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Abstract

Our study compares experimental results from a very simple common-value
auction game with results from a transformed version of this game that does not
require any conditioning on future events. This transformation allows us to study
the importance of this cognitive activity and the role of belief formation in a human
subject setting. We observe significant differences in behavior across the two games.
In both settings, when facing naïve computerized opponents, subjects’ play changes
strongly. Overall, the results suggest that both the difficulty of conditioning on
future events as well as the challenge to form or evaluate own beliefs explain the
frequent occurrences of the winner’s curse.
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1 Introduction

The winner’s curse (WC) in common-value auctions (CVA) refers to systematic over-
bidding relative to Bayesian Nash equilibrium that leads to massive losses in laboratory
experiments.1 Not only is this phenomenon one of the most important and robust findings
in empirical auction analysis, it has also proven to be difficult to be explained with an
empirically valid theory.

Ivanov, Levin and Niederle (2010, henceforth ILN) find evidence against a broad class
of “belief-based” models which retain the equilibrium assumption that players best respond
to – possibly erroneous – beliefs, such as cursed equilibrium (Eyster and Rabin, 2005),
level-k theory (Crawford and Iriberri, 2007) or analogy-based expectation equilibrium
(Jehiel, 2005). Charness and Levin (2009) document the difficulty of conditioning on
information from hypothetical events, suggesting an explanation that is independent of
beliefs. In a reanalysis of ILN’s data, however, Camerer, Nunnari and Palfrey (2012)
propose an explanation on the basis of Quantal Response equilibrium (QRE), suggesting
that imprecise best responses combined with non-equilibrium beliefs could explain the
observed behavior.

This discussion shows that the fundamental explanation of the WC is still to be found.
A major challenge in the experimental investigation is to disentangle the role of belief
formation, conditional reasoning, and best response behavior, ideally in a standard CVA
conducted among human subjects. For example, due to the interaction between belief
formation and conditional reasoning, Charness and Levin (2009) resort to individual choice
settings with computerized opponents in order to control beliefs.

In this paper, we intend to make a step towards illuminating the processes behind
the WC. As a starting point, we use a simple first-price CVA adapted from Kagel and
Levin (1986). At the core of our investigation, we then propose a transformation of
this game that removes the need to engage in conditional reasoning but maintains the
strategic nature of the original auction game, that is, optimal strategies and equilibria. In
addition to this variation, we manipulate the belief formation in two ways: Strongly – by
implementing naïve computer opponents, and more subtly – by analyzing play against
human subjects subsequent to play against the naïve computer. Overall, these measures
allow us to quantify the influence of conditional reasoning and belief formation on bidding
behavior.

We obtain two main results. First, in the transformed game – without the need to
condition on winning – subjects avoid the WC to a larger extent than in the original
auction. Hence, adding to the results of Charness and Levin (2009), this result shows
that contingent reasoning on hypothetical events plays a major role for the WC also in

1See Bazerman and Samuelson (1983), Kagel and Levin (1986), Avery and Kagel (1997), Goeree and
Offerman (2002), Lind and Plott (1991), Grosskopf et al. (2007), and the literature discussed in Kagel
and Levin (2002).
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settings with human opponents. Second, however, it is not the only obstacle in avoiding
the WC. When playing against a computer that bids naïvely according to the signal,
participants bid significantly lower than in the setting with human opponents, irrespective
of the transformation. Contrary to the theory of Camerer et al. (2012), this seems to
suggest that best responding precisely is not particularly problematic, the belief formation
seems to be a much bigger challenge. The role of belief formation is further reflected in the
significantly improved performance against human subjects subsequent to playing against
a naïve computer opponent with a known strategy. Interestingly, this external “support”
in belief formation is especially influencing those subjects that are able to best respond
against the computer opponents.

Overall, we infer that subjects do not only struggle to form correct beliefs, they seem to
struggle to form any belief in this kind of auction. The necessity to condition on the event
of winning reinforces this problem. As it is impossible to condition on winning without a
starting belief and as the necessity to condition makes forming beliefs more difficult, the
two processes apparently form a nexus of interdependencies that is difficult for subjects to
think about. In CVAs, as opposed to other settings, very few subjects therefore reach a
belief-based decision.

