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Abstract

This paper estimates intergenerational elasticities across three generations in the United

States in the late 19th and early 20th centuries. We extend the methodology in Olivetti

and Paserman (2013) to explore four different channels of intergenerational mobility: be-

tween fathers sons and grandsons; fathers, sons and granddaughters; fathers, daughters

and grandsons; and fathers, daughters, and granddaughters.

We document three main findings. First, there is evidence of a strong second-order au-

toregressive coefficient for the process of intergenerational transmission of income. Second,

the socio-economic status of grandsons is influenced more strongly by paternal grandfa-

thers than by maternal grandfathers. Third, maternal grandfathers are more important for

granddaughters than for grandsons, while the opposite is true for paternal grandfathers.

We propose two alternative theoretical frameworks that can rationalize these findings.
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1 Introduction

The dramatic increase in income inequality over the past 4 decades has led to a renewed

interest in how economic status is transmitted across generations. A high degree of inequal-

ity that persists across generation undermines the very notion of equality of opportunity.

The availability of large administrative datasets has pushed the envelope of research on in-

tergenerational mobility, allowing scholars to explore in much more detail the nature of the

transmission mechanism across generations (see for example Chetty et al., 2014a and 2014b).

One of the most interesting recent developments is the study of the transmission of economic

status across multiple generations (Solon 2013, Mare 2011). This extends a large literature

(see Solon, 1999 and Black and Devereux, 2011 for extensive surveys) that examined intergen-

erational mobility across two generations, typically focusing on fathers and sons and assuming

that the intergenerational transmission of income follows an AR(1) process. This assumption

has been driven primarily by a lack of data linking more than two generations, even though

the transmission mechanism may be substantially more complex. 1

These multigenerational effects have also attracted attention because they have important

implications about the persistence of income inequality over time. Most existing estimates

place the father-son intergenerational elasticity for the US at between 0.4 and 0.5.2 If the

process of intergenerational income transmission is AR(1), this implies that a given shock to

income will fade out relatively quickly: the third order autocorrelation coefficient is between

0.064 and 0.125. A higher order autoregressive process would imply a much slower regression to

the mean. In other words, the degree of persistence of socioeconomic status across generations

could be a lot higher than what we believe.

A handful of studies have tackled the measurement of multigenerational effects on income

transmission using historical data. Ferrie and Long (in progress) measure occupational mo-

bility across three generations by tracing men through federal censuses from 1850 to 1940.

They perform record linkages based on first and last name, birth year, and birth place. Clark

(2014) examines intergenerational mobility over the very long term by tracing the performance

1Solon (2013) discusses some possible justifications for the inclusion of a second-order term in the lag process:
for example, grandparents may make independent human capital investments in grandchildren; alternatively,
even if grandparents do not have a direct effect on children’s outcomes, the inclusion of multigenerational effects
may serve to rectify attenuation bias stemming from the mis-measurement of single generation effects.

2Clark (2014) however, using very long-run data, estimates the one-generation elasticity to be substantially
higher.
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of men with particular surname characteristics over time. These studies find evidence of sig-

nificant multigenerational effects; however, the methodologies used impose a major limitation

on the type of analysis they are able to do. Both studies use surnames in some capacity to

trace families over time; as such, it is impossible for them to say anything about the impor-

tance of maternal grandparents, as they cannot be linked to their grandchildren by surname.

Moreover, the use of surnames prevents these studies from looking at multigenerational effects

on married women’s outcomes. As such, they are only able to partially characterize mobility

across multiple generations.

In this paper, we attempt to overcome the limitations of existing studies by estimating

intergenerational elasticities across three generations for the United States during the late 19th

and early 20th centuries, looking at the effects of both maternal and paternal grandparents

on both granddaughters and grandsons. We apply and extend the methodology originally

developed by Olivetti and Paserman (2013) in order to measure intergenerational elasticities

between fathers (G1), children (G2) and grandchildren (G3). The key insight of this approach

is that the information about socio-economic status conveyed by first names can be used

to create a pseudo-link between fathers and children. Specifically, our empirical strategy

amounts to imputing father’s income, which is unobserved, using the average income of fathers

of children with a given first name. Extending this idea, one can also impute grandfather’s

income as a weighted average of the name-specific average income of the fathers’ fathers, with

weights equal to the fraction of fathers with that name among all the fathers of G3 children

with a given first name.3

The intuition for why this methodology works can be explained using a simple example.

Assume that the only possible names for boys in generation G3 are Adam and Zachary, with

high socioeconomic status G2 parents more likely to name their child Adam, with Zachary

being more common among low socioeconomic status parents. In a society with a high degree

of intergenerational mobility, we would not expect the adult Adams to have much of an

advantage on the adult Zacharys. Moreover, in the previous generation (G1) the fathers of

men who name their sons Adam should be almost indistinguishable from the fathers of men

who name their sons Zachary. Therefore, one can obtain a good measure of intergenerational

3The data only allows us to calculate the intergenerational elasticity in an index of occupational status based
on the 1950 income distribution. Somewhat loosely, we will sometimes refer to our estimates as estimates of
the intergenerational income elasticity, or simply intergenerational elasticity.
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mobility by correlating the average incomes of people with a given name, that of fathers of

people with that name, and that of fathers of fathers who assign that name.

A distinct advantage of our approach is that it allows us to measure the importance of ma-

ternal grandparents as well as paternal grandparents. Our methodology applies equally well to

women: just replace Adam and Zachary in the previous example with Abigail and Zelda, and

use husband’s income as the measure of women’s socioeconomic status. Olivetti and Paser-

man (2013) use this methodology to provide the first estimate of intergenerational mobility

between fathers and daughters in the late 19th and early 20th Centuries. In the case of three

generations, the methodology allows us to estimate four different channels of intergenerational

transmission of socioeconomic status: fathers-sons-grandsons, fathers-sons-granddaughters,

fathers-daughters-grandsons and fathers-daughters-granddaughters. Moreover, we are able to

augment a simple AR(2) model of intergenerational income transmission by including the in-

come of both paternal and maternal grandparents in the same regression. It is important to

emphasize at this point that even though our methodology does not necessarily recover the

intergenerational elasticity estimates that would be obtained with a true intergenerationally

linked data set, it is still able to provide comparable estimates of the evolution of long-run

mobility across all the possible gender lines. Thus, our analysis is able to explicitly test the

relative importance of paternal and maternal grandparents, which affords it the potential to

uncover different mechanisms through which gender differentials in intergenerational mobility

may arise.

Using 1% extracts from the Decennial Censuses of the United States between 1850 and

1940, we find evidence of a strong second-order autoregressive coefficient for the process of

intergenerational transmission of income. That is, even after controlling for the income in

generation G2 (“father’s income”), the income of generation G1 (“grandfather’s income”) has

a large and positive effect on the income of generation G3 (“grandson’s income”). This find-

ing suggests that traditional estimates of intergenerational mobility that assume a first-order

autoregressive process for income may substantially understate the true extent of intergenera-

tional persistence in economic status. These findings are in accordance to other recent papers

that have been able to exploit modern data that links multiple generations (e.g., Lindahl et

al., 2012, and other papers presented at the Panel Study of Income Dynamics “Inequality

4



across Multiple Generations Workshop,” September 2012).4

The novel contribution of this paper is its ability to study intergenerational elasticities for

both genders. Here, we find interesting gender differentials in the strength of the correlation

between the three generations. Our results indicate that the transmission of economic status

is passed along mostly through gendered lines. That is, paternal grandfathers matter more

than maternal grandfathers for the income of grandsons, while the opposite is true for grand-

daughters. Furthermore, holding the gender of the second generation constant, we find that

maternal grandfathers are more important for granddaughters than for grandsons, while the

opposite is true for paternal grandfathers.

We propose two alternative theoretical frameworks that can rationalize these findings.

The first is a three generation dynastic model in which there is tension between G1’s and G2’s

preferences over G2’s and G3’s consumption. This framework can rationalize our findings if the

timing of intergenerational transfers is gender specific; for example, if parents assign dowries

to their daughters (when they are still alive) and leave bequests to their sons (upon their

death). The second is an intergenerational mobility model in which individuals’ desirability

in the marriage market is a function of ‘market’ and ‘non-market’ traits. This framework can

rationalize our findings based on gender asymmetries in the relative importance of market

and non-market traits, as well as differences in the degree of inheritability across traits and,

potentially, across genders.

The rest of the paper is organized as follows. The next section discusses the methodology

as well as the data used for the analysis and some measurement issues. The main results and

some robustness checks are presented in Section 3. Finally, Section 4 presents the theoretical

frameworks that we use to provide a possible interpretation for our findings.

2 Methodology and Data

Consider an individual i belonging to G3 who is young at time t − s and adult at time t (in

practice, we will look at generations separated by 20 or 30 years). Let yit be individual i’s

log earnings at time t, yit−s be his father’s (G2) log earnings at time t− s, and yit−2s be his

father’s father’s log-earnings (G1) at t−2s. With individually linked data, yit, yit−s and yit−2s

4http://psidonline.isr.umich.edu/Publications/Workshops/Multigen2012 Agenda.pdf
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are all observed, and the intergenerational elasticity estimate is obtained by regressing yit on

yit−s and yit−2s.

Assume instead that we only observe three separate cross-sections and it is impossible to

link individuals across the three. This means that both yit−s and yit−2s are unobserved, and it

becomes necessary to impute them. Our strategy is to base the imputation on an individual’s

first name, which is available for both adults and children in each cross-section.

Linking generation G2 to generation G3

To link individuals from generations G2 and G3, we follow the same approach used in Olivetti

and Paserman (2013). For a G3 adult at time t named j, we replace yit−s with ỹ′jt−s, the

average log earnings of G2 fathers of children named j, obtained from the time t−s cross section

(the “prime” indicates that this average is calculated using a different sample). We have thus

created a “generated regressor” by using one sample to create a proxy for an unobserved

regressor in a second sample. The income elasticity across generations G2 and G3 can then be

estimated by a regression of yit on ỹ′jt−s. The regression is run at the individual G3 level, with

every G3 adult named j having the same imputed value of his father’s income. Olivetti and

Paserman (2013) show that if names carry information about economic status, this estimator

will be informative of the underlying parameters governing the process of intergenerational

mobility.5 We restrict the sample of G2 fathers to be in the same age range as the sample

of G3 adults; this is to facilitate our links to G1, which will be explained in the following

subsection.

Linking generation G1 to generation G2

Adding a link to generation G1 is slightly more complicated. We would like to impute G1’s

income to a G3 adult named j as the average income of the grandfathers of children named j in

year t−2s. However, two difficulties arise: first, G3 adults in year t would not have been born

in year t−2s, so it is impossible to make a “direct” pseudo-link to year t−2s. Second, making

“direct” pseudo-links from G1 to G3 would require households to be multigenerational, i.e.

5This can be thought of as a “two-sample two-stage least squares” estimator (Inoue and Solon 2010). We
rely on this interpretation to derive correct standard errors for our estimates, which take into account the
uncertainty embodied in the estimation of the first stage. See Olivetti and Paserman, 2013, for a detailed
discussion of the econometric properties of this estimator.
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containing children and grandfathers residing together, which was not typically the case.

