcomes of their decisions will mirror the outcomes they would achieve by optimizing when

possessing detailed knowledge about the transaction.

Even though transactions are complex and multidimensional, I show that a numeric, single

dimensional, index can summarize all the decision-relevant information for small transactions. I

thus view local consistency as a minimal requirement for an index to be a useful guide for decision

making, and, as I show, it is indeed satisfied by many well-known indices in various decision making

problems. However, while this property is desirable, I show that many indices that have it also

have normatively undesirable properties.3 The Sharpe ratio, for example, has such property outside

the domain of normal distributions. As shown in Example 8, the Sharpe ratio is not, in general,

monotonic with respect to first order stochastic dominance outside that domain.4

A second criterion for assessing the validity of an index, global consistency, is therefore suggested.

Global consistency extends local consistency by making restrictions over large transactions, but it

is actually quite a weak restriction. Nevertheless, the combination of local and global consistency

turns out to be powerful. In the various decision making problems which are discussed below, it

pins down a unique order over transactions that has several desirable properties in addition to local

2A particular setting which seems promising in this regard is the measurement of inequality, which has many
similarities to the setting of risk [Atkinson, 1970].

3As stated here, the result follows trivially given the existence of one locally consistent index, as one could change
the values of large transactions without changing those of small, local, ones. The exact statement makes further
technical requirements which disqualify such indices.

4This undesirable property is related to the fact that this index depends only on the first two moments of the
distribution. These moments are sufficient statistic for a normal distribution, and therefore basing an index on them
solely may be reasonable if returns are assumed (or known) to be normally distributed. This assumption, however, is
often rejected in empirical tests in settings where the Sharpe ratio is used in practice [e.g. Fama, 1965, Agarwal and
Naik, 2000, Kat and Brooks, 2001]. Moreover, a large body of literature documents the importance of higher order
moments for investment decisions [e.g. Kraus and Litzenberger, 1976, Kane, 1982, Harvey and Siddique, 2000, Barro,
2006, 2007, Gabaix, 2008].
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and global consistency.5 Since I use results from the setting of additive gambles in my treatment

of other decision making environments, I begin by reviewing this setting and cover it in detail in

order to illustrate the general concepts.

The approach I take is different from the standard decision theoretic approach. I start with a

given objective index – a function that assigns to each transaction some number, independently of

any agent specific characteristics. In the case of additive gambles, a higher number is associated

with a higher level of riskiness. As different functions induce different orders, for a given index Q,

I refer to the Q-riskiness of a gamble. Only then I define the aversion to Q-riskiness. I define the

relation locally at least as averse to Q-riskiness as follows: Agent u with wealth w is locally at least

as averse to Q-riskiness as agent v with wealth w′ if, for all gambles with small support (defined

precisely in Section 3),6 when u at w accepts any small gamble with a certain level of Q-riskiness,

v at w′ accepts all small gambles which are significantly less Q-risky. This definition assumes a

certain kind of consistency between the index and the aversion to the property it evaluates, as it

implies that agents that are less Q-riskiness averse would accept Q-riskier gambles. This approach

is the dual of the standard approach, since instead of starting with an ordering over preferences

and asserting that risk is “what risk-averters hate” [Machina and Rothschild, 2008], I start with

an ordering over the objects of choice (an index of riskiness Q) and derive from it judgments on

preferences (Q-riskiness aversion).

In Section 3, I show that if Q is a locally consistent index which satisfies an additional mild

condition, then the relation “at least as averse to Q-riskiness” induces the same order as the classic

coefficient of absolute risk aversion [ARA, Pratt, 1964, Arrow, 1965, 1971]. This property is shown

to be satisfied by several well-known indices. However, it is also satisfied by many other indices,

including ones that are not monotonic with respect to first order stochastic dominance [Hanoch

and Levy, 1969, Hadar and Russell, 1969, Rothschild and Stiglitz, 1970].

As local consistency is insufficient for pinning down normatively acceptable indices, a second

criterion, global consistency, is suggested. I say that one agent is globally at least as averse to

Q-riskiness as another agent, if he is locally at least as averse to Q-riskiness at any two arbitrary

wealth levels. In the additive gambles setting, global consistency requires that if two agents can

be compared using this partial order, then the more Q-riskiness averse agent rejects gambles which

are riskier than ones rejected by the other agent. Note that the partial order on preferences which

is used to make this requirement of consistency is defined using the index Q, and not based on

preexisting notions of risk aversion. Global consistency is a weak requirement, in the sense that it

imposes no restriction for the (common) case of a pair of agents who cannot be compared using this

partial order. In Section 4, I show that with additional mild conditions, the Aumann and Serrano

[2008] index of riskiness, which is monotonic with respect to stochastic dominance, is the unique

index that satisfies local consistency and global consistency.

5To be precise, additional mild conditions are required as well.
6The need to restrict attention to small supports is nicely illustrated by a discussion Samuelson [1963] describes

having with with Stanislaw Ulam. Samuelson [1963] quotes Ulam as saying “I define a coward as someone who will
not bet when you offer him two-to-one odds and let him choose his side,” to which he replied “You mean will not make
a sufficiently small bet (so that the change in the marginal utility of money will not contaminate his choice).”
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In Section 5, I show that the global consistency axiom can be replaced by a requirement that

involves only one agent at a time (not pairs of agents) - the generalized Samuelson property. An

index of riskiness has this property when no agent accepts a large gamble of a certain degree of

riskiness if he rejects small ones of the same degree of riskiness at any wealth level, and no agent

rejects a large gamble of a certain degree of riskiness if he accepts small ones of the same degree

of riskiness at any wealth level. I also show that no agent whose risk tolerance (the inverse of the

coefficient of absolute risk aversion) is always higher than the AS riskiness of g will reject g, and no

agent whose risk tolerance is always lower will accept it. Given an empirical range of the degrees of

risk aversion in a population, the model provides advice to individuals and policy makers based on

the index. It also allows researchers a simple way to estimate bounds on the degree of risk aversion

in the population from observations of acceptance and rejection of different gambles.

Section 6 addresses the ranking of performance of a market portfolio in the presence of a risk

free asset. One well known index of performance is the Sharpe ratio [Sharpe, 1966], the ratio

between the expected net return and its standard deviation. My approach suggests a generalized

Sharpe ratio, where the role of the standard deviation is taken by the Aumann-Serrano (AS) index.

This index of performance coincides with the Sharpe ratio on the domain of normal distributions

but differs from it in general.7 Unlike the Sharpe ratio, it is monotonic with respect to stochastic

dominance, even when the risky return is not normally distributed, and it satisfies other desirable

properties.

Section 7 covers the setting of multiplicative gambles. The results are quite analogous to those of

the additive gambles setting. The role of ARA is replaced by the coefficient of relative risk aversion

(RRA). I show that with mild conditions, the index of relative riskiness of Schreiber [2013] is the

unique index which satisfies local consistency and global consistency (or the generalized Samuelson

property).

Section 8 considers a capital budgeting setting. Agents are proposed investment cashflows,

opportunities of investment for several periods with return at later times. I label indices for this

setting as indices of delay. Paralleling results in previous sections, I show that local consistency,

combined with additional mild conditions, ensures that the local aversion to delay, as defined by an

index, is ordinally equivalent to the instantaneous discount rate. Adding the requirement of global

consistency (or the generalized Samuelson property) is then shown to pin down a novel index for

the delay embedded in investment cashflows. The index is continuous and monotonic with respect

to time dominance [Bøhren and Hansen, 1980, Ekern, 1981], a partial order on cashflows in the

spirit of stochastic dominance.

Section 9 treats the setting of information acquisition by investors facing a standard investment

problem [Arrow, 1972]. I show that the local taste for informativeness, as defined by the index,

coincides with the inverse of ARA for any index which satisfies local consistency and another mild

condition. These include Cabrales et al. [2013] and Cabrales et al. [2014], but also indices which

have a normatively undesirable property: they are not monotonic with respect to Blackwell’s [1953]

7The index is increasing in odd distribution moments and decreasing in even ones.
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partial order.8 I then show that the index of Cabrales et al. [2014] is the unique index which satisfies

the additional requirement of global consistency.

1.1 Relation to the Literature

Apart from serving as input in decision making processes, indices are also used to limit the discre-

tion of agents by regulators [Artzner, 1999] or when decision rights are being delegated [Turvey,

1963]. For example, a mutual fund manager may be required to invest in bonds that are rated

AAA. Similarly, credit decisions are frequently based on a credit rating, a number that is sup-

posed to summarize relevant financial information about an individual. Indices are also used in

empirical studies in order to evaluate complex, multidimensional, attributes. Examples include

the cost of living [Diewert, 1998], segregation [Echenique and Fryer Jr., 2007], academic influence

[Palacios-Huerta and Volij, 2004, Perry and Reny, 2013], market concentration [Herfindahl, 1950],

the upstreamness of production and trade flows [Antràs et al., 2012], contract intensity in produc-

tion [Nunn, 2007], centrality in a network [Bonacich, 1987], inequality [Yitzhaki, 1983, Atkinson,

1983], poverty [Atkinson, 1987], risk and performance [Sharpe, 1966, Artzner et al., 1999], political

influence [Shapley and Shubik, 1954, Banzhaf III, 1964], and corruption perceptions [Lambsdorff,

2007].

Although indices are used extensively in economic research and in practice, in many cases the

index is not carefully derived from theory. Even in cases where they make theoretical sense in

a specific setting, they are often used in larger domains. For example, risk has been evaluated

using numerous indices including the standard deviation of returns, the Sharpe ratio, value at

risk (VaR), variance over expected return and the coherent measures of Artzner et al. [1999].9

Some of these indices, like the Sharpe ratio, suffer from a severe normative drawback: they are

not monotonic with respect to first order stochastic dominance outside specific domains.10 That

is, increasing a gamble’s value in every state of the world does not necessarily lead the index to

deem it less risky. Different indices have other undesirable properties. For example, some indices

are not continuous, which makes them hard to estimate empirically. Some indices, like VaR, are

independent of outcomes in the tails. Finally, and key to this paper, some of the indices are not

locally consistent,11 so they may not be used to guide decisions. My approach is to consider fairly

general settings, and concentrate on consistency.

This paper contributes to the growing literature, pioneered by Aumann and Serrano [2008],

which identifies objective indices for specific decision making problems. For additive gambles, Au-

mann and Serrano present an objective index of riskiness, based on a small set of axioms, including

8One information structure dominates the other in the sense of Blackwell if it is preferred to the other by all
decision makers for all decision making problems.

9Even though all of the above indices are meant to measure “risk,” they were derived with different decision making
problems in mind: some take the point of view of a regulator, and others of an investor; some assume the existence of
a risk free asset and others do not; some allow agents to adjust their level of investment, and others assume indivisible
assets.

10See Example 8.
11See Example 1.
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centrally a “duality axiom,” which requires a certain kind of consistency. Roughly speaking, it

asserts that (uniformly) less risk-averse individuals accept riskier gambles.12 Importantly, their

definition of risk aversion takes the traditional view, and does not refer to risk as defined by the

index. Foster and Hart [FH, 2009] present a different index of riskiness with an operational inter-

pretation.13 Their index identifies for every gamble the critical wealth level below which it becomes

“risky” to accept the gamble.14 Schreiber [2013] uses insights from this literature to develop an in-

dex of relative riskiness for multiplicative gambles. Cabrales et al. [2013] and Cabrales et al. [2014]

treat the setting of information acquisition and the appeal of different information transactions for

investors.

My approach provides a unifying framework for the decision making problems mentioned above,

and it can also be applied to new settings. It provides the first axiomatization for the index of

delay and for the generalized Sharpe ratio. All of the indices share several desirable properties,

such as monotonicity (e.g. with respect to stochastic dominance) and continuity. The generalized

Sharpe ratio, one of the two novel indices presented here, is monotonic with respect to stochastic

dominance in the presence of a risk free asset [Levy and Kroll, 1978], the analogue of stochastic

dominance, of the first and second degree. The index of delay is monotonic with respect to time

dominance [Bøhren and Hansen, 1980, Ekern, 1981], the analogous partial order on cashflows.

The index of delay is closely related to a well-known measure of delay which is used in practice:

the internal rate of return (IRR). I discuss this relation as well as the close connection of the

index to the AS index of riskiness. Like the generalized Sharpe ratio, this index treats a decision

making environment which has not yet been treated by the recent literature on indices for decision

problems. These applications therefore underscore a strength of the proposed approach: indices

emerge from the same requirements in different decision making environment.

This paper also contributes to the strand of the literature which attempts to extend the partial

order of Blackwell by restricting the class of decision problems and agents under consideration [e.g.

Persico, 2000, Athey and Levin, 2001, Jewitt, 2007]. Both Cabrales et al. [2014] and Cabrales et al.

[2013] treat an investment decision making environment with a known, common and fixed prior. The

order induced by their indices depends on this prior; there exists pairs of information transactions

which are ranked differently depending on the prior selected. But an analyst cannot always observe

the relevant prior. Subsection 9.5 asks whether the index I derive has prior-free implications for the

way information transactions are ranked, which go beyond monotonicity in Blackwell’s order and

in price. The answer is shown to be positive: there exist pairs of information structures such that

neither dominates the other in the sense of Blackwell, and when priced identically, one is ranked

higher than the other by the index of appeal of information transactions for any prior distribution.

A similar result is shown by Peretz and Shorrer [2014] for the index of Cabrales et al. [2013].

12Agent i uniformly no less risk-averse than agent j if whenever i accepts a gamble at some wealth, j accepts that
gamble at any wealth.

13Homm and Pigorsch [2012a] provide an operational interpretation of the Aumann–Serrano index of riskiness.
14Hart [2011] later demonstrated that both indices also arise from a comparison of acceptance and rejection of

gambles.
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2 Preliminaries

In this section I provide some notation which will be required for the next sections.

A gamble g is a real-valued random variable with positive expectation and some negative values

(i.e., E[g] > 0 and P [g < 0] > 0); for simplicity, I assume that g takes finitely many values. G is the

collection of all such gambles. For any gamble g ∈ G, L(g) and M(g) are respectively the maximal

loss and gain from the gamble that occur with positive probability. Formally, L(g) := max supp(−g)

and M(g) := max supp(g).

Gε is the class of gambles with support contained in an ε-ball around zero:

Gε := {g ∈ G : max {M(g), L(g)} ≤ ε} .

[x1,p1;x2, p2...;xn, pn] represents a gamble which takes values x1, x2, ..., xn with respective proba-

bilities of p1, p2, ..., pn.15

An index of riskiness is a function from the collection of gambles to the positive reals, Q : G →
R+. Note that an index of riskiness is objective, in the sense that its value depends only on the

gamble and not on any agent-specific attribute. An index of riskiness Q is homogeneous (of degree

k) if Q(tg) = tk ·Q(g) for all t > 0 and all gambles g ∈ G.

QAS(g), the Aumann-Serrano index of riskiness of gamble g, is implicitly defined by the equation

E

[
exp

(
− g

QAS(g)

)]
= 1.

QFH(g), the Foster-Hart measure of riskiness of g,16 is implicitly defined by the equation

E

[
log

(
1 +

g

QFH(g)

)]
= 0.

Note that both QAS and QFH are homogeneous of degree 1. Additionally, these indices are mono-

tone with respect to first and second order stochastic dominance;17 namely, if g is stochastically

dominated by g′ then QAS(g) > QAS(g′) and also QFH(g) > QFH(g′) [Aumann and Serrano, 2008,

Foster and Hart, 2009].

Value at Risk (VaR) is a family of indices commonly used in the financial industry [Artzner,

1999, Aumann and Serrano, 2008]. VaR indices depend on a parameter called the confidence level.

For example, the VaR of a gamble at the 95 percent confidence level is the largest loss that occurs

with probability greater than 5 percent.

In this paper, a utility function is a von Neumann–Morgenstern utility function for money. I

assume that utility functions are strictly increasing, strictly concave and twice continuously differ-

15This notation will not be used when it is important to distinguish between random variables and distributions.
16I also refer to QFH as an index of riskiness.
17A gamble g first order stochastically dominates h iff for every weakly increasing (not necessarily concave) utility

function u and every w ∈ R, E [u (w + g)] ≥ E [u (w + h)], with strict inequality for at least one such function. A
gamble g second order stochastically dominates h iff for every weakly concave utility function u and every w ∈ R,
E [u (w + g)] ≥ E [u (w + h)], with strict inequality for at least one such function.
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entiable unless otherwise mentioned. The Arrow-Pratt coefficient of absolute risk aversion (ARA),

ρ, of u at wealth w is defined

ρu(w) := −u
′′(w)

u′(w)
.

The Arrow-Pratt coefficient of relative risk aversion (RRA), %, of u at wealth w is defined

%u(w) := −wu
′′(w)

u′(w)
.

Note that ρu(·) and %u(·) are utility specific attributes and that both ρ and % yield a complete order

on utility-wealth pairs. That is, the risk aversion, as measured by ρ (or %), of any two agents with

two given wealth levels can be compared.

A gamble g is accepted by u at wealth w if E [u(w + g)] > u(w), and is rejected otherwise.

Given an index of riskiness Q, a utility function u, a wealth level w and ε > 0:

Definition 1. RεQ(u,w) := sup {Q(g)| g ∈ Gε and g is accepted by u at w}

Definition 2. SεQ(u,w) := inf {Q(g)| g ∈ Gε and g is rejected by u at w}

RεQ(u,w) is the Q-riskiness of the riskiest accepted gamble according to Q, restricting the

support of the gambles to an ε-ball. SεQ(u,w) is the Q-riskiness of the safest rejected gamble

according to Q, again restricting the support of the gambles to an ε-ball.

Definition. u at w is (locally) at least as averse to Q-riskiness as v at w′ if for every δ > 0 there

exists ε > 0 such that SεQ(v, w′) ≥ RεQ(u,w)− δ.
The interpretation of u at w being at least as averse to Q-riskiness as v at w′ is that, at least

for small gambles, if u at w accepts any small gamble with a certain level of Q-riskiness, v at w′

accepts all small gambles which are significantly (by at least δ) less Q-risky. Alternatively, if v at

w′ rejects any small gamble with a certain level of Q-riskiness, u at w rejects all small gambles

which are significantly (by at least δ) Q-riskier.

The following definitions will also prove useful:

Definition 3. RQ(u,w) := lim
ε→0+

RεQ(u,w)

Definition 4. SQ(u,w) := lim
ε→0+

SεQ(u,w).18

Roughly speaking, RQ(u,w) is the Q-riskiness of the Q-riskiest “local gamble” that u accepts

at w, and SQ(u,w) is the Q-riskiness of the Q-safest “local gamble” that is rejected by u at w.