Besides the already mentioned papers, our study is closely related to Levin and Reiss
(2012). The authors construct a behavioral auction design in which the payment rule
incorporates the adverse selection problem that is at the origin of the WC. They observe
that the WC is still present in their data. The authors adjust the payment rule but do
not transform the auction game as we do.

Due to our use of two basically equivalent games, our paper relates to the broad set of
studies that investigate behavior using strategically equivalent games. The largest fraction
of those studies considers framing effects that influence subjects’ behavior but do not
result from the structural nature of the situation (for example Tversky and Kahneman,
1986; Osborne and Rubinstein, 1994). Another methodologically interesting instance is the
experimental, so-called “strategy method” in which participants make contingent decisions
for all decision nodes they will possibly encounter in a game (Brandts and Charness, 2011).
In a different manner, equivalent versions of common games can facilitate the investigation
of particular aspects of behavior. For example, Nagel and Tang (1998) use a repeated,
normal-form centipede game to investigate learning behavior without aspects of sequential
reciprocity. In our study, we craft two equivalent games that differ in the required cognitive
processes under investigation: conditional reasoning. To the best of our knowledge, our
experiment is the first that uses such a transformation as a means to investigate the impact
of a particular cognitive activity in strategic reasoning.

The rest of this paper is organized as follows: Section 2 describes the experimental
design and our hypotheses. Section 3 provides our experimental results and Section 4
concludes.

3



2 Experimental Design and Hypotheses

In our experimental design, we will use two different games: a simplified standard auction
game and a transformed auction game that does not require subjects to condition their
decisions on the hypothetical event of winning the auction. The starting point for both
games is a standard first-price CVA setting as in Kagel and Levin (1986). There are n
bidders and a common value of the auctioned item W ∗ ∈ [W,W ] which is the same for
each bidder. Each bidder receives a private signal xi ∈ [W ∗ − δ,W ∗ + δ], with δ > 0.
Bidders make bids in a sealed-bid first-price auction in which the highest bidder wins
the auction and pays his bid. The available actions are ai ∈ [W,W ]. The payoff of the
highest-bidding player who wins the auctions is ui = W ∗ − ai. In case a bidder does not
make the highest bid his payoff is ui = 0.

2.1 The Games

Simplified Auction Game

We simplify this general setting mainly by allowing only for two signals and by restricting
the number of subjects who bid for the commodity to two. Additionally, bidders receive a
private binary signal xi ∈ {W ∗ − 3,W ∗ + 3} and this signal is drawn without replacement.
Hence, bidders know that the other bidder receives the opposite signal but do not know
which. The common value W ∗ is randomly drawn from the interval [25, 225]. To rule out
mixed strategy equilibria we only allow absolute bids ai ∈ [xi − 8, xi + 8]. As a tie-breaker
in case of identical bids the lower signal player wins the auction.

In order to analyze the structure of this simplified auction game and to easily relate it
to the transformed game we express strategies in relative bids bi = ai − xi, the difference
between the absolute bid ai and the individual signal xi. For simplicity, we will call these
relative bids just “bids” in the remainder and always specify when we talk about absolute
bids. Relative to the other player’s bid bj, three general options exist for player i.2 First,
if player i overbids j by at least 6 units – the distance between signals – he always wins
the auction irrespective of him receiving the higher or lower signal. Second, by the same
token, if player i underbids j by at least 6 units he never wins the auction. Finally, if
player i bids less than 6 units apart from player j’s bid he only wins the auction when he
has received the higher signal, not when he receives the lower signal. Within this range,
bidding bi = bj − 6 + ε, with ε > 0 and small, is optimal. Figure 1 illustrates the three
possible constellations.

2For convenience, we consider a male player i and his female opponent j.
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bi

bjbj − 6 bj + 6

win if highsure lose sure win

Figure 1: Three areas of relative bids bi.

Transformed Auction Game

The transformed game is a common-value auction without private signals in which the
rules of winning mimic the structure of the auction game described above. It therefore
results in the exact same situation as depicted in figure 1.

Two players are informed of the two potential values the item can have, W ∗
1 or

W ∗
2 = W ∗

1 + 6. In analogy to the auction game, the ranges of the values are W ∗
1 ∈ [25, 219]

and W ∗
2 ∈ [31, 225]. Subjects are allowed to absolutely underbid W ∗

1 by 5 units and
absolutely overbid W ∗

2 by 5 units, ai ∈ [W ∗
1 − 5,W ∗

2 + 5]. To see the parallels to the
auction game, note that the average value of both subjectively possible common values
corresponds to the value of the private signal in the auction game and the values W ∗

1 and
W ∗

2 correspond to the possible values of the item from the point of view of this signal.
Relating the relative bids bi to the average of both common values, bi = ai − W ∗

1 +W ∗
2

2 , we
again have bi ∈ [−8, 8], as in the auction setting. In this formulation of the game, which
of the two common values arises for which player depends on chance and on the bids of
the two players, exactly following the structure of the auction game and figure 1.

If player i overbids player j by at least 6 units, he wins the auction for sure and for
him both values realize with probability of 0.5 (sure win). Conversely, if player i underbids
player j by at least 6 units, he does not win the auction and his payoff is 0 for sure (sure
lose). Lastly, if the difference between both players’ bids is smaller than 6 units, with 0.5
probability player i or player j wins the auction and realizes the smaller value W ∗

1 (win if
high). The loser obtains a payoff of 0.

Note that these rules already incorporate the conditioning on the event of winning
in the “win if high” rule. Overall, the general design and the rules of the transformed
game simply make explicit what in the auction game is implicitly given and has to be
understood by the subjects.

2.2 Transformation

The transformation as presented here is designed to remove the need to condition on
winning. It is done in a way that the players’ make the same optimal bids and face
identical uncertainty. However, transforming the auction in this fashion changes a game
with private information into one without. In contrast to the original auction, the bidders
in the transformed auction have common knowledge that the value of the item is either
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W ∗
1 or W ∗

2 .3 The transformation therefore not only removes the need to condition, it also
changes the information sets of the players.

We implement this transformation for two reasons. First, there are convincing argu-
ments and evidence that, in contrast to the differential need to engage in conditional
reasoning, the particular differences in the informational structure between the games
do not influence the behavior of the experimental subjects. The equilibrium consists
of strategies of constant relative bidding, irrespective of the absolute realization of the
signal.4 The observed behavior is in accordance with this equilibrium prediction. There is
therefore no reason and no incentive to differentiate potential opponents with higher and
lower signals. Then, based on observed actions, there is evidence that a large majority of
subjects does not form beliefs. Hence, these subjects surely did not get to the point where
they even differentiate between opponents with different signals. From a pilot study, we
have evidence that the few subjects who indeed form beliefs and deliberate about their
opponent’s behavior do so without differentiating the absolute value of their opponent’s
signal.5 Finally, in the computer treatments the games only differ in the need to condition
and yield similar differences as in the human opponent setting.

Second, while it is in principle possible to implement the transformed game as a fully
strategically equivalent game, this would be very complicated to implement experimentally.
Such a game would use the standard signal structure but replace the auction rule with
rules set in terms of relative bids like in the transformed game. It follows that the
description of the game setting would be in absolute bids, whereas the rules would use a
relative perspective. Finally, profit calculations would again have to rely on absolute bids.
Implementing and describing these changes of perspective would be very cumbersome and
also constitute a major difference to the intuitive standard auction. A deterioration of the
bidding behavior would not be attributable to the conditioning. Furthermore, it would
not be certain that the subjects indeed approach the game in terms of the described rules
and not according to the equivalent, standard rules they may know intuitively. It is an
advantage of our transformation that it generates a distinct setting that is not perceived
as a standard auction.