However, we can still apply the same principle used for the G2-G3 link, extended to an

additional generation. For example, suppose that children named Adam in year t − 20 have

fathers named David, Edward and Fred, in equal proportions. The income assigned to G1

for the group of G3 adults named “Adam” is the weighted average, with weights 1
3 , 1

3 , 1
3 , of

the average income at time t − 40 of all fathers of children named David, Edward and Fred,

respectively.

Formally, we proceed as follows. First, we calculate q′j,k as the fraction of fathers (G2)

named k of children (G3) named j. This value is taken from Census year t − s, in which

G2 individuals are adults, and G3 children still live at home with their parents. Second, we

calculate ỹ′′k,t−2s, the average log earnings of G1 fathers of children named k (this average is

calculated from Census year t−2s and we use the “double-prime” to indicate that this average

is calculated using yet a different sample). Finally, we calculate ỹ′′j,t−2s as:

ỹ′′j,t−s =
∑
k

q′j,kỹ
′′
k,t−2s

In other words, the average log earnings of the grandfathers of G3 adults named j are a

weighted average of the name-specific average log earnings of the fathers of G2 fathers, with

the weights equal to the fraction of G2 individuals with that name among all the fathers of

G3 children named j.

One can then obtain an estimate of the income elasticity across the three generations by

running a regression of yi,t on ỹ′j,t−s and ỹ′′j,t−2s. Again, this regression is run at the individual

G3 level, with all G3 adults with the same first name having identical imputed incomes of G2

and G1.

The description above was presented in terms of the father-son-grandson relationship. It

is easy to see, however, that the methodology can be applied to fathers-son-granddaughters,

fathers-daughters-grandsons, and fathers-daughters-granddaughters. Therefore, we will be

able to analyze gender differentials in the transmission of economic status across multiple

generations.
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Data and Measurement Issues

We use data from the 1850 to 1940 Decennial Censuses of the United States, which contain

a wealth of information, including first names. For 1850 to 1930 we use the 1% IPUMS

samples (Ruggles et al., 2010). For 1940 we create a 1% extract of the IPUMS Restricted

Complete Count Data (Minnesota Population Center and Ancestry.com, 2013). We restrict

all the analysis to whites to avoid issues associated with the almost complete absence of blacks

in the pre-Civil War period, and the fact that even in the late cohorts many blacks would

have spent a substantial part of their lives as slaves.

Individual level data are available from IPUMS for every decadal Census from 1850 to 1940,

with the exception of 1890. This means that we can calculate our three-generation measures of

intergenerational mobility for three triplets observed at a distance of 20 years from one another

(1860-1880-1900, 1880-1900-1920, and 1900-1920-1940); and for three triplets of observations

observed at a distance of 30 years from one another (1850-1880-1910, 1870-1900-1930, and

1880-1910-1940). This gives us a unique long-run perspective on the transmission of economic

status across generations.

A challenge that applies to all computations of historical intergenerational elasticities is

to obtain appropriate quantitative measures of socioeconomic status. Because income and

earnings at the individual level are not available before the 1940 Census, we are constrained

to use measures of socioeconomic status that are based on individuals’ occupational status.

While this contrasts with the current practice among economists, who prefer to use direct

measures of income or earnings if available, there is a long tradition in sociology to focus on

occupational categories (Erikson and Goldthorpe, 1992). One of the advantages of the IPUMS

data set is that it contains a harmonized classification of occupations, and several measures of

occupational status that are comparable across years. For our benchmark analysis, we choose

the OCCSCORE measure of occupational standing. This variable indicates the median total

income (in hundreds of dollars) of persons in each occupation in 1950.

A second challenge arises from our methodology for measuring generation G1 occupational

income. As explained above, the income of fathers of generation G2 is computed as a weighted

mean of mean incomes by first names. This implies that the distribution of income for G1 is

substantially more compressed than that of G2 and G3. This is is apparent from the standard
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deviation of the average log occupational income of each of the three generations (calculated

at the G3 name level). In our sample of G2 and G3 males in 1860-1880-1900, this value is

0.314 for G3, 0.298 for G2, and only 0.091 for G1. As we show below, this inflates the OLS

estimate of the G1-G3 intergenerational elasticity relative to the G2-G3 elasticity. Therefore,

in most of our analysis we transform the right hand side variables from log occupational scores

to percentile ranks (of the mean income by first name) as a way to get around this problem.

3 Results

3.1 Basic Results

In this section, we assess our methodology and compare our intergenerational income elas-

ticities across three generations to those obtained using the IPUMS Linked Representative

Samples. Because of this comparison we restrict our analysis to males and focus on two

data points, 1860-1880-1900 and 1850-1880-1910, for which linked data across two cohorts are

publicly available.

We first show how our results are affected by the choice of the right-hand side variable, i.e.,

whether we use the average log income of generations G2 and G3 in levels, or its percentile rank.

Panel A of Table 1 presents the intergeneration elasticity estimates when the independent

variable is the log occupational income score in levels. The first column shows that the

intergenerational elasticity between the 1860 and 1880 cohorts is about 0.29, which is similar in

magnitude to the estimate obtained in Olivetti and Paserman (2013), albeit slightly smaller.6

Column 2 regresses the log occupational scores of G3 males on those of their grandfathers

(G1). At approximately 0.6, the coefficient is implausibly large given the size of the estimated

G2-G3 intergenerational elasticity. This demonstrates the issue identified earlier: because of

the way the variables are constructed, the distribution of G1 earnings is compressed relative

to that of G2, which will tend to inflate the coefficient on G1 earnings. Column 3 includes

the income of both G1 and G2 males on the right hand side. Both coefficients are statistically

significant and quite similar in magnitude. However, we are concerned that this effect may be

6Olivetti and Paserman (2013) estimate the one-generation elasticity in the years 1880-1900 to be 0.34. Our
estimate is smaller because we impose the restriction that G2 individuals be between the ages of 20 and 35;
this is to facilitate our links to G1. However, a consequence of this restriction is that the number observations
in G2 declines, leading to increased attenuation bias in the estimated one-generation elasticity.
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overstated, given the compression of our measure of G1 income and its apparent effect on the

results in column (2).

To overcome this problem, we re-estimate the regressions, but we transform the earnings

variables for G1 and G2 from logs to percentile ranks. This should alleviate the problem of

excessive compression of the distribution of G1 earnings. The results are presented in panel B

of table 1. Column 1 shows the one-generation (G2-G3) estimate of intergenerational mobility.

The coefficient in column 1 indicates that going from the bottom to the top percentile of

earnings in generation G2 is associated with an increase in log occupational income of about

0.26. Column 2 links G3 to G1, and Column 3 adds the link to G1. As anticipated, the

size of the coefficient on G1’s earnings rank is substantially reduced. Still, we find that G1’s

earnings rank has a significant positive effect on the log earnings of G3, even after controlling

for the earnings rank of G2. The statistically significant coefficient on G1 income implies

that the intergenerational income transmission process is better characterized as an AR(2),

and ignoring the second order autoregressive term will lead to overstating the extent of long-

run mobility across generations. The 30-year (1850-1880-1910) intergenerational elasticity

estimates reported in column (4) to (6) of Panel A and B confirm the results of our analysis

based on the 20-year estimates.

Next we use the IPUMS Linked Representative Samples to test our methodology. These

data contain true links between fathers and sons, which allow us to compare results obtained

from our pseudo panels to results obtained using actual father-son pairs. Using the sample

that links individuals from the 1880 to 1900 censuses, we define G3 income as the income

of the adult in 1900, and G2 income as the income of this person’s father in 1880; this is a

true link. To obtain G1 income, we create a pseudo link: because we observe the name of

the individual’s father in 1880, we can calculate the average income of fathers of boys with

this name in 1860. This allows us to create a panel in which all links are “direct,” so we do

not face issues related to the compression of the earnings distribution of certain generations

relative to others.

Table 2 replicates Table 1 using the linked IPUMS data. The top panel contains regressions

using log occupational income as explanatory variables; in the bottom panel, we use percentile

ranks on the right hand side. Columns (2) and (3) of the top panel of Table 2 confirm our

concerns about the coefficients in the top panel of Table 1. The coefficients on G1 in this table
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are significantly smaller than the corresponding coefficients in Table 1.7 It is encouraging that

the coefficients in the bottom panel of Table 2 are similar to those in the top panel of the table,

and that the coefficients on G1 in the bottom panel of Table 1 are similar to the coefficients

on G1 in both panels of Table 2. This suggests that our percentile rank regressions offer a

more accurate picture of the true G1-G3 intergenerational elasticity. We will continue to use

this method for the duration of the paper.

These results are not strictly comparable, as the regressors in the first three columns are

percentile ranks, while the regressors in the final three columns are log occupational scores.

However, the results can be compared in the following way. In column (2), a one standard

deviation increase in the percentile rank of G1 (0.171) leads to an increase of 0.026 in the

log occupational income of G3. Similarly, in column (5), a one standard deviation increase in

the log occupational income of G1 (0.139) is associated with an increase of 0.033 in the log

occupational income of G3.

3.2 Gender Differentials

Table 3 presents regressions of G3 earnings on the percentile rank of earnings of G1 and

G2, using all possible gender combinations and both decade triplets in which the distance

between generations is 20 years (1860-1880-1900; 1880-1900-1920; 1900-1920-1940). Panel A

reports the results for grandsons (G3 Male), while Panel B reports the estimates obtained for

granddaughters (G3 Female).

Notice that the coefficient on G1 is positive and significant in almost all cases. This offers

further support for the existence of multigenerational effects. There also appears to be a slight

upward time trend: in all but one gender pairing (G2 male and G3 female), the coefficient on

G1 increases over time. As in Olivetti and Paserman (2013), we find that the G2 coefficient

increases between 1900 and 1920, then levels off by 1940: one-generation mobility in the US

declines between the late part of the 19th and the early part of the 20th Century. The G1-G3

elasticity estimates also exhibits a leveling off between 1920 and 1940.

This table already illustrates interesting differences in the G1-G3 intergenerational elas-

ticity by gender. First, consider how the G1-G3 coefficient is affected by the gender of G2.

7Notice that the coefficients on G2 are much larger in the top panel of Table 2 than they are in Table 1.
This is due to differences in the extent of measurement error in these two tables. In Table 2, the links between
G3 and G2 are actual links as opposed to pseudo links, which reduces attenuation bias in the estimates.
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For G3 males, the G1-G3 intergenerational elasticity is always greater when G2 is male. To

see this, compare columns (1) and (2), (3) and (4) and (5) and (6) in the top panel. This

suggests that grandsons are more heavily influenced by paternal grandfathers than maternal

grandfathers. For G3 females, on the other hand, the pattern is more mixed. This can be seen

in the bottom panel of the table. In columns (3)-(4) and (5)-(6), the G1-G3 intergenerational

elasticity is greater when G2 is female, but the sign is reversed in columns (1)-(2).

The intergenerational elasticity also appears to be affected by the gender of G3. When

G2 is female, the G1-G3 intergenerational elasticity tends to be greater for G3 females, as is

apparent, in columns (2) and (4) but not in (6), from the comparison of the coefficients in

the first row of Panel A and B. This means that maternal grandfathers tend to have a greater

influence on their granddaughters than their grandsons. Similarly, a comparison of Panel A

and B suggests that paternal grandfathers tend to have a greater influence on their grandsons

than granddaughters, this is observed in column (3) and (5) but not in column (1).

Table 4 repeats the analysis in Table 3 using decade triplets separated by 30-year intervals

(1850-1880-1910; 1870-1900-1930; 1880-1910-1940). These coefficients do not systematically

differ in magnitude from those in Table 3. This table exhibits a broadly similar time trend to

Table 3, most notably in the coefficient on G2.

The gender differences seen in Table 3 are borne out in Table 4: grandsons inherit more

from paternal than maternal grandfathers (compare columns (1) and (2), (3) and (4), (5) and

(6) in panel A), and maternal grandfathers pass on more to granddaughters than grandsons

(see panel B). Comparing the G1 coefficients in panel A and B by column, we observe that

paternal grandfathers tend to have a greater influence on their grandsons than granddaughters,

while the opposite holds true for maternal grandfathers. We explore these gender differences

further in the subsequent sections.

Our methodology allows us to go a step further in illustrating the gender differences in

the G1-G3 intergenerational elasticity. Specifically, we are able to regress G3 earnings on the

earnings of maternal and paternal grandfathers together. To see how this can be accomplished,

consider the following example. Suppose there is one G3 child named Adam in 1880, and his

parents (both between the ages of 20 and 35) are named Bill and Barbara. The (G2) earnings

of both Bill and Barbara will be defined as Bill’s earnings, as we are defining a woman’s

earnings as those of her husband. Paternal G1 earnings will be the average earnings of fathers
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of children named Bill in 1860; similarly, maternal G1 earnings will be the average earnings of

fathers of children named Barbara in 1860. These values can both be included in a regression

of Adam’s (G3) earnings in 1900 on the earnings of G2 and G1. This approach has two

advantages: first, it allows us to estimate the effect of one grandparent’s income, holding the

income of the other grandparent constant; second, we can directly test whether or not paternal

grandparents have a greater effect on grandchildren’s earnings than maternal grandparents,

which is what our results so far suggest (at least for G3 males).

These results are presented in Table 5. The regressions are run separately for G3 males and

females, and the coefficients are reported side by side. The bottom row of both panels contains

the p-value from a test of the equality of the coefficients on paternal and maternal G1. For

G3 males, the coefficient on paternal G1 is quite significantly higher than the coefficient on

maternal G1 in five out of six cases; in the sixth case, they are statistically indistinguishable

from each other. For G3 females, the coefficient on maternal G1 is higher than the coefficient

on paternal G1 in five out of six cases, and this difference is statistically significant in four

cases (two at the five percent level, and two at the 10 percent level).

Looking across equations, we see that the coefficient on paternal G1 tends to be higher for

G3 males than for G3 females, and this is also statistically significant in five out of six cases.

The opposite is true of the coefficient on maternal G1: this tends to be higher for G3 females,

although the difference is only significant (at standard levels) in four cases.8

These results are consistent with our other findings on gender differences in the transmis-

sion of income across three generations. We discuss alternative economic mechanisms that

can rationalize these gendered patterns of intergenerational transmission in Section 4.

3.3 Robustness

Having reported our basic set of results, we test the sensitivity of these results to certain

features of our sample design and our method of measuring earnings. Our findings make use

of a ranking of occupations based on the 1950 occupational wage distribution. If this wage

distribution in 1950 differs from the wage distribution during the periods we focus on, this may

8We have also experienced with including interactions between paternal and maternal grandparents, as well
as interactions between grandparents’ and parents’ income. Significant interaction effects could point to the
presence of either substitutability or complementarity between different grandparents (or between grandparents
and parents) in the production of grandchildren’s human capital. In the vast majority of specifications we did
not find any evidence of significant interaction effects, and in any case the pattern of signs was not consistent.
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affect our results. Most importantly, our results are likely to be sensitive to the placement of

farmers in the occupational wage distribution, as farmers comprise a very large fraction of the

occupations in our sample. To test the sensitivity of our results to the occupational ranking,

we use an occupational income distribution from 1900, and we impute a wage for farmers

using data from the 1900 Census of Agriculture. The 1900 occupational wage distribution is

obtained from the tabulations in Preston and Haines (1991), based on the 1901 Cost of Living

Survey. These tabulations are based on the 1901 Cost of Living Survey, which was designed

to investigate the cost of living of families in industrial locales in the United States.9 Preston

and Haines explicitly refrained from imputing an average income for generic farm owners. To

fill this gap, we impute farmer’s income using data from the 1900 Census of Agriculture and

a method based on Abramitzky et al. (2012).

To further test that our results are not sensitive to our occupational wage measure, we

construct a measure based on personal property reported in 1860 and 1870. This is advanta-

geous because it corresponds to the earlier periods in our analysis. We calculate mean personal

property of household heads by occupation, pooling data from 1860 and 1870 and adjusting

for price differences between these two decades. One issue is that farmers’ personal property

consists largely of equipment or resources used in farming; as such, it does not make sense

to think about this property as a measure of labor income. In fact, including this property

will likely overstate the status of farmers considerably. We adjust farmers’ personal property

downward by the average value of farm equipment and livestock in 1860 and 1870, using

national average values from the census of agriculture (Haines and ICPSR 2010).10

We report results using the 1900 wage distribution and the 1860-1870 occupational wealth

distribution in Table 6. We estimate the coefficient on maternal and paternal grandparents

simultaneously, as we did in Table 5. When we use the 1900 wage distribution, the magnitude

of the G1-G3 elasticity is quite comparable to that obtained using the 1950 occupational wage

distribution, and in almost all cases statistically significant at conventional confidence levels.

When we use the 1860-1870 wealth distribution, the coefficients are typically larger. However,

in both cases, the gender differences in the G1-G3 elasticities broadly remain. Altogether, we

9One limitation of this measure is that the survey collected data for the “typical” urban family, meaning
that, by construction, the resulting income distribution is more compressed than what one would obtain in a
representative sample.

10This follows Olivetti and Paserman (2013). An alternative that yields similar results is to calculate the
occupational ranking as mean personal property by occupation excluding the South (Ferrie and Long 2014).
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conclude that our results are not overly sensitive to the exact measurement of income. We

also tested the sensitivity of our findings to including controls for age, immigrant status, and

literacy (results not reported). These controls do not have a dramatic effect on the coefficients

on G1 earnings, and they do not alter the underlying patterns we find.

Our main finding pertains to gender differences in the process of income transmission across

three generations. However, we are concerned that comparisons by gender may be sensitive

to the way our samples are constructed. For example, we measure a woman’s socioeconomic

status by the earnings of her husband. This means that all women in our sample are married,

whereas men need not be married to be included. Then, we may be measuring differences in

intergenerational income transmission by marital status rather than gender. Furthermore, we

do not place restrictions on the age of these husbands in our baseline specification; therefore,

our results may reflect the fact that we are measuring income at different points in the life

cycle for women and men.

To ensure that our results are not being driven by these details of our sample construction,

we redo the analysis imposing different restrictions on G2 and G3. The additional restriction

we impose on G2 is that individuals in the sample be married to a spouse in the same age range

as the individual (20-35 or 30-45, depending on the sample years). We impose two additional

restrictions on G3. First, we restrict individuals to be married; second, we restrict individuals

to be married to a spouse in his or her age range. We calculate the G1-G3 intergenerational

elasticity for each of 6 combinations of these sample restrictions (including the baseline sample

restrictions). The results, using the 1860-1880-1900 sample, are reported in Appendix Table

1. Altogether, it appears that these different sample restrictions have only a minimal effect

on the baseline results.

To summarize the results of the above robustness analysis, we compile all G1-G3 inter-

generational elasticities estimated under different sample restrictions in each decade triplet.

There are 144 such estimates.11 We regress these on indicators for chronological order (ear-

liest, middle, or latest sample), the interval that separates generations (20 or 30 years), the

gender of G2, the gender of G3, and categorical variables indicating which sample restrictions

are imposed. Standard errors are clustered at the specification level. We report these results

11Four possible combinations of G2 and G3 gender; two time intervals (at 20 and 30-year); three time periods;
two possible sample restrictions on G2; and three possible sample restrictions on G3: 4 × 2 × 3 × 2 × 3 = 144.
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in Table 7. In column (1) we pool all specifications, and in the remaining columns we sep-

arate them by gender. Column (2) contains only G3 males, and column (3) contains only

G3 females; similarly, column (4) contains only G2 males, and column (5) contains only G2

females.

This exercise supports the existence of an upward time trend in the G1-G3 intergenera-

tional elasticity, and it suggests that this elasticity declines as the interval at which cohorts

are constructed increases. While there is no overall tendency for the coefficient to be higher

when G2 is male, the picture changes dramatically when we segregate G3 by gender. For G3

males, the effect is clearly stronger when G2 is male. For G3 females, the opposite is true.

Again, there is no significant difference in the G1-G3 intergenerational elasticity by gender of

G3 overall, but this masks significant differences when we separate by gender of G2. When

G2 is male, the effect is much stronger for G3 males. When G2 is female, the effect tends to

be stronger for G3 females, although this is not quite statistically significant.

3.4 Regional Differences

To provide further insight into the gender differences we find in the G1-G3 intergenerational

elasticity, we estimate versions of Table 5 that exclude different regions. These results are

presented in Table 8. In panel A, we estimate the effect of both paternal and maternal

G1’s occupational rank on G3’s income for all decade triplets, excluding observations in the

Northeast from the analysis. By and large, the overarching patterns we found for the entire

U.S. persist when we exclude the Northeast: G1 paternal has a greater effect that G1 maternal

for G3 males in five out of six cases, and G1 maternal has a greater effect on G3 females than

G3 males in five out of six cases. However, G1 paternal only has a greater effect on G3 males

than G3 females in three out of six cases. Still, the broad picture looks very similar to the

entire U.S. when we include the northeast. In panel B, we exclude the Midwest; in general,

the same gender based patterns can be seen here as well.

In panel C, we exclude observations in the South. In contrast to the Northeast and the

Midwest, excluding the South has a dramatic effect on our results. The effect of G1 paternal

is greater than the effect of G1 maternal for G3 males in most cases. However, this is the only

nation-wide pattern that holds in a clear majority of cases when we exclude the South. This

suggests that the South is an important driver of the patterns we are finding. In the next
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section, we will propose a model for interpreting these results.

4 Interpretation

The empirical analysis in the previous sections has uncovered a number of interesting stylized

facts on the intergenerational correlations between grandchildren and their paternal and ma-

ternal grandfathers. We use the notation ρg,PAT and ρg,MAT to denote correlations between

grandchildren of gender g with their paternal and maternal grandfathers, respectively. The

results of the previous sections can be summarized as follows:

1. The correlation of male grandsons with their paternal grandfathers is stronger than the

correlation with their maternal grandfathers (ρM,PAT > ρM,MAT ; Table 7, column 2).

2. The correlation between female granddaughters with their maternal grandfathers is

stronger than that with their paternal grandfathers (ρF,MAT > ρF,PAT ; Table 7, col-

umn 3).

3. The correlation between paternal grandfathers and grandsons is stronger than the cor-

relation between paternal grandfathers and granddaughters (ρM,PAT > ρF,PAT ); Table

7, column 4).

4. The correlation between maternal grandfathers and granddaughters is stronger than the

correlation between maternal grandfathers and grandsons (ρF,MAT > ρM,MAT ; Table 7,

column 5).

We now discuss two alternative mechanisms that can rationalize these findings.

4.1 Intergenerational Time Inconsistency

To explain why the effect of paternal grandfathers may differ from that of maternal grandfa-

thers, we present a simple three-generation dynastic model of consumption and human capital

investment. The key ingredient of the model is that there is a tension between the desired

allocation of consumption across the three generations across the decision-makers in gener-

ations 1 and 2. This tension derives from the fact that each generation discounts heavily

the utility of future generations relative to its own utility, but the discount factor between
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any two future generations is relatively low. In other words, each generation is characterized

by quasi-hyperbolic, or β − δ preferences.12 The investment in the third generation’s human

capital depends on whether the second generation is able to reoptimize over the allocation of

resources between G2 and G3, or whether it must follow the allocation chosen by G1. We

conjecture that, because of the the timing of transfers across generations and the marriage

institutions prevailing in the 19th Century, second generation daughters (and their husbands)

may have been more likely to reoptimize, thus inducing the lower elasticity between first and

third generation’s income when the second generation is female.

Formally, we consider a three-generation dynasty. Each generation derives utility from its

own consumption and from that of the following generations. Therefore:

U1 (c1, c2, c3) = ln (c1) + βδ ln (c2) + βδ2 ln c3

U2 (c1, c2) = ln (c2) + βδ ln (c3)

U3 (c3) = ln (c3)

We assume throughout that β < 1, reflecting the fact that each generation puts more

weight on its own utility relative to future generations’ utility; and δ < 1, reflecting the fact

that the weight placed on more distant generations’ utility also declines. Notice that for G1,

the discount factor between its own utility and that of G2 is βδ, while the discount factor

between G2 and G3’s utility is only δ. This captures the fact that the discount rate between

the present and any period in the future is higher than the discount rate between any two

periods in the distant future.

Each generation can allocate its income Yt between its own consumption ct and investment

in the following generation’s human capital, It+1. Generation t + 1’s income is a function of

generation t’s investment:

Yt+1 = RIt+1.

12Quasi-hyperbolic preferences have been made popular in recent years to model the intra-personal self-
control problems in consumption and savings decisions and other contexts (Laibson, 1997; O’Donoghue and
Rabin, 1999; DellaVigna and Paserman, 2005). However, one of the first applications of β − δ preferences
(Phelps and Pollak, 1968) was to an intergenerational growth model very much like the one considered here.
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To solve for the optimal allocation of resources across generations, we consider two alternative

possibilities. In the first case, G1 decides on how to allocate resources for all three generations,

and this decision is binding. In the second case, G2 can reoptimize and decide on the allocation

of resources from that point onwards. G1’s decision takes into account G2’s decision, and

decides how much to consume and how much to invest in the next generation as a best response

to G2’s actions. In the language of the quasi-hyperbolic discounting literature, the first case

corresponds to that of an agent who can perfectly commit to the full sequence of decisions

made in period 1 (call this the commitment regime), while the second case corresponds to

that of a sophisticated agent (the no commitment regime).

It is easy to show that the income of the second generation is the same under both regimes,

while the income of the third generation is lower in the sophistication regime than in the

commitment regime. The intuition for the second result is straightforward. If G1 can commit

to a given consumption path for all three generations, it will allocate resources between G2

and G3 in a relatively egalitarian way: from its perspective, G3’s utility is discounted only by

a factor δ relative to G2’s utility. On the other hand, if G2 can reoptimize given its allocation,

it will put more weight on its own consumption, as the discount factor that it applies between

its own utility and G3’s utility is βδ.13

How do these results relate to our findings on how the strength of the G1-G3 intergenera-

tional elasticity depends on the gender of the middle generation? We argue that the allocation

of resources will resemble that in the commitment regime if G2 is male, but it will be more

like that of the no-commitment regime if G2 is female. This difference arises because of a

combination of marriage institutions (and specifically the allocation of property rights within

the marriage), postmarital location norms, and the differential timing of transfers to sons and

daughters.

First, we note that the United States in the 19th Century was very much a virilocal society,

where married daughters leave their parental nest, while married sons do not. A quick exam-

ination of the 1880 and 1900 IPUMS samples reveals a tendency for young married couples

to reside with husbands’ rather than wives’ parents. During the period of focus of this study,

only 10-12 percent of married couples under 35 resided in the same household as a parent;

13The result that the second generation’s income is identical under both allocation rules is less interesting,
and depends on the specific functional form of the utility function (logarithmic utility).
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however, that parent was significantly more likely to belong to the husband. This is especially

true of agricultural families: young couples residing with a parent were twice as likely to be

living with the husband’s parents rather than with the wife’s parents. This may also mask

a tendency for families to reside in the same locality as the husband’s parents, even if they

do not reside in the same household. Families’ residential locations by themselves were likely

to affect the degree of control of the first generation over the allocation of resources by the

second generation. Paternal grandparents were likely better able to monitor the decisions of

their sons who lived in close vicinity, and may have been able to transfer resources directly to

their grandchildren.

The residential location of married children may also affect the timing of transfers from

parents. For example, Botticini and Siow (2003) argue that in virilocal societies, altruistic

parents will leave dowries to their daughters and bequests to their sons to mitigate a free-rider

problem. Other papers focus on the role of marital arrangements, with males remaining close

to their parents’ households and specializing in farm production and women moving to new

households, for consumption smoothing and agency problems (see for example, Rosenzweig and

Stark, 1989, based on data on rural India; and Fafchamps and Quisumbing, 2005a and 2005b,

on rural Ethiopia).14 Even though formal dowries were relatively uncommon in North America

in the 19th Century,15 it is possible that, because of these living arrangements, transfers from

parents to daughters were more likely to occur at marriage than were transfers from parents

to sons.

The timing of intergenerational transfers for daughters, coupled with the legal environment

in place during the period of analysis, may affect the ability of the second generation to decide

on the allocation of consumption between itself and the third generation. Assume that, as

discussed above, G2 daughters receive transfers from their parents upon marriage. In the

19th Century, women completely relinquished control of their assets to their husbands. Under

the doctrine of coverture, a husband owned any wages earned by his wife and any property

she brought to the marriage (Geddes and Lueck, 2002). States began to lift some of these

14We investigate the insurance motive by running a regression that includes an interaction term between
parent and grandparents income. We did not find any evidence that grandparents have a larger effect if parents
are poorer, independent of G3 gender.

15Botticini and Siow (2003) document that in late 18th Century Connecticut, between 46 and 67 percent
of married daughters were assigned inter vivos transfers from their family of origin, likely at the time of their
marriage. However, by 1820’s, only 40 percent received such transfers.
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restrictions in the second half of the Century, but it was not until 1920 that coverture had

effectively disappeared.

Therefore, it seems reasonable that, in the presence of a daughter, the G1 patriarch would

have had little say over the allocation of resources between G2 and G3. On the other hand,

G2 sons were more likely to receive a bequest, only upon G1’s death. The fact that G1 could

withhold the transfer of resources to his male offspring implies that it was also easier for G1

to monitor the allocation of resources between G2 and G3, and therefore guarantee that the

investment in the grandchild’s human capital would be sufficiently high.

4.2 Multi-trait Matching and Inheritance

The predictions of the previous model are the same for both grandsons and granddaughters and

suggest that paternal grandfathers should always matter more than maternal grandfathers.

By contrast, the empirical evidence points to a larger effect of the paternal grandfather only for

grandsons, while in fact for granddaughters it appears that the maternal grandfather matters

more. In the following, we present an alternative model that can rationalize the pattern of

relative importance of maternal and paternal grandfathers by grandchild’s gender observed in

the data. We adapt the model of intergenerational mobility and multi-trait matching in Chen

et al. (2013) to allow for multiple generations. Based on this model, the observed gender

differences in social mobility can be rationalized based on asymmetries between market and

non-market traits which we discuss below.16

The basic premise of the model is that individuals’ attractiveness in the marriage market

is a function of both ‘market’ and ‘non-market’ traits. Market traits (which we denote by y)

directly affect an individual’s earning potential. They can include elements such as cognitive

skills or education. Non-market traits (denoted by x) do not directly affect earnings potential.

They can include physical attractiveness, health, kindness and other attributes signalling

reproductive capacity – all things that potentially have little impact on market productivity

but are valued in the marriage market. The matching equilibrium in the marriage market

features perfect assortative mating: the highest ranking man is matched with the highest

ranking woman, the second highest man with the second highest woman, and so on.

Our first critical assumption is the existence of an asymmetry in the relative importance of

16See Appendix B for a formal description of the model.
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the two traits across genders. In particular, market traits are more important in determining

the desirability of men in the marriage market, while non-market traits are more important

for women. This difference can be explained based on biological differences in reproductive

roles and on the persistence of gender roles within households (see, for example, Buss, 1989,

1994, Eagly et al., 2000, 2004). Even today, evidence based on on-line dating and speed-dating

shows that men and women value different attributes in prospective partners (see, for example,

Fisman et al., 2006).17

To further simplify matters, we assume that each trait can take only one of two levels:

x ∈ {x, x} and y =
{
y, y

}
. Therefore, the equilibrium in the marriage market takes on a

particularly simple form, summarized by the table below:

Ranking of Couples Females Males

1 (x, y) (x, y)

2
(
x, y
)

(x, y)

3 (x, y)
(
x, y
)

4
(
x, y
) (

x, y
)

There are four categories of individuals: men and women endowed with high levels of both

traits (i.e., the highest ranked individuals) are paired with each other, as do men and women

endowed with low levels of both traits (the lowest ranked individuals). However, in the middle

two categories, there is some mixing: men with high levels of the market trait (y) and low

levels of the non-market trait (x) are matched with women with low levels of the market trait

and high levels of the non-market trait (y and x), while men with (y, x) are matched with

women with (y, x).

To understand the implications of this matching model for intergenerational mobility,

we must consider how the two traits are transmitted across generations. We assume that

for both traits x and y, a child can either be endowed with the same level of the trait as

his/her parent, or he/she can “switch” – i.e., if the parent is endowed with a high level of

the trait, the child will be endowed with a low level, and vice versa. Let πgx and πgy be the

probabilities that, respectively, traits x and y “switch” for a child of gender g (g = M,F ).

17A handful of studies in economics has emphasized the importance of biological gender differentials on gender
roles and market outcomes. See for example, Siow (1998) and Cox (2003).
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In the most general case, these switching probabilities are allowed to differ both by trait and

by gender, reflecting both institutional and biological factors. We capture the fact that traits

are relatively persistent across generations by constraining the “switching” probabilities to be

weakly smaller than 1/2. Clearly, lower values of the switching probabilities imply that a trait

is highly persistent across generations.

The next key assumption is that the transmission of traits x, y is gender-segregated: specif-

ically, we assume that the father passes on his traits to the son, and the mother passes on

her traits to the daughter. While this assumption is clearly extreme (in reality it is likely

that children inherit traits from both their parents), we view it as a convenient simplification,

which captures the fact that children will be more inclined to view the parent of their same sex

as a role model to imitate. There is a literature in sociology about the way in which traits are

transmitted from mothers and fathers to daughters and sons. Much of this literature simply

argues that mothers influence the occupational status of their children as much as fathers,

which is a direct response to the long-standing convention of measuring socioeconomic status

using information on fathers alone (Kalmijn 1994). However, a number of papers look at sex-

specific transmission of traits. While there does not appear to be consensus on this question,

there are multiple models, cited in the current literature on this topic, in which parents are

more likely to transmit traits to children of the same gender.18 Some argue that children

emulate their parent of the same gender because such behavior is socially reinforced, or that

children emulate the parent with whom they spend the most time, which is typically the

parent of the same gender (Acock and Yang 1984; Korupp et al 2002). Other work suggests

that mothers pass traits expressly related to “mothering” onto their daughters, which occurs

because daughters are more likely to personally identify with their mother than their father

(Boyd 1989). Most of these studies offer some empirical support for the assertion that the

transmission of certain traits is gendered.

Finally, we also assume that the transmission of the x and y traits are independent of

each other and across genders. Putting everything together, we can derive a two-generation

transition probability matrix where the (j, k) element is the probability of generation t + 1

being in rank k conditional on generation t being in rank j. The two-generation transition

18See Beller (2009) for a recent example.
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matrices for men and women, ΠM and ΠF are defined as follows.

ΠM =



(
1− πMx

) (
1− πMy

)
πMx

(
1− πMy

)
(1− πMx )πMy πMx π

M
y

πMx
(
1− πMy

) (
1− πMx

) (
1− πMy

)
πMx π

M
y (1− πMx )πMy

(1− πMx )πMy πMx π
M
y

(
1− πMx

) (
1− πMy

)
πMx

(
1− πMy

)
πMx π

M
y (1− πMx )πMy πMx

(
1− πMy

) (
1− πMx

) (
1− πMy

)



ΠF =



(
1− πFx

) (
1− πFy

) (
1− πFx

)
πFy πFx

(
1− πFy

)
πFx π

F
y(

1− πFx
)
πFy

(
1− πFx

) (
1− πFy

)
πFx π

F
y πFx

(
1− πFy

)
πFx
(
1− πFy

)
πFx π

F
y

(
1− πFx

) (
1− πFy

) (
1− πFx

)
πFy

πFx π
F
y πFx

(
1− πFy

) (
1− πFx

)
πFy

(
1− πFx

) (
1− πFy

)


Note that because of the nature of the matching equilibrium, the transition matrices are

not identical for men and women. For example, a man born to the highest rank will move to

the second highest rank only if the x trait switches and the y trait does not switch, an event

that occurs with probability πMy
(
1− πMx

)
. On the other hand, a woman in the highest rank

will move to the second highest rank only if trait x stays the same but trait y switches, an

event that occurs with probability (1− πFx )πFy .

Based on these transition matrices we can obtain four three generation transition proba-

bility matrices, whose (j, k) element is equal to the probability that a grandchild belongs to

rank k, conditional on the grandfather belonging to rank j. There are four such matrices de-

pending on the gender of the grandchild and the gender of the middle generation. These three

generation matrices, which we denote with Ωg,G, for g = {M,F} and G = {MAT,PAT}, are

obtained from the product of the two-generation matrices:

ΩM,PAT = ΠMΠM

ΩM,MAT = ΠFΠM

ΩF,PAT = ΠMΠF

ΩF,MAT = ΠFΠF .
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Based on these matrices, we can calculate the three-generation rank correlations, ρg,G:

ρg,G =
1
4r
′Ωg,Gr − E (R)2

V (R)
,

where r =
(

1 2 3 4
)′

and R is the random variable denoting an individual’s rank, and

has a discrete uniform distribution between 1 and 4.

Explicit formulas for these intergenerational matrices and correlations are presented in the

appendix. Here we discuss the differences, (ρM,PAT − ρM,MAT ) and (ρF,MAT − ρF,PAT ), that

are relevant for the interpretation of our findings. Specifically, we are interested in finding

conditions such that both differences are positive, i.e., paternal grandfathers matter more for

grandsons, but maternal grandfathers matter more for granddaughters. To gain some intuition

we analyze the special case in which πMy = πFy ≡ πy and πMx = πFx ≡ πx (the results for the

general case are discussed in the appendix). In this case, the conditions are: πx > 3
8 and

πy < −3
2 + 4πx.

These conditions tell us that the switching probability for the x trait (non-market skills)

must be sufficiently high, while the switching probability for the y trait (market skills) must

be relatively low. This asymmetry in the degree of inheritability of market and non-market

traits can be justified on the basis of potential differences in the importance of parental invest-

ment. For example, market traits (e.g., education) may be more persistent across generations

because they are more amenable to parental investments than non-market traits (e.g., physical

appearance or reproductive ability).19 The degree of persistence in the transmission of the

market trait may depend on the parents’ willingness and ability to invest in the children’s hu-

man capital, and on the institutional set-up (for example, credit constraints, public spending

in education, etc).

In order to gain insights on why these conditions can explain the observed gender differ-

ences in the data let’s work through an example. Consider what these values imply for the

descendants of a generation 1 grandfather who has high levels of both the x and y traits, and

therefore belongs to the highest rank. The low value of πy implies that G2 sons are likely

to maintain the high value of the market trait, and therefore are likely to remain in one of

19If the extent to which parents can invest in their children’s non-market traits is more limited, the degree
of persistence in the transmission of the non-market trait will also be more limited. Mailath and Postlewaite,
2006, argue that these ‘unproductive’ traits can be thought of as ‘social assets’ in equilibrium.
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the top two ranks. Since the traits are passed along the male line, the G3 male is also likely

to stay in one of the top two ranks. Hence, the correlation between grandson and paternal

grandfather is likely to be high. Compare this to the outcome of the maternal grandson (the

son of a G2 female). The G2 daughter inherits her traits from her mother, who, because of

perfect assortative mating, is also endowed with high levels of both x and y. The relatively

high value of πx implies that the G2 daughter has a relatively high probability of ending up in

the third rank, characterized by low levels of non-market skills (x) and high levels of market

skills (y), and will therefore marry an
(
x, y
)
husband. But then, the male grandson will likely

inherit the low levels of the y trait from his father, and remain in one of the two lowest ranks.

Within two generations, the maternal grandson will have experienced considerable downward

mobility in economic status.

Let us now turn to the outcomes of the granddaughters. Along the female line, the G3

granddaughter will inherit the traits of her mother, who, as described above, is likely to be

in either the first or the third rank, and therefore endowed with a high level of y. Because of

the high value of πx and the low value of πy, the G3 daughter is also likely to remain in either

the first or the third rank. Take instead the paternal granddaughter: the G2 son is likely to

maintain the high level of y and therefore remain in either the first or second rank. If the

latter, the son will be matched to an
(
x, y
)

wife. This implies that the G3 granddaughter,

inheriting the traits of her mother, is also likely to have a low level of y, and therefore will likely

be in either the second or fourth rank. The end result is that the paternal granddaughter is

more likely to be more removed from her (x, y) grandfather than the maternal granddaughter.

Similar arguments apply to grandfathers who start out in one of the other categories. In

short, with a relatively parsimonious set of assumptions, our simple model is able to deliver

a rich set of predictions that matches the pattern of intergenerational correlations that is

observed in the data.

5 Conclusion

In this paper, we have estimated intergenerational elasticities across three generations for

the US spanning the late 19th and early 20th Century. We find that the intergenerational

income process exhibits a strong second-order autoregressive coefficient. We also find that
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the grandfather-grandchild intergenerational elasticity is larger when the middle generation

is male, and we rationalize these findings using a simple three-generation dynastic model

where there is a tension between G1’s and G2’s preferences over G2’s consumption, and the

timing of transfers is gender specific. These results can have important implications for our

understanding of the persistence of socioeconomic status over the long run.
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6 Tables

(1) (2) (3) (4) (5) (6)

G1 0.6022 0.2568 0.2918 0.1152
(0.057) (0.061) (0.042) (0.043)

G2 Male 0.2905 0.2679 0.3010 0.2918
(0.015) (0.016) (0.015) (0.015)

Constant 2.1354 1.2434 1.4582 2.2116 2.2560 1.9047
(0.043) (0.164) (0.165) (0.045) (0.121) (0.122)

Observations 77,883 77,902 77,878 82,060 82,070 82,055

G1 0.1517 0.0690 0.1286 0.0534
(0.010) (0.011) (0.010) (0.011)

G2 Male 0.2558 0.2185 0.2650 0.2376
(0.012) (0.013) (0.012) (0.013)

Constant 2.8396 2.8978 2.8204 2.9456 3.0264 2.9301
(0.007) (0.006) (0.008) (0.007) (0.006) (0.008)

Observations 77,883 77,902 77,878 82,060 82,070 82,055

1860-1880-1900 1850-1880-1910

Panel A: Log occupational income

Panel B. Percentile rank of log occupational income

Table 1. Intergenerational Income Elasticities for Three Generations                                                                                                    
Levels and Percentile Rank

Note: Panel A contains results from OLS regressions of individual G3 log occupational score on imputed G1 and

G2 log occupational score, imputed as the average G1 and G2 log occupational score for each G3 individual’s

first name. In columns (1)-(3), the G3 sample consists of men age 20-35 in 1900; the G2 sample consists of

men age 20-35 in 1880 who have children ages 0-15; the G1 sample consists of men in 1860 who have children

ages 0-15. In columns (4)-(6), the samples are constructed similarly, using 30-45 year olds in the 1850, 1880,

and 1910 censuses. Panel B contains similar regressions, but percentile ranks of log occupational scores for G1

and G2 are used as explanatory variables; individual G3 log occupational score is still used as the dependent

variable. Standard errors are in parentheses.
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(1) (2) (3) (4) (5) (6)

G1 0.2417 0.0829 0.1689 0.0933
(0.069) (0.063) (0.048) (0.045)

G2 Male 0.5268 0.5237 0.4233 0.4208
(0.022) (0.022) (0.017) (0.017)

Constant 1.3619 2.1940 1.1289 1.8495 2.6031 1.5846
(0.065) (0.202) (0.190) (0.052) (0.141) (0.138)

Observations 2,763 2,763 2,763 4,007 4,007 4,007

G1 0.1524 0.0300 0.1619 0.0710
(0.042) (0.044) (0.036) (0.037)

G2 Male 0.4273 0.4183 0.3682 0.3469
(0.042) (0.044) (0.038) (0.040)

Constant 2.6519 2.8090 2.6394 2.8845 2.9984 2.8540
(0.026) (0.027) (0.032) (0.023) (0.023) (0.028)

Observations 2,763 2,763 2,763 4,007 4,007 4,007

1860-1880-1900 1850-1880-1910

Table 2. Test of Methodology                                                                                                                                        
Linked IPUMS data

Panel A: Log occupational income

Panel B. Percentile rank of log occupational income

Note: Panel A contains results from OLS regressions of individual G3 log occupational score on G2 log occupa-

tional score and imputed G1 log occupational score, which is imputed as the average G1 log occupational score

for each G2 individual’s first name. G3 and G2 data come from the IPUMS linked representative samples from

1880-1900 or 1880-1910; G1 data comes from the 1860 or 1850 IPUMS 1% sample. In columns (1)-(3), the G3

sample consists of men age 20-35 in 1900; the G2 sample consists of men age 20-35 in 1880 who have children

ages 0-15; the G1 sample consists of men in 1860 who have children ages 0-15. In columns (4)-(6), the samples

are constructed similarly, using 30-45 year olds in the 1850, 1880, and 1910 censuses. Panel B contains similar

regressions, but percentile ranks of log occupational scores for G1 and G2 are used as explanatory variables;

individual G3 log occupational score is still used as the dependent variable. Standard errors are in parentheses.
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(1) (2) (3) (4) (5) (6)

G2 Male G2 Female G2 Male G2 Female G2 Male G2 Female

G1 0.0690 0.0106 0.0967 0.0566 0.1391 0.1205
(0.011) (0.013) (0.010) (0.011) (0.010) (0.011)

G2 0.2185 0.2659 0.3300 0.3642 0.2610 0.2849
(0.013) (0.014) (0.012) (0.012) (0.011) (0.012)

Constant 2.8204 2.8271 2.8172 2.8163 2.8400 2.8301
(0.008) (0.008) (0.007) (0.008) (0.006) (0.007)

Observations 77,878 78,634 106,019 107,047 116,210 117,269

G1 0.0891 0.0661 0.0613 0.0944 0.0703 0.1033
(0.013) (0.014) (0.011) (0.012) (0.010) (0.011)

G2 0.2680 0.3057 0.3642 0.3602 0.2882 0.2705
(0.014) (0.015) (0.011) (0.012) (0.010) (0.011)

Constant 2.8492 2.8333 2.8995 2.8772 2.9686 2.9545
(0.009) (0.009) (0.007) (0.007) (0.006) (0.006)

Observations 44,292 44,930 66,324 67,204 74,857 75,633

1900-1920-1940

Panel A: G3 Male

Panel B: G3 Female

Table 3. Intergenerational Elasticies Across Three Generations:                                                                                                                                                                             
Percentile Rank Regressions at 20 Year Intervals by gender of G2

1860-1880-1900 1880-1900-1920

Note: Contains results from OLS regressions of individual G3 log occupational score on the percentile rank of

imputed G2 and G1 log occupational score, imputed as the average G2 or G1 log occupational score for each

G3 individual’s first name. For women, log occupational score is measured as the log occupational score of her

husband. Panel A reports the results for G3 males using our three samples constructed at 20 year intervals,

and panel B reports similar results for G3 females. The G3 sample consists of adults age 20-35 in the third

sample year (1900, 1920 or 1940); the G2 sample consists of adults age 20-35 in the second sample year (1880,

1900 or 1920) who have children ages 0-15; the G1 sample consists of men in the first sample year (1850, 1880

or 1900) who have children ages 0-15. Standard errors are in parentheses.

33



(1) (2) (3) (4) (5) (6)

G2 Male G2 Female G2 Male G2 Female G2 Male G2 Female

G1 0.0534 0.0411 0.0758 0.0393 0.1073 0.0445
(0.011) (0.012) (0.009) (0.010) (0.009) (0.010)

G2 0.2376 0.2532 0.2679 0.2971 0.2935 0.3355
(0.013) (0.013) (0.010) (0.010) (0.011) (0.010)

Constant 2.9301 2.9244 2.9698 2.9744 2.9395 2.9493
(0.008) (0.009) (0.006) (0.007) (0.007) (0.007)

Observations 82,055 82,179 114,905 114,949 106,458 106,403

G1 0.0227 0.0859 0.0620 0.0630 0.0441 0.0656
(0.012) (0.014) (0.010) (0.011) (0.011) (0.011)

G2 0.2823 0.2359 0.3466 0.3459 0.3368 0.3233
(0.013) (0.014) (0.010) (0.010) (0.010) (0.011)

Constant 2.9391 2.9269 2.9618 2.9628 2.9888 2.9833
(0.009) (0.009) (0.006) (0.007) (0.006) (0.006)

Observations 55,554 55,631 85,697 85,669 80,612 80,534

Panel B: G3 Female

Table 4. Intergenerational Elasticies Across Three Generations:                                                                                                                                                                             
Percentile Rank Regressions at 30 Year Intervals by gender of G2

1850-1880-1910 1870-1900-1930 1880-1910-1940

Panel A: G3 Male

Note: Contains results from OLS regressions of individual G3 log occupational score on the percentile rank of

imputed G2 and G1 log occupational score, imputed as the average G2 or G1 log occupational score for each

G3 individual’s first name. For women, log occupational score is measured as the log occupational score of her

husband. Panel A reports the results for G3 males using our three samples constructed at 30 year intervals,

and panel B reports similar results for G3 females. The G3 sample consists of adults age 30-45 in the third

sample year (1910, 1930 or 1940); the G2 sample consists of adults age 30-45 in the second sample year (1880,

1900 or 1910) who have children ages 0-15; the G1 sample consists of men in the first sample year (1850, 1870

or 1880) who have children ages 0-15. Standard errors are in parentheses.
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(1) (2) (3) (4) (5) (6)

G3 Male G3 Female G3 Male G3 Female G3 Male G3 Female

G1 paternal 0.0823*** 0.0724*** 0.0899*** 0.0455*** 0.1229*** 0.0353***
(0.012) (0.013) (0.010) (0.011) (0.010) (0.011)

G1 maternal -0.0178 0.0461*** 0.0210* 0.0799*** 0.0693*** 0.0919***
(0.013) (0.014) (0.011) (0.012) (0.011) (0.011)

G2 0.2053*** 0.2544*** 0.3195*** 0.3222*** 0.2147*** 0.2378***
(0.014) (0.016) (0.012) (0.012) (0.012) (0.011)

Constant 2.8326*** 2.8393*** 2.8166*** 2.8892*** 2.8357*** 2.9628***
(0.008) (0.010) (0.008) (0.008) (0.007) (0.006)

Observations 77,503 43,994 105,385 65,970 115,538 74,504
p (G1 paternal = G1 maternal) 0.000 0.221 0.000 0.055 0.002 0.001
p (G1 pat [G3 male] = G1 pat [G3 female])
p (G1 mat [G3 male] = G1 mat [G3 female])

G3 Male G3 Female G3 Male G3 Female G3 Male G3 Female

G1 paternal 0.0355*** -0.0043 0.0764*** 0.0344*** 0.0917*** 0.0286***
(0.010) (0.012) (0.009) (0.010) (0.009) (0.011)

G1 maternal 0.0306** 0.0612*** 0.0030 0.0665*** 0.0220** 0.0395***
(0.012) (0.014) (0.010) (0.011) (0.011) (0.011)

G2 0.2218*** 0.2453*** 0.2655*** 0.3191*** 0.2773*** 0.3151***
(0.014) (0.014) (0.010) (0.010) (0.010) (0.011)

Constant 2.9319*** 2.9395*** 2.9731*** 2.9600*** 2.9471*** 2.9893***
(0.009) (0.010) (0.007) (0.007) (0.007) (0.007)

Observations 81,061 54,877 113,459 84,533 105,499 79,804
p (G1 paternal = G1 maternal) 0.776 0.002 0.000 0.055 0.000 0.514
p (G1 pat [G3 male] = G1 pat [G3 female])
p (G1 mat [G3 male] = G1 mat [G3 female])

Table 5. Intergenerational Elasticies Across Three Generations:                                                                                                                                                                             
Percentile Rank Regressions with Paternal and Maternal Grandfathers

Panel A: 20-year intervals
1860-1880-1900 1880-1900-1920 1900-1920-1940

0.585 0.005 0.000
0.001 0.000 0.173

0.101 0.000 0.251

Panel B: 30-year intervals
1850-1880-1910 1870-1900-1930 1880-1910-1940

0.015 0.002 0.000

Note: Contains results from OLS regressions of individual G3 log occupational score on the percentile rank of imputed scores of G2, paternal G1 and

maternal G1; these are imputed as the average for each G3 individual’s first name. For women, log occupational score is measured as the log occupational

score of her husband. Panel A uses our three samples constructed at 20 year intervals, and panel B uses our samples constructed at 30 year intervals. The

G3 sample consists of adults age 20-35 (or 30-45) in the third sample year; the G2 sample consists of adults age 20-35 (or 30-45) in the second sample year,

who have children ages 0-15 and are married to spouse in the same age bracket; the G1 sample consists of men in the first sample year who have children

ages 0-15. Standard errors are in parentheses.
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(1) (2) (3) (4) (5) (6)

G3 Male G3 Female G3 Male G3 Female G3 Male G3 Female

G1 paternal 0.0488*** 0.0369*** 0.0658*** 0.0462*** 0.0833*** 0.0663***
(0.009) (0.011) (0.007) (0.009) (0.008) (0.009)

G1 maternal -0.0030 0.0254** 0.0016 0.0534*** 0.0915*** 0.0914***
(0.011) (0.012) (0.008) (0.010) (0.009) (0.010)

Observations 78,525 44,036 110,483 66,561 115,253 74,327
p (G1 paternal = G1 maternal) 0.002 0.524 0.000 0.604 0.498 0.0688
p (G1 pat [G3 male] = G1 pat [G3 female])
p (G1 mat [G3 male] = G1 mat [G3 female])

G3 Male G3 Female G3 Male G3 Female G3 Male G3 Female

G1 paternal 0.1902*** 0.1528*** 0.2171*** 0.1719*** 0.0600*** 0.0190
(0.023) (0.031) (0.020) (0.025) (0.020) (0.025)

G1 maternal 0.1603*** 0.1614*** 0.0855*** 0.1387*** 0.0857*** 0.1304***
(0.025) (0.033) (0.024) (0.027) (0.023) (0.029)

Observations 76,875 43,780 98,371 63,586 105,215 69,713
p (G1 paternal = G1 maternal) 0.464 0.874 0.000 0.423 0.463 0.0108
p (G1 pat [G3 male] = G1 pat [G3 female])
p (G1 mat [G3 male] = G1 mat [G3 female])

Panel A: 1900 wage distribution

Panel B: Wage distribution based on adjusted average personal property by occupation in 1860 and 
1870

Table 6. Intergenerational Elasticies Across Three Generations:                                                                                                                                                                                                
Percentile Rank Regressions with Paternal and Maternal Grandfathers using Alternative Occupational Rankings, 20-year Intervals

1900-1920-1940

0.980 0.136

0.096 0.000

1860-1880-1900 1880-1900-1920

0.336 0.158

0.418 0.090

1900-1920-1940

0.155
0.993

0.203
0.220

1860-1880-1900 1880-1900-1920

Note: Contains results from OLS regressions of individual G3 log occupational score on the percentile rank of imputed scores of G2, paternal G1 and

maternal G1; these are imputed as the average for each G3 individual’s first name. For women, log occupational score is measured as the log occupational

score of her husband. Panel A measures occupational income using the 1900 wage distribution with an imputed wage for farmers (Preston and Haines 1991;

Abramitzky et al 2012; Olivetti and Paserman 2013). Panel B measures occupational income using mean personal wealth by occupation in 1860 and 1870,

adjusting the wealth of farmers downward by the average value of farm equipment and livestock (values from Haines and ICPSR 2010). The G3 sample

consists of adults age 20-35 in the third sample year; the G2 sample consists of adults age 20-35 in the second sample year, who have children ages 0-15 and

are married to spouse in the same age bracket; the G1 sample consists of men in the first sample year who have children ages 0-15. Standard errors are in

parentheses.
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(1) (2) (3) (4) (5)

Dependent variable: All G3 Male G3 Female G2 Male G2 Female

G2 Male 0.0054 0.0334*** -0.0226**
(0.008) (0.005) (0.008)

G3 Male 0.0153* 0.0433*** -0.0127
(0.008) (0.008) (0.008)

Second sample (G3=1920 or 1910) 0.0169* 0.0221*** 0.0117 0.0196* 0.0142
(0.010) (0.006) (0.011) (0.010) (0.009)

Third sample (G3=1940) 0.0236** 0.0408*** 0.0064 0.0259** 0.0213*
(0.011) (0.008) (0.011) (0.010) (0.012)

Interval = 30 years -0.0284*** -0.0306*** -0.0261*** -0.0319*** -0.0248**
(0.008) (0.005) (0.008) (0.008) (0.008)

Specification details:
   G2 spouse in same age bracket -0.0048** -0.0028 -0.0068** -0.0041 -0.0055*

(0.002) (0.002) (0.003) (0.003) (0.003)
   G3 married 0.0092** 0.0184** 0.0063 0.0121*

(0.004) (0.006) (0.004) (0.007)
   G3 spouse in same age bracket 0.0086** 0.0154** 0.0018 0.0069* 0.0103

(0.003) (0.006) (0.002) (0.004) (0.006)
Constant 0.0608*** 0.0495*** 0.0875*** 0.0535*** 0.0735***

(0.012) (0.011) (0.012) (0.014) (0.012)

Observations 144 72 72 72 72

Intergenerational income elasticity: G1-G3

Table 7. Summary of G1-G3 Intergenerational Income Elasticities using Different Sample Restrictions and Wage Measures                                                                                                                                          
Percentile Rank Regressions

Note: The dependent variable in each of these regressions is our estimated G1-G3 intergenerational elasticity

under different specifications. All G1-G3 elasticities are taken from OLS regressions of G3 log occupational

score on the percentile rank of imputed scores of G2 and G1 (see tables 3 and 4 for additional details). These

elasticities are estimated for combinations of 2 G2 genders , 2 G3 genders, 3 sample periods, and 2 intervals

at which samples are constructed (20 or 30 years), 2 sample restrictions on G2 (baseline, or both spouses in

the same age bracket), and 3 sample restrictions on G3 (baseline, married, or married and both spouses in the

same age bracket). Column (1) contains elasticities from all specifications (2 × 2 × 3 × 2 × 2 × 3 = 144 total);

the remaining columns contain elasticities for a single G2 or G3 gender. Standard errors are in parentheses.
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(1) (2) (3) (4) (5) (6)

G3 Male G3 Female G3 Male G3 Female G3 Male G3 Female

G1 paternal 0.0828*** 0.0069 0.0369*** 0.0696*** 0.0846*** 0.0494***
(0.013) (0.016) (0.012) (0.013) (0.011) (0.012)

G1 maternal 0.0397** 0.0549*** 0.0207 0.0736*** 0.0794*** 0.1363***
(0.016) (0.017) (0.013) (0.014) (0.012) (0.013)

Observations 52,050 30,265 72,100 46,358 74,163 56,360
p (G1 paternal = G1 maternal) 0.061 0.058 0.415 0.844 0.767 0.000
p (G1 pat [G3 male] = G1 pat [G3 female])
p (G1 mat [G3 male] = G1 mat [G3 female])

G3 Male G3 Female G3 Male G3 Female G3 Male G3 Female

G1 paternal 0.0966*** 0.0826*** 0.1155*** 0.0718*** 0.1222*** 0.0108
(0.014) (0.017) (0.012) (0.015) (0.012) (0.013)

G1 maternal -0.0237 0.1202*** 0.0580*** 0.1176*** 0.0371*** 0.1119***
(0.015) (0.017) (0.013) (0.014) (0.012) (0.014)

Observations 47,137 26,091 65,647 40,981 68,317 51,315
p (G1 paternal = G1 maternal) 0.000 0.137 0.007 0.036 0.000 0.000
p (G1 pat [G3 male] = G1 pat [G3 female])
p (G1 mat [G3 male] = G1 mat [G3 female])

G3 Male G3 Female G3 Male G3 Female G3 Male G3 Female

G1 paternal 0.0377*** 0.0643*** 0.0727*** 0.0194 0.0767*** -0.0305***
(0.012) (0.014) (0.011) (0.012) (0.010) (0.011)

G1 maternal -0.0035 -0.0087 0.0537*** 0.0304** 0.0157 0.0735***
(0.013) (0.014) (0.012) (0.012) (0.011) (0.011)

Observations 59,987 32,966 80,471 48,828 78,835 59,391
p (G1 paternal = G1 maternal) 0.035 0.001 0.257 0.530 0.000 0.000
p (G1 pat [G3 male] = G1 pat [G3 female])
p (G1 mat [G3 male] = G1 mat [G3 female])

Table 8. Intergenerational Elasticies Across Three Generations:                                                                                                                                                                                                
Percentile Rank Regressions with Paternal and Maternal Grandfathers Excluding Regions, 20-year Intervals

Panel A: Excluding the northeast

Panel B: Excluding the midwest

Panel C: Excluding the south

0.000

0.0318
0.001

0.796 0.180

1860-1880-1900 1900-1920-19401880-1900-1920

0.000
0.0000.002

0.079

0.000

1860-1880-1900 1900-1920-1940

0.160 0.002

1900-1920-1940

0.524 0.027

1880-1900-1920

1880-1900-19201860-1880-1900

0.000

0.526 0.008
0.000

Note: Contains results from OLS regressions of individual G3 log occupational score on the percentile rank of

imputed scores of G2, paternal G1 and maternal G1; these are imputed as the average for each G3 individual’s

first name. For women, log occupational score is measured as the log occupational score of her husband. Panel

A excludes observations from the Northeast; panel B excludes observations from the Midwest; and panel C

excludes observations from the South. The G3 sample consists of adults age 20-35 in the third sample year;

the G2 sample consists of adults age 20-35 in the second sample year, who have children ages 0-15 and are

married to spouse in the same age bracket; the G1 sample consists of men in the first sample year who have

children ages 0-15. Standard errors are in parentheses.
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A Intergenerational Time Inconsistency: Details and Proofs

Here, we provide details of the model discussed in Section 4.1.

We label the optimal consumption choices made by the agent in the commitment and

sophistication regime
{
cCOMM
t

}3
t=1

and
{
cSOPH
t

}3
t=1

, respectively. The resulting income levels

are
{
Y COMM
t

}3
t=1

and
{
Y SOPH
t

}3
t=1

.

The following proposition holds:

Proposition 1. (a) If G1 can commit to all future decisions, the incomes of G2 and G3 will

be, respectively

Y COMM
2 =

Rβδ (1 + δ)

1 + βδ + βδ2
Y1

and

Y COMM
3 =

R2βδ2

1 + βδ + βδ2
Y1;

(b) If G1 cannot commit to all future decisions, the incomes of G2 and G3 will be, resepctively

Y SOPH
2 =

Rβδ (1 + δ)

1 + βδ + βδ2
Y1

and

Y SOPH
3 =

R2β2δ2 (1 + δ)

(1 + βδ + βδ2) (1 + βδ)
Y1.

Proof. When G1 can commit to all future resource allocations, he solves the following maxi-

mization problem:

max
c1,c2,c3

ln(c1) + βδ ln(c2) + βδ2 ln(c3) s.t. Y1 = c1 +
c2
R

+
c3
R2

This generates the following optimal choices of c1, c2, and c3:

c1 =
1

1 + βδ + βδ2
Y1

c2 =
βδR

1 + βδ + βδ2
Y1

c3 =
βδ2R2

1 + βδ + βδ2
Y1

Part (a) follows from the fact that Y3 = c3 and Y2 = c2 + Y3
R .
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When G1 cannot commit to future resource allocations, he will anticipate G2’s resource

allocation decision and make his decisions accordingly. Taking Y2 as given, G2 will solve the

following:

max
c2,c3

ln(c2) + βδ ln(c3) s.t. Y2 = c2 +
c3
R

The solution to this problem yields the following optimal choices of c2 and c3:

c2 =
1

1 + βδ
Y2

c3 =
βδR

1 + βδ
Y2

Then, G1’s optimization problem can be written:

max
c1,Y2

ln(c1) + βδ ln
( Y2

1 + βδ

)
+ βδ2 ln

(βδRY2
1 + βδ

)
s.t. Y1 = c1 +

Y2
R

The solution to this problem for Y2 is

Y2 =
Rβδ(1 + δ)

1 + βδ + βδ2
Y1

The value of Y3 follows from the solution for c3 given above, and from the fact that Y3 = c3.

This result allows one to calculate the relationship between the incomes of the different

generations. Let η2,1 and η3,1 be, respectively, the slope coefficients in regressions of Y2 and Y3

on Y1. It follows directly from the proposition that ηSOPH
2,1 =ηCOMM

2,1 and ηSOPH
3,1 < ηCOMM

3,1 .

B Multi-trait Matching and Inheritance: Details

To formalize matters, we assume that the economy is populated by an equal number of men

and women, each characterized by two traits, x (the non-market trait) and y (the market

trait). We also assume that every couple has exactly one son and one daughter, so that in

each generation there will be an equilibrium in the marriage market where each individual is

matched to one of the opposite sex.

In the marriage market, every individual is characterized by a unique index of attractive-

ness, which depends on the individual’s x and y traits: hGi (xi, yi) = xi + φGyi, G = F,M .
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The attractiveness function hG(·) differs by gender. Specifically, the non-market trait x

has higher weight in determining women’s desirability, φF < 1, while the market trait y is

more important for men, φM > 1. We assume that each trait can take only one of two levels:

x ∈ {x, x} and y =
{
y, y

}
. This assumption delivers the marriage market equilibrium

described in the text.

Let πgx and πgy be the probabilities that, respectively, traits x and y “switch” for a child of

gender g (g = M,F ). Based on our assumptions and marriage market equilibrium, we obtain

the following two-generation transition probability matrices.

ΠM =



(
1− πMx

) (
1− πMy

)
πMx

(
1− πMy

)
(1− πMx )πMy πMx π

M
y

πMx
(
1− πMy

) (
1− πMx

) (
1− πMy

)
πMx π

M
y (1− πMx )πMy

(1− πMx )πMy πMx π
M
y

(
1− πMx

) (
1− πMy

)
πMx

(
1− πMy

)
πMx π

M
y (1− πMx )πMy πMx

(
1− πMy

) (
1− πMx

) (
1− πMy

)



ΠF =



(
1− πFx

) (
1− πFy

) (
1− πFx

)
πFy πFx

(
1− πFy

)
πFx π

F
y(

1− πFx
)
πFy

(
1− πFx

) (
1− πFy

)
πFx π

F
y πFx

(
1− πFy

)
πFx
(
1− πFy

)
πFx π

F
y

(
1− πFx

) (
1− πFy

) (
1− πFx

)
πFy

πFx π
F
y πFx

(
1− πFy

) (
1− πFx

)
πFy

(
1− πFx

) (
1− πFy

)


The three generation transition matrices are obtained from the product of the two-generation

matrices, ΠM and ΠF . Specifically:

ΩM,PAT = ΠMΠM

ΩM,MAT = ΠFΠM

ΩF,PAT = ΠMΠF

ΩF,MAT = ΠFΠF .

Intergenerational correlations corresponding to the matrices ΩM,PAT ,ΩM,MAT ,ΩF,PAT and

ΩF,MAT :
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ρM,PAT = 1− 4

5
πMx

(
1− πMx

)
− 16

5
πMy

(
1− πMy

)
ρM,MAT = ρF,PAT = 1− 4

5
πMx

(
1− πMx

)
− 16

5
πMy

(
1− πMy

)
−2

5

(
πFy − πMx

) (
1− 2πMx

)
− 8

5

(
πFx − πMy

) (
1− 2πMy

)
= 1− 4

5
πFy
(
1− πFy

)
− 16

5
πFx
(
1− πFx

)
−2

5

(
πMx − πFy

) (
1− 2πFy

)
− 8

5

(
πMy − πFx

) (
1− 2πFx

)
ρF,MAT = 1− 4

5
πFy
(
1− πFy

)
− 16

5
πFx
(
1− πFx

)
Note that because all the switching probabilities are bounded between 0 and 1/2, the

correlations ρM,PAT and ρF,MAT are necessarily greater than zero. On the other hand, ρM,MAT

and ρF,PAT can be either positive or negative, depending on the exact values of the π′s.

We are interested in finding conditions such (ρM,PAT − ρM,MAT ) > 0 and (ρF,MAT − ρF,PAT ) >

0, i.e., paternal grandfathers matter more for grandsons, but maternal grandfathers matter

more for granddaughters. Sufficient conditions for both inequalities to hold are the following:

πMy < πFx

πFy < πMx

1

4

(
1− 2πMx

)(
1− 2πMy

) <

(
πFx − πMy

)(
πMx − πFy

) < 1

4

(
1− 2πFy

)
(1− 2πFx )

.

The first inequality states that the switching probability of the dominant trait for men

(πMy ) must be smaller than the switching probability of the dominant trait for women (πFx ).

This amounts to saying that the transmission of market skills for men is more persistent

than the transmission of non-market skills for women. The second inequality states that the

transmission of the less important trait is more persistent for women than for men. The third

inequality bounds the ratio of
(
πFx − πMy

)
to
(
πMx − πFy

)
, so that the empirical patterns in the

data are respected.
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VARIABLES G3 Male G3 Female G3 Male G3 Female G3 Male G3 Female G3 Male G3 Female

G1 0.0690 0.0891 0.0106 0.0661 0.0798 0.0072 0.0817 0.0646
(0.011) (0.013) (0.013) (0.014) (0.011) (0.012) (0.013) (0.014)

G2 Male 0.2185 0.2680 0.2007 0.2494
(0.013) (0.014) (0.013) (0.013)

G2 Female 0.2659 0.3057 0.2768 0.2710
(0.014) (0.015) (0.014) (0.015)

Constant 2.8204 2.8492 2.8271 2.8333 2.8252 2.8397 2.8487 2.8585
(0.008) (0.009) (0.008) (0.009) (0.008) (0.008) (0.009) (0.009)

Observations 77,878 44,292 78,634 44,930 77,718 77,761 44,171 44,168

G1 0.0938 0.0891 0.0728 0.0661 0.1051 0.0817 0.0639 0.0646
(0.015) (0.013) (0.017) (0.014) (0.015) (0.013) (0.017) (0.014)

G2 Male 0.2426 0.2680 0.2262 0.2768
(0.018) (0.014) (0.018) (0.014)

G2 Female 0.2759 0.3057 0.2655 0.2710
(0.019) (0.015) (0.017) (0.015)

Constant 2.8530 2.8492 2.8481 2.8333 2.8565 2.8487 2.8608 2.8585
(0.010) (0.009) (0.011) (0.009) (0.010) (0.009) (0.011) (0.009)

Observations 35,500 44,292 35,827 44,930 35,434 44,171 35,449 44,168

G1 0.0959 0.0775 0.0700 0.0739 0.1065 0.0717 0.0581 0.0721
(0.016) (0.016) (0.019) (0.017) (0.016) (0.016) (0.018) (0.017)

G2 Male 0.2302 0.2694 0.2139 0.2776
(0.019) (0.017) (0.019) (0.017)

G2 Female 0.2617 0.2926 0.2557 0.2608
(0.020) (0.018) (0.019) (0.018)

Constant 2.8701 2.8533 2.8690 2.8348 2.8742 2.8522 2.8809 2.8585
(0.011) (0.011) (0.012) (0.011) (0.011) (0.011) (0.012) (0.011)

Observations 29,295 29,550 29,563 29,957 29,238 29,469 29,252 29,453

Table A1. Intergenerational Income Elasticities across Three Generations, 1860-1880-1900                                                                                                                                                                       
Different Sample Restrictions for G2 and G3

G3: Married to 
spouse ages 20-35

G2: Baseline G2: Married to spouse ages 20-35

G3: Baseline

G3: Married
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(1) (2) (3) (4) (5) (6)

G3 Male G3 Female G3 Male G3 Female G3 Male G3 Female

G1 paternal 0.0740*** 0.0072 0.0624*** 0.0669*** 0.0846*** 0.0271***
(0.008) (0.010) (0.007) (0.008) (0.007) (0.009)

G1 maternal 0.0360*** 0.0206** -0.0019 0.0602*** 0.0400*** 0.0426***
(0.009) (0.010) (0.008) (0.009) (0.009) (0.009)

Observations 82,361 55,313 115,717 85,396 105,261 79,648
p (G1 paternal = G1 maternal) 0.004 0.360 0.000 0.625 0.000 0.276
p (G1 pat [G3 male] = G1 pat [G3 female])
p (G1 mat [G3 male] = G1 mat [G3 female])

G3 Male G3 Female G3 Male G3 Female G3 Male G3 Female

G1 paternal 0.2241*** 0.1404*** 0.2753*** 0.1858*** 0.1726*** 0.0339
(0.023) (0.026) (0.023) (0.027) (0.023) (0.027)

G1 maternal 0.1526*** 0.0827*** 0.0163 0.1526*** 0.0066 0.0218
(0.024) (0.026) (0.026) (0.027) (0.026) (0.028)

Observations 78,252 53,525 107,954 81,271 98,460 75,300
p (G1 paternal = G1 maternal) 0.052 0.148 0.000 0.461 0.000 0.786
p (G1 pat [G3 male] = G1 pat [G3 female])
p (G1 mat [G3 male] = G1 mat [G3 female]) 0.050 0.000 0.692

Table A2. Intergenerational Elasticies Across Three Generations:                                                                                                                                                                                               
Percentile Rank Regressions with Paternal and Maternal Grandfathers using Alternative Occupational Rankings, 30-year Intervals

1880-1910-1940

0.016 0.012 0.000

1850-1880-1910 1870-1900-1930

Panel B: Wage distribution based on adjusted average personal property by occupation in 1860 
and 1870

0.278 0.000 0.843

1870-1900-1930 1880-1910-1940

0.000 0.683 0.000

1850-1880-1910
Panel A: 1900 wage distribution
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(1) (2) (3) (4) (5) (6)

G3 Male G3 Female G3 Male G3 Female G3 Male G3 Female

G1 paternal 0.0304** -0.0141 0.0598*** 0.0622*** 0.0355*** 0.0345***
(0.013) (0.014) (0.011) (0.012) (0.011) (0.012)

G1 maternal 0.0443*** 0.1110*** 0.0065 0.0588*** 0.0177 0.0721***
(0.014) (0.016) (0.012) (0.014) (0.012) (0.013)

Observations 53,939 36,530 76,786 57,416 74,539 56,547
p (G1 paternal = G1 maternal) 0.509 0.000 0.005 0.864 0.307 0.0501
p (G1 pat [G3 male] = G1 pat [G3 female])
p (G1 mat [G3 male] = G1 mat [G3 female])

G3 Male G3 Female G3 Male G3 Female G3 Male G3 Female

G1 paternal 0.0421*** 0.0087 0.1112*** 0.0744*** 0.1105*** 0.0346***
(0.013) (0.015) (0.010) (0.012) (0.011) (0.013)

G1 maternal 0.0927*** 0.0481*** 0.0786*** 0.0678*** 0.0317*** 0.0470***
(0.014) (0.016) (0.012) (0.013) (0.012) (0.013)

Observations 51,281 34,027 71,879 53,241 68,462 51,397
p (G1 paternal = G1 maternal) 0.012 0.099 0.069 0.729 0.000 0.546
p (G1 pat [G3 male] = G1 pat [G3 female])
p (G1 mat [G3 male] = G1 mat [G3 female])

G3 Male G3 Female G3 Male G3 Female G3 Male G3 Female

G1 paternal 0.0059 -0.0082 0.0698*** 0.0105 0.0710*** 0.0405***
(0.011) (0.013) (0.009) (0.011) (0.010) (0.011)

G1 maternal -0.0166 -0.0063 -0.0509*** 0.0202* -0.0055 0.0199*
(0.013) (0.014) (0.010) (0.011) (0.012) (0.012)

Observations 63,644 42,448 88,447 64,851 79,233 59,737
p (G1 paternal = G1 maternal) 0.212 0.926 0.000 0.567 0.000 0.218
p (G1 pat [G3 male] = G1 pat [G3 female])
p (G1 mat [G3 male] = G1 mat [G3 female])

Panel A: Excluding the northeast

Panel B: Excluding the midwest

Panel C: Excluding the south

Table A3. Intergenerational Elasticies Across Three Generations:                                                                                                                                                                                               
Percentile Rank Regressions with Paternal and Maternal Grandfathers Excluding Regions, 30-year Intervals

0.589 0.000 0.125

1880-1910-1940

0.419 0.000 0.040

1850-1880-1910 1870-1900-1930

0.033 0.531 0.394

1880-1910-1940

0.101 0.021 0.000

1850-1880-1910 1870-1900-1930

0.002 0.005 0.002

1850-1880-1910 1870-1900-1930 1880-1910-1940

0.022 0.885 0.952
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