The inverse of RQ and SQ is a natural measure of the aversion to Q-riskiness.19 The reason is

that RQ is high for utility-wealth pairs in which Q-risky gambles are accepted, so a reasonable

Q-riskiness aversion measure should imply that the aversion to Q-riskiness at such utility-wealth

18The existence of the limit in the wide sense is guaranteed by the fact that the suprema (infima) in the definitions
of Rε (Sε) are taken on nested supports.

19For our purposes, 0 =∞−1and ∞ = 0−1.
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is low. Similarly, SQ is low at a given utility-wealth pair when Q-safe gambles are rejected, so the

measure of local aversion to Q-riskiness must be high in this case.

The coefficient of local aversion to Q-riskiness of u at w is therefore defined as

AQ(u,w) :=
1

RQ(u,w)
,

noting that unless otherwise mentioned, all of the results would hold for 1
SQ(u,w) as well. As is

shown below, this definition makes it possible to discuss the ordinal equivalence of the coefficient

of local aversion to Q-riskiness, which depends both on agents behavior and on the properties of

the index Q, with orders such as ARA or RRA, which depend on the preferences exclusively, and

are independent of the index.

3 Local Aversion to Q-Riskiness

Since no restrictions on Q were made (other then possibly homogeneity), at this point coefficients

of local aversion to Q-riskiness might look like a class of arbitrary orderings over (u,w) pairs.

However, I claim that its members are connected to the standard concepts of local risk aversion.

One reason is that they induce orderings which refine the following natural partial order [Yaari,

1969] : u at w is locally no less risk averse than v at w′ (written (u,w)m (v, w′)) if and only if there

exists ε > 0 such that for every g ∈ Gε, if u accepts g at w then so does v at w′. An order O refines

the natural partial order if for all g and h, g m h =⇒ gOh.

Lemma 1. For every index of riskiness Q, the order induced by AQ refines the natural partial

order.

Proof. Assume that (u,w)m (v, w′). Then there exists ε′ > 0 such that for every g ∈ Gε′ if u accepts

g at w then so does v at w′. As in the definition of RQ we have ε→ 0+, disregarding all ε ≥ ε′ will

not change the result. Note that for every ε < ε′

{Q(g)| g ∈ Gε and g is accepted by u at w} ⊆
{
Q(g)| g ∈ Gε and g is accepted by v at w′

}
.

This means that for every ε < ε′, Rε(u,w) ≤ Rε(v, w′) as the suprema in the definition of RεQ(v, w′)

are taken on a superset of the corresponding sets in the definition of RεQ(u,w). The result follows

as weak inequalities are preserved in the limit.

Next, I show that the coefficient of local aversion to AS (FH) riskiness gives rise to a complete

order which coincides with the one implied by the Arrow-Pratt ARA coefficient.

Lemma 2. For every utility function u and every w, RQAS (u,w) = SQAS (u,w) and AQAS (u,w) =

ρu(w).
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Proof. First, observe that if u and v are two utility functions and there exists an interval I ⊆ R

such that ρu(x) ≥ ρv(x) for every x ∈ I then for every wealth level w and lottery g such that

w+g ⊂ I, if g is rejected by v at w it is also rejected by u for the same wealth level. Put differently,

if g is accepted by u at w it is also accepted by v at the same wealth level. The reason is that the

condition implies that in this domain, u is a concave transformation of v [Pratt, 1964], hence by

Jensen’s inequality u(w) ≤ E [u (w + g)] implies that v(w) ≤ E [v (w + g)].

Keeping in mind that u′(x) > 0 we have that ρu(x) is continuous. Specifically,

∀ δ > 0 ∃ ε > 0 s.t x ∈ (w − ε, w + ε)⇒ |ρu(x)− ρu(w)| < δ (3.0.1)

Recall that a CARA utility function with ARA coefficient of α rejects all gambles with AS

riskiness greater than 1
α and accepts all gambles with AS riskiness smaller than 1

α [Aumann and

Serrano, 2008]. Given an ε-environment of w in which ρu ∈ (ρu(w)− δ, ρu(w) + δ), taking the

CARA functions with ARA of ρu(w)+ δ and ρu(w)− δ,20 and applying the first observation (where

I is (w − ε, w + ε) completes the proof.

Lemma 2 essentially shows that every utility function may be approximated locally using CARA

functions, which are well-behaved with respect to the AS index. Given the ARA of u at a given

wealth level, I take two CARA utility functions, one with slightly higher ARA, and the other with

slightly lower ARA. For small environments around the given wealth level, ρu is almost constant,

so the two CARA functions “sandwich” the utility function in terms of ARA. This implies that for

small gambles, one CARA function accepts more gambles than u, and the other less gambles, in

the sense of set inclusion. Since CARA functions accept and reject exactly according to an AS

riskiness cutoff, and since cutoffs are close for similar ARA values, it follows that the coefficient of

local aversion to AS-riskiness is pinned down completely.

Lemma 3. For every utility function u and every w, RQFH (u,w) = SQFH (u,w) and AQFH (u,w) =

ρu(w).

Proof. According to Statement 4 in Foster and Hart [2009]:

−L(g) ≤ QAS(g)−QFH(g) ≤M(g). (3.0.2)

Therefore, if g ∈ Gε then: ∣∣QAS(g)−QFH(g)
∣∣ ≤ ε. (3.0.3)

From Statement 3.0.3 one can deduce thatRQFH (u,w) = RQAS (u,w) and SQFH (u,w) = SQAS (u,w).

Lemma 2 completes the proof.

The result of Lemma 3 is not surprising in light of Lemma 2, as Foster and Hart [2009] already

noted that the Taylor expansions around 0 of the functions that define QFH and QAS differ only

20In some cases, a smaller δ may be required to ensure that ρu(w)−δ is positive. This could be achieved by looking
at a smaller environment of w.
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from the third term on. Roughly speaking, this means that for gambles with small supports QAS

and QFH are close.

Theorem 1 summarizes the results of Lemmata 1-3.

Theorem 1. (i) For any index of riskiness Q, AQ refines the natural partial order. (ii) For every

utility function u and every w, AQAS (u,w) = AQFH (u,w) = ρu(w). Furthermore, RQAS (u,w) =

SQAS (u,w) and RQFH (u,w) = SQFH (u,w).

Corollary 1. For Q ∈
{
QAS , QFH

}
u at w is at least as averse to Q-riskiness as v at w′ iff

ρu(w) ≥ ρv(w′).

Note that part (i) of Theorem 1 states that the order induced by AQ refines the weak, no-less

risk averse, partial order, and not the strict one. The strict version of this statement is not correct

as the following example demonstrates. The example also shows that it is not the case that for all

popular risk indices the coefficient of local aversion is equal to ρ or refines the order it induces, and

that the same is true for the relation at least as averse to Q-riskiness.

Example 1. For any confidence level α ∈ (0, 1), for all agents and wealth levels, the coefficient of

local aversion to Q (·) := exp {VaRα(·)} is equal to 1, and any agent at any wealth level is at least

as averse to Q-riskiness as any other agent.21

It is noteworthy that the example would go through with the exponent of any coherent risk

measure [Artzner et al., 1999]. The fact that these indices are not well suited for the task of

comparing agents’ preferences is not surprising. These indices are motivated by the problem of

setting a minimal reserve requirements for investors in a given position [Artzner, 1999], and so they

take the point of view of a regulator, not the investor.

Up until this point, I showed that the local aversion to AS and FH riskiness induces the same

order as the ARA coefficient, the standard measure of local risk aversion, and that the coefficient

of local aversion to AS and FH riskiness is in fact equal to the ARA coefficient. This means that

one can start with a small set of axioms, namely Aumann and Serrano’s [2008] or Foster and Hart’s

[2013], and define a complete order of riskiness over gambles. Then, the coefficient of local aversion

of agents to riskiness can be derived, and it will be equal to the well-known Arrow-Pratt coefficient.

The relation at least as averse to AS (FH)-riskiness will also induce the same order. Hence, both

AS and FH satisfy the desirable property that less risk averse agents according to ARA accept

riskier gambles according to AS or FH.

Theorem 1 and Corollary 1 might be interpreted as evidence that AS and FH were “well-chosen”

in some sense. However, Theorem 2 shows that while according to the previous results AS and

FH satisfy the desirable properties mentioned above, there are other indices which satisfy the same

properties. Moreover, some of these indices are not “reasonable” in the sense that they are not

monotone with respect to first order stochastic dominance, in clear violation of the requirement

that an index of riskiness should judge as riskier the alternative risk-averse individuals less prefer.

21The exponent is only used to assure that the index is positive and has no ordinal effect.
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Theorem 3 further identifies sufficient conditions on Q under which the coefficient of local aversion

to Q-riskiness and the relation at least as averse to Q-riskiness yield the same order as the Arrow-

Pratt (local) absolute risk aversion.

Axiom. Homogeneity. Q is homogeneous of degree k for some k > 0.

The homogeneity axiom has both cardinal and ordinal content. For the case k = 1, its cardinal

interpretation is that doubling the stakes doubles the riskiness. The ordinal content is that doubling

the stakes increases the riskiness. When taking the point of view of an agent, not a regulator setting

a minimal reserve requirement, the cardinal part is not necessarily desirable. In what follows, I

assume it for its simplicity and since homogeneity of degree 1 appears in the original axiomatic

characterization of the AS index, but later I remove this axiom.

Axiom. Local consistency. ∀u ∀w ∃λ > 0 ∀δ > 0 ∃ε > 0 RεQ(u,w)− δ < λ < SεQ(u,w) + δ.

Local consistency says that small gambles that are significantly Q-safer than some cut-off level

are always accepted, and that ones significantly riskier than the cutoff are always rejected. Lemma

6 in the appendix shows that whenever homogeneity is satisfied, local consistency implies that

0 < SQ(u,w) = RQ(u,w) <∞. This means, that for “small” gambles Q is sufficient information to

determine an agent’s optimal behavior. In other words, the decisions of agents are consistent with

the index, on small domains.

Definition. Reflexivity. The relation at least as averse to Q-riskiness is reflexive if for all u and

w, u at w is at least as averse to Q-riskiness as u at w.

Proposition. If Q satisfies local consistency, then the relation locally at least as averse to Q-

riskiness is reflexive.

Definition. Ordinally equivalent. Given an index of riskiness Q, AQ is ordinally equivalent to the

coefficient of absolute risk aversion ρ, if ∀u, v ∀w,w′ AQ(u,w) > AQ(v, w′) ⇐⇒ ρu(w) > ρv(w
′).

Theorem 2. (i) There exists a continuum of locally consistent, homogeneous of degree 1, riskiness

indices for which the coefficient of local aversion equals the Arrow-Pratt coefficient.22 (ii) Moreover,

some of these indices are not monotone with respect to first order stochastic dominance.

(i) is proved in the appendix using the observation that for every a > 0 any combination of

the form Qa(·) := QFH(·) + a ·
∣∣QFH(·)−QAS(·)

∣∣ is an index of riskiness for which the coefficient

of local aversion equals the coefficient of local aversion to QFH . The reason this holds is that for

small supports, the second element in the definition is vanishingly small by Inequality 3.0.3, and so

Qa and QFH should be close. (ii) follows from Example 2.

22Omitting the homogeneity of degree 1 requirement would yield a trivial statement as, for example, an arbitrary
change of the values of QAS for gambles taking values larger than some M > 0 will result in a valid index. The
requirement that that the local aversion to the index coincides with the Arrow-Pratt coefficient, and not just with
the order it implies, is a normalization that rules out, for example, the use of positive multiples of QAS .
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Example 2. Take Q1(·) := QFH(·) +
∣∣QFH(·)−QAS(·)

∣∣ and g = [1, e
1+e ;−1, 1

1+e ]. Q
AS(g) = 1

and QFH(g) ≈ 1.26, hence Q1(g) < 1.6. Now take g′ = [1, 1 − ε;−1, ε]. For small values of ε,

QAS(g′) ≈ 0 but QFH(g′) > 1, so Q1(g′) > 1.6. Therefore, while g′ first order stochastically

dominates g, Q1 (g) < Q1 (g′).

Theorem 3. If Q satisfies local consistency and homogeneity of degree k > 0, then AQ is ordinally

equivalent to ρ, and the relation at least as averse to Q-riskiness induces the same order as ρ.23

The proof is in the appendix. It extends the reasoning of Lemma 1.

Remark 1. Both axioms in Theorem 3 are essential: omitting either admits indices for which the

coefficient of local aversion is not ordinally equivalent to ρ, and the relation at least as averse to

Q-riskiness does not induce the same order as ρ.

Proof. Follows from following examples.

Example 3. Q (·) ≡ 5 satisfies local consistency, but it does not satisfy homogeneity of degree

k > 0. The local aversion to this index induces the trivial order and AQ ≡ 1
5 .

Example 4. Q(·) = E [·] is homogeneous of degree 1, but it violates local consistency. The local

aversion to this index induces the trivial order and AQ ≡ ∞.

In the later part of the next section, homogeneity will no longer required. It will be replaced by

a requirement of continuity (which will be precisely defined later) and monotonicity with respect

to first order stochastic dominance. For completeness, I present an example of a locally consistent

index which satisfies continuity and monotonicity with respect to first order stochastic dominance

but does not possess the ordinal content of homogeneity.

Example 5. Q(·) = exp
{
QAS(·)− E [·]

}
inherits its positivity from the exponent, it is continuous

and monotonic with respect to first order stochastic dominance as both QAS(·) and −E [·] are. Q

satisfies local consistency as for small supports it is almost equal to exp
{
QAS(·)

}
, which is locally

consistent. Finally, for g such that QAS(g) < E [g] and λ > 1, Q(λg) < Q(g). For small ε > 0,

gambles of the form g =
[
−ε, 1

2 ; 1, 1
2

]
satisfy the required inequality.

4 Global Consistency

Theorem 3 identifies conditions under which the coefficient of local aversion to Q-riskiness and

the relation at least as averse to Q-riskiness induce the same order as the Arrow-Pratt ARA. But

according to Theorem 2 and Example 5 this property is not enough to characterize a “reasonable”

index of riskiness. These findings call for additional requirements from an index of riskiness.

23To be precise, this statement means that u at w is at least as averse to Q-riskiness as v at w′ if and only if
ρu(w) ≥ ρv(w′).
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Definition. Globally more averse to Q-riskiness. Let Q be an index of riskiness. u is globally at

least as averse to Q-riskiness as v is (written u %Q v) if, for every w and w′, u at w is at least as

averse to Q-riskiness as v at w′. u is globally more averse to Q-riskiness than v (written u �Q v)

if u %Q v and not v %Q u.24

Axiom. Global consistency. For every pair of utilities u and v, for every w and every g and h in

G, if u �Q v, u accepts g at w, and Q(g) > Q(h), then v accepts h at w.

The axiom of global consistency is a weak requirement, in the sense that it imposes no restriction

for pairs of utilities which cannot be compared using the partial order globally more averse to Q-

riskiness. It is inspired by the duality axiom of AS. For small gambles, it follows immediately from

local consistency. In fact, local consistency could have been stated in a very similar way, had it

been assumed that the relation at least as averse to Q-riskiness is reflexive. It would state that if u

at w is at least as averse to Q-riskiness as v at w′ is, then there exists λ > 0 such that for all δ > 0

there exists ε > 0 with RεQ(u,w)− δ < λ < SεQ(v, w′) + δ. Roughly, it states that if the risk averse

agent accepts a small gamble with a certain level of riskiness, the less risk averse agent will accept

small gambles which are Q-safer. The content of the axiom of global consistency comes from the

fact that it places no restriction on the support of gambles, so that when two agents that can be

compared by the partial order “globally more averse to Q-riskiness,” the axiom requires that the

less averse agent accepts Q-riskier gambles, and the requirement applies not only for small gambles.

Theorem 4.
(
QAS

)k
is the unique index of riskiness that satisfies local consistency, global consis-

tency and homogeneity of degree k > 0, up to a multiplication by a positive number.

Proof. Let Q be homogeneous of degree 1. From Theorem 3, AQ is ordinally equivalent to ρ, and

the relation at least as averse to Q-riskiness induces the same order as ρ. The AS duality axiom

states that if u is uniformly more averse to risk than v, u accepts g at w, and Q(g) > Q(h), then

v accepts h at w. That the relation at least as averse to Q-riskiness induces the same order as ρ

means that u is globally more averse to Q-riskiness than v if and only if u is uniformly more risk

averse than v. With global consistency, this implies the duality axiom. But the only indices that

satisfy homogeneity of degree 1 and the duality axiom are positive multiples of QAS [Aumann and

Serrano, 2008]. If Q is homogeneous of degree 0 < k 6= 1, Q′ = (Q)
1
k is homogeneous of degree 1,

and still satisfies the other properties,25 so Q′ must equal C · QAS for some C > 0, and so Q is

equal to Ck ·
(
QAS

)k
. Finally, Theorems 1 and 3 and the discussion above imply that for all k > 0,(

QAS
)k

satisfies the axioms,26 and the same holds for its positive multiples.

Corollary 2. QFH , the FH index of riskiness, does not satisfy global consistency.

24The above definition is different from the AS definition of uniformly more risk-averse. It is derived directly from
the index Q and the utility function u. However, if the relation at least as averse to Q-riskiness induces the same
order as ρ the two definitions are equivalent.

25To verify this, note that f(x) = x
1
k is continuous, and Q and Q′ are ordinally equivalent.

26In fact, this was shown only for the case k = 1, but it is clear that the other cases are implied by this case.
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Example 6. Consider a gamble g = [1, e
1+e ;−1, 1

1+e ], Q
AS(g) = 1 and QFH(g) ≈ 1.26, and

a gamble g′ = [2, 1 − ε;−2, ε]. For small values of ε, QAS(g′) ≈ 0 but QFH(g′) > 2. Hence

QAS(g) > QAS(g′) yet QFH(g) < QFH(g′). Since the local aversion to FH-riskiness is equal to the

local aversion to AS-riskiness by Theorem 1, any two CARA utility functions with different ARA

between 1
QAS(g)

and 1
QAS(g′)

together with the two gambles violate global consistency.

As was discussed previously, the cardinal content of the homogeneity axiom is not necessarily

appealing for general indices of riskiness. In what follows, this axiom will be removed and replaced

with less demanding conditions: monotonicity with respect to first order stochastic dominance and

continuity. Example 7 will show that these axioms will not suffice for assuring that the coefficient of

local aversion to Q-riskiness is non-degenerate, or even to ensure that the index is monotonic with

respect to second order stochastic dominance, and so I will require a slightly stronger version of

global consistency. On the other hand, the combination of strong global consistency, monotonicity,

continuity and reflexivity of the relation locally at least as averse to Q-riskiness implies local con-

sistency, and so the local consistency requirement could be replaced with the weaker requirement

of reflexivity.

Definition. Continuity. An index of riskiness Q is continuous if Q(g) = lim
n→∞

Q (gn) whenever gn

are uniformly bounded gambles which converge to g in probability.

Example 7. Let Q(·) = exp {−E [·]}. It is positive, continuous, monotonic with respect to first

order stochastic dominance and locally consistent. Additionally, every u is globally at least as

averse to Q-riskiness as any v. Hence, no agent is globally more averse to Q-riskiness than another,

and so global consistency in satisfied. The coefficient of local aversion to Q-riskiness is equal to 1

identically. Finally, mean preserving spreads do not change the value of the index.

Axiom. Strong global consistency. For every pair of utilities u and v, for every w and every g and

h in G, if u %Q v, u accepts g at w, and Q(g) > Q(h), then v accepts h at w.

The difference between the two axioms is that the weak version uses �Q while the strong one

uses %Q. The strong version, therefore, requires more, as it has a bite for more pairs of utilities.

Note that this axiom is violated by the index from Example 7. To see this, observe that any two

agents u and v satisfy both u %Q v and v %Q u, so Q must be degenerate in order to satisfy the

axiom, but it is not.

Theorem 5. If Q is a continuous index of riskiness that satisfies monotonicity with respect to

first order stochastic dominance and strong global consistency, and the relation at least as averse

to Q-riskiness is reflexive, then Q is ordinally equivalent to QAS.

Corollary. If Q is a continuous index of riskiness that satisfies monotonicity with respect to first

order stochastic dominance and strong global consistency and the relation at least as averse to

Q-riskiness is reflexive, then Q satisfies local consistency and AQ is ordinally equivalent to ρ.
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Remark 2. The monotonicity requirement in the theorem could be replaced by each of the following

conditions:

(a) Monotonicity with respect to mean-preserving spreads

(b) Satisfying the ordinal content of homogeneity

(c) Monotonicity with respect to increases in the lowest value of the gamble, leaving the rest

unchanged

In such case, monotonicity with respect to first order stochastic dominance will be a result, not

an assumption.27

5 The Aversion to AS-Riskiness and the Demand for Gambles

Samuelson [1960] shows that “if you would always refuse to take favorable odds on a single toss,

you must rationally refuse to participate in any (finite) sequence of such tosses” [Samuelson, 1963].

But Samuelson [1963] also warns against undue extrapolation of his theorem saying “It does not

say that one must always refuse a sequence if one refuses a single venture: if, at higher income

levels the single losses become acceptable, and at lower levels the penalty of losses does not become

infinite, there might well be a long sequence that it is optimal.” The following propositions shows

that AS has a properties which generalize the property discussed by Samuelson.

Proposition 1. A gamble g with QAS(g) = c is rejected by u at w only if there exist some w′ such

that small gambles with QAS of c are rejected. A gamble g with QAS(g) = c is accepted by u at w

only if there exist some w′ such that small gambles with QAS of c are accepted.

Proof. Omitted.

Corollary. If QAS(g) > sup
w
A−1
QAS

(u,w) = sup
w
ρ−1
u (w) then u rejects g at any wealth level. If

QAS(g) < inf
w
A−1
QAS

(u,w) = inf
w
ρ−1
u (w) then u accepts g at any wealth level.

The corollary suggests a partition of the class of gambles into three: “risky” gambles, which

the agent never accepts, “safe” gambles which are always accepted, and gambles whose acceptance

is subject to wealth effects. Knowing the distribution of preferences in a given population, the

intersection of the relevant “risky” and “safe” segments yields a partition which is mutually agreed

upon. Such a partition could be used as a simple tool for evaluating policies, as I will show in

the next section. It may also be used as a simple tool for providing bounds on risk attitudes, as

illustrated in the following example.

Example. Say that a population of agents are observed making acceptance and rejection decisions

on gambles. Say that A is the set of gambles rejected by some agent, and B is the set of gambles

accepted by some agent. Then if, for some g ∈ B for all u, QAS(g) > sup
w
ρ−1
u (w), a contradiction

would be implied. So, for some u max
g∈B

QAS(g) ≤ sup
w
ρ−1
u (w) and similarly min

g∈A
QAS(g) ≥ inf

w
ρ−1
v (w).

27The continuity assumption could also be relaxed, for example, by requiring continuity in payoffs for fixed proba-
bilities.
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The next result shows a property of the index which is in the spirit of Samuelson’s argument,

and in fact implies Samuelson’s theorem. It shows that the sets of “risky” and “safe” gambles are

closed under compounding of independent gambles.

Definition 5. Compound gamble property. An index Q has the compound gamble property if for

every compound gamble of the form f = g + 1Ah, where 1 is an indicator, A is an event such that

g is constant on A (g|A ≡ x for some x) and h is independent of A, max {Q(g), Q(h)} ≥ Q(f) ≥
min {Q(g), Q(h)}.

Proposition 2. QAS satisfies the compound gamble property. Thus, if g, h ∈ G are independent,

and min
{
QAS(g), QAS(h)

}
> sup

w
ρ−1
u (w), then a compound gamble of g and h will also satisfy the

inequality. Additionally, if g, h ∈ G are independent, and max
{
QAS(g), QAS(h)

}
< inf

w
ρ−1
u (w),

then a compound gamble of g and h will also satisfy the inequality.

Proof. See appendix.

To complete the discussion, I propose a generalized Samuelson property and show that it could

replace global consistency.

Axiom. Generalized Samuelson property. ∀u, w′ S∞Q (u,w′) ≥ inf
w
SQ(u,w) and R∞Q (u,w′) ≤

sup
w
RQ(u,w).

The axiom says that no agent accepts a large gamble of a certain degree of riskiness if he rejects

small ones of the same degree of riskiness at any wealth level, and no agent rejects a large gamble

of a certain degree of riskiness if he accepts small ones of the same degree of riskiness at any wealth

level.

Theorem 6. If Q satisfies the generalized Samuelson property, reflexivity, monotonicity with respect

to first order stochastic dominance and continuity then Q is ordinally equivalent to QAS.

Proof. Let Q be as in the statement. Take some CARA function, u, and an arbitrary wealth level

w0, and observe that

S∞Q (u,w0) ≥ inf
w
SQ(u,w) = SQ(u,w0) ≥ RQ(u,w0) = sup

w
RQ(u,w) ≥ R∞Q (u,w0).

The equalities follow from the lack of wealth effects in CARA functions acceptance and rejection

decisions, and the middle inequality follows from reflexivity.

The inequality suggests that all rejected gambles are (weakly) Q-riskier than all accepted ones.

Using monotonicity, and continuity of u, for each accepted gamble there exists ε > 0 small enough

such that if reduced from all the realizations of the gamble, the resulting gamble will still be

accepted. Hence, the ranking is in fact strict.

Iterating the above argument with all other possible (C)ARA values proves that Q refines the

order that QAS yields (recall that CARA functions accept or reject according to a QAS riskiness

cutoff, which is the inverse of their ARA coefficient). Finally, continuity implies that the index
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must induce the same order as QAS . That QAS satisfies the properties follows from the discussion

above.

Remark. Continuity was only used to show that Q does not strictly refine the order induced by

QAS .

Remark. The generalized Samuelson property is closely related to global consistency. It implies that

if inf
w′
SQ(v, w′) ≥ sup

w
RQ(u,w) then S∞Q (v, w0) ≥ R∞Q (u,w1). Note, however, that the generalized

Samuelson property is stated for a single agent and does not place (directly) any simultaneous

restrictions on pairs of agents.

6 A Generalized Sharpe Ratio

This section considers an investor facing the problem of asset allocation between a risk free asset,

with return rf and a market portfolio.28 Fixing rf , a market return r is a real-valued random

variable such that r − rf ∈ G. In particular, the net return, r − rf has a positive expected value

and a positive probability to be negative. For each value of rf , let Rrf , or simply R when there

is no risk of confusion, denote the class of all such market returns. An index of performance is a

collection of functions Qrf : Rrf → R+, one for each possible value of the risk free rate.

One well known index of performance is the Sharpe ratio, the ratio between the expected

net return and its standard deviation.29 This measure of “risk adjusted returns,” or “reward-to-

variability” [Sharpe, 1966], is frequently used as a performance measure for portfolios [Welch, 2008,

Kadan and Liu, 2014]. Formally, it is defined by:

Shrf (r) =
E [r − rf ]

σ (r − rf )
.

The validity of this measure relies critically on several assumptions on the distribution of returns

as well as on agents’ preferences [Meyer, 1987]. In particular, for general distributions, the Sharpe

ratio is not monotonic with respect to first order stochastic dominance: portfolio r1 may have

returns that are always higher than portfolio r2 and yet it will be ranked lower according to the

index. This normatively undesirable property of the Sharpe ratio is illustrated by the following

example, which is based on an example from Aumann and Serrano [2008]:

Example 8. Let r1 = [−1, .02; 1, .98], r2 = [−1, .02; 1, .49; 2, .49] and rf = 0.

E [r1 − rf ] = .96, σ(r1 − rf ) = .28,

hence,

Shrf (r1) =
.96

.28
≈ 3.43.

28rf may be negative, but greater than −1.
29Note that σ (r − rf ) 6= 0 from the assumption that r − rf ∈ G.
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But,

E [r2 − rf ] = 1.45, σ(r2 − rf ) =
7
√

3

20
,

hence,

Shrf (r2) =
1.45× 20

7
√

3
≈ 2.39.

The result will continue to hold if we add some small ε > 0 to all of the payoffs of r2.

This undesirable property of the Sharpe ratio is related to the fact that it depends only on the

first two moments of the distribution. These moments are sufficient statistic for a normal distri-

bution, and therefore basing an index on them solely may be reasonable under the assumption of

normally distributed returns. This assumption is, however, often rejected in settings where the

Sharpe ratio is often used [e.g. Fama, 1965, Agarwal and Naik, 2000, Kat and Brooks, 2001]. More-

over, a large body of literature documents the importance of higher order moments for investment

decisions [e.g. Kraus and Litzenberger, 1976, Kane, 1982, Harvey and Siddique, 2000, Barro, 2006,

2007, Gabaix, 2008].

Recognizing these limitations of the Sharpe ratio as a measure of performance, Kadan and

Liu [2014] propose a reinterpretation of the inverse of the AS index of riskiness as a performance

measure, and show that it may be more favorable than the Sharpe ratio in an empirical setting.

Homm and Pigorsch [2012b] propose a different index, which was mentioned originally in AS, the

expected net return divided by the AS riskiness. The index is not derived from first principles,

but is motivated by a “reward-to-risk” reasoning, where the AS riskiness takes the place of σ in

the Sharpe ratio. This section asks which of these indices, if any, does the consistency motivated

approach suggest?

The findings of this section support the latter alternative, which coincides with the Sharpe ratio

on the domain of normally distributed returns. The index possesses other desirable properties,

importantly monotonicity with respect to stochastic dominance and with respect to stochastic

dominance in the presence of a risk free asset [Levy and Kroll, 1978],30 of the first and second

degree.

6.1 Preliminaries

Definition 6. A market transaction is a pair, (q, r) ∈ R+×R. Denote by T the class of all market

transactions.

Say that an agent with utility function u and initial wealth w accepts a market transaction if

E [u ((w − q)(1 + rf ) + q(1 + r))] > u(w(1 + rf )),

and rejects it otherwise.

30r1 first (second) order stochastically dominates r2 in the presence of a risk free asset rf if for every α ≥ 0 there
exists β ≥ 0 such that αr2 + (1− α) rf is first (second) order stochastically dominated by βr1 + (1− β) rf .
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I assume that it is only the net return that matters for the index. That is, by shifting rf and

all the possible values of r by a constant, the performance does not change. This is a standard

assumptions which makes is possible to compare market returns under different risk-free rates. All

the results will continue to hold without this assumption, fixing rf .

Axiom. Translation invariance. ∀λ > 0 ∀rf > −1 ∀r ∈ Rrf Qrf+λ(r + λ) = Qrf (r).31

The next axiom could be interpreted as saying that if the price of a unit of the market portfolio

decreases, but it continues to yield the same proceeds, the market performs better. This intuitive

notion is the ordinal content of the axiom T of Artzner et al. [1999].

Axiom. Monotonicity. ∀rf > −1 ∀r ∈ Rrf ∀λ > 0, if rf + λ ∈ Rrf then Qrf (r + λ) > Qrf (r).

With translation invariance, monotonicity is equivalent to the requirement that the same market

return should be considered as better performing in the face of a lower risk free rate.

To motivate the next axiom, assume for a moment that the risk free rate is 0, and that agents are

free to allocate their resources between the market and a risk free asset. A reasonable requirement

is that an index of performance be homogeneous of degree 0, since any portfolio that could be

achieved with market return r could be mimicked when the return is λg for any λ > 0 by scaling

the amount of investment by 1
λ . This reasoning clearly extends to the net return, r − rf , for any

rf and r.

Axiom. Homogeneity. ∀λ > 0, ∀rf > −1 ∀r ∈ Rrf , Qrf (λ · (r − rf ) + rf ) = Qrf (r).

The Sharpe ratio is an example for a performance index that satisfies this property. Note that

unlike in the other settings presented in this paper, here, the homogeneity axiom is ordinal and has

no cardinal implications.

Remark 3. A continuous index which satisfies translation invariance and monotonicity but fails

to satisfy homogeneity of degree 0 is not monotonic with respect to stochastic dominance in the

presence of a risk free asset.32

Proof. For some λ > 0, say Qrf (λ · (r− rf ) + rf ) > Qrf (r). From translation invariance, Q0(λ · (r−
rf )) > Q0(r − rf ). From continuity, it will also be the case that Q0(λ · (r − rf )) > Q0(r − rf + ε)

for some small ε > 0. But r− rf + ε first order stochastically dominates λ · (r− rf ) in the presence

of a risk free asset with 0 rate of return, as discussed in the argument motivating the homogeneity

axiom.

Corollary. The index of performance used by Kadan and Liu [2014] violates monotonicity with

respect to stochastic dominance in the presence of a risk free asset.

Example 9. Let r be a market return with E [r] = 1 and let rf = 0. The index proposed by

Kadan and Liu [2014] equals to 1
QAS(r)

> 0. Their index for 1
2r, under the same conditions, is

2
QAS(r)

. From the continuity of their index, this implies that for small ε > 0, 1
2r− ε performs better

than r in the Kadan-Liu sense.
31If r is in Rrf then r + λ is in Rrf+λ.
32A precise definition of continuity appears later in this section.
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For c ≥ 0 and rf > −1, define Rrfc := {r ∈ Rrf |E [r] = rf + c}, the class of market returns with

expected net return of c. If Q satisfies homogeneity, it is completely characterized by the restriction

of Qrf to Rrf+1. If Q further satisfies translation invariance then there is no loss of generality in

writing Q(r − rf ) := Q0(r − rf ) = Qrf (r). This means that it is sufficient to consider the case

that rf = 0 and to characterize Q : R1 → R+. From this point on, unless specifically mentioned,

attention will be restricted to this case.

Denote, Tε := {(q, r) ∈ T | max {qr} −min {qr} < ε, r ∈ R1}, the class of “local” market trans-

action.33

Definition 7. Given a performance index Q, say that u at w is locally at least as inclined to invest

in Q−performers as v at w′ if there exists q̄, such that for all for all q̄ > q > 0 and δ > 0 there

exists ε > 0 with

0 ≤ sup
(q,r)∈Tε

{Q (r) | (q, r) is rejected by uat w} ≤ inf
(q,r)∈Tε

{
Q (r) | (q, r) is accepted by vat w′

}
+ δ.

The interpretation is as follows: for transactions with expected net return of q > 0, if v at w′ is

willing to invest in some local transaction, u at w is willing to invest in any local transaction that

performs significantly (by δ) better according to Q.

Next, I require that the relation locally at least as inclined to invest in Q-performers is reflexive.

Axiom. Reflexivity. For all u and w, u at w is locally at least as inclined to invest in Q-performers

as u at w.

Definition 8. u is globally inclined to invest in Q−performers at least as v if for all w, w′, u is

locally inclined to invest in Q−performers at wealth w at least as v at wealth w′.

Axiom. Strong global consistency. For every w ∈ R, q > 0, for every u and v, and every r, r′ ∈ R1,

if u is inclined to invest in Q-performers at least as v, v accepts (q, r) at w, and Q(r′) > Q(r), then

u accepts (q, r′) at w.

The axiom roughly says that if an agent that cares less about Q-performance is willing to invests

q in a market, it must be the case that an agent who cares more about Q-performance would be

willing to invest the same amount when the market performs better.

6.2 Results

Definition 9. The generalized Sharpe ratio is defined as

PASrf (r) := PAS(r − rf ) =
E [r − rf ]

QAS (r − rf )
.

33The requirement that r ∈ R1 will be important in this setting due to the assumption of homogeneity of degree
0, since for any r with expected positive net returns, q > 0, and any agent, there exists a small enough λ > 0 such
that (q, λ · r) will be accepted.
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Definition. Continuity. An index Q is continuous if for all rf > −1, Qrf (rn)→ Qrf (r) whenever

{rn} and r are uniformly bounded market returns, and rn converge to r in probability.

Theorem 7. Q is a continuous index of performance that satisfies global consistency, reflexivity,

translation invariance, monotonicity and homogeneity iff it is a continuous increasing transforma-

tion of PAS (·).

Proof. See appendix.

Remark. On the domain of normally distributed market returns, PAS is ordinally equivalent to the

Sharpe ratio.

Remark. PAS is increasing is increasing in odd distribution moments, and decreasing in even dis-

tribution moments.

Proposition 3. PAS is monotonic with respect to stochastic dominance in the presence of risk free

asset.

Proof. If r1 dominates r2 in the presence of rf , then there exist α, β > 0 such that αr1 + (1− α) rf

stochastically dominates βr2 + (1− β) rf . There is no loss of generality in assuming that rf = 0

and E [r1] = E [r2]. With this assumption, the above implies αr1 stochastically dominate βr2. The

monotonicity of QAS thus implies that QAS(αr1) < QAS(βr2), and stochastic dominance implies

E [αr1] ≥ E [βr2] . Altogether, these results imply

PAS0 (r1) =
E [r1]

QAS(r1)
=

E [αr1]

QAS(αr1)
>

E [βr2]

QAS(βr2)
=

E [r2]

QAS(r2)
= PAS0 (r2)

as required.

Corollary. Q is a continuous index of performance that satisfies global consistency, reflexivity,

translation invariance, and monotonicity with respect to stochastic dominance in the presence of

risk free asset iff it is a continuous increasing transformation of PAS (·).

Proof. Follows from Remark 3 and Theorem 7.

6.3 The Demand for Market Transactions

The next proposition proposes a partition of market transactions into three: “attractive,”“unattrac-

tive” and ones about which the decision depends on wealth effects.

Proposition 4. If q
PAS(g)

> sup
w
ρ−1
u (w) then u rejects (q, g) at any wealth level. If q

PAS(g)
<

inf
w
ρ−1
u (w) then u accepts g at any wealth level.

Next, I show that diversification makes transactions more desirable and that a property analo-

gous to compound gambles holds.
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Proposition 5. Fix rf , and let g, h ∈ Rrfrf+1 be such that (q, g) and (q, h) are accepted by u at any

wealth level, then u is accepts (q, αg + (1− α)h) for all α ∈ (0, 1) at any wealth level.

Proof. From proposition 4 as PAS (αg + (1− α)h) ≥ min
{
PAS (g) , PAS(h)

}
, by the properties of

QAS .

Proposition 6. Fix rf , and let g, h ∈ Rrfrf+1 be such that (q, g) and (q, h) are accepted by u at any

wealth level, then if g and h are independent then u accepts (2q, 1
2g + 1

2h) at any wealth level.

Proof. From proposition 4 as PAS
(

1
2g + 1

2h
)
≥ 2 · min

{
PAS (g) , PAS(h)

}
, by the properties of

QAS .

This proposition implies the analog to Samuelson’s theorem for the case where a risk free asset

exists.

Example. (The demand for market portfolios). Cabrales et al. [2014] use the estimates of risk

aversion from Dohmen et al. [2011] to deduce that for relevant wealth levels a large fraction of the

developed world population (importantly, not the very poor or the very rich) could be characterized

by 1.8 · 10−6 < ρu < 5 · 10−4 . Kadan and Liu [2014] use historical monthly return data from the

American market and estimate E [r − rf ] by .406 and 1
RAS

by .038 suggesting an estimated value

of .406
.038 ≈ 10.69 for PAS . Based on these estimates, a policy maker may inform individuals that if

they do not invest in the market they will (probably) be better-off by purchasing a well diversified

portfolio with expected return of q where q
10.69 <

(
5 · 10−4

)−1
= 2, 000, or, approximately, q <

20, 000. Finally, using the estimate for expected net return, this bound suggests that an exposure

of less then 20,000
.406 ≈ $50, 000 to a well diversified portfolio of American shares is better than holding

just risk free assets. An upper bound can also be suggested: investing more than
(1.8·10−6)

−1·10.69

.406 ≈
$13, 800, 000 is dominated by opting out of the market.34

Example. In the same setting, consider a policy maker who considers levying a tax on risky

investment. Using the above estimates for risk aversion, and recalculating PAS for the after tax

return, the policy maker can derive an upper bound over possible tax revenues.

7 A Consistent Index of Relative Riskiness

This section presents an application for the setting of multiplicative gambles.

Define U := {u : R+ → R| %u(w) > 1∀w > 0}, the set of (twice continuously differentiable) util-

ity functions with relative risk aversion higher than the logarithmic utility function. Additionally,

let H :=
{
g ∈ G|QFH(g) < 1

}
be the set of gambles with FH riskiness smaller than 1. The following

is a result of FH:

Fact 1. QFH(g) < 1⇐⇒
∏

(1 + gi)
pi > 1 ⇐⇒ E [log(1 + g)] > 0.

34For the upper bound I make the standard assumption that utilities present (weakly) decreasing absolute risk
aversion.
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In what follows I will consider multiplicative gambles, so that now u accepts g at w if u(w+gw) >

u(w), and rejects g otherwise.35 The interpretation of QFH(g) < 1 is that gambles of the form

wg are accepted by a logarithmic utility function at wealth w. Repeatedly accepting independent

gambles with QFH(g) > 1 would lead to bankruptcy with probability 1.

Adjusting the previous axioms to the current setting yields the following axioms for an index

of (relative) riskiness Q : H → R+:

Axiom. Scaling. ∀α > 0 ∀g ∈ H, Q ((1 + g)α − 1) = α ·Q(g).36

Similar to the homogeneity axiom, the scaling axiom embodies a cardinal interpretation.

Definition. Ordinally equivalent. Given an index of riskiness Q, AQ is ordinally equivalent to the

coefficient of relative risk aversion % if ∀u, v ∈ U ∀w,w′ > 0, AQ(u,w) > AQ(v, w′) ⇐⇒ %u(w) >

%v(w
′).37

Theorem 8. If local consistency and scaling hold, then AQ is ordinally equivalent to %, and the

relation at least as averse to Q-riskiness induces the same order as %.

Proof. omitted.

Axiom. Global consistency. For every u and v in U , for every w > 0 and every g and h in H, if

u �Q v, u accepts g at w, and Q(g) > Q(h), then v accepts h at w.

Lemma 4. For any g ∈ H there is a unique positive number S(g) such that E
[
(1 + g)

− 1
S(g)

]
= 1.

Proof. See appendix.

Definition. The index of relative riskiness S of gamble g ∈ H is implicitly defined by the equation

E
[
(1 + g)

− 1
S(g)

]
= 1.

Theorem 9. S is the unique index of riskiness that satisfies local consistency, global consistency

and scaling, up to a multiplication by a positive number.

Proof. See appendix.

As before, scaling is not always a desirable property. In what follows I omit this requirement.

Axiom. Strong global consistency. For every u and v in U , for every w > 0 and every g and h in

H, if u %Q v, u accepts g at w, and Q(g) > Q(h), then v accepts h at w.

Theorem 10. If Q is a continuous index of relative-riskiness that satisfies monotonicity with

respect to first order stochastic dominance and strong global consistency, and the relation at least

as averse to Q-riskiness is reflexive, then Q is ordinally equivalent to S.

35g can be interpreted as the return on some risky asset.
36Importantly, note that for every α > 0 if g ∈ H then (1 + g)α − 1 ∈ H by fact 1.
37Whenever the adaptation of a definition from the previous sections is clear, I omit it for brevity.
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Proof. See appendix.

Corollary. If Q is a continuous index of relative-riskiness that satisfies monotonicity with respect

to first order stochastic dominance and strong global consistency, and the relation at least as averse

to Q-riskiness is reflexive, then Q satisfies local consistency and AQ is ordinally equivalent to %.

Remark. The monotonicity and continuity requirements could be replaced by other conditions as

in Remark 2.

Proposition 7. A gamble g with S(g) = c is rejected by u at w only if there exist some w′ such

that small gambles with S-riskiness of c are rejected. A gamble g with S(g) = c is accepted by u at

w only if there exist some w′ such that small gambles with S-riskiness of c are accepted.

Proof. omitted.

Corollary. If S(g) > sup
w>0

A−1
S (u,w) = sup

w>0
%−1
u (w) then u rejects g at any wealth level. If S(g) <

inf
w>0

A−1
S (u,w) = inf

w>0
%−1
u (w) then u accepts g at any wealth level.

Proof. omitted.

Definition 10. Compound gamble property. An index Q has the compound gamble property if for

every compound gamble of the form f = (1+g)(1+1Ah)−1, where 1 is an indicator, A is an event

such that g is constant on A (g|A ≡ x for some x) and h is independent of A, max {Q(g), Q(h)} ≥
Q(f) ≥ min {Q(g), Q(h)}.

Proposition 8. S satisfies the compound gamble property. Thus, if g, h ∈ H are independent, and

min {S(g), S(h)} > sup
w
%−1
u (w) , then a compound gamble of g and h will also satisfy the inequality.

Additionally, if g, h ∈ H are independent, and max {S(g), S(h)} < inf
w
%−1
u (w) , then a compound

gamble of g and h will also satisfy the inequality.

Proof. omitted.

Axiom. Generalized Samuelson property. ∀u,w > 0 S∞Q (u,w) ≥ inf
w>0

SQ(u,w) and R∞Q (u,w) ≤
sup
w>0

RQ(u,w)

Theorem 11. If Q satisfies the generalized Samuelson property, reflexivity, monotonicity with

respect to first order stochastic dominance and continuity then Q is ordinally equivalent to S.

Proof. omitted.
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8 Consistent Index of Delay

Similar to gambles, comparing cashflows which pay (require) different sums of money over several

points in time is not a simple undertaking. Some pairs of cashflows may be compared using the

partial order of time-dominance [Bøhren and Hansen, 1980, Ekern, 1981], which is the analogue

of stochastic dominance in this setting. A cashflow c is first-order time dominated by c′ if at any

point in time the sum of money generated by c up to this point is lower then the sum that was

generated by c′.38 Bøhren and Hansen [1980] show that if c is first-order time dominated by c′ then

every agent with positive time preferences prefers c′ to c. Positive time preferences mean that the

agent prefers a dollar at time s to a dollar at time s + ∆ for all ∆ > 0. They also show that if c

is second-order time dominated by c′ then every agent with a decreasing and convex discounting

function prefers c′ to c.39

Time dominance is, however, a partial order. In this section I use the consistency motivated

approach to derive a novel index for the delay embedded in an investment cashflow. The index I

derive is new to the literature but it is related to the well-known internal rate of return. The index

possesses several desirable properties similar to those of the AS index of riskiness. In particular, it

is monotone with respect to time dominance.

8.1 Preliminaries

An investment cashflow is a sequence of outflows (investment) followed by inflows (return), and a

sequence of times when they are conducted. Denote by c = (xn, tn)Nn=1 such a cashflow.40 When

xn is positive the cashflow pays out xn at time tn, and when it is negative, an investment of |xn|
is required at tn. Assume, without loss of generality, that t1 < t2 < ... < tN . Further, assume

that x1 < 0 and
∑
xn > 0, so that some investment is required, and the (undiscounted) return

is greater than the investment. This property implies that an agent that does not discount the

future will accept any investment cashflow, while a sufficiently impatient agent will reject it. Let

C denote the collection of such cashflows, and Ct,ε be the collection of cashflows with t1 ≤ t ≤ tN ,

and tN − t1 < ε.

An index of delay is a function T : C → R+ from the collection of cashflows to the positive reals.

A cashflow c is said to be more T -delayed then c′ if T (c) > T (c′).

I consider a capital budgeting setting in which agent i discounts using a smooth schedule of

positive instantaneous discount rates, ri(t).
41,42 Similar to ρ in the risk setting, r induces a complete

order on all agent and time-point pairs.43 The net present value (NPV) of an investment cashflow

38The sum may be negative, representing a required investment.
39As the definition of second-order time domination requires some notation, I choose to omit it, noting that it is

analogous to second order stochastic dominance from the risk setting.
40To keep notation simple, I avoid making the dependence of N on c explicit.
41An alternative interpretation may be a social planner with such time preferences [Foster and Mitra, 2003].
42For a discussion of this condition see Bøhren and Hansen [1980] and references provided there.
43Importantly, r is not a common interest rates path as in Debreu [1972].
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c = (xn, tn)Nn=1 for the agent i at time t is

NPV (c, i, t) :=
∑
n

e
−
tń

t
ri(s)ds

xn.

If NPV (c, i, t) > 0 for some t, this inequality holds for any t. Agent i accept cashflow c (at time t)

if NPV (c, i, t) > 0 and rejects it otherwise. c could be thought of as a suggested shift to a baseline

cashflow.

The following two definitions are crucial for applying the consistency motivated approach from

the previous sections in order to present axioms for an index of delay. Given an index of delay T ,

an agent i, a time t, and ε > 0:

Definition 11. RεT (i, t) := sup {T (c)| c ∈ Ct,ε and c is accepted by i}

Definition 12. SεT (i, t) := inf {T (c)| c ∈ Ct,ε and c is rejected by i}

RεT (i, t) is the T -delay of the most delayed cashflow according to T that i is willing to accept,

restricting the support of the cashflows to an ε-ball around t. SεT (i, t) is the T -delay of the least

delayed cashflow according to T which i rejects, again restricting the support of the cashflows to

an ε-ball around t.

Definition. i at t is at least as averse to T -delay as j at t′ if for every δ > 0 there exists ε > 0

such that SεQ(j, t′) ≥ RεQ(i, t)− δ.
The interpretation of i at t being at least as averse to T -delay as j at t′ is that, at least for

cashflows with a short horizon, if i accepts any short-horizon cashflow concentrated around t with

a certain level of T -delay, j accepts all short-horizon cashflows which are significantly (by at least

δ) less delayed according to T and are concentrated around t′. Alternatively, if j rejects any short-

horizon cashflow that is concentrated around t′ and has a certain level of T -delay, i rejects all

short horizon cashflows which are significantly (by at least δ) more T -delayed and are concentrated

around t.

The following definitions will also prove useful:

Definition 13. RT (i, t) := lim
ε→0+

RεT (i, t)

Definition 14. ST (i, t) := lim
ε→0+

SεT (i, t)

Roughly speaking, RT (i, t) is the T -delay of the most T -delayed short-horizon cashflow that is

concentrated around t and accepted by i, and ST (i, t) is the T -delay of the least T -delayed short-

horizon cashflow that is concentrated around t and rejected by i at t. As before, the coefficient of

local aversion to T -delay of i at t is therefore defined as

AT (i, t) :=
1

RT (i, t)
,

noting that all of the results would hold for 1
ST (i,t) as well.

27



8.2 The Index

The following axioms are an adaptation of the axioms used in Theorem 3 for the current setting.

They are used for presenting the analogue of this theorem, as well as the analogue of Theorem 2.

Theorem 12 provides conditions under which there is only one order of local aversion to delay and

it corresponds to the instantaneous discount rate.

Axiom. Translation invariance. T
(

(xn, tn + λ))Nn=1

)
= T

(
(xn, tn)Nn=1

)
for any cashflow and any

λ > 0.

Translation invariance of T means that T -delay is a time expression, like “in a week” or “a year

before,” and it does not depend on the start date. In contrast, the interpretation of expressions

such as “this Tuesday” depends critically on whether they are said on Friday or Monday. This will

be the only “new” requirement in the current setting; all other axioms are adaptions of the axioms

from the risk settings to the current one.

Axiom. Homogeneity (of degree k in dates). For any cashflow with t1 = 0, for any λ > 0,

T
(

(xn, λ · tn)Nn=1

)
= λk · T

(
(xn, tn)Nn=1

)
for some k > 0.

Homogeneity of degree 1 in dates, when combined with translation invariance, represents the

notion that if each payment in the cashflow is conducted twice as late relative to the first period

of investment, then the entire cashflow is twice as delayed relative to that time. This is a strong

cardinal assumption and I later discuss its removal.

Axiom. Local consistency. ∀i ∀t ∃λ > 0 ∀δ > 0 ∃ε > 0 RεT (i, t)− δ < λ < SεT (i, t) + δ.

Local consistency says that cashflows which are “local” with respect to t that are significantly

less T -delayed than some cut-off level are always accepted by i, and that ones significantly more

T -delayed than the cutoff are always accepted. Lemma 17 in the appendix shows that whenever

homogeneity is satisfied, local consistency implies that 0 < ST (i, t) = RT (i, t) < ∞. This means,

that for “local” cashflows T is sufficient information to determine an agent’s optimal behavior. In

other words, the decisions of agents are consistent with the index, on small domains.

Definition. Reflexivity. The relation at least as averse to T -delay is reflexive if for all i and t, i at

t is at least as averse to T -delay as i at t.

Proposition. If T satisfies local consistency, then the relation locally at least as averse to T -delay

is reflexive .

Definition. Ordinally equivalent. Given an index of delay T , AT is ordinally equivalent to the

instantaneous discount rate r if ∀i, j, ∀t, t′ AT (i, t) > AT (j, t′) ⇐⇒ ri(t) > rj(t
′).

Theorem 12. If T satisfies local consistency, homogeneity and translation invariance, then AT is

ordinally equivalent to r, and the relation at least as averse to T -delay induces the same order as

r.
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Proof. See appendix.

Remark 4. All axioms in Theorem 12 are essential: omitting any admits indices to which the

coefficient of local aversion is not ordinally equivalent to r, and the relation at least as averse to

T -delay does not induce the same order as r.

Proof. The proof follows from the following examples.

Example 10. T ≡ 5 satisfies local consistency and translation invariance, but it does not satisfy

homogeneity of degree k > 0. The local aversion to this index induces the trivial order and AT ≡ 1
5 .

Example 11. T := t2−t1 satisfies homogeneity and translation invariance, as λt2−λ·0 = λ (t2 − 0)

and t2− t1 = (t2 + λ)− (t1 + λ). Local consistency is, however, violated. The local aversion to this

index induces the trivial order and AT ≡ ∞.

Example 12 demonstrates that without translation invariance the inference is not necessarily

correct. The following two definitions prove useful for the example as well as for the statement and

proof of Theorem 14.

Definition. The Internal rate of return (IRR) of an investment cashflow c = (xn, tn)Nn=1, written

α(c), is the unique positive solution to the equation
∑
n

e−αtnxn = 0.

Existence and uniqueness follow from Lemma 16 which generalizes the result of Norstrøm [1972]

who had shown that investment cashflows have a unique positive IRR in the discrete setting. For

general cashflows, multiple solutions to the equation defining the internal rate of return may exit.44

Definition. For a cashflow c, D(c) := 1
α(c) is the inverse of the IRR of the cashflow.

Example 12. Consider the index of delay

T (c) =


D(c) , if t1 < 3 or 5 < tN

(t1 − 2) ·D(c) , if 3 ≤ t1 ≤ 4

(6− t1) ·D(c) , if 4 ≤ t1 ≤ 5.

It is homogeneous since it coincides with D on the relevant domain. It is locally consistent since

D is, a fact which will be proved later, and since for any t, in small environments of t the index

is approximately equal to C ·D(·) for some C = C(t). Now, consider an agent, i, with a constant

discount rate ri(t) ≡ r. For t = 4, the coefficient of T -delay aversion of the agent is not equal to the

coefficient of T -delay aversion for the same agent at at t = 1. But ri (·) is constant by construction.

It is also the case that i at t = 4 is not at least as averse to T -delay as i at t = 1.

44In addition, phenomena with the flavor of reswitching might arise [Levhari and Samuelson, 1966], as discussed in
Footnote 46.
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Theorem 13. (i) There exists a continuum of translation invariant, locally consistent, homoge-

neous of degree 1 indices of delay to which the local aversion equals to r. (ii) Moreover, some of

these indices are not monotone with respect to first order time dominance.45

Proof. See appendix.

Definition. Globally more T -delay averse. i is Globally at least as T -delay averse as j (denoted

j -
T
i) if for every t and t′, i at t is at least as averse to T -delay as j at t′. i is globally more T -delay

averse than j (denoted by j ≺T i) if j -T i and not i -T j.

This definition generates a partial order over agents, based on their preferences and on the index

of delay. As before, global consistency is an important part of the approach.

Axiom. Global consistency. If j ≺T i, T (c) < T (c′), and i accepts c′, then j accepts c.46

Theorem 14. Dk (·) is the unique index of delay that satisfies local consistency, global consistency,

homogeneity of degree k > 0 and translation invariance, up to a multiplication by a positive number.

Proof. See appendix.

The homogeneity axiom is not necessarily appealing in the current setting. In what follows,

it will be removed and replaced with less demanding conditions: monotonicity with respect to

first order time dominance and continuity. As in previous sections, Example 13 shows that these

conditions are not enough to pin down desirable indices. Hence, I will require a slightly stronger

version of global consistency but, as before, will replace the local consistency requirement with the

weaker requirement of reflexivity.

Definition. Continuity. An index of delay is continuous if T (cn) −→ T (c) whenever {c}∪{cn} ⊂ C,

random variables with distribution

 |xni |∑
i|xi>0
|xni |

, tni

 and

 |xni |∑
i|xi≤0
|xni |

, tni

 converge in probability to(
|xi|∑

i|xi>0

|xi| , ti

)
and

(
|xi|∑

i|xi≤0

|xi| , ti

)
respectively if all random variables are uniformly bounded and∑

xni converges to
∑
xi.

Example 13. Consider the index

T (c) := 1 +
∑
j|xj>0

|xj | tj∑
i|xi>0

|xi|
−
∑
j|xj≤0

|xj | tj∑
i|xi≤0

|xi|
.

It is well-defined and positive as the first summation is a weighted average of greater numbers and

both summations are non-degenerate, by the definition of investment cashflow. It is translation

45T satisfies monotonicity with respect to first order time dominance if T (c) < T (c′) whenever c time dominates c′.
46The use of acceptance and rejection allows me to avoid the reswitching problem of the famous Cambridge capital

controversy (See Cohen and Harcourt [2003] for an extensive review). In contrast to choices between two cashflows,
which, in general, may not be monotonic in the discount rate, acceptance and rejection decisions of investment
cashflows are monotonic in these rates. This is shown in Lemma 16 in the appendix.
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invariant since adding t to all ti’s increases both summations by t. Continuity follows directly

from the definition of continuity. Homogeneity of degree 0 in payoffs holds as well, since weights

are not changed when all xi’s are multiplied by a positive number. local consistency holds since

both summations converge to t, when considering smaller and smaller environments of t, and so

RT ≡ ST ≡ 1. Hence, the coefficient of local aversion to T -delay is identically equal to 1, and every

i is globally at least as averse to T -delay as any j. Thus, the relation more averse to T -delay is

empty and global consistency is automatically satisfied.

Axiom. Strong global consistency. If j -T i, T (c) < T (c′), and i accepts c′, then j accepts c.

Theorem 15. If T is a continuous index of delay that satisfies monotonicity with respect to first

order time dominance, translation invariance and strong global consistency, and the relation at least

as averse to T -delay is reflexive, then T is ordinally equivalent to D.

Proof. See appendix.

Corollary. If T is a continuous index of delay that satisfies monotonicity with respect to first order

time dominance, translation invariance and strong global consistency, then T is locally consistent

and AT is ordinally equivalent to r.

Remark. The monotonicity requirement in the theorem could be replaced by each of the following

conditions:

(a) Satisfying the ordinal content of homogeneity

(b) Monotonicity with respect to delaying the first investment period, leaving the rest unchanged

In such case, monotonicity with respect to first order time dominance will be a result, not an

assumption.47

8.3 D-Delay Aversion and the Demand for Investment Cashflows

Proposition 9. A cashflow c = (xn, tn)Nn=1 with D(c) = b is rejected by i only if there exist some

t ∈ [t1, tN ] such that small cashflows with D of b are rejected. A cashflow c = (xn, tn)Nn=1 with

D(c) = b is accepted by i only if there exist some t ∈ [t1, tN ] such that small cashflows with D of b

are accepted.

Proof. See appendix.

Corollary. If D(c) > sup
t
A−1
D (i, t) = sup

t
r−1
i (t) then i rejects any translation of c. If D(c) <

inf
t
A−1
D (i, t) = inf

t
r−1
i (t) then i accepts any translation of c.

Similar to results in previous sections, the corollary suggests a partition of the class of cashflows

into three: ones which the agent never accepts, ones which are always accepted, and ones whose

acceptance or rejection may not be determined.

47The continuity assumption could also be relaxed.
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Definition 15. Compound cashflow property. An index T has the compound cashflow property if

for every compound cashflow of the form f = c + c′,48 where c,c′ and f are investment cashflows

max {T (c), T (c′)} ≥ T (f) ≥ min {T (c), T (c′)}.

Proposition 10. D satisfies the compound cashflow property. Thus, if c, c′, c + c′ ∈ C and

min {D(c), D(c′)} > sup
t
r−1
i (t) , then c + c′ also satisfies the inequality, and if c, c′, c + c′ ∈ C

and max {D(c), D(c′)} < inf
t
r−1
i (t) then c+ c′ also satisfies the inequality.

Proof. See appendix.

Axiom. Generalized Samuelson property. ∀i S∞T (i) ≥ inf
t
ST (i, t) and R∞T (i) ≤ sup

t
RT (i, t).

Theorem 16. If T satisfies the generalized Samuelson property, translation invariance, reflexivity,

monotonicity with respect to first order time dominance and continuity then T is ordinally equivalent

to D.

Proof. Omitted.

8.4 Other Properties of D and a Comparison with QAS

This section discusses some properties of the index of delay D and demonstrates the close connection

it has with the AS index of riskiness. The IRR is a counterpart of the rate of return over cost

suggested by Fisher [1930] as a criterion for project selection almost a century ago. Later, some

economists dismissed this criterion, arguing that the NPV was superior in comparing pairs of

cashflows. Yet, others mentioned that this criterion has the benefit of objectivity, in that it does

not require the value judgment of setting the future discount rates [Turvey, 1963]. For example,

Stalin and Nixon would agree on the IRR of an investment even though they might disagree on its

NPV.49

Just like the AS-riskiness of a gamble depends “on its distribution only—and not on any other

parameters, such as the utility function of the decision maker or his wealth” [Aumann and Serrano,

2008], D depends solely on the cashflow, and not on any agent specific properties. In this sense, D

is an objective measure of delay. In particular, D is independent of the date when the cashflow is

considered. That is, the D-delay embedded in an investments cashflow is independent of the time

when it is considered.

D is homogeneous of degree 0 in payoffs and unit free. This means, for example, that the

D-delay of two cashflows denominated in different currencies may be compared without knowledge

of the exchange rate. This stands in contrast to the AS index of riskiness which is homogeneous

of degree 1 in payoffs, but does not depend on timing. The property is analogous to the property

of QAS , according to which “diluted” gambles inherit the riskiness of the original gamble. For

48The interpretation of c + c′ is that all of the payoffs which are dictated by each of the cashflows takes place at
the times they dictate. If both require a payoff at the same time point, the payoffs are added up.

49This resembles the point made by Hart [2011] that in general there are many pairs of agents and pairs of gambles
such that each agent accepts a different gamble and rejects the other – our axioms only compare very specific pairs
of agents.
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p ∈ (0, 1) a p-dilution of the gamble g takes the value of the gamble with probability p and 0 with

probability 1−p, independently of the gamble. The reason why this analogy is correct is that in the

current setting, times are the parallel of payoffs from the risk setting, while payoffs are the parallel

of probabilities, as demonstrated by the remark at the end of this section.

Another property that D and QAS share is monotonicity. QAS is monotonic with respect to first

and second order stochastic dominance. The analogous property for cashflows is time-dominance

[Bøhren and Hansen, 1980, Ekern, 1981]. Proposition 3 of Bøhren and Hansen [1980] implies that

D is monotonic with respect to time-dominance of any order.

There are other similarities between the measurement of delay and risk. Value at Risk (VaR)

is a family of indices commonly used in the financial industry [Aumann and Serrano, 2008]. VaR

indices depend on a parameter called the confidence level. For example, the VaR of a gamble at the

95 percent confidence level is the largest loss that occurs with probability greater than 5 percent.

Unlike the AS index, VaR is unaffected by tail events or rare-disasters, extremely negative outcomes

that occur with low probability. In the context of project selection, Turvey [1963] mentions that

“the Pay-off Period, the number of years which it will take until the undiscounted sum of the gains

realized from the investment equals its capital cost,” was used by practitioners in the West and in

Russia. He adds that “[p]ractical men in industries with long-lived assets have perforce been made

aware of the deficiencies of this criterion and have sought to bring in the time element.” The pay-

off period criterion, unlike the index of delay, suffers from deficiencies similar to those of VaR. For

example, shifting early or late payoffs does not change its value. In fact, recalling that times in the

current setting are the parallel of payoffs in the risk setting, the lesson learned by the investors in

long-lived assets should apply to investors in risky assets with distant tail events.

QAS is much more sensitive to the loss side of gambles than it is to gains. Analogously D

is more sensitive to early flows than it is to later ones. This follows from the properties of the

exponential function in the definition of the IRR. Additionally, both D and QAS are continuous in

their respective spaces.

Finally, to clarify the analogies I made between probabilities and payoffs, and between payoffs

and times, I present a reinterpretation of the AS index of riskiness in terms of the delay embedded

in a (non-investment) cashflow.

Remark. Given a gamble g := (gj , pj), a cashflow which requires an investment of one dollar at

t = 0 and pays-out pj at time gj has a unique positive IRR whose inverse equal to QAS(g).50

To see this, recall that for a cashflow c = (xn, tn)Nn=1 the (unique) positive IRR is the (unique)

positive solution to the equation
∑
n

e−αtnxn = 0, when it exists. Noting that at t = 0, e−αt = 1 and

that the above cashflow requires an investment of one dollar at t = 0, the corresponding equation

could be written as

−1 +
∑
n

e−αgnpn = 0,

50This is not the unique IRR as 0 is also a solution of the defining equation.
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which could be expressed as

E
[
e−αg

]
= 1.

But QAS(g) is the inverse of the unique positive α which solves the equation.

For general cashflows, multiple solutions to the equation defining the internal rate of return

may exit. Interestingly, both Arrow and Pratt took interest in finding simple conditions that would

rule out this possibility [Arrow and Levhari, 1969, Pratt and Hammond, 1979]. A corollary of the

previous remark is that cashflows of the above form have a unique positive IRR.

9 A Consistent Index of the Appeal of Information Transactions

Similar to the previous settings, generating a sensible complete ranking of information structures is

an illusive undertaking. In some settings, certain information may be vital, while in others it will

not be very important. The implication is that it is not possible to rank all information structures

so that higher ranked structures are preferred to lower ranked ones by all agents at every decision

making problem. Some pairs of information structures may, however, be compared in this manner.

Blackwell’s [1953] seminal paper shows that one information structure is preferred to another by

all agents in all settings if and only if the latter is a garbling of the prior.51 That is, if one is a

noisy version of the other. But this order is partial and cannot be used to compare many pairs of

information structures.

The difficulty in generating a complete ranking which is independent of agents’ preferences is

discussed by Willinger [1989] in his paper which studies the relation between risk aversion and the

value of information. Willinger [1989] discusses his choice of using the expected value of informa-

tion (EVI) or “asking price” which was defined by LaValle [1968]. The EVI measures a certain

decision maker’s willingness to pay for certain information, and so, “... the difficulty of defining a

controversial continuous variable representing the ‘amount of information’ can be avoided.”

Cabrales et al. [2013] tackle this difficulty using an approach in the spirit of Hart [2011]. They

restrict attention to a decision problem of information acquisition by investors in a model a la

Arrow [1972], and define an order which they name uniform investment dominance, which turns

out to be a complete order over all information structures. In a separate paper, these authors

take an approach in the spirit of AS, and axiomatically derive a different index for the appeal of

information transactions [Cabrales et al., 2014]. Both approaches lead to orders which refine the

order suggested by Blackwell [1953], however, they depend on the (unique, fixed, common) prior of

the decision makers which are considered.

In this section, I study a problem of information acquisition by investors using the same tech-

niques as in previous sections. I show that the coefficient of local taste for Q-informativeness is

equal to the inverse of ARA when Q is one of these two prominent indices, and that the unique

index which satisfies local consistency, global consistency, and a homogeneity axiom is the index

of appeal of information transactions [Cabrales et al., 2014]. As always, an ordinal version of this

51A simple proof is provided in Leshno and Spector [1992].
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result, which does not assume homogeneity, is provided. The section ends with a discussion of the

prior-free implications of the index of appeal of information transactions (which is prior-dependent).

9.1 Preliminaries

This section follows closely Cabrales et al. [2014]. I consider agents with concave and twice con-

tinuously differentiable utility functions who have some initial wealth and face uncertainty about

the state of nature. There are K ∈ N states of nature, {1, ...,K},52 over which the agents have the

prior p ∈ ∆ (K) which is assumed to have a full support.

The set of investment opportunities B∗ =

{
b ∈ RK |

∑
k∈K

pkbk ≤ 0

}
, consists of all no arbitrage

assets. In particular it includes the option of inaction. The reference to the members of B∗ as no

arbitrage investment opportunities attributes to pk an additional interpretation as the price of an

Arrow-Debreu security that pays 1 if the state k is realized and nothing otherwise. Hence, p plays

a dual role in this setting. When an agent with initial wealth w chooses investment b ∈ B∗ and

state k is realized, his wealth becomes w + bk.

Before choosing his investment, the agent has an opportunity to engage in an information

transaction a = (µ, α), where µ > 0 is the cost of the transactions, and α is the information

structure representing the information that a entails. To be more precise, α is given by a finite set

of signals Sα and probability distributions αk ∈ ∆ (Sα) for every k ∈ K. When the state of nature

is k, the probability that the signal s is observed equals αk(s). Thus, the information structure may

be represented by a stochastic matrix Mα, with K rows and |Sα| columns, and the total probability

of the signals is given by the vector pα := p ·Mα. For simplicity, assume that pα(s) > 0 for all s,

so that each signal is observed with positive probability. Further, denote by qsk the probability the

agent assigns to state k conditional on observing the signal s, using Bayes’ law. Note that although

my notation does not indicate it, (qsk)
K
k=1 = qs ∈ ∆ (K) depends on α and the prior p.

The transaction a is said to be excluding if for every s there exists some k such that qsk = 0.

This means that for every signal the agent receives, he knows that some states will not be realized

(allowing him to generate arbitrarily large profits with certainty). Throughout, I will assume that

information transactions are not excluding.

Agents are assumed to optimally choose an investment opportunity in B∗ given their belief, q.

Therefore, the expected utility of an agent with utility u, initial wealth w and beliefs q is

V (u,w, q) := sup
b∈B∗

∑
k

qku (w + bk) .

In case that the agent acquires no information, his beliefs are given by the prior p. Since the agent

is risk averse, in such case his optimal choice is inaction. Hence,

V (u,w, p) = u(w).

52With a slight abuse of notation, I also denote {1, ...,K} by K. The meaning of K should be clear from the
context.
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Accordingly, an agent accepts an information transaction if∑
s

pα(s)V (u,w − µ, qs) > V (u,w, p) = u(w)

and rejects it otherwise.

Denote by A the class of information transactions described above. Additionally, denote by Aε
the sub-class of these information transactions such that ‖p− qs‖∞ < ε for all s. An index of appeal

of information transactions is a function from the class of information transactions to the positive

reals Q : A → R+. The index of appeal A suggested by Cabrales et al. [2014] is defined by

A(a) = − 1

µ
log

(∑
s

pα(s) exp (−d (p||qs))

)
,

where

d (p||q) =
∑
k

pk log
pk
qk

is the Kulback-Leibler divergence [Kullback and Leibler, 1951].

Cabrales et al. [2013] suggest the entropy reduction as a measure of informativeness of an

information structure for investors. It is defined by

Ie(α) = H(p)−
∑
s

pα(s) ·H(qs),

where,

H(q) = −
∑

k∈K
qk log(qk).

In the current context, consider the index Je, the cost adjusted entropy reduction defined by

Je(µ, α) =
Ie(α)

µ
.

To apply the techniques from the previous sections, some more definitions are required. Given

an index of informativeness Q, a utility function u, a wealth level w and ε > 0:

Definition 16. RεQ(u,w) := inf {Q(a)| a ∈ Aε and a is accepted by u at w}

Definition 17. SεQ(u,w) := sup {Q(a)| a ∈ Aε and a is rejected by u at w}

RεQ(u,w) is the Q-informativeness of the least informative accepted transaction according to

Q, which is in Aε. SεQ(u,w) is the Q-informativeness of the most informative rejected transaction

according to Q, again restricting the support of the transactions to Aε.

Definition. u at w has at least as much taste for Q-informativeness as v at w′ if for every δ > 0

there exists ε > 0 such that SεQ(u,w) ≤ RεQ(v, w′) + δ.
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The interpretation of u at w having at least as much taste for Q-informativeness as v at w′ is

that, at least for small transactions, if v at w′ accepts any small transactions with a certain level

of Q-informativeness, u at w accepts all small transactions which are significantly (by at least δ)

more Q-informative. The following definitions will also prove useful:

Definition 18. RQ(u,w) := lim
ε→0+

RεQ(u,w)

Definition 19. SQ(u,w) := lim
ε→0+

SεQ(u,w).

SQ(u,w) is theQ-appeal of the mostQ-appealing transaction that is rejected, and never provides

a lot of information, in the sense that the posterior and the prior are close.53 Finally, define the

coefficient of local taste for Q-informativeness of an agent u with wealth w as the inverse of SQ(u,w).

9.2 The Index

Theorem 17 is the analogue of Theorem 1 in the current context. It shows that the coefficient of local

taste for Q-informativeness coincides with the inverse of ρ for the two indices of informativeness

discussed above.54

Theorem 17. (i) For every u and w, RA (u,w) = SA (u,w) = ρu(w). (ii) For every u and w,

RJe (u,w) = SJe (u,w) = ρu(w).

Proof. See appendix.

Corollary 3. For Q ∈ {A, Je} u at w has at least as much taste for Q-informativeness as v at w′

iff ρu(w) ≤ ρv(w′).

The following two theorems are the analogues of Theorems 2 and 3.

Axiom. Homogeneity. There exists k > 0 such that for every information transaction a = (µ, α)

and every λ > 0, Q (λ · µ, α) = 1
λk
·Q(a).

The homogeneity axiom states that Q is homogeneous of degree −k in transaction prices. This

axiom entails the cardinal content of the index. It is particularly interesting if k = 1. In this case,

the units of the index could be interpreted as information per dollar.

Axiom. Local consistency. ∀u ∀w ∃λ > 0 ∀δ > 0 ∃ε > 0 RεQ(u,w) + δ > λ > SεQ(u,w)− δ.

Definition. Reflexivity. The relation has at least as much taste for Q-informativeness is reflexive

if for all u and w, u at w has at least as much taste for Q-informativeness as u at w.

Proposition. If Q satisfies local consistency, then the relation has at least as much taste for Q-

informativeness is reflexive.

53Note that in this setting the index is not independent of the prior p, even when the dependence is not made
explicit by the notation I use.

54The relations between risk aversion and the taste for information have been discussed extensively in the literature
[e.g. Willinger, 1989].
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Theorem 18. Fix k > 0. If Q satisfies local consistency and homogeneity of degree −k in prices,

then the coefficient of local taste for Q-informativeness is ordinally equivalent to ρ−1, and the

relation has at least as much taste for Q-informativeness induces the same order as ρ−1.

Proof. See appendix.

Remark 5. Both axioms in Theorem 18 are essential: omitting either admits indices to which the

local taste is not ordinally equivalent to ρ−1.

Proof. Follows from following examples.

Example 14. Q ≡ 5 satisfies local consistency, but it does not satisfy homogeneity of degree k < 0.

The coefficient of local taste for this index induces the trivial order.

Example 15. Q := 1
µ satisfies homogeneity, but violates local consistency. The coefficient of local

taste for this index induces the trivial order.

Theorem 19. (i) Given k > 0, there exists a continuum of locally consistent homogeneous of degree

−k indices of appeal for which the coefficient of local taste equals to the inverse of ρ. (ii) Moreover,

some of these indices are not monotone with respect to Blackwell dominance.55

Proof. See appendix.

Definition. Q-informativeness globally more attractive. For an indexQ, say thatQ-informativeness

is globally at least as attractive for u as it is for v (written v -Q u) if for all w, w′, u at w has at

least as much taste for Q-informativeness as v at w′ . Q-informativeness is globally more attractive

for u than to v (written v ≺Q u) if v -Q u and not u -Q v.

Axiom. Global consistency. For any w, any u, v, and any a, b ∈ A, if v ≺Q u, A(a) < A(b) and v

accepts a at w, then u accepts b at w.

Theorem 20. For a given k > 0, Ak (·) is the unique index that satisfies local consistency, global

consistency and homogeneity of degree −k in prices, up to a multiplication by a positive number.

Proof. Let Q′ satisfy the conditions and consider Q = (Q′)1/k. It is homogeneous of degree −1

and still locally consistent, so by Theorem 18 the relation has at least as much taste for Q-

informativeness induces the same order as ρ−1. This, in turn, implies that if v ≺
Q
u then v is

uniformly more risk averse than u. Combined with this fact, global consistency and homogeneity

of degree −1 in prices imply the two axioms that are uniquely satisfied by positive multiples of A,

according to Theorem 4 in Cabrales et al. [2012]. That A satisfies local consistency follows from

Theorem 17. This implies that Ak also satisfies local consistency. That other axioms are satisfied

follows from Cabrales et al. [2012] using Theorem 17. The same holds for positive multiples of

Ak.

55Q is monotone with respect to Blackwell dominance if for any cost µ > 0 and all information structures α, β, if
α Blackwell dominates β then Q(µ, α) > Q(µ, β).
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Corollary 4. Je, the cost adjusted entropy reduction index, does not satisfy global consistency.

Example 16. (Based on Example 2 of Cabrales et al. [2012]). Let K = {1, 2, 3} and fix a uniform

prior. Consider the information structures

α1 =

 1− ε1 ε1

1− ε1 ε1

ε1 1− ε1

 , α2 =

 1− ε2 ε2

0.1 0.9

ε2 1− ε2

 ,
and the information transactions a1 = (1, α1) and a2 = (1, α2). It can be shown that

A(a1) ≈ − log

(
2

3
ε
1/3
1 +

1

3
ε
2/3
1

)
,

and

A(a2) ≈ − log
(
ε
1/3
2

)
.

This means that the ordering of the two transactions according to A depends on the choices of

ε1, ε2 > 0. Even when they are both small, their relative magnitude matters.

In contrast, the cost adjusted entropy reduction index, Je, ranks a2 higher than a1 for small

ε1, ε2 > 0. To see this, note that

Je (a1) ≈ ln 3− 0.462,

and

Je (a2) ≈ ln 3− 0.550.

This means that there exists a choice of small enough ε1, ε2 such that A(a1) < A(a2) and Je(a1) >

Je(a2). Hence, there exists two CARA functions with different ARA coefficients (between A(a1)

and A(a2)), which both accept a2 but reject a1, demonstrating that Je violates global consistency.

As discussed previously, the homogeneity axiom has some cardinal content. In what follows, it

will be removed and replaced with less demanding conditions: monotonicity in prices, and continuity

with respect to prices. Example 17 will show that these conditions do not suffice to ensure that

the local taste for Q-informativeness does not induce the trivial order or even that the index is

monotonic with respect to Blackwell’s order. As in previous sections, with a stronger version of

global consistency, these conditions will suffice to pin down a unique index of informativeness (up

to a monotonic transformation), and this index will have all of the desirable properties mentioned

above.

Definition. Continuity. An index of informativeness is continuous (in price) if for every α, Q(·, α)

is a continuous function from R+ to R+.

Example 17. Q (µ, α) := 1 − exp
{
−
(

1 + 1
µ

)}
is positive and continuous. It satisfies local con-

sistency, but the relation has at least as much taste for Q-informativeness applies to any two

utilitiy-wealth pairs. Hence, for any u and v, Q-informativeness is not more attractive for u than

39



it is for v, and so global consistency is satisfied. The coefficient of local taste for Q-informativeness

is equal to 1 for all agents at all wealth levels. Since Q is independent of the signal structure, it is

clearly not monotonic with respect to Blackwell’s order.

Axiom. Strong global consistency. For any w, any u, v, and any a, b ∈ A, if v -Q u, A(a) < A(b)

and v accepts a at w, then u accepts b at w.

Strong global consistency is clearly violated by the index from Example 17, as any two utilities

u, v satisfy v -Q u.

Theorem 21. If Q is a continuous index of the appeal of information transactions that satisfies

monotonicity in price and strong global consistency, and the relation has at least as much taste for

Q-informativeness is reflexive, then Q is ordinally equivalent to A.

Proof. See appendix.

Corollary. If Q is a continuous index of the appeal of information transactions that satisfies

monotonicity in price and strong global consistency, and the relation has at least as much taste for

Q-informativeness is reflexive, then Q satisfies monotonicity with respect to Blackwell dominance

and local consistency, and the coefficient of local taste for Q-informativeness is ordinally equivalent

to ρ−1.

9.3 The Demand for Information Transactions

Proposition 11. An information transaction a with A(a) = b is rejected by u only if there exist

some w such that local transactions with A of b are rejected. An information transaction a with

A(a) = b is accepted by u only if there exist some w such that local transactions with A of b are

accepted.

Proof. Omitted.

Corollary. [Cabrales et al., 2014, Theorem 2] If A(a) > sup
w
ρu(w) then u rejects a at any wealth

level. If A(a) < inf
w
ρu(w) then u accepts a at any wealth level.

Remark. Cabrales et al. [2014] derive a result on sequential transactions,56 which could be general-

ized to a result in the spirit of compound gamble property. Since this result requires some notation,

I do not provide it here.

Axiom. Generalized Samuelson property. ∀u,w′ S∞Q (u,w′) ≤ sup
w
SQ(u,w) and R∞Q (u,w′) ≥

inf
w
RQ(u,w).

Theorem 22. If Q satisfies the generalized Samuelson property, reflexivity, monotonicity with

respect to first order time dominance and continuity then Q is ordinally equivalent to A.

Proof. Omitted.

56Section 7.3 of Cabrales et al. [2014].

40



9.4 Properties of the Index A

The setting of information transactions is somewhat different than other settings that are discussed

in this paper, in that the index depends on the prior, and is therefore not completely objective.

Example 18 below shows that the order induced by A is different for different priors. Thus, the

prior is a relevant part of the specification of the decision making problem that the index is derived

from. The fact that in the setting presented here the prior and the prices (which are more likely to

be observable) coincide is comforting in this regard.57

An important property of the index A is that it is monotonic with respect to Blackwell’s [1953]

partial ordering of information structures [Cabrales et al., 2014]. According to Blackwell’s order,

one information structure is more informative than another if the latter is a garbling of the prior.

Blackwell [1953] proved that one information structure is more informative than another according

to this partial ordering if and only if every decision maker prefers it to the other. Cabrales et al.

[2014] show that if α is more informative than β in the sense of Blackwell, then A(µ, α) > A(µ, β)

for every µ > 0 and every prior.58 As Blackwell’s ordering is the parallel of stochastic dominance

and time dominance, this property is analogous to the properties of the indices presented in previous

sections. It is important to note that monotonicity with respect to Blackwell dominance was not one

of the requirements in Theorem 21. Other desirable properties of the index include monotonicity

in prices and being jointly continuous in p, µ, and qs. For an extensive discussion of the properties

of this index see Cabrales et al. [2014].

Finally, the cardinal interpretation of the index A is relatively more compelling, as the homo-

geneity (of degree -1) axiom may be interpreted as stating that the index measures information per

dollar payed. If this interpretation is taken seriously, then the index may be used in practice for

comparing different information providers, charging a fixed fee.

9.5 Prior-Free Implications

In this section I make the dependence of A on the prior, p, explicit and write A(·, p). First, I note

that the order induced by the index of the appeal of information transactions depends on the prior

in the strict sense. This can be seen easily in the following example:

Example 18. Let K = {1, 2, 3} and let p1 = (.5− ε, .5− ε, 2ε) and p2 = (2ε, .5− ε, .5− ε). Consider

the information structures

α1 =

 1− ε ε

ε 1− ε
.5 .5

 , α2 =

 .5 .5

1− ε ε

ε 1− ε


for some small ε, and the information transactions a1 = (1, α1) and a2 = (1, α2). It is easy to verify

that A(a1, p1) > A(a2, p1), but A(a1, p2) < A(a2, p2). Informally, this is true since, given pi, αi

57See also the next subsection which discusses the prior-free implications of A.
58Recall that A depends on the prior p, even though this fact is not reflected in the notation I use.
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reveals almost all of the information that an investor could hope for, but α−i could be improved

upon significantly.

The upshot of the example is that without knowledge of the prior, an analyst cannot deduce

the “correct” complete order which was derived previously. But some comparisons could still be

made, even in the absence of knowledge about the prior. For example, since A is monotonic with

respect to Blackwell dominance for all p, whenever one structure, α, Blackwell dominated another,

β, it is the case that A ((µ, α) , p) ≥ A ((µ, β) , p) for all prices, µ, and all prior beliefs, p. The same

holds for comparisons of structures that differ only in price.

Definition. An information transaction a is at least as appealing as b independently of the prior

if A(a, p) ≥ A(b, p) for all prior beliefs, p.

As explained above, the order prior-independent at least as appealing is strictly partial, but it

includes all the comparisons that could be made by Blackwell’s partial order and monotonicity in

prices. I now turn to show that it could compare strictly more pairs of information transactions. I

base my proof on an example used in Peretz and Shorrer [2014] to show that, even though the index

Ie of Cabrales et al. [2013] depends on the prior, it can compare strictly more pairs of information

structures than Blackwell’s order.

Theorem 23. There exists information transactions a = (1, α) and b = (1, β), such that α does

not dominate β in the Blackwell sense, yet a is at least as appealing as b independently of the prior,

and b is not at least as appealing as a independently of the prior.59

This result suggests that, even though the prior-independent order is partial, it still improves

upon the more general Blackwell ordering. Thus, restricting attention to the particular decision

making problem of investment, allows to derive a more complete order than Blackwell’s, even

without specifying a prior. This result, therefore, contributes to the literature which attempts to

extend partial order of Blackwell by restricting the class of decision problems and agents under

consideration [e.g. Persico, 2000, Athey and Levin, 2001, Jewitt, 2007].

Proof. Follows from the example.

Example 19. Let K = {1, 2} and and consider the information structures

α1 =

[
.3 .7

.7 .3

]
, α2 =

[
.3 .7

.1 .9

]
,

and the transactions a = (1, α1), b = (1, α2).

I claim that A(a, p) ≥ A(b, p) for all p. Identify p with the probability of state 1, which lies in

[0, 1]. Fixing the two information structures, define a function φa,b : [0, 1] −→ R as follows:

φa,b (·) := exp {−A(b, ·)} − exp {−A(a, ·)} .
59Cabrales et al. [2014] disentangle the roles of p, and propose an index that depends on both security prices and

the prior. The theorem will continue to hold in this setting, even if independence of both the prior and prices is
required.
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For p ∈ {0, 1}, A (·, p) ≡ 0, hence φa,b (p) also equals zero. φa,b (·) is also a continuous function

(this follows from the properties of A) and twice continuously differentiable in (0, 1) with a strictly

positive second derivatives. This implies that φa,b (·) is a convex and continuous function with

φa,b (0) = φa,b (1) = 0. But this means that φa,b (p) ≤ 0 for all p ∈ [0, 1] which means that

A(b, p) ≤ A(a, p) for all p ∈ [0, 1], hence a is at least as appealing as b independently of the prior.

It is not hard to verify that b is not at least as appealing as a (by example, or using the strict

convexity of φa,b).

Finally, it remains to check that the comparison is not due to monotonicity in price or Blackwell’s

order. The first is obvious, as a and b involve the same price. It is not very hard to verify that α1

does not dominate α2 in the Blackwell sense. To do this, note that the set of all 2× 2 information

structures which are dominated by α1 is

Conv

{(
1 0

1 0

)
,

(
0 1

0 1

)
,

(
.3 .7

.7 .3

)
,

(
.7 .3

.3 .7

)}
,

where Conv denotes the convex hull of the four matrices. α2 is not included in this set, as Figure

1 illustrates.

Figure 1: The figure depicts the two dimensional space of 2 × 2 in-
formation structures. These matrices could be written as[
x 1− x
y 1− y

]
, where both x and y are in [0, 1]. In the

figure, x is represented by the horizontal axis and y is
represented by the vertical axis. The shaded area are the
matrices which represent information structures which are
dominated by α1 in the Blackwell sense. The point α2 is
outside the shaded area.
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10 Discussion

This paper presented an axiomatic approach for deriving an objective index which could serve as

a guide for decision making for different decision makers. The approach was shown to be quite

general; it pins down a unique index with desirable properties in five decision making settings.

Future research should focus on characterizing the class of decision making problems to which the

approach is applicable.
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11 Appendix - Proofs

11.1 Fact 2 and Lemmata 5 and 6

Definition. Full image. An index of riskiness Q satisfies full image if for every ε > 0, ImQ (Gε) =

R+.

Full image says that even when the support of the gambles is limited to an ε-ball, the image of

Q is all of R+. Both QAS and QFH satisfy full image. This is simply demonstrated by considering

gambles of the form g = [ε, ecε

1+ecε ;−ε,
1

1+ecε ] and g′ = [ε, 1
2 ;− ε

1+ε·c ,
1
2 ], as QAS(g) = 1

c and QFH(g′) =
1
c .

Fact 2. If Q satisfies full image then RQ(u,w) ≥ SQ(u,w) for every u and w.

Proof. By the properties of the supremum, since

{Q(g)| g ∈ Gε and g is accepted by u at w} ∪ {Q(g)| g ∈ Gε and g is rejected by u at w} = R+.
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If the supremum of the first set is less than the infimum of the second, then intermediate points do

not belong to either in violation of full-image.

Lemma 5. If Q satisfies homogeneity and 0 < SQ(u,w) <∞ for all u and w, then Q satisfies full

image.

Proof. For some u and w, SQ(u,w) = c, 0 < c < ∞. Hence for some small positive ε′, for every

0 < ε < ε′ there exists gambles in Gε with Q-riskiness greater than c
2 . Since multiplying by 0 < λ < 1

keeps the gambles in Gε, there are gambles with any level of Q-riskiness lower than c
2 in Gε. Since

for λ > 1, ε < ε′ implies that ε
λ < ε′, the same applies to G ε

λ
. But, using homogeneity, this means

that Gε includes gambles with any level of Q-riskiness lower than λ · c2 . Since λ > 1 was arbitrary,

the proof is complete.

Lemma 6. If Q satisfies homogeneity and local consistency, then 0 < SQ(u,w) = RQ(u,w) < ∞
for all u and w.

Proof. Local consistency states that

∀u ∀w ∃λ > 0 ∀δ > 0 ∃ε > 0 RεQ(u,w)− δ < λ < SεQ(u,w) + δ,

which implies that

∀u ∀w ∃λ > 0 RQ(u,w) ≤ λ ≤ SQ(u,w).

Since for any u, w, and ε > 0 the set {g| g ∈ Gε, g is rejected byu atw} is non empty, there

exists a sequence of gambles {gn} such that for each n gn is rejected, gn ∈ G 1
n

and Q (gn) < (1+ 1
n) ·

S
1/n
Q (u,w). For small δ > 0 , let hn := (1− δ)gn for each n. For n large enough, hn are all accepted

since Q(hn) = (1− δ)kQ(gn) < S
1/n
Q (u,w) and hn is in G 1

n
. But this implies that RQ (u,w) >

(1− δ)k SQ(u,w) since hn are almost always accepted and lim
n→∞

Q(hn) = (1− δ)k lim
n→∞

Q(gn) =

(1− δ)k SQ(u,w). Since δ was arbitrarily small, this implies RQ (u,w) ≥ SQ(u,w). So, putting the

results together, gives

∀u ∀w ∃λ > 0 λ ≤ SQ(u,w) ≤ RQ(u,w) ≤ λ,

which completes the proof.

11.2 Theorem 2

Proof. (i) I first show that for every a > 0 any combination of the form Qa(g) := QFH(g) + a ·∣∣QFH(g)−QAS(g)
∣∣ is an index of riskiness for which the coefficient of local aversion equals the

coefficient of local aversion to QFH . The reason is that for small supports, the second element in

the definition is vanishingly small by Inequality 3.0.3, and so Qa and QFH should be close.

Fix a > 0. First, note that

∀g ∈ G 0 < QFH(g) ≤ QFH(g) + a ·
∣∣QFH(g)−QAS(g)

∣∣ ,
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so Qa(g) ∈ R+. Additionally, for every δ > 0 there exists ε > 0 small enough such that for every

g ∈ Gε,
QFH(g) ≤ QFH(g) + a ·

∣∣QFH(g)−QAS(g)
∣∣ ≤ QFH(g) + δ. (11.2.1)

Inequality 11.2.1 stems from the small support combined with Inequality 3.0.3. It tells us that

the coefficient of local aversion to Qa-riskiness cannot be different from AQFH which equals AQAS

according to Theorem 1. That local consistency is satisfied follows from the same reasoning. The

proof of (i) is completed by recalling that QFH 6= QAS , that both indices are locally consistent

(immediate from Theorem 1) and homogeneous.60

(ii) Follows from Example 2.

11.3 Theorem 3

Proof. I start with the first part. In one direction, ρu(w) > ρv(w
′) implies that (u,w) m (v, w′)

[Yaari, 1969], so Lemma 1 implies that AQ(u,w) ≥ AQ(v, w′).

To see that AQ(u,w) 6= AQ(v, w′), define c :=
(
ρu(w)+ρv(w′)

2

)−1
. Let {gn}∞n=1 be a sequence of

gambles such that gn ∈ G 1
n

and QAS(gn) = c. For a small δ > 0 let hn = (1 + δ)gn. By Theorem 1,

for large values of n, gn and hn will be rejected by u at w and accepted by v at w′, so

SQ(v, w′) ≥ RQ(v, w′) ≥ (1 + δ)k · SQ(u,w) > SQ(u,w) ≥ RQ(u,w),

where the strict inequality follows from the fact that ∞ > SQ(u,w) > 0 by Lemma 6, the first

and the last inequality follow from the local consistency axiom, and the second inequality follows

from the definitions of RQ and SQ and homogeneity, by the properties of gn and hn. This proves

that AQ(u,w) > AQ(v, w′).

In the other direction, if AQ(u,w) > AQ(v, w′) then, from homogeneity and the fact that

∞ > RQ(v, w′) > RQ(u,w) > 0, there exists a sequence of gambles {kn}∞n=1 such that kn ∈ G 1
n

and Q(kn) = c′, where c′ :=
(
AQ(u,w)+AQ(v,w′)

2

)−1
. For a small δ > 0 let ln = (1 + δ)gn. A similar

argument shows that

SQAS (v, w′) = RQAS (v, w′) ≥ (1 + δ) · SQAS (u,w) > SQAS (u,w) = RQAS (u,w),

where the strict inequality follows from the fact that SQAS (u,w) > 0 by Lemma 2, the equalities

follow from the same lemma, and the weak inequality follows from the definitions of RQAS and SQAS

and the homogeneity of QAS , by the properties of gn and ln. Using Lemma 2 once again, this implies

that ρu(w) > ρv(w
′).

For the second part, recall that u at w is at least as averse to Q-riskiness as v at w′ if for every

δ > 0 there exists ε > 0 such that SεQ(v, w′) ≥ RεQ(u,w)−δ. This implies that SQ(v, w′) ≥ RQ(u,w),

which from Lemma 6 implies that RQ(v, w′) ≥ RQ(u,w).

60An alternative proof could use indices of the form:(QFH)α(QAS)1−α, α ∈ (0, 1). This form may prove to be useful
in empirical work, since it enables some flexibility in the estimation. In addition, it allows us to put some weight on
the FH measure that “punishes” heavily for rare disasters [Barro, 2006].

50



In the other direction, if RQ(v, w′) ≥ RQ(u,w), then by Lemma 6∞ > SQ(v, w′) ≥ RQ(u,w) >

0. This means that for every δ > 0 there exists ε > 0 such that SεQ(v, w′) ≥ RεQ(u,w)− δ, as SQ is

the limit of SεQ and RQ is the limit of RεQ.

11.4 Theorem 5

Proof. First, observe that for any CARA utility function u it must be the case that u is glob-

ally at least as averse to Q-riskiness as u, by reflexivity and the lack of wealth effects in CARA

functions. Now consider two gambles g and g′ with QAS(g) > QAS(g′). Consider u CARA with

ρu ≡ 2
QAS(g)+QAS(g′)

. u accepts g′ and rejects g, implying that Q(g) ≥ Q(g′), since otherwise strong

global consistency will be violated (the violation would be the fact that u is globally no less averse

to Q-riskiness than itself, u accepts g′ with Q(g′) > Q(g), but rejects g).

Next, I claim that if QAS(g) > QAS(g′), but Q(g) = Q(g′), then there exists a gamble gε such

that QAS(gε) > QAS(g′), but Q(gε) < Q(g′) in contradiction to the above result. To see this note

that from monotonicity of Q, for any small ε > 0 a gamble gε = g + ε has Q(gε) < Q(g), and from

continuity of QAS , for small enough ε, QAS(gε) > QAS(g′).

Finally, I claim that if QAS(g) = QAS(g′), but Q(g) > Q(g′), then there exists a gamble gε

such that QAS(gε) < QAS(g′), but Q(gε) > Q(g′). To see this, apply the same argument from the

previous paragraph, only this time use the continuity of Q and the monotonicity of QAS .

The upshot of the above discussion is that QAS(g) > QAS(g′) ⇐⇒ Q(g) > Q(g′) as required.

11.5 Proposition 2

Definition 20. Wealth-independent compound gamble [Foster and Hart, 2013]. An index Q has

the wealth-independent compound gamble property if for every compound gamble of the form

f = g + 1Ah, where Q(g) = Q(h), 1 an indicator, A is an event such that g is constant on A

(g|A ≡ x for some x) and h is independent of A, Q(f) = Q(g).

Proof. Foster and Hart [2013] show that QAS satisfies wealth-independent compound gamble. If

QAS(g) 6= QAS(h), take the one with higher (lower) level of AS riskiness, and increase (decrease)

all its values be ε large enough to equate the level of riskiness of the two gambles. Use wealth

independent compound gamble and monotonicity with respect to stochastic dominance to deduce

the required conclusion.

11.6 Theorem 7

Lemma 7. If Q is a continuous index of performance that satisfies global consistency, reflexivity,

translation invariance, monotonicity and homogeneity, and u and v are two CARA utilities with

ρu ≤ ρv, then u is globally inclined to invest in Q-performers at least as v.

Proof. From reflexivity and the fact that there are no wealth effects for CARA functions it follows

that u is globally inclined to invest in Q-performers at least as itself. The conclusion follows, as
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for any w,w′, v accepts less transactions at w′ than u at w in the sense of set inclusion, so for all

q̄ > q > 0 and δ > 0, there exists ε > 0 such that

0 ≤ sup
(q,r)∈Tε

{Q (r) | (q, r) is rejected by uat w} ≤ inf
(q,r)∈Tε

{
Q (r) | (q, r) is accepted by uat w′

}
+ δ

≤ inf
(q,r)∈Tε

{
Q (r) | (q, r) is accepted by vat w′

}
+ δ,

where q̄ is the value that is used for reflexivity at (u,w).

Lemma 8. The following are equivalent:

(i) u at w is locally inclined to invest in PAS-performers at least as v at w′

(ii)ρu(w) ≤ ρv(w′)

Proof. ¬ (ii) =⇒ ¬ (i): By Theorem 1 if ρu(w) > ρv(w
′), then for small enough ε > 0 v at w′ ac-

cepts any local transaction such thatQAS(q·r) = 3
2ρu(w)+ρv(w′) orQAS(q·r) = 3

ρu(w)+2ρv(w′) , and such

transactions are rejected by u at w. Such transactions have PAS(r) = q · 2ρu(w)+ρv(w′)
3 and PAS(r) =

q · ρu(w)+2ρv(w′)
3 respectively. This implies that sup

(q,r)∈Tε

{
PAS (r) | (q, r) is rejected by uat w

}
≥

q · 2ρu(w)+ρv(w′)
3 > q · ρu(w)+2ρv(w′)

3 ≥ inf
(q,r)∈Tε

{Q (r) | (q, r) is accepted by vat w′}, for all ε > 0,

so (i) does not hold (use δ = q̄
3 ·
∣∣∣2ρu(w)+ρv(w′)

3 − ρu(w)+2ρv(w′)
3

∣∣∣ to get a contradiction).

(ii) =⇒ (i): By Theorem 1 and an argument as above, PAS satisfies reflexivity. Thus, for

some q̄1, for all q̄1 > q > 0 and all δ > 0 there exists ε > 0 with

0 ≤ sup
(q,r)∈Tε

{
PAS (r) | (q, r) is rejected by uat w

}
≤ inf

(q,r)∈Tε

{
PAS (r) | (q, r) is accepted by uat w

}
+δ.

By the same theorem, there exists q̄2 such that for all q̄2 > q > 0 and δ there exists ε′ > 0 with

inf
(q,r)∈Tε′

{Q (r) | (q, r) is accepted by uat w} ≤ inf
(q,r)∈Tε′

{
Q (r) | (q, r) is accepted by vat w′

}
+ δ.

Thus, for all min {q̄1, q̄2} > q > 0 and all δ′(= 2δ) > 0, there exists min {ε, ε′} > ε̄ > 0 such that

0 ≤ sup
(q,r)∈Tε̄

{Q (r) | (q, r) is rejected by uat w} ≤ inf
(q,r)∈Tε̄

{
Q (r) | (q, r) is accepted by vat w′

}
+ δ′.

Lemma 9. PAS is a continuous index of performance that satisfies reflexivity, global consistency,

translation invariance, monotonicity and homogeneity.

Proof. Translation invariance is immediate as the index could be expressed as a function of r− rf .

From now on, assume without loss of generality that rf = 0. For homogeneity, note that both the

expectation operator and QAS are homogeneous of degree 1, and so their ratio is homogeneous of
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degree 0. Continuity follows from the continuity of QAS and the fact that if rn are bounded and

converge to r, E [rn] converges to E [r] from the bounded convergence theorem.

For any r if E [r] = c > 0 then for all λ > 0 E [(r + λ)] = c + λ ≡ (1 + ε)E [r] for some ε > 0.

From homogeneity of degree 1 and monotonicity with respect to first order stochastic dominance

of QAS one has

QAS
(

r

E [r]

)
= QAS

(
(1 + ε) r

E [(1 + ε) r]

)
= QAS

(
(1 + ε) r

c+ λ

)
> QAS

(
r

c+ λ

)
> QAS

(
(r + λ)

c+ λ

)
,

where the inequalities follows from monotonicity of QAS with respect to first order stochastic

dominance, and from the homogeneity of degree 1 of QAS . The previous inequality implies that

PASrf (r + λ) > PASrf (r).

Reflexivity was proved in Lemma 8. Global consistency is implied by the global consistency of

QAS , by Lemma 8.

Lemma 10. If P is a continuous index of performance that satisfies reflexivity, global consistency,

translation invariance, monotonicity and homogeneity of degree 0, then it is ordinally equivalent to

PAS.

Proof. Assume, by way of contradiction that P satisfies the conditions but is not ordinally equivalent

to PAS . There are three ways such violation happen:

1. There exist r, r′ ∈ R1 with PAS(r) > PAS(r′) and P (r) < P (r′)

2. There exist r, r′ ∈ R1 with PAS(r) > PAS(r′) and P (r) = P (r′)

3. There exist r, r′ ∈ R1 with PAS(r) = PAS(r′) and P (r) < P (r′)

There is no loss of generality in treating only the first case. The reason is that using monotonicity

and continuity, we could slightly shift r and r′ to break the equalities in the right direction while

not effecting the inequalities.

Given a violation of type 1, consider an agent with CARA utility function, u such that ρu ≡
.6PAS(r) + .4PAS(r′). Note that u accepts (1, r) but rejects (1, r′), and that u is globally inclined

to invest in P -performers at least as u by Lemma 7. But this means that global consistency is

violated by P .

Proof. (Of the theorem) Follows from the lemmata.

11.7 Lemma 4

Lemma 11. g ∈ H ⇐⇒ log(1 + g) ∈ G.

Proof. In one direction, g ∈ H ⇒ g ∈ G and QFH(g) < 1. Since QFH(g) ≥ L(g) it follows

that log(1 + g) is well-defined. As g ∈ G, it assumes a negative value with positive probability

and therefore so does log(1 + g). Finally, QFH(g) < 1 implies that E [log(1 + g)] > 0. Hence,

log(1 + g) ∈ G.
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In the other direction, if log(1 + g) ∈ G we have that log(1 + g) assumes a negative value with

positive probability and therefore so does g. In addition, we have
∑
pi log(1 + gi) > 0. Hence, by

Fact 1, g ∈ H.

Proof. (of Lemma 4) Note that for every g ∈ H and S > 0, we have E
[
(1 + g)−

1
S

]
= E

[
e−

log(1+g)
S

]
.

Consequentially, Lemma 11 and Theorem A in AS imply that the unique positive solution for the

equation is S(g) = QAS (log(1 + g)).

11.8 Theorem 9

Lemma 12. For all g ∈ H, If u ∈ U has a constant RRA then %u(w) − 1 < 1
S(g) if and only if

E [u(w + wg)] > u(w) ∀w > 0.

Proof. As positive affine transformations of the utility function do not change acceptance and

rejection, it is enough to treat functions of the form u(w) = −w1−α. Now observe that:

E [u(w + wg)] > u(w) ⇐⇒ E
[
−w1−α(1 + g)1−α] > −w1−α ⇐⇒ E

[
(1 + g)1−α] < 1 ⇐⇒

⇐⇒ E
[
e(1−α)·log(1+g)

]
< 1 ⇐⇒ QAS (log(1 + g)) <

1

α− 1
⇐⇒ α− 1 <

1

S(g)
.

Lemma 13. For every u, v ∈ U , if inf
x
%u(x) ≥ sup

x′
%v(x

′) then for every w, if u accepts g at w so

does v.

Proof. Without loss of generality, assume that v(w) = u(w) = 0 and that v′(w) = u′(w) = 1. For

every t > 1

log v′(tw) = log v′(tw)− log v′(w) =

tˆ

1

∂ log v′(sw)

∂s
ds =

tˆ

1

w
v′′(sw)

v′(sw)
ds =

=

tˆ

1

1

s
·
(
sw

v′′(sw)

v′(sw)

)
ds ≥

tˆ

1

1

s
·
(
sw

u′′(sw)

u′(sw)

)
ds = log u′(tw)

log v′(
w

t
) = log v′(

w

t
)− log v′(w) =

tˆ

1

∂ log v′(ws )

∂s
ds =

tˆ

1

−w
s2

v′′(ws )

v′(ws )
ds =

=

tˆ

1

1

s
·
(
−w
s

v′′(ws )

v′(ws )

)
ds ≤

tˆ

1

1

s
·
(
−w
s

u′′(ws )

u′(ws )

)
ds = log u′(

w

t
)
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This means that for every t > 0:

v(tw) = v(tw)− v(w) =

tˆ

1

wv′(sw)ds ≥
tˆ

1

wu′(sw)ds = u(tw)

And so, ifE [u(w + wg)] > u(w) = 0 then necessarilyE [v(w + wg)] > v(w) = 0 as E [v(w + wg)] ≥
E [u(w + wg)].

Lemma 14. For every u ∈ U and every w > 0, RS (u,w) = SS (u,w) and AS(u,w) = %u(w)− 1.

The proof of Lemma 14 is analogous to the proof of Lemma 2 and is therefore omitted. Recalling

that the CRRA utility function with parameter α is often expressed as

−w1−α = −w−(α−1),

this transformation of %u(·) seems particularly natural.

Proof. (Of the theorem, sketch). First observe that for every α > 0 S ((1 + g)α − 1) = QAS (log(1 + g)α) =

QAS (α · log(1 + g)) = α · QAS (log(1 + g)) = α · S(g), so S satisfies Scaling. By Lemma 14,

∞ > RS(u,w) = SS(u,w) = 1
%u(w)−1 > 0 (which implies that S satisfies local consistency).

To see that S satisfies global consistency, observe that the fact that AS is ordinally equivalent

to % implies that if v � u then there exist λ ≥ 1 with inf
w
%v(w) ≥ λ ≥ sup

w′
%u(w′). Therefore, by

Lemma 13 if v accepts g at w so does an agent with a CRRA utility function with RRA equals λ.

Furthermore, by Lemma 12, if S(h) < S(g) this agent will accept h at any wealth level. Applying

Lemma 13 again implies that u accepts h at w.

For uniqueness, assume that Q̂ satisfies the requirements. By Lemma 11 P̂ (g) := Q̂(eg −
1) is an index of riskiness P̂ : G → R+. For every α > 0, we have P̂ (αg) = Q̂(eαg − 1) =

Q̂ ((1 + eg − 1)α − 1) = α · Q̂(eg − 1) = α · P̂ (g), so P̂ satisfies homogeneity. I next claim that

Q̂(g) > Q̂(h) if and only if S(g) > S(h). To see this, note that from Theorem 8 AQ̂ is ordinally

equivalent to % and that from local consistency and scaling 0 < SQ(u,w) = RQ(u,w) < ∞ (see

Lemma 6 for a proof of the analogous case). From these facts it follows that S and Q̂ order lotteries

in the same manner (as before, using CRRA functions). Hence, P̂ and QAS also agree on the order

of lotteries. Since both P̂ and QAS are homogeneous, we have that P̂ = C ·QAS for some C > 0.

This in turn, implies that Q̂ = C · S, for some C > 0.

11.9 Theorem 10

Proof. First, observe that for any CRRA utility function u it must be the case that u is globally at

least as averse to Q-riskiness as u, by reflexivity and the lack of wealth effects in CRRA functions.

Now consider two gambles g and g′ with S(g) > S(g′). Consider u CRRA with %u ≡ 1 + 2
S(g)+S(g′) .

u accepts g′ and rejects g, implying that Q(g) ≥ Q(g′), since otherwise strong global consistency
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will be violated (the violation would be the fact that u is globally no less averse to Q-riskiness than

itself, u accepts g′ with Q(g′) > Q(g), but rejects g).

Next, I claim that if S(g) > S(g′), but Q(g) = Q(g′), then there exists a gamble gε such that

S(gε) > S(g′), but Q(gε) < Q(g′) in contradiction to the above result. To see this note that from

monotonicity of Q, for any small ε > 0 a gamble gε = g + ε has Q(gε) < Q(g), and from continuity

of S, for small enough ε, S(gε) > S(g′).

Finally, I claim that if S(g) = S(g′), but Q(g) > Q(g′), then there exists a gamble gε such

that S(gε) < S(g′), but Q(gε) > Q(g′). To see this, apply the same argument from the previous

paragraph, only this time use the continuity of Q and the monotonicity of S.

The upshot of the above discussion is that S(g) > S(g) ⇐⇒ Q(g) > Q(g) as required.

11.10 Theorem 12

Lemma 15. Let c = (xn, tn)Nn=1 be an investment cashflow. If rk(s) < rj(s) for all s ∈ [t1, tN ]

then, for all t,
∑
n

e
−
tń

t
rk(s)ds

xn ≤ 0 implies that
∑
n

e
−
tń

t
rj(s)ds

xn < 0.

Proof. Denote by n∗ the highest index with xn < 0. Then

∑
n

e
−
tń

t
rk(s)ds

xn =
∑
n≤n∗

e
−
tń

t
rk(s)ds

xn+
∑
n>n∗

e
−
tń

t
rk(s)ds

xn = −
∑

n≤n∗
e
−
tń

t
rk(s)ds

|xn|+
∑
n>n∗

e
−
tń

t
rk(s)ds

|xn| ,

(11.10.1)

and

−
∑

n≤n∗
e
−
tń

t
rk(s)ds

|xn|+
∑
n>n∗

e
−
tń

t
rk(s)ds

|xn| ≤ 0 ⇐⇒ e

tn∗´
t
rk(s)ds

·

−∑
n≤n∗

e
−
tń

t
rk(s)ds

|xn|+
∑
n>n∗

e
−
tń

t
rk(s)ds

|xn|

 ≤ 0,

(11.10.2)

and similar statements hold when rk is replaced with rj . But,

e

tn∗´
t
rk(s)ds

·

−∑
n≤n∗

e
−
tń

t
rk(s)ds

|xn|+
∑
n>n∗

e
−
tń

t
rk(s)ds

|xn|

 = −
∑

n≤n∗
e
−
tń

tn∗
rk(s)ds

|xn|+
∑
n>n∗

e
−
tń

tn∗
rk(s)ds

|xn| >

−
∑

n≤n∗
e
−
tń

tn∗
rj(s)ds

|xn|+
∑
n>n∗

e
−
tń

tn∗
rj(s)ds

|xn|

as positives are only multiplied by smaller numbers and negatives are multiplied by greater (positive)

numbers.

Lemma 16. If c = (xn, tn)Nn=1 is an investment cashflow then there exists a unique positive number

r such that
∑
n

e−rtnxn = 0. Furthermore, if r̃(t) > r > r̂(t) for all t ∈ [t1, tN ], then the NPV of c is

negative using r̃, and is positive using r̂.
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For general cashflows, multiple solutions to the equation defining the internal rate of return may

exit. Interestingly, both Arrow and Pratt took interest in finding simple conditions that would rule

out this possibility [Arrow and Levhari, 1969, Pratt and Hammond, 1979]. Lemma 16 generalizes

the result of Norstrøm [1972] who had shown that investment cashflows have a unique positive IRR

in the discrete setting.

Proof. Define the function f(α) :=
∑
n

e−αtnxn. Observe that f (·) is continuous, and satisfies

f (0) > 0 and f (α) < 0 for large values of α. Hence, continuity implies the existence of a solution.

Lemma 15 implies its uniqueness, and the second part of the claim.

Lemma 17. If T satisfies translation invariance, homogeneity and local consistency, then for all

u, w, 0 < ST (i, t) = RT (i, t) <∞.

Proof. Local consistency requires that

∀i ∀t ∃λ > 0 ∀δ > 0 ∃ε > 0 RεT (i, t)− δ < λ < SεT (i, t) + δ,

which implies that

∀i ∀t ∃λ > 0 RT (i, t) ≤ λ ≤ ST (i, t).

Since for any i, t, and ε > 0 the set {c| c ∈ Ct,ε, c is rejected by i} is non empty, there exists a

sequence of cashflows {cn} such that for each n, cn := (xni , t
n
i ) is rejected, cn ∈ Ct, 1

n
and T (cn) <

(1 + 1
n) · S1/n

T (i, t). For small δ > 0 , let c′n := (xni , (ti − t1) (1− δ)) for each n. For n large

enough, c′n are all accepted since T (c′n) = (1− δ)k T (cn) < S
1/n
T (i, t) and c′n is in Ct, 1

n
. But

this implies that RT (i, t) > (1− δ)k ST (i, t) since c′n are almost always accepted and lim
n→∞

T (c′n) =

(1− δ)k lim
n→∞

T (cn) = (1− δ)k SQ(i, t). Since δ was arbitrarily small, this implies RT (i, t) ≥ ST (i, t).

So, putting the results together, gives

∀i ∀t ∃λ > 0 λ ≤ ST (i, t) ≤ RT (i, t) ≤ λ,

which completes the proof.

Proof. (of the theorem) For the first part, in one direction, if ri(t) > rj(t
′) then there exists a small

ε′ > 0 such that for all x, y ∈ (−ε′, ε′) ri(t+x) > rj(t+y).61 For a sequence of cashflows with small

support and IRR of
ri(t)+rj(t

′)
2 their translations which start at t′ are almost always accepted, and

the translations which starts at t are almost always rejected. The same applies to these translated

cashflows with times tni replaced by (1 − δ) (tni − t). By Lemma 17, homogeneity and translation

invariance this implies that RT (i, t) < RT (j, t′).

In the other direction, assume RT (i, t) < RT (j, t′). From Lemma 17 0 < RT (i, t) < RT (j, t′) <

∞. Consider a sequence of cashflows {cn} with tnN < 1
n , tn1 = 0 and T (cn) = 2RT (i,t)+RT (j,t′)

3 . For

small δ, let {c′n} be a sequence of cashflows such that t
′n
i = tni ·(1−δ). The translations of both {cn}

61The proof follows closely the proof of Theorem 3, which provides more details.
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and {c′n} which start at t’ are almost always accepted by j and both the translations that start

at t are almost always rejected by i. This, in turn, implies that ri(t) > rj(t
′) using the previous

Lemmata.

The second part follows from the first part and from Lemma 17.

11.11 Propositions 9 and 10

Proof. (Proposition 9) Note that ∀i, t AD(i, t) = ri(t). The conclusion follows from Lemma 16.

Proof. (Proposition 10) Follows from Lemma 15.

11.12 Theorem 13

Proof. To prove (i) I first identify one such index. The construction draws upon the findings

of previous sections. First, denote by C1 the class of investment cashflows with |tN − t1| = 1.

Restricting attention to this class of cashflows, I define a function from C1 to G, the class of

gambles, T : C1 → G,

T (c) =

[
1,

e
1

D(c)

1 + e
1

D(c)

;−1,
1

1 + e
1

D(c)

]
.

Observe that QAS (T (·)) ≡ D(·). Now, given a cashflow c = (xn, tn)Nn=1, let αc := |tN − t1|. Given

t, define ĉt :=
(
xn, t+ 1

αc
(tn − t)

)N
n=1

. By construction, ĉt is a member of C1. This allows defining

a new index Z : C → R+ in the following way:

Z (c) := QFH (αc · T (ĉt)) .

Z is homogeneous and translation invariant since QFH is homogeneous, and T was constructed to

assure these properties.

Noting that for c ∈ Ct,ε

|D(c)− Z (c)| =
∣∣QAS (αc · T (ĉt))−QFH (αc · T (ĉt))

∣∣ ≤ 2αc ≤ 2ε,

one observes that RZ (·, ·) = RD (·, ·) and SZ (·, ·) = SD (·, ·), so if D is locally consistent so is Z.

D satisfies all the requirements of the theorem (proved later on) and the coefficient of local

aversion to D equals to r. Since the relation at least as averse to D-delay induces the same order

as r, the same applies to Z-delay, as 0 < AD <∞. This implies that for a > 0 combinations of the

form Wa (·) = Z (·) + a |D (·)− Z (·)| also satisfy the requirements of (i). To see that D 6= Z, it is

enough to consider a cashflow c with αc = 1 and D (c) = 1. For this cashflow Z(c) ≈ 1.26. Together

with the fact that Z and D are uniformly close on small domains, the fact that the coefficient of

local aversion to Z equals to r (which is positive and finite) implies that the same holds for Wa,

which completes the proof of this part.

(ii) Follows from example 20.
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Example 20. Consider W1 (·) and a cashflow c with αc = 1 for which D(c) = 1. This implies that

Z(c) ≈ 1.26, hence W1(c) < 1.6. Now consider another cashflow, c′, with αc′ = 1, which first order

time dominates c and has D(c′) = ε for a small ε.62 Since Z(c) ≥ 1 from the properties of QFH

and T , W1(c′) > 1.6. Therefore, while c′ first order time dominates c, W1 (c) < W1 (c′).

11.13 Theorem 14

Proof. I provide the proof for the case k = 1, but the generalization is simple. First, I check that

D satisfies the axioms. Homogeneity is clearly satisfied as

∑
n

e−rtnxn = 0 ⇐⇒ ert
∑
n

e−rtnxn = 0 ⇐⇒
∑
n

e−r(tn−t)xn = 0 ⇐⇒
∑
n

e−
r
λ
·λ(tn−t)xn = 0 (∀t ∀λ > 0) .

Translation invariance is also satisfied as∑
n

e−rtnxn = 0 ⇐⇒ ert
∑
n

e−rtnxn = 0 (∀t) .

For local consistency, I use the smoothness of ri(·) to deduce that for every t and small ε > 0

there exists δ > 0 such that if s ∈ (t− δ, t+ δ) then ri(t)− ε < ri(s) < ri(t) + ε. This fact, together

with Lemmata 15 and 16, implies that 0 < SD(i, t) = RD(i, t) <∞ and that AD(i, t) = ri(t), hence

the axiom is satisfied.

To see that global consistency is satisfied, first note that i is at least as averse to D-delay

as j if and only if sup
t
rj(t) ≤ inf

t
ri(t). Consider an agent that discounts at the constant rate ν,

with sup rj(t) ≤ ν ≤ inf ri(t). Label this agent ν. Lemma 15 implies that ν accepts any cashflow

accepted by i, Lemma 16 implies that he also accepts cashflows with higher IRR, and another

application of Lemma 15 implies that j accepts these cashflows.

I now turn to show that the only indices that satisfy the five axioms are positive multiples of

D. This is done in two steps. In the first step, I show that indices that satisfy the axioms agree

with the order induced by D. Then, I show that they are also multiples of this index.

For the first step, assume by way of contradiction that there exists another index, Q, that

satisfies the axioms but does not agree with D on the ordering of two cashflows at some given time

points. There are three possibilities:

1. Q(c) > Q(c′) and D(c) < D(c′) for cashflows c and c′.

2. Q(c) > Q(c′) and D(c) = D(c′) for cashflows c and c′.

3. Q(c) = Q(c′) and D(c) < D(c′) for cashflows c and c′.

There is no loss of generality in treating just the first case. To see this, note that the second

and third cases imply the existence of an example of the first type. Such example in obtained

by breaking the tie in the correct direction, using translation invariance and homogeneity, while

preserving the strict inequality.

62This could be achieved by increasing xN .
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To obtain a contradiction, choose r1 and r2 such that

D(c) <
1

r2
<

1

r1
< D(c′),

and consider two agents that discount with the constant rates r1 and r2, and are labeled accordingly

r1 and r2 (with a slight abuse of notation). Using Lemma 16 both r1 and r2 accept c and rejects c′.

Theorem 12 and Lemma 17 imply that r1 ≺
Q
r2. But this means that Q violates global consistency,

as r2, the impatient agent, accepts c, the Q-delayed cashflow, but r1 does not accept c′ which is

less Q-delayed. Thus, Q and D must agree on the ordering of any two cashflows at any given time

point.

For the second step, choose an arbitrary cashflow c0 = (xn, tn)Nn=1 and an index that satisfies the

axioms, T . For any cashflow c, there exists a positive number λ > 0 such that T
(

(xn, t1 + λ · (tn − t1))Nn=1

)
=

T (c). The first step implies thatD
(

(xn, t1 + λ · (tn − t1))Nn=1

)
= D (c). ButD

(
(xn, t1 + λ · (tn − t1))Nn=1

)
=

λ ·D (c0), and also T
(

(xn, t1 + λ · (tn − t1))Nn=1

)
= λ · T (c0). Altogether this means that T (c) =

T (c0)
D(c0)D (c) for every c.

11.14 Theorem 15

Proof. First, observe that for any agent with constant discount rate, it must be the case that the

agent is globally at least as averse to T -delay as himself, by reflexivity and the invariance of the

sign of the NPV of translations of a cashflow when the discount rate is constant. Now consider

two cashflows c and c′ with D(c) > D(c′). Consider i with ri ≡ 2
D(c)+D(c′) . i accepts c′ and

rejects c, implying that T (c) ≥ T (c′), since otherwise strong global consistency will be violated (the

violation would be the fact that i is globally at least as averse to T -delay as itself, i accepts c′ with

T (c′) > T (c), but rejects c).

Next, I claim that if D(c) > D(c′), but T (c) = T (c′), then there exists a cashflow cε such that

D(cε) > D(c′), but T (cε) < T (c′) in contradiction to the above result. To see this note that from

monotonicity of T , for any small ε > 0, given c = (xi, ti)
N
i=1, a cashflow cε = (xi + ε, ti)

N
i=1 has

T (cε) < T (c), and from continuity of D, for small enough ε, D(cε) > D(c′).

Finally, I claim that if D(c) = D(c′), but T (c) > T (c′), then there exists a cashflow cε such

that D(cε) < D(c′), but T (cε) > T (c′). To see this, apply the same argument from the previous

paragraph, only this time use the continuity of T and the monotonicity of D.

The upshot of the above discussion is that D(c) > D(c′) ⇐⇒ T (c) > T (c′) as required.

11.15 Theorem 17

Proof. (i) The proof is similar to the proof of Theorem 1. First, note that if
{
an = (µn, αn) ∈ A 1

n

}∞
n=1

are accepted it must be the case that µn −→
n→∞

0. To see this, assume by way of contradiction that

there is a sub-sequence of such transactions where the price does not converge to 0, without loss

of generality an = (µn, αn), and lim
n→∞

µn = µ̂ ∈ (0,∞]. Let µ := min {µ̂, 1}. Then, there exits N
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such that for all n > N ln :=
(µ

2 , αn
)

is accepted. Lemma 2 of Cabrales et al. [2014] proves that as
1
n approaches 0, so does the scale of the optimal investment ‖bn‖. Therefore, for 1

n small enough,

w − µ
2 + bnk is in a small environment of w − µ

2 < w for all k, a contradiction.

For the second step, from the discussion above it follows that for 1
n small enough, w−µn+bnk is in

a δ-environment of w for all k, if a = (µ, α) ∈ Aε is accepted. ρu(w) is continuous, and so for every

γ > 0 there exists a δ > 0 small enough such that x ∈ (w − δ, w + δ) implies |ρu(x)− ρu(w)| < γ.

For the final step, choose a small positive number η, and consider the CARA agents with

absolute risk aversion coefficients ρu(w) + η and ρu(w)− η > 0. For a small enough environment of

w, I,

ρu(w)− η ≤ inf
x∈I

ρu(x) ≤ sup
x∈I

ρu(x) ≤ ρu(w) + η.

This, in turn, implies, using Theorem 3 of Cabrales et al. [2014] and a slightly modified version

of their Theorem 2, that the coefficient of local taste for A-informativeness of u with wealth w is

equal to ρ−1
u (w), and that RA(u,w) = SA(u,w).

(ii) Cabrales et al. [2013] showed that a = (µ, α) is accepted by an agent with log utility function

if and only if Ie (α) > log
(

w
w−µ

)
. Using a Taylor approximation yields

log

(
w

w − µ

)
= log (w)− log (w − µ) ≈ 1

w
µ+

µ2

2w2
.

As shown above, if an = (µn, αn) ∈ A 1
n

are accepted it must be the case that µn −→
n→∞

0. It is

therefore the case that for n large enough (when posteriors are close to the prior), an is accepted

by agents with log utility function if

Je (an) =
Ie(αn)

µn
>

1

w
+O(µn) −→

n→∞

1

w
= ρlog(w),

and rejected if

Je (an) =
Ie(αn)

µn
<

1

w
+O(µn) −→

n→∞

1

w
= ρlog(w).

For any x ∈ R+, 1
x ≡ w ∈ R+ satisfies ρlog (w) = x, and so by properly translating the log utility

function (and changing all but an environment of the baseline wealth level of the agent), one can

use a “sandwich” argument of the form used above to complete the proof.

11.16 Theorem 18

Proof. The proof uses the same techniques used above. If ρu(w) > ρv(w
′) then there exists some

γ > 0 such that ρu(w) > (1 + γ) · ρv(w′). Following the arguments used before, for ε > 0 small

enough, if u accepts a = (µ, α) ∈ Aε then v accepts ((1 + γ
2 ) ·µ, α). Together with local consistency

and homogeneity this implies that the coefficient of local taste for Q-informativeness of u at w is

smaller than the coefficient of local taste for Q-informativeness of v at w′, and that v at w has at

least as much taste for Q-informativeness as u at w′. 63

63For details, see Theorem 3.
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In the other direction, assume ρu(w) = ρv(w
′), and by way of contradiction assume that the

coefficient of local taste for Q-informativeness of u at w is not equal to the coefficient of local taste

for Q-informativeness of v at w′. Without loss of generality, assume that the coefficient of local taste

for Q-informativeness of u at w is greater than the coefficient of local taste for Q-informativeness

of v at w′ . This means that there exists a sequence {an}∞n=1 of information transactions, such

that for every n, an = (µn, αn) satisfies (a) an ∈ A 1
n
, (b) For some small γ > 0, ((1 + γ) · µn, αn)

is accepted by u at w, and (c) an is rejected by v at w′. But this implies that A violates local

consistency, a contradiction, and so the coefficient of local taste for Q-informativeness of u at w is

equal to the coefficient of local taste for Q-informativeness of v at w′. This, in turn, implies that u

at w is has at least as much taste for Q-informativeness as v at w′ (and vice versa).

11.17 Theorem 19

Proof. For (i), let δ := 1
2min

i
{min {pi, 1− pi}}. Define

B (a) =

A(a) ‖p− qs‖ < δ ∀s
1
µk
· f(α) else

for some positive f . Then B satisfies the required properties since for local transactions (ones with

posteriors close to the prior) it is equal to A, and since both A and 1
µf(α) are homogeneous and

changes in the price do not change the distance of the posteriors from the prior (and hence the rule

that governs B). Choosing f ≡ 1 (or many other choices) completes the proof of (ii).

11.18 Theorem 21

Proof. First, observe that for any CARA utility function u it must be the case thatQ-informativeness

is globally at least as attractive for u as it is for u, by reflexivity and the lack of wealth effects

in CARA functions. Now consider two information transactions, a and a′, with A(a) > A(a′).

Consider u CARA with ρu ≡ A(a)+A(a′)
2 . u accepts a and rejects a′, implying that Q(a) ≥ Q(a),

since otherwise strong global consistency will be violated (the violation would be the fact that Q-

informativeness is globally at least as attractive for u as is for itself, u accepts a with Q(a′) > Q(a),

but rejects a′).

Next, I claim that if A(a) > A(a′), but Q(a) = Q(a′), then there exists a transaction aε such

that A(aε) > A(a′), but Q(aε) < Q(a′) in contradiction to the above result. To see this denote

aε := (µ + ε, α), where a = (µ, α), and note that from monotonicity of Q, for any small ε > 0,

Q(aε) < Q(a′), and from continuity of A, for small enough ε, A(aε) > A(a′).

Finally, I claim that if A(a) = A(a′), but Q(a) > Q(a′), then there exists a transaction aε such

that A(aε) < A(a′), but Q(aε) > Q(a′). To see this, apply the same argument from the previous

paragraph, only this time use the continuity of Q and the monotonicity of A.

The upshot of the above discussion is that A(a) > A(a′) ⇐⇒ Q(a) > Q(a′) as required.
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