3To see that the auction does not lead to common knowledge of the possible values of the item note the
following. The signal xi implies an information set composed of the following two value and signal pairs:
{(xi−3, si = high), (xi +3, si = low)}. These two indistinguishable cases imply the following beliefs about
the information set of the opponent j expressed in terms of xi, {(xi − 3, sj = low), (xi − 9, sj = high)}
when si = high and {(xi + 9, sj = low), (xi + 3, sj = high)} when si = low. It can be seen that higher
order beliefs diverge further.

4We disregard in the experiment a small range of signal values close to the boundaries for which the
equilibrium strategies do not feature this property.

5In a trial session, we implemented the auction game with a communication design similar to Burchardi
and Penczynski (2014). In this setting, groups of two communicate about the bidding decision in a way
that subjects have an incentive to share their reasoning about the game. The minority of subjects that
form beliefs about how others potentially bid does not allude to the possible absolute values of the signal.
Furthermore, no subject is concerned with boundary signals and their implication for their own bidding
strategy.
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2.3 Equilibrium

To find the equilibria of the auction game, consider the best response function to the
opponent’s bid bj. If player j bids high values, bj ∈ [3, 8], it is optimal for player i to
follow the second option and never win the auction. In this case, winning the auction
would result in weak losses for sure because the opponent is bidding – even with the lower
signal – at least the commodity’s value. Hence, the best response is to bid anything that
is relatively below the opponent’s bid by at least 6 units, BR(bj) ∈ [−8, bj − 6].

If player j bids values bj ∈ [−8, 3], it is optimal for player i to relatively underbid the
opponent by slightly less than 6 points, making sure that he only wins the auction when
he has received the higher signal. Hence, the best response function is BR(bj) = bj − 6 + ε.
By construction, player j cannot bid low enough to cause a best response of overbidding
by at least 6 and thus surely winning the auction. Only if bj ≤ −15 was possible, the best
response would be BR(bj) = bj + 6 since it would be more profitable to surely win than to
only win with the high signal.

With the best responses being either to underbid by at least 6 or by nearly 6, the unique
equilibrium is for both players to bid bi = bj = −8. Players then only win the auction when
they receive the higher signal, leading to an expected payoff of Eui = 1

2(−3− bi) = 2.5. If
player i, however, deviated to “sure win” bidding bi = bj + 6 = −2, he would only receive
an expected payoff of Eui = 1

2(−3− bi) + 1
2(+3− bi) = 1

2(−1 + 5) = 2.
Additionally, subjects always have incentives to deviate from any pair of strategies in

which not both subjects bid bi = bj = −8. When both players bid higher values than −8,
at least one player has an incentive to underbid the other player because, as outlined before,
best responses are either underbidding by at least 6 or nearly 6 (if such an underbidding
is possible). These underbidding incentives only vanish when no underbidding is possible
any more and subjects bid −8. If only one player bids more than −8, this player has an
incentive to also bid −8 because of the outlined best response functions. By construction
of the transformed game, the equilibrium is the same as in the auction game: underbidding
by bi = −8 corresponds to an absolute bid of ai = W ∗

1 − 5.
These equilibrium considerations so far do not take into account that subjects receiving

a signal close to 25 or 225 can infer the commodity’s real value. This might not only
influence those subjects’ strategies that receive signals close to 25 or 225, but through
higher order beliefs it could also influence those subjects’ strategies that receive signals
well within the interval [25, 225]. In Appendix A.3 we show, however, that this influence
vanishes very quickly and that bi = −8 remains the equilibrium strategy for all realizations
of the commodity’s value that occur in the experiment.
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2.4 Experimental Design

The specific games implemented in the experiment differ along 2 dimensions. First, we
implement the described simplified auction game and the transformed game to pick up
difficulties due to conditional reasoning.

Second, to investigate the belief formation, we not only confront subjects with fellow
human opponents but also implement both games with naïve computerized opponents.
Subjects are informed that the computer follows the strategy bC = 0, implying that
she absolutely bids exactly according to her signal or the expected value of the item,
respectively. These computerized games remove strategic uncertainty and the subjects’
need to form beliefs. By themselves, they allow to observe whether subjects are able
to best respond in the two forms of the game. The best response turns out to be
BR(bC) = −5.99 (win if high) as the experiment subjects have to round their bids to one
cent of a unit. In combination with a subsequent game against the human opponent (AH,
TH), the computerized treatments helps subjects to have a starting point for thinking
about humans.6

Our experiment consists of four treatments that differ in the sequence of the specific
games played: the AH (AuctionHuman), the TH (TransformedHuman), the AC (Auc-
tionComputer), and the TC (TransformedComputer) treatment. The treatment name is
derived from the first game in each treatment. The treatments are divided in parts I and
II, the AH treatment starts with the auction game in part I and has the transformed
game in part II. In the TH treatment, this sequence is reversed. Within each part of
these two treatments, the opponents switch from human to computer opponents. Subjects
are informed about the computer opponent only after they have finished the initial three
periods. In the AC and TC treatments the switch is reversed from computer to human
opponents. Figure 2 illustrates the sequence of events in all four treatments.

In all treatments, the general instructions and the instructions for the games are read
aloud. Subjects play each specific game for three consecutive periods against randomly
chosen subjects or the computer. Subjects are informed that they will first make all 12
decisions in the experiment before receiving any feedback.7

In the auction, we implement a common value that is a random variable uniformly
distributed over [45, 205] ⊂ [25, 225] and accordingly in the transformed game. We do this
in order to avoid common values near 25 or 225 for which subjects could draw inferences
from their signal about the true value. We truthfully communicate to subjects that values

6We deliberately do not implement a more complex or realistic strategy for the computerized opponents
since subjects do not have to be able to best respond to complex belief distributions in the human opponent
games either. When subjects realize in a first step that underbidding by BR(bC) = −5.99 is the best
response to naïve play, they might recognize the equilibrium strategy in a second step.

7Because subjects do not receive any feedback after playing one period, in principle, it would have
been possible to just implement one period per game. However, implementing three periods allows us to
see whether subjects consistently play the same strategy across three periods as well as for different values
of the signal.
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AH Treatment 

Part I  Part II  

Auction Game  
(human opp.)  

Auction Game  
(comp. opp.)  

Transf. Game  
(human opp.)  

Transf. Game  
(comp. opp.)  

TH Treatment 

Part I  Part II  

Transf. Game  
(human opp.)  

Transf. Game  
(comp. opp.)  

Auction Game  
(human opp.)  

Auction Game  
(comp. opp.)  

Timeline	
  	
  

Timeline	
  	
  

AC Treatment 
Part I  Part II  

Auction Game  
(comp. opp.)  

Auction Game  
(human opp.)  

Transf. Game  
(comp. opp.)  

Transf. Game  
(human opp.)  

Timeline	
  	
  

TC Treatment 

Part I  Part II  

Timeline	
  	
  

Auction Game  
(comp. opp.)  

Transf. Game  
(comp. opp.)  

Transf. Game  
(human opp.)  

Auction Game  
(human opp.)  

Figure 2: Sequence of games in the four treatments.

are no lower than 25 and no higher than 225.

2.5 Hypotheses

In the main text, we will focus on analyzing subject’s behavior in Part I of the four
treatments. Appendix A.4, however, provides an analysis of the data of part II. There, we
derive hypotheses about learning patterns across treatments depending on the relevance
of conditional reasoning and belief formation.

Our first hypothesis focusses on the role of conditional reasoning. If the operation of
conditioning on the hypothetical event of winning is a major obstacle to forming beliefs
and best responding – as suggested by Charness and Levin (2009) – we should observe
that subjects in the transformed game (TH ) are to a larger extent able to avoid the WC

9



due to lower bids than in the auction game (AH ). To the extent that the influence does
not only work through the belief formation, this difference will not only arise in the human
opponent games but also when the two games are played with a transparent, computerized
opponent.

Hypothesis 1 (Conditional reasoning): Due to the cognitive ease, sub-
jects make lower bids and avoid the WC more often in the transformed game
compared to the auction game, both with human and computerized opponents.

We will mainly analyze this hypothesis by a between-subject comparison of the first
(and the second) game of the AH and the TH treatment. Moreover, comparing the second
(and the first) games of the AC and the TC treatment provides an additional control.

Hypothesis 2 relates to the possibility that with human opponents both strategic
uncertainty and belief formation present an independent obstacle to avoiding the WC in
themselves. We will analyze two manipulations, this hypothesis is thus divided into two
parts, (a) and (b).

In the games against computer opponents, neither strategic uncertainty nor belief
formation can prevent to best respond correctly. Therefore, analyzing how subjects’
behavior is different when facing a computer opponent compared to facing a human
opponent reveals the relevance of these characteristics. We can make this comparison
of the two settings by a within-subject analysis for the AH and the TH treatment.
Additionally, using the AC and the TC treatment, we can corroborate our finding also
between-subject. Our hypothesis 2 follows Ivanov et al. (2010) who provide evidence
against “belief-based” models and whose results suggest that subjects have a more general
problem to form beliefs about their opponents at all.

Hypothesis 2a (Belief formation, upper bound): In each game, sub-
jects make lower bids and avoid the WC more often when playing against
computerized opponents than when playing against human opponents.

The comparison in hypothesis 2a delivers an upper bound on the relevance of belief
formation since both strategic uncertainty and belief formation do not play a role in the
computerized games.

We provide a weaker test for the relevance of belief formation by giving subjects a hint
for starting thinking about their opponents. In particular, in the AC and TC treatment
subjects face human opponents after they played against computerized opponents. Thus
providing subjects with a starting point for their belief formation diminishes the belief
formation problem in the presence of strategic uncertainty. This comparison provides
a lower bound on the relevance of belief formation since far from all aspects of belief
formation are removed. Importantly, in the AC treatment, subjects might not only improve
their behavior because a starting point for their beliefs improves their belief formation

10



process, but they might also learn how to condition on the event of winning by playing
against human opponents first. Treatment TC allows us to tell these two possibilities
apart.

Hypothesis 2b (Belief formation, lower bound): Subjects make lower
bids and avoid the WC more often in the auction or transformed game with
human opponents if this game is played after the setting with computerized
opponents compared to when it is played first.

The experiments were conducted at the University of Mannheim in Spring and Autumn
2014. Overall, 12 sessions with 10 to 22 subjects in each session were run. In total, 182
subjects participated.8 Participants received a show-up fee of 4e. We used Taler as an
experimental currency where each Taler was worth 0.50e. Subjects received an initial
endowment of 8 Taler in Part I and II of the experiment from which losses were subtracted
and to which gains were added. Even if participants made losses in both parts, they kept
their initial show-up fee. Sessions lasted on average 60-75 minutes and subjects earned on
average 14.40e.

3 Results

In the following, the results are presented in terms of subjects’ bids and payoffs. The
summary statistics and tests use the average bids and payoffs over the three periods of each
specific game. Only the percentage of incidences of winners incurring losses is calculated
using the per period information.

In addition to their mere magnitude, we distinguish bids in four categories by whether
they can be a valid best response. In the human subject games, the important thresholds
are at bi = −8,−5,−3. The first category is playing the equilibrium, bidding bi = −8.9

The next threshold is the best response to a naïve strategy, bj = 0, which we round up
from the precise value bi = −5.99 to bi = −5 because some subjects do not bid non-integer
values. Finally, for any belief, bidding bi > −3 yields a weakly lower expected payoff
than bidding less. Whenever j bids very high values (bj ≥ 3) no positive payoffs can
be obtained. Positive payoffs can be achieved for lower bids of j only by bidding lower
than −3. Overall, we think that bids bi ∈ [−8,−5] represents plausible behavior. Bids
bi ∈ (−5,−3] might still be a best response to some forms of implausible beliefs, while
bids above are dominated by other bids when positive payoffs are possible.

8The experimental software was developed in z-Tree (Fischbacher, 2007). For recruitment, ORSEE
was used (Greiner, 2004).

9Actually, given the empirical distribution of subjects’ behavior in each treatment, equilibrium play is
not a best response, but it is close. In the auction game, bidding bi = −7.97 is the best response. In the
transformed game, bidding bi = −7.99 is the best response.
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Table 1: Summary Statistics - AH & TH Treatments.
Means AH TH Wilcoxon rank sum
(Std. deviation) Auction game Transf. game p-value
Human opponents Bids –1.80 –4.00 0.000

(2.63) (2.61)
Payoffs –0.56 0.55 0.001

(1.55) (1.37)
Comp. opponents Bids –3.37 –5.00 0.007

(3.30) (2.53)
Payoffs 0.17 0.81 0.004

(1.53) (1.56)
Wilcoxon signed rank Bids 0.000 0.020
(within treatment)
p-value Payoffs 0.001 0.184
Notes: The last column reports two-sided p-values of Wilcoxon rank sum tests that evaluates whether
the distribution of bids and payoffs is different between treatments. The last rows report two-sided
p-values of Wilcoxon signed rank tests that evaluate whether the distribution of bids and payoffs is
different within-subject between the human and the computerized setting.

For the games against computer opponents, a similar picture emerges in which we
distinguish precise and approximate best response behavior, bi = 5.99 and bi ∈ (5.99, 5],
respectively, from non-best response behavior bi < −5.99 and bi > −5.

3.1 Hypothesis 1

We will first analyze subjects behavior in part I of the AH and TH treatment. In the
auction game with human opponents, 61% of all subjects who win the auction incur a
loss whereas only 32% of subjects in the transformed game do so. In line with these
observations, in the auction game with computerized opponents, 45% of those subjects
who win the auction game face a loss whereas only 13% of those subjects do so in the
transformed game. These outcomes follow from bidding behavior illustrated in Table 1 on
page 12. Both against human and computerized opponents, average bids are significantly
lower and thus closer to the equilibrium or best response in the transformed game compared
to the auction game. The differences in payoffs are significantly different irrespective of
the opponents. Against human opponents, subjects lose money in the auction game while
they win money in the transformed game.10

10The figures of table 1 provide evidence against the idea that differences in the informational structure
of the auction and the transformed game lead to behavioral differences in these games. First, there is a
significant difference between the auction and the transformed game in the version with computerized
opponents. With computerized opponents, higher order beliefs in the auction game, however, do not
matter, because the computer follows a known and fixed strategy in both games. Second, although the
magnitude of the difference between the two games is slightly larger in the version with human opponents
compared to computerized opponents (2.2 vs. 1.6) it is still roughly of the same size, suggesting that at
least the main difference between the two games is with respect to conditioning not the informational
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Figure 3: AH Treatment - Bids (Part I), N = 50.

Figures 3 and 4 report subjects’ bid distributions in Part I of the AH and TH treatments.
The histograms in figure 3(a) and 4(a) reflect that subjects play lower bids more often in
the transformed game than they do in the auction game. Actually, the bidding behavior in
the auction game to some extent gives the impression of normally distributed bids that do
not reflect the equilibrium of bi = −8 at all, whereas bidding behavior in the transformed
game seems to at least partially reflect that the equilibrium is the lowest possible bid. For
computerized opponents, figures 3(b) and 4(b) show that a larger number of subjects is
able to find the best response when strategic interaction with human opponents is absent.

Table 2 distinguishes bids against human and computerized opponents for the AH
and the TH treatment by category (Total columns and rows) and additionally shows the
within-subject bid transition between the human and the computerized setting.

We first focus on the categorization of bids: For the games with human opponents,
the table reveals that 39% of subjects (18 of 46) bid plausibly (bi ∈ [−8,−5]) in the
transformed game while only 12% (6 of 50) do so in the auction game (Fisher’s exact test,
p = 0.001).11 A similar picture arises for the games with computerized opponents in which
either the precise or the approximate best response is played by 54% of subjects (27 of 50)
in the auction game and 80% (37 of 46) in the transformed game (Fisher’s exact test, p
= 0.012). Hence, even if subjects exactly know how their opponents react, conditioning
on the event of winning still seems to be a problem at least for some subjects. All the
reported results are in general robust when using the AC and the TC instead of the AH
and the TH treatments, although the results for the computerized setting are slightly less

structure.
11All reported tests in this paper are two-sided.
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Figure 4: TH Treatment - Bids (Part I), N = 46.

significant. This might reflect that even in the computerized version of the auction game
subjects already bid not too far away from the equilibrium, which makes it more difficult
to improve subject’s behavior.12

To conclude the analysis, we analyze the within-subject behavior for the two types
of opponents. Table 2 gives the precise numbers by category. For clarity of exposition,
the graphical illustrations with the bids against humans on the horizontal and against
computers on the vertical axis are placed in appendix A.2 on page 24. Figures A.3 and
A.5 show the data for the AH and TH treatment, respectively.

Two important differences are apparent. First, 19 subjects in the auction game play
bids in the top-right quadrant, that is, higher than −3 against human opponents and
higher than −5 against computerized opponents. This seemingly random bidding around
0 is less common in the transformed game where only 5 do this, highlighting again the
detrimental effect of conditioning on equilibrium play. Second, of those 27 playing a
reasonable response to the computer (bi ∈ [−5.99,−5]), 17 (63%) subjects bid previously
above −3 and thus a weakly dominated strategy in the auction game while only 30% do
this in the transformed game. This suggests that beyond the ability to best respond, the
conditional reasoning increases the difficulty of belief formation. In the auction setting,

12Comparing the games with computerized opponents, subjects’ bids are lower (Wilcoxon rank sum,
p = 0.079) and subjects’ payoffs are significantly higher (Wilcoxon rank sum, p = 0.099). Additionally,
more subjects play plausibly, bi ∈ [−5.99,−5], in the transformed game than in the auction game (Fisher’s
exact test, p = 0.090). Comparing the games with human opponents (part I: ACF vs. TCF), subjects’
bids are lower (Wilcoxon rank sum, p = 0.023) and subjects’ payoffs are higher (Wilcoxon rank sum, p =
0.003). Additionally, more subjects play plausibly, bi ∈ [−8,−5], in the transformed game than in the
auction game (Fisher’s exact test, p = 0.083). Tables 3, 4, 5, and 6 summarize subjects’s behavior in the
AC and the TC treatment.
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Table 2: Bid transition by categories (Part I).

bi (Human)
bi (Comp.) [−8] [−8,−5] (−5,−3] (−3, 8] Total

AF treatment
(−5, 8] 0 0 4 19 23
(−5.99,−5] 0 1 0 8 9
[−5.99] 0 5 4 9 18
(−8,−6] 0 0 0 0 0
Total 0 6 8 36 50

TF treatment
(−5, 8] 0 1 2 5 8
(−5.99,−5] 2 2 5 4 13
[−5.99] 4 9 4 7 24
(−8,−6] 0 0 1 0 1
Total 6 12 12 16 46

relatively more subjects who are in principle able to best respond seem to fail to form
adequate beliefs with human opponents and best respond to them, compared to the
transformed setting.13

Result 1: For both human and computerized opponents, we find that, without
conditioning, subjects bid lower and are better in avoiding the WC. Hence, we
find evidence in a CVA setting with human opponents that the difficulty of
conditioning on hypothetical events is one reason behind the WC.

Relatedly, we found another consequence of conditioning in the data. We can analyze
whether subjects improve their behavior during the three periods they play of each game.
When we test the distribution of bids for the first and the last period of each game, only 2
out of the 16 games (four games in four treatments) show significantly different results.
Subjects bid closer to the equilibrium in the third compared to the first period only when
the transformed game is played as first game (TH, p=0.001, and TC, p=0.067). Therefore,
only without conditioning subjects are able to improve their behavior even though they
do not receive feedback.14

13Table 2 also reveals that overall 36 out of 50 subjects (72%) play a weekly dominated strategy in the
auction game. This provides evidence against the idea that differences in the informational structure lead
to differences in behavior. It seems highly unlikely that subjects are able to understand the potential
implications of higher order beliefs in the auction game but are at the same time unable to avoid a weekly
dominated strategy.

14Our central results regarding conditional reasoning and belief formation remain in general robust to
considering first or third period bids instead of mean bids, although differences are less pronounced as
single period data is naturally more noisy. