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Abstract

This paper considers a strict sequential learning model with a compact

metrizable state and action space, thus capturing rich environments which

have not been analyzed so far. We study both the case where the utility

function is common to all decision maker and the case where the utility

function of each agent is an iid draw from the space of continuous utility

functions. Each agent can only identify whether or not the utility function

of any given predecessor is close to his own. We establish asymptotic learn-

ing result as a general equilibrium property of sequential social learning if

private signals are unbounded.

1 Introduction

The seminal papers on sequential social learning by Banerjee [3] and Bikhchan-

dani, Hirshleifer and Welch [4] provide a profound formal explanation for herding,

i.e. the tendency to act as others. In the standard model, a countable set of fully

rational privately informed agents make an irreversible choice in a predetermined

sequence under uncertainty while observing the choices of all predecessors. Each

agent progressively learns by making inferences regarding the private information
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of her predecessors based on their actions. Banerjee [3] and Bikhchandani, Hir-

shleifer and Welch [4] show that observing the choices of some early movers can

entice an infinite set of individuals to disregard their own private information and

as a result lead to herding. Such herds (formally information cascades) are prone

to lead to suboptimal choices as they are based on a finite number of random

signals which fail to convey the true state with certainty.

The main objective of the literature thereafter has been to characterize neces-

sary and sufficient conditions on the environment, like the signal structure and/or

the observational structure such that asymptotic learning, where actions converge

to the correct action in probability, occurs. For examples see Smith and Sorensen

[10] and Acemoglu, Dahleh, Lobel and Ozdaglar [1].

So far, the literature focused primarily on environments where the set of states

and actions are binary, and every agent would want to match his action with the

true state. Surprisingly, this simple environment generates deep phenomena such

as information cascades and asymptotic learning while being expressive enough

to encompass many real life application. For some cases, however, the binary

environment fails to adequately represent the complexity of decision making.

As an example, consider dietary and lifestyle choices. Here the set of possible

choices is certainly rich. Among others one has to decide how much and what

to eat, how much and how to exercise, how much to sleep, et cetera. The state

space for this example summarizes the possible outcomes of each lifestyle choice,

like for example the life span, types of illness avoided and suffered, etc. Moreover,

in the context of lifestyle choices the assumption of a common utility function is

too restrictive. Instead, some agents might knowingly trade-off future health for

current benefits, for example smokers, while others do not.

For the finite case Smith and Sorensen [10] establish a striking asymptotic

learning characterization using properties of the signals. They define private sig-

nals to be unbounded if the support of the conditional private beliefs contains 0

and 1, and bounded if the support includes neither 0 nor 1. Their main result

shows that asymptotic learning holds if the private signals are unbounded and
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fails if private signals are bounded.

However, there is no understanding of the condition that assure asymptotic

learning in general environments. The objective of this paper is to close this gap

in the literature. We consider the case where both the set of states of the world and

the action space are general compact metrizable spaces, and where any continuous

utility function on the state and action space is admissible. First, we focus on the

case of a general common continuous utility function and establish a sufficient

condition on the private signals such that asymptotic learning occurs. Second,

we allow for heterogeneity in preferences and provide an approximate asymptotic

learning result for the case where every decision maker has some limited knowledge

in regards to his predecessors preferences.

1.1 Common Utility Function

We shall first focus on the case where all agents share a common utility function.

The characterization provided by Smith and Sorensen for the finite case asserts

that having unbounded signals is a sufficient condition for learning. One may

interpret Smith and Sorensen’s result using cascading regions, i.e. a range of

public beliefs where the optimal action of an agent is independent of his private

signal realization. That is, if the public belief at stage t enters a cascading regions

then from this stage on all agents play the same action. Note that in the finite

environment unbounded signals are equivalent to having no cascading regions. If

signals are unbounded then no matter how certain the decision maker is in regards

to the true state, as long as he assigns positive probability to both states, his signal

with positive probability might be strong enough to make him revert his decision.

In this context one can rephrase Smith and Sorensen result as follows: If there are

no cascading regions then asymptotic learning holds.

Naturally the question arises whether the absence of cascading regions is also

a sufficient condition for learning in our general environment. We provide an

example of a signalling structure with no cascading regions in which asymptotic

learning fails. The example illustrates two related points. First, it is not clear how
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to generalize the unboundedness property to rich state spaces. Second, it is not a

straight-forward exercise to provide a sufficient condition for asymptotic learning

in the general environment.

We introduce the following general notion of unbounded signals. An event E

is uncertain if it has prior probability strictly between zero and one. Say that

beliefs are unbounded with respect to E if the support of the posterior beliefs of E

after receiving the signal contains both zero and one. Private signals are defined

as unbounded if beliefs are unbounded with respect to any uncertain event E.

We note that in the finite case this condition coincides with Smith and Sorensen’s

definition of unbounded signals.

Our first main result (Theorem 1) shows that unbounded private signals are

a sufficient condition for asymptotic learning. More precisely, we show that when

signals are unbounded asymptotic learning holds for any common continuous util-

ity in every equilibrium. Our result thus strengthens the result of Smith and

Sorensen and establishes the robustness of asymptotic learning in the general case

as it holds independent of the utility function.

1.2 Heterogeneous Preferences

Whenever agents have heterogeneous preferences and are uninformed in regards to

the preferences of their predecessors, learning can fail regardless of the properties

of the signals. We consider the case where agents do have some limited knowledge

in regards to their predecessors preferences. We say that agents are culturally

close if their preferences are close. We analyze an environment where each agent

observes the full history of actions but can only identify those agents which are

culturally close to him. The logic behind this assumption is that agent mostly

interact with similar types and can identify them as such. As a result, agents can

only interpret those decision taken by agents which satisfy this cultural proximity

assumption.

Our notion of cultural proximity bears some resemblance to notion of ho-

mophily, the tendency of individuals of similar traits to associate with each other,
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which is common in the network literature. The main feature of our model is that

agents observe the actions of all predecessors but can only identify types that are

similar to themselves, as opposed to observing only similar types. For all other,

non-similar types, a given agent has no information on their preferences and as

such can hardly interpret the actions they are taking.

More precisely, we consider a given distribution Q over the space of all contin-

uous utility functions which we identify as types. The type distribution represents

the preference heterogeneity within the population. At every time period t an

agent of a certain type is drawn in accordance with Q and then chooses an action.

The given agent observes the full history of actions taken by the preceding agents,

but he only has a partial knowledge with respect to their type. We think of this

knowledge as derived from a finite partition over the set of all types.

The knowledge of the current decision maker is derived from the partition as

follows. The realized utility function of a given agent is unknown by others. How-

ever, an agent can identify whether or not any given predecessor has preferences

close to his own, i.e. whether they lie within the same cell of partition of types as

his own. Our second main result (Theorem 2) shows that for every small ε there

exists a partition which is based on cultural proximity such that for every large

enough time t the payoff to agent t will be ε close to the optimal payoff, given the

true state of the world, with a probability larger than 1− ε.

2 Related Literature

Following the seminal paper by Bikhchandani, Hirshleifer and Welch [4] the so-

cial learning literature focused on understanding the phenomena of information

cascades and learning in more general environments. Smith and Sorensen [10]

generalize the signal structure from finite to metric spaces and introduce the con-

cept of asymptotic learning. Thereafter, the literature primarily focused on more

general observation structures as for example in Acemoglu, Dahleh, Lobel and

Ozdaglar [1], Lobel and Sadler [6], and Arieli and Mueller-Frank [2].

This paper differs from the existing literature predominately in two dimen-
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sions. First, we extend the finite environment with a particular utility function to

a general, compact metrizable environment while considering the space of contin-

uous utility functions. Our main contribution here is to establish that asymptotic

learning is indeed a general equilibrium property under unbounded private signals,

as it holds for all continuous utility functions in every equilibrium.

Second, we generalize the standard model to allow for heterogeneous types.

The most closely related papers in this context are Smith and Sorensen [10] and

Lobel and Sadler [7]. Smith and Sorensen consider finite multiple types that

are drawn from a commonly known distribution and mainly focus on confounded

learning where no inference from actions can be drawn. Lobel and Sadler [7]

consider a sequential social learning model where the observation structure of

agents and their preferences are randomly drawn. The distribution is commonly

known but the observation structure and preference of any given agent is his

private information. They consider linear preferences that contain a common and

private value component and show that if preferences are sufficiently diverse then

asymptotic learning fails in sparse networks. On the other hand, if each agent can

identify a neighbor that is arbitrarily close to his own preference then asymptotic

learning holds.

The main distinction of our analysis to the related papers is that we allow

for arbitrary distribution over the space of continuous utility functions and in

our model every agent can identify whether or not any given predecessor’s utility

function lies with a fixed distance or not. As opposed to Lobel and Sadler [7]

we focus on the case where the history of actions is commonly known. Our main

contribution in this context is to establish that the more precisely one can identify

whether or not a utility function is similar, the closer is the realized utility of

agents to the optimal utility under knowledge of the realized state of the world

with increasing probability.
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3 A General Model of Sequential Social Learn-

ing with Homogeneous Types

A countably infinite set of agents {1, 2, 3, ...} sequentially select an irreversible

action. The actions are taken under uncertainty which is represented by a pair

(Ω, µ) where Ω is a compact metrizable set of states of the word and µ ∈ ∆(Ω) a

common prior. The set of actions A is a compact metrizable space. The utility of

each agent t depends on the realized state and his own action at. All agents share

the same continuous utility function u : A× Ω→ R.

At time t = 0 the state of the world is drawn according to µ. At any later

time t ∈ N, prior to selecting his action, agent t observes the history of actions of

his predecessors, ht ∈ At−1, and receives a conditionally iid signal st ∈ S, where

the signal space S is standard Borel. The signal st is drawn according to a state

dependent probability measure F (ω). We assume that for every ω, ω′ ∈ Ω the

probability measures F (ω) and F (ω′) are absolutely continuous with respect to

each other.

A strategy σt : At−1 × S → A of agent t is a measurable mapping that assigns

an action to each possible information set, i.e. for every possible pair of observed

history and private signal. As common in the literature we solve the game for its

pure strategy Perfect Bayesian equilibria, the set of strategy profiles 〈σt〉t∈N such

that each σt maximizes the expected utility of agent t given the strategies of all

other agents.

3.1 The Private Signal Structure

The standard model features a binary state space, Ω = {0, 1}. Let q1 be the

random variable that represents the posterior probability agent 1 assigns to state

1. Smith and Sorensen [10] define unbounded private signals as follows.

Definition 1. Let β, β be defined as follows

β = inf {r ∈ [0, 1] : Pr (q1 ≤ r) > 0} , and

β = sup {r ∈ [0, 1] : Pr (q1 ≤ r) < 1} .
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The information structure (F, µ) generates bounded private signals if 0 < β < β <

1 and unbounded private signals if β = 1− β = 0.

Smith and Sorensen [10] show that asymptotic learning occurs in any equi-

librium if private signals are unbounded, and fails in any equilibrium if private

signals are bounded.

It is not clear at this stage how to define unbounded private signals in our

general model. In the standard model unbounded signals are equivalent to the

absence of cascading regions. A cascading region consists of an interval of beliefs

such that if at a certain time period the public prior belief lies in this region then

the optimal action of each subsequent agent is independent of her private signal.

Once the public belief enters the cascading region all subsequent actions remain

fixed with probability one. We note that signals are unbounded if and only if there

exists no cascading region. Therefore, one interpretation of Smith and Sorensen’s

[10] result is that in the binary case a sufficient condition for asymptotic learning

is the absence of cascading regions.

The role of the following example is to demonstrate that in our case the absence

of cascading regions is not a sufficient condition for asymptotic learning.

Example 1. Let Ω = [0, 1] and A = {0, 1}. Define the payoff function u as follows,

u(a, ω) = (1− a)

(
1

2
− ω

)
+ a

(
ω − 1

2

)
.

That is, when the state ω is above 1
2

players would like to play action 1 and when

ω is below 1
2

players would like to play action 0. Let µ1 be the uniform measure

over Ω = [0, 1] and let µ2 be any measure that assigns probability one to the set of

rational numbers that are greater than 0 and smaller than 1, and assigns positive

probability to every such rational number. The prior equals µ = 1
2
µ1 + 1

2
µ2. Let ν

be any distribution over the natural numbers N that assigns a positive probability

to every positive natural number. Define F (ω) as follows. First a natural number

n is drawn according to ν, then if ω is rational, a coin with a parameter ω for

head is drawn n times, and if ω is irrational a coin with a parameter 1
π

for head is

drawn n times. Consider any public belief µt which is absolutely continuous with
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respect to µ. Note first that pt, the posterior belief of agent t, is arbitrarily close

to the point belief 1x for any x ∈ [0, 1] with positive probability. To see this, note

that for any state ω ∈ (0, 1) there exists a positive probability that n is very large

and the proportion of heads observed is close to x. This yields a posterior belief

pt that assigns high probability to a neighborhood of rational numbers around x.

Hence there is no range of public beliefs where agents are cascading on a certain

action.

Nevertheless, if the true state ω is irrational, which happens with probability 1
2
,

then, since the signal distribution is the same for all the irrationals, no information

can be drawn with respect to the identity of the state. To see this note that if ω

is irrational even observing the full history of signals is not sufficient to determine

the true state, or the optimal action that corresponds to it.

We now generalize the concept of unbounded private signals to our framework.

For every measurable event E ⊂ Ω and for the given prior µ let qE = p(E|s1) ∈

[0, 1] be the random variable that represents agent 1’s posterior probability of

event E, conditional on his private signal s1 ∈ S. Let E ⊂ B be the set of all

measurable events in Ω such that their prior probability lies strictly between zero

and one,

E = {E ∈ B : µ(E) ∈ (0, 1)} .

Unbounded private signals are now defined as follows.

Definition 2. Let β
E
, βE be defined as

β
E

= inf {r ∈ [0, 1] : Pr (qE ≤ r) > 0} , and

βE = sup {r ∈ [0, 1] : Pr (qE ≤ r) < 1} .

The information structure (F, µ) generates unbounded private signals if β
E

=

1− βE = 0 for all E ∈ E .

In words, if the support of the posterior probability for every uncertain, positive

probability event contains zero and one, then private signals are unbounded. Note

that in the binary state space setting our definition is equivalent to the standard
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notion of bounded and unbounded signals of Definition 2 since for binary states

the collection E consists only of ω = 0 and ω = 1. The private signals in our

example above are not unbounded, since the posterior probability of the set of

irrationals smaller than 0.5 is bounded away from 1.

3.2 Asymptotic Learning

The central question in the social learning literature concerns the learning prop-

erties of equilibria. The benchmark is asymptotic learning where the probability

with which agents select the optimal action converges to one along the sequence,

as defined in Smith and Sorensen [10]. Note that in the SSLM asymptotic learning

is equivalent to convergence of beliefs, i.e. where the posterior probability distri-

bution converges to the realized Dirac measure in probability, and convergence of

payoffs, where the payoff of agents converges to the optimal payoff in probability.

In our general environment with a compact metrizable state and action space

and a general utility function belief convergence might be impossible. A utility

function that is constant on the domain may serve as a trivial example. Addition-

ally, since the optimal action might not be unique even under knowledge of the

realized state, we define asymptotic learning in terms of convergence of the payoff

to the optimal payoff given the realized state of the world.

Consider a strategy profile σ and let Ht be the sigma algebra on Ω×H∞×S∞

generated by the history ht. Let Ft be the sigma algebra on Ω×H∞×S∞ generated

by the history ht and agent t’s private signal.

Let at be the random variable representing the realized action of agent t for a

given strategy profile σ, and let yt = u(at, ω) be it’s realized payoff. The expected

utility of agent t conditional on his realized information is denoted by rt,

rt = Eσ[u(at, ω)|Ft] = Eσ[yt|Ft].

In addition let vt be the maximal expected utility conditional on Ht. That is,

vt = max
a∈A

Eσ[u(a, ω)|Ht].
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Alternatively we can have bt as a random action, measurable with respect to Ht,

that maximizes expected utility given the public history ht. Then,

vt = Eσ[u(bt, ω)|Ht].

Let O be the random variable that assigns the maximal utility to every state ω,

O(ω) = max
a∈A

u(a, ω).

Asymptotic learning is now defined as follows.

Definition 3. Asymptotic learning holds if for every Bayesian equilibrium σ the

payoff yt converges to the optimal payoff O(ω) in probability.

In other words, asymptotic learning requires the realized payoff of agents to

converge in probability to the optimal payoff under knowledge of the true state of

the world.

4 A General Sufficient Condition for Asymptotic

Learning

The main question this paper addresses concerns the possibility of asymptotic

learning. The following theorem provides our main result for the case of a common

utility function.

Theorem 1. If (F, µ) generates unbounded signals, then asymptotic learning holds

for every continuous utility function u ∈ C(A× Ω) in any Perfect Bayesian equi-

librium.

The theorem establishes that asymptotic learning is a robust outcome of se-

quential observational learning if private signals are unbounded. So far, it was

known that unbounded signals imply asymptotic learning in finite environments

with a particular utility function. Theorem 1 shows that under unbounded signals,

asymptotic learning holds for any compact metrizable state and action space and

for every continuous utility function in any equilibrium of the sequential game.
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4.1 The Proof of Theorem 1

The proof of Theorem 1 relies on two propositions. The following proposition

establishes a general result on observational learning which is of independent in-

terest.

Proposition 1. The difference between the expected utility conditional on public

and private information respectively, rt − vt, converges to zero almost surely.

According to the proposition, the value of private information goes to zero

almost surely, in any sequential social learning model with full observability of the

history and a common continuous utility function on a compact metrizable state

and action space. Applied to the binary setting, the value of private information

goes to zero either because the history reveals the true state of the world with

increasing certainty or because one might approach or has entered a cascading

region. One nice side effect of Proposition 1 is that enables a very short and

straight-forward alternative proof of Smith and Sorensen’s [10] characterization of

asymptotic learning.

The main difficulty in proving Theorem 1 lies in establishing that given the

true state of the world ω the posterior belief of agent t gets arbitrarily close to

the point belief, 1ω infinitely often with probability 1. Formally, 1ω is the random

measure that assigns probability one to the true state of the world. The random

posterior probability measure of agent t is denoted by pt which takes values in

∆ (Ω),

pt = Pr [dω |Ft ] .

Let dw denote the Prokhorov metric on the space of probability measures over Ω.

The following proposition constitutes the core of the proof of Theorem 1.

Proposition 2. For every ε > 0, we have dw(1ω, pt) ≤ ε infinitely often with

probability one.

Proposition 2 is the mathematical most challenging part of both of our main

theorems. Here we briefly outline its proof. Proposition 2 is established in two
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steps. First, for every ε we designate a range of public beliefs M ε
δ such that if

the public belief µt at any time t lies in this set then with some fixed probability

δ > 0 the private belief pt of agent t satisfies dw(1ω, pt) ≤ ε. Then we show that

the public beliefs µt lies in M ε
δ infinitely often with probability that approaches

one when δ decreases. This shows that for every ε, dw(1ω, pt) ≤ ε infinitely often

with a probability which is arbitrarily close to 1.

We now prove Theorem 1 given Proposition 1 and Proposition 2.

Proof. Theorem 1 is established in three steps. The function ū : A ×∆ (Ω) → R

is generated from u as follows

ū(a, µ) =

∫
u(a, ω)dµ.

1. Proposition 2 together with compactness of A implies that with probability

one there exists a subsequence (at, pt) that converges to a limit (a∗,1ω) where

at satisfies

u(at, pt) ≥ u(a, pt)

for all a ∈ A.

2. Continuity of u implies continuity of the function ū : A×∆ (Ω)→ R. Since

σ is an equilibrium strategy the realized action at at time t is almost surely

a best reply to pt. Hence for all a ∈ A,

rt = ū(at, pt) ≥ ū(a, pt).

Since the best reply correspondence is a closed mapping, it follows that for

every a ∈ A,

ū(a∗, 1ω) ≥ ū(a, 1ω).

3. Step 2 establishes that with probability one there exists a subsequence of rt

that converges to O. By Proposition 1 rt converges almost surely. Hence

rt converges to O almost surely. Let Eσ[O − yt] be the deviation of the

actual payoff of agent t from the maximal payoff. We will show first that
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limt→∞Eσ[O − yt] = 0. To see this note that,

Eσ[O − yt] = Eσ[O − Eσ[yt|Ft]] (1)

= Eσ[O − rt]. (2)

(1) follows from the law of iterated expectation and (2) from the definition

of rt. Since the payoff function u is bounded and since rt converges to O it

follows from the dominated convergence theorem that, Eσ[O− rt] converges

to zero.

4. Since O(ω) ≥ u(at, ω) = yt it follows that for every ε,

Pσ(O − yt > ε)→t→∞ 0.

Hence yt converges to O in probability.�

5 Asymptotic Learning with Heterogeneous Types

In this section we relax the assumption of all agents sharing a commonly known

utility function. To be more precise, we allow for random, privately observed

utilities. Let Q be a probability distribution over C(A×Ω), the space of continuous

functions on A×Ω. The utility function ut of each agent t is independently drawn

from C(A×Ω) according to the probability distribution Q and is privately observed

by agent t. No restrictions are imposed on the measure Q.

In general, asymptotic learning might fail, if agents have no information on

their predecessors’ realized utility functions. Instead, we assume that each agent

is able to identify whether any given predecessor has a similar utility function or

not. To be more precise, we partition the space of continuous utility functions

C(A × Ω) according to a commonly known, finite partition P . Beyond knowing

his own utility function ut that belongs to some partition cell P ∈ P , agent t

knows if the utility function of each predecessor ut−k lies in his cell P or not. The

idea behind this approach is that individuals with similar preferences can identify
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each other even though they are not being able to identify the exact preference of

the close types.

Intuitively, our objective is to establish an approximate learning result, where

agents take almost optimal actions in the long run, despite the very coarse knowl-

edge regarding the types of other agents. Let σt be any strategy and let yt be the

corresponding payoff of agent t,

yt = ut(at, ω).

The maximal payoff player t can achieve under his realized utility function and

under knowledge of the true state of the world ω is denoted by Ot. Our main

theorem states the following:

Theorem 2. Let (F, µ) generate unbounded signals. For every ε > 0 and distri-

bution of types Q there exists a finite partition Pε of C(A×Ω) such that for every

equilibrium strategy σ there exists a time t0 such that for every t > t0,

Pσ (|Ot − yt| ≤ ε) ≥ 1− ε.

The theorem establishes that asymptotic learning can be approximated with

finite partitions of the space of continuous utility functions. Despite each agent

being only able to identify for each predecessor to which uncountable set his utility

function belongs, the long run actions are optimal up to an error of ε optimal with

probability at least 1− ε. The maximal deviation from the optimal utility can be

made arbitrarily small by increasing the cardinality of the finite partition on the

space of continuous utility functions.

The main challenge of Theorem 2 is to construct the finite partition Pε. We

first define two payoff functions as ε close if every best reply action with respect

to any belief in one function is an ε-best reply with respect to the same belief in

the other. That is, the payoffs u and v are ε close if for every µ ∈ ∆(Ω), every

action a that is a best reply to µ for the function u, a yields a payoff that differs

at most by ε from the optimal payoff for the belief µ with respect to the function

v, and vice versa. We show that one can find a finite partition such that Pε such
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that with probability at least 1 − ε the chosen element P ∈ Pε has the property

that any two members of P are ε close. We then apply similar considerations as

in Theorem 1 to show that the members of every such partition element learn to

approximately best reply to the true state.

6 Appendix

6.1 Proof of Proposition 1

Lemma 1. vt is a convergent submartingale. Additionally, for every t the follow-

ing holds almost surely

vt ≤ rt, (3)

rt = vt+1. (4)

Begin Proof: To see that vt is a submartingale we need to show that

vt ≤ E [vt+1 |Ht ]

for all t ∈ N. By the law of iterated expectations we have

vt = Eσ [Eσ[u(bt, ω)|Ht+1] |Ht ]

By definition of bt+1 it holds that,

Eσ[u(bt, ω)|Ht+1] ≤ Eσ[u(bt+1, ω)|Ht+1].

Therefore,

vt = E [Eσ[u(bt, ω)|Ht+1] |Ht ] ≤ E [Eσ[u(bt+1, ω)|Ht+1] |Ht ] = E [vt+1 |Ht ] .

establishing that vt is indeed a submartingale. The utility function u is bounded

due to compactness of A × ×Ω and continuity, and hence vt converges by the

Martingale Convergence Theorem. Equation (3) follows since Ht ⊂ Ft. To show

Equation (4) note first that the action at+1 is measurable with respect Ht+1, hence
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by observing the history ht+1 one can can imitate the action of agent t and achieve

an expected payoff which is not lower than his. That is,

vt+1 ≥ rt (5)

To see the reverse inequality note that since Ht+1 ⊂ Ft we have that

vt+1 ≤ rt.

�

The proof of Proposition 1 is now straight-forward.

Beginn Proof: By the Martingale Convergence Theorem vt converges to

v∗ almost surely. By Lemma 1 we have rt = vt+1 which implies almost sure

convergence of rt to v∗.�

6.2 Proof of Proposition 2

Lemma 2. Assume that (F, µ) generate unbounded beliefs and let ν ∈ ∆(Ω) be

absolutely continuous with respect to µ such that for µ almost every ω ∈ Ω,

dν

dµ
(ω) ≤M,

for some M > 0. Then (F, ν) generate unbounded beliefs.

Proof. For every µ ∈ ∆(Ω) let µ∗ ∈ ∆(Ω× S) be the measure that induced by µ

and F over Ω × S. For convenience, with a slight abuse of notations, we denote

by µ∗ also the measure that is obtained on the signal space S from µ and F .

By definition (ν, F ) generate unbounded beliefs iff for every event E with

ν(E) > 0 and for every δ there exists a set of signals Sδ with ν∗(Sδ) > 0 such that,

ν∗(E|Sδ) ≥ 1− δ.

Since ν(E) > 0 and since ν � µ we can find an event E ′ ⊂ E such that

ν(E ′) > 0 and dν
dµ

(ω) ≥ α, for some α > 0. It clearly holds that µ(E ′) > 0. Fix

δ > 0 we shall show that there exists a set of signals Tδ with ν∗(Tδ) > 0 such that

ν∗(E ′|Tδ) ≥ 1− δ.
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By the above since µ(E ′) > 0, for every ε there exists a set Sε with µ∗(Sε) > 0

such that,

µ∗(E ′|Sε) ≥ 1− ε. (6)

Note that for every ε it holds by Bayes rule,

ν∗(E ′ × Sε) =

∫
E′
F (ω)(Sε)dν(ω) (7)

=

∫
E′
F (ω)(Sε)

dν

dµ
(ω)dµ(ω)

≥ α

∫
E′
F (ω)(Sε)dµ(ω) = αµ∗(E ′ × Sε),

The last inequality of (7) follows from the definition of E ′.

Similarly, it holds that

ν∗((E ′)c × Sε) ≤Mµ∗((E ′)c × Sε) (8)

A simple application of Bayes rule together with equation (6) implies that.

µ∗((E ′)c × Sε)
µ∗(E ′ × Sε)

≤ ε

1− ε
.

It then follows from equations (7) and (8) that, for every ε > 0,

ν∗((E ′)c × Sε)
ν∗(E ′ × Sε)

≤ Mε

α(1− ε)
.

We can therefore choose ε > 0 to be small enough such that,

ν∗((E ′)c × Sε)
ν∗(E ′ × Sε)

≤ δ

1− δ
. (9)

Simple application of Bayes rule yields,

ν∗(E ′|Sε) =
1

1 + ν∗((E′)c×Sε)
ν∗(E′×Sε)

.

Hence Equation (9) implies that,

ν∗(E ′|Sε) ≥ 1− δ.

This concludes the proof of the Lemma.
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For every t let, µt = µσ( |Ht) be the public belief at time t. Let µ∞ = µσ( |H∞)

be the belief at infinity. By the martingale converges theorem we know that for

every event E ⊂ Ω,

lim
t
µt(E) = µ∞(E).

The following lemma demonstrates that with probability 1, no fully wrong belief

can occur.

Let Pσ be the probability measure that µ and σ induce on Ω×H∞×S∞. For

every measurable set E let PE
σ be the probability that is induced by Pσ conditional

on the the true state lies in E.

Lemma 3. Let E ⊂ Ω be a measurable set with µ(E) > 0. The following hold

with probability 1 under PE
σ .

lim
t
µt(E) = µ∞(E) > 0. (10)

That is, conditional on the true state of the world lies in E the public belief assigns

a positive probability bounded away from 0 to E for every time t with probability

1.

Proof. Assume by contradiction that the limit in expression (10) is zero with

positive probability under PE
σ . Let H∞ be the set of all infinite histories. Let

H0 ⊂ H∞ be the subset of all histories h for which

lim
t
µt(E)(ht) = µ∞(E)(h) = 0. (11)

By the contradiction assumption we get that Pσ(E × H0) > 0. Let ν be the

marginal of Pσ over H∞, by the law of total probability,

Pσ(E ×H0) =

∫
H0

µ∞(E)(h)dν(h) = 0.

The last equality follows from (11). This stands in contradiction to Pσ(E×H0) >

0. Hence PE
σ (H0) = 0.

Note that for every t ∈ N ∪ {∞} the conditional probability µt may be seen

as a random measure that obtains values in ∆(Ω) for every realization of history
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ht. Let Pt ∈ ∆(∆(Ω)) be the measure that is induced by µt over ∆(Ω). For every

measure P ∈ ∆∆(Ω) and a measurable set E let,

P̃(E) =

∫
∆(Ω)

λ(E)dP(λ). (12)

Note that for every t ∈ N ∪ {∞} it holds that P̃t(E) = µ(E). Fix a ball B ⊂ Ω

with µ(B) > 0, and let PB
t ∈ ∆(∆(Ω)) be the measure that obtained from Pt

conditional on the true state lies in the ball B.

Note first that for every t ∈ N ∪ {∞} whenever µ(B) > 0, the measure P̃B
t is

absolutely continuous with respect to µ. To see this note that µt(E) is a martingale

for every measurable event E ⊂ Ω, hence by (12) P̃t(E) = µ(E). Therefore, by

Bayes rule

µ(E) = µ(B)P̃B
t (E) + µ((B)c)P̃

(B)c

t (E). (13)

Hence P̃B
t (E) = 0 whenever µ(E) = 0. More generally we have the following

lemma.

Lemma 4. Let P ∈ ∆(∆(Ω)) and let K ⊂ ∆(Ω) be a measurable subset such

that P(K) > 0, define Q = P( |K). The measure Q̃ is absolutely continuous with

respect to the measure P̃ and the Radon Nykodim derivative dQ̃

dP̃
is P̃ almost surely

bounded by 1
P(K)

.

Proof. The lemma follows by applying similar considerations as above. Let M =

P( |(K)c). For every measurable set E ⊂ ∆(Ω) we have that,

P̃(E) = P(K)Q̃(E) + P((K)c)M̃(E). (14)

Hence Q̃(E) > 0 implies that P̃(E) > 0. Moreover, by equation (14) we have for

P̃ a.e. ω ∈ Ω that,

1 = P(K)
dQ̃

dP̃
(ω) + P((K)c)

dM̃

dP̃
(ω).

Since both derivatives are non-negative we have that for P̃ a.e. ω ∈ Ω,

dQ̃

dP̃
(ω) ≤ 1

P(K)
.
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Lemma 5. Let B be any ball such that µ(B) > 0. For every ε > 0 and η there

exists a δ such that if µ(E) ≥ 1− δ then for every t it holds that

PB
t ({λ : λ(E) ≥ 1− η) ≥ 1− ε.

Proof. The proof follows readily from equations (12) and (13).

Fix a ball B with µ(B) > 0. For every 0 < α < 1 let Mα
δ ⊂ ∆(Ω) be the set of

all measures λ for which there exists a measurable set of signals T ⊂ S such that

the following condition satisfied,

λ∗(B× T ) > (1− α)λ∗(T ) > δ. (15)

Let Mα =
⋃
δ>0M

α
δ .

Lemma 6. PB
∞ assigns probability one to Mα for every α > 0.

Proof. Assume by contradiction that PB
∞(Mα) < 1 for some α > 0.Hence PB

∞((Mα)c) >

0. Let Q be the conditional probability of PB
∞ given the complement (Mα)c.

By Lemma 4 Q̃ is absolutely continuous with respect to P̃B
∞ with a bounded

Radon-Nykodim derivatives. Similarly, the measure P̃B
∞ is absolutely continuous

with respect to µ with a bounded Radon Nykodim derivative. By Lemma 3 the

measure PB
∞ assigns probability one to the set of all measures λ ∈ ∆(Ω) for which

λ(B) > 0. Hence, Q̃(B) > 0. By Lemma 2 the pair (Q̃, F ) forms an unbounded

beliefs. Hence by the unboundedness condition there exists a set Sα such that

(Q̃)∗(Sα) > 0 and,

(Q̃)∗(B|s) > (1− α) ∀s ∈ Sα.

As a result,

(Q̃)∗(B× Sα) =

∫
Sα

(Q̃)∗(B|s)d(Q̃)∗(s) > (1− α)(P̃)∗(Sα).

Therefore there exists a measurable set K ⊂ ∆(Ω) and δ > 0 such that Q(K) >

0, and for every λ ∈ K,

λ∗(B× Sα) > (1− α)λ∗(Sα) > δ.

Therefore we have established that Q(Mα) > 0. This stands in contradiction to

the definition of Q.
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Lemma 7. For every α > 0 and ε > 0 there exists a δ and a time t0 such that

PB
σ ({µt ∈Mα

δ ∀t > t0}) ≥ 1− ε.

Proof. Fix α > 0. Since PB
∞(Mα) = 1, and since

lim
δ→0

PB
∞(Mα

δ ) = PB
∞(Mα),

for every ε there exists a δ > 0 such that PB
∞(Mα

δ ) > 1− ε.

Moreover, since S is a standard Borel space, its sigma algebra is countably gen-

erated. Therefore, there exists a countable family of measurable subsets {Sk}k∈N
such that condition (15) is satisfied with respect to some measurable subset T ⊂ S

iff it satisfied with respect to Sk for some k > 0. That is, for every λ ∈Mα
δ there

exists a k such that,

λ∗(B× Sk) > (1− α)λ∗(Sk).

Therefore for every ε we can find a finite set of indices {1, . . . ,m} such that

the following condition hold with PB
∞ probability at least 1− ε

2
.

• There exists a k ∈ {1, . . . ,m} such that,

λ∗(B× Sk) > (1− α)λ∗(Sk) > δ.

Note that by definition µ∗t (B×T ) = Eσ(1B×T |Ht) for every measurable T ⊂ S.

Hence for every k µ∗t (B × Sk) is a martingale. By the martingale convergence

theorem it holds that

lim
t→∞

µt(B× Sk) = µ∗∞(B× Sk),

for every k. Therefore we can find a large enough t0 such that the following event

holds with probability at least 1− ε
2

with respect to PB
σ ,

• For every t > t0 there exists a k ∈ {1, . . . ,m} such that,

µ∗t (B× Sk) > (1− α)(µ∗t (S)) > δ.

Hence in particular PB
σ ({µt ∈Mα

δ ∀t > t0}) ≥ 1− ε.
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Lemma 8. For every ε > 0 and a constant 0 < β ≤ 1 there exists a constant L

and a measurable set Kε
β ⊂ Ω such that µ(Kε

β) ≥ 1− ε and for every ω, ω′εβ and a

measurable subset T ⊂ S it holds that F (ω′)(T ) ≥ 1
L

whenever F (ω)(T ) ≥ β.

Proof. For every large R > 1 and 0 < β < 1 let GR
β be the set of all states ω ∈ Ω

that satisfy the following two conditions,

1. For every measurable subset T ⊆ S with µ∗(T ) ≥ β,

1

R
≤ F (ω)(T ).

2. For every measurable subset T ⊆ S for which F (ω)(T ) ≥ β,

1

R
≤ µ∗(T ).

We claim that for every ω ∈ Ω and for every 0 < β < 1 there exists R such that

ω ∈ GR
β . To see this note that F (ω) is absolutely continuous with respect to µ∗.

We can therefore let

φ(s) =
dF (ω)

dµ∗
(s)

be the Radon-Nykodim derivative of F (ω) with respect to µ∗. For every constant

D let TD = {s : φ(s) > 1
D
}. Since limD→∞ µ

∗(TD) = 1, there exists a large enough

constant D > 0 such that,

µ∗(TD) ≥ 1− β

2
.

Hence for every set T for which µ∗(T ) ≥ β it holds that,

F (ω)(T ) =

∫
(TD∩T )

φ(s)dµ∗(s) +

∫
(TD∩(T )c)

φ(s)dµ∗(s)

≥
∫

(TD∩T )

φ(s)dµ∗(s) >
β

2D
. (16)

Where (16) follows since µ∗(T ∩ TD) ≥ β
2
. Therefore we can set R1 = 2D

β
and

get that F (ω)(T ) ≥ 1
R1

for every measurable T such that µ∗(T ) ≥ β. By similar

considerations we can find a positive constant R2 such that µ∗(T ) ≥ 1
R2

for every

measurable T such that F (ω)(T ) ≥ β. Let R = max{R1, R2} we clearly have

ω ∈ GR
β .
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Hence for every ω ∈ Ω and β > 0 there exists a constant R > 0 such that

ω ∈ GR
β . Therefore, limR→∞ µ(GR

β ) = 1. Fix R such that µ(GR
β ) ≥ 1− ε

2
.

We can apply the same considerations once more with respect to the constant

1
R

to find a large enough constant L > R such that µ(GL
1
R

) ≥ 1 − ε
2
. Let Kε

β =

GR
β ∩ GL

1
R

. We claim that the set Kε
β has the desired properties with respect to

the constant L. First note that µ(Kε
β) ≥ 1− ε as desired. Let ω, ω′ ∈ Kε

β and let

T ⊂ S be a measurable subset such that F (ω)(T ) ≥ β. Since ω ∈ GR
β the second

condition in the definition of GR
β above implies that µ∗(T ) ≥ 1

R
. Since ω′ ∈ GL

1
R

the first condition implies that 1
L
≤ F (ω′), as desired.

Lemma 9. For every 0 < α ≤ 1
5
, pt(B) ≥ 1−3α infinitely often with PB

σ probability

one.

Proof. Fix ε > 0. We shall show that pt(B) ≥ 1 − 3α infinitely often with PB
σ

probability at least 1 − ε. By Lemma 7 there exists a δ > 0 and a time t0 such

that µt ∈Mα
δ for every t > t0 with probability at least 1− ε

3
.

By Lemmas 8 for every η there exists a set Kη
δ
4

⊂ Ω and a corresponding

constant L such that such that the following conditions hold (i) µ(Kη
δ
4

) ≥ 1 − η,

(ii) for every ω, ω′ ∈ Kη
δ
4

and for every a measurable subset T ⊂ S if F (ω) ≥ δ
4

then F (ω′)(T ) ≥ 1
L

.

In addition, by Lemma 5 we can choose η > 0 such that the following conditions

hold,

1. ∀t PB
t (µt(K

η
δ
4

) ≥ 1− δ
4
) ≥ 1− ε

3
,

2. µ(Kη
δ
4

|B) ≥ 1− ε
3
.

Condition 1 implies that µt(K
η
δ
4

) ≥ 1− δ
4

infinitely often with PB
σ with proba-

bility at least 1− ε
3
. It follows that the following conditions holds with probability

at least 1− ε under PB
σ :

µt ∈Mα
δ for every t > t0, (17)

µt(K
η
δ
4

) ≥ 1− δ

4
infinitely often, (18)

The true state of the world lies in Kη
δ
4

. (19)
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We claim that for every λ ∈ Mα
δ for which λ(Kη

δ
4

) ≥ 1 − δ
4

there exists a

measurable subset of signals T such that, λ∗(B|s) ≥ 1 − 3α for every s ∈ T and

F (ω)(T ) ≥ 1
L

for every ω ∈ Kη
δ
4

. To see this note first that since λ ∈ Mα
δ there

exists a measurable set T ′ such that, λ∗(B× T ′) > (1− α)λ∗(T ′) > δ. Let

T = {s ∈ T ′|λ∗(B|s) ≥ 1− 3α}.

Since,

λ∗(B× T ′) =

∫
T ′
λ∗(B|s)dλ∗(s),

a simple calculation shows that the set T must have a probability strictly greater

than 2
3
λ∗(T ′). Hence λ∗(T ) > 2δ

3
. Moreover, since λ(Kη

δ
4

) ≥ 1 − δ
4

there must be

ω ∈ Kη
δ
4

such that, F (ω)(T ) ≥ δ
4
. To see this note first that by definition of T and

since α ≤ 1
5

it holds that

λ∗(B× T ) ≥ (1− 3α)λ∗(T ) >
δ

2
.

Assume by contradiction that F (ω)(T ) < δ
4

for every ω ∈ Kη
δ
4

. Then,

δ

2
< λ∗(B× T ) =

∫
B∩Kη

δ
4

λ∗(T |ω)dλ(ω) +

∫
B∩(Kη

δ
4

)c
λ∗(T |ω)dλ(ω) (20)

<
δ

4
+ λ((Kη

δ
4

)c) <
δ

2
. (21)

This leads to a contradiction. Therefore F (ω)(T ) ≥ 1
L

for every ω ∈ Kη
δ
4

.

Hence if at time t it holds that (i) µt ∈Mα
δ , (ii) µt(K

η
δ
4

) ≥ 1− δ
4
, and (iii) the

true state lies in Kη
δ
4

then pt(B) ≥ 1− 3α with probability at least 1
L

.

Let Vt be the event that the these three conditions hold at time t. By equations

(17)-(19) Vt holds infinitely often with probability at least 1 − ε. Let Ut be the

event that Vt holds and in addition pt(B) ≥ 1 − 3α. Let G be the Borel sigma

algebra on Ω. For every time t > 0 let Gt be the sigma algebra generated by G and

{Fk}k≤t, where Fk is the sigma algebra generated by the information of agent k.

Note that both Vt and Ut are Gt measurable. In addition, by the considerations

above PB
σ (Ut|Gt−1) ≥ PB

σ (Vt|Gt−1) · 1
L
. Therefore,∑

t≥1

PB
σ (Ut|Gt−1) ≥

∑
t≥1

1

L
PB
σ (Vt|Gt−1).
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Hence, ∑
t≥1

PB
σ (Vt|Gt−1) =∞ implies

∑
t≥1

PB
σ (Ut|Gt−1) =∞. (22)

Levy’s extension of the Borel-Cantelli lemma (see Corollary on page 486 in Shiyayev

[9]) implies that,∑
t≥1

1Vt =∞ iff
∑
t≥1

PB
σ (Vt|Gt−1) =∞ and ,

∑
t≥1

1Ut =∞ iff
∑
t≥1

PB
σ (Ut|Gt−1) =∞.

Note that Ut holds infinitely often iff
∑

t≥1 1Ut = ∞. Therefore by (22) Vt holds

infinitely often with probability at least 1 − ε implies that Ut holds infinitely

often with probability at least 1 − ε. By definition of the event Ut it holds that

pt(B) ≥ 1− 3α infinitely often with probability at least 1− ε.

Let 1ω be the random measure that assigns a probability one to the true state

of the world. The following is a corollary from Lemma 9.

Corollary 1. For every ε > 0, the distance dw(1ω, pt) ≤ ε infinitely often.

Proof. Fix any γ > 0. By definition of the Prokhorov metric for every ε there exists

a δ such that for every B of radios δ or less if µ(B) ≥ 1− δ then dw(1ω, µ) ≤ ε for

every ω ∈ B. Let {Bk}nk=1 be a finite disjoint collection of balls all with a radios

less than δ such that µ(∪nk=1Bk) ≥ 1− γ. Given that ω ∈ Bk for some 1 ≤ k ≤ n

one can deduce from the proposition that pt(Bk) ≥ 1 − δ infinitely often. Hence

dw(1ω, pt) ≤ ε infinitely often with probability at least 1− γ. As γ was arbitrary

we can deduce that dw(1ω, pt) ≤ ε infinitely often with probability one.

6.3 Proof of Theorem 2

Fix ε > 0. For every δ > 0, let Cε
δ be the set of continuous functions u ∈ C(A×Ω),

such that for every two pairs (a, ω), (a′, ω′) ∈ A×Ω for which d((a, ω), (a′, ω′)) ≤ δ

it holds that,

u(a, ω)− u(a′, ω′) ≤ ε.

Since every continuous function u on a compact domain is uniformly continuous

we have that for every function u ∈ C(A× Ω), and ε > 0 there exists δ > 0 such

that, u ∈ Cε
δ .
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Let Q ∈ ∆(C(A×Ω)) be the probability distribution over the payoff functions.

By the above considerations we can find small enough δ > 0 and a set, D ⊂ C
ε2

12
δ

such that Q(D) ≥ 1 − ε
4
, and |u(a, ω)| ≤ M for every u ∈ D and every (a, ω) ∈

A× Ω.

Claim 3. There exists a finite partition PD of D such that, for every partition

element P ∈ PD and every u, v ∈ P it holds that,

∀(a, ω) ∈ A× Ω, |u(a, ω)− v(a, ω)| ≤ ε2

4
.

Proof of the Claim. Since A × Ω is compact we can find a finite set of points

K ⊂ A × Ω such that, ∪(a,ω)∈KBδ(a, ω) = A × Ω. Since all function in D are

uniformly bounded by M we can construct a finite partition PD of D such that,

for every partition element P ∈ PD every u, v ∈ P , and every (a, ω) ∈ K, it

holds that, |u(a, ω) − v(a, ω)| ≤ ε2

12
. To see this note that we can partition the

interval [−M,M ] into at most 24M
ε2

closed intervals with disjoint interior of length

bounded by ε2

12
. Let PD be a finite partition of D such that, for every P ∈ PD, every

u, v ∈ P and (a, ω) ∈ K, it holds u(a, ω), v(a, ω) lies in the same interval. I.e.,

u(a, ω), v(a, ω) lies in a distance at most ε2

12
.

We claim that PD has the desired properties. To see this let u, v ∈ P for some

P ∈ PD, and let (a′, ω′) ∈ A× Ω.

By construction there exists (a, ω) ∈ K such that d((a, ω), (a′, ω′)) ≤ δ, and

|u(a, ω) − v(a, ω)| ≤ ε
3
. In addition, since u, v ∈ C

ε
3
δ we have that, |u(a, ω) −

u(a′, ω′)| ≤ ε2

12
, and |u(a, ω)− u(a′, ω′)| ≤ ε2

12
.

Hence by the triangle inequality,

|u(a′, ω′)−v(a′, ω)′| ≤ |u(a, ω)−u(a′, ω′)|+|v(a, ω)−v(a′, ω′)|+|u(a, ω)−v(a, ω)| ≤ ε2

4
.

This concludes the proof of the claim.

Let P be the partition over C(A×Ω) obtained from PD by adding C(A×Ω)\D

as an additional element. Consider a fixed partition cell P ∈ PD such that Q(P ) >

0. Let us fix a representative element ũ ∈ P . Let {τk}∞k=1 be a sequence of stopping

times where τk is the kth time that a utility u ∈ P was drawn. For each k, τk
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is finite with probability 1 and has finite expectation. For every k let Hk be the

sigma algebra generated by τk and the history hτk up to time τk. Let Fk be the

sigma algebra generated by Hk and the private signal of agent τk.

For every k let ṽk be the random variable representing the maximal expected

payoff of an agent with a utility ũ conditional onHk. That is, ṽk = maxa∈AEσ[ũ(a, ω)|Hτk ].

Similarly let r̃k = rτk = Eσ[uτk(aτk , ω)|Fk] is defined as above and represents the

expected utilities conditional on the optimal action given the current utility uτk

and the sigma algebra Fk,.

Lemma 10. The following holds for every k in every perfect Bayesian equilibrium

σ,

|ṽk − r̃k| ≤
ε2

4
.

Proof. By definition of the partition P and since uk, ũ ∈ P it holds for every pair

(a, µ) ∈ A×∆(Ω) and every k that,

|
∫

Ω

[uk(a, ω)− ũ(a, ω)]dµ(ω)| ≤ ε2

4
.

By the imitation principle it holds that for every k

|ṽk+1 − r̃k| ≤
ε2

4

Since ṽk is a converges submartingale we have that ṽk converges almost surely

to a limit ṽ. This implies that

lim sup
k→∞
|ṽ − rk| ≤

ε2

4
a.s. (23)

Let Ok be the maximal payoff of agent τk conditional on the true state of the

world.

Lemma 11. The following holds with Pσ probability 1,

lim inf
k→∞
|r̃k −Ok| = 0.
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Proof. This follows from our main lemma, as the private belief of agents τ1, τ2, . . .

gets arbitrarily close to the point belief infinitely often with probability one. Since

utility functions are continuous the expected payoff gets arbitrarily close to the

optimal payoff infinitely often.

In the following we provide the proof of Theorem 2.

Proof of Theorem 2. The theorem is established in four steps.

1. The convergence of ṽk to ṽ and (23) imply that there exists a time mP
1 such

that

Eσ[rk − ṽ] ≤ ε2

3

for all k > mP
1 .

2. Step 1 together with Lemma 11 imply that there exists mP
2 > mP

1 such that

Eσ[Ok − ṽ] ≤ ε2

3

for all k > mP
2 .

3. Step 1 and 2 imply that

Eσ[Ok − r̃k] ≤
2ε2

3

for all k > mP
2 . In particular by definition of r̃k this implies that for every

k > mP
2 ,

Eσ[Ok − ỹk] ≤
2ε2

3
.

Therefore, for every k > mP
2 it must be the case that ỹk + ε ≥ Ok with

probability at least 2ε
3

.

4. Since there are finitely many partition elements P, there exists a finite t0

such that the probability that there where mP
2 appearances of members of

P before time t0 for any P that obtains with positive probability, is at least

1 − ε
12

. Therefore for any time t > t0 the probability that a type is drawn

that belongs to D and this type will be ε best replying is at least 1− ε. This

concludes the proof of the Theorem.
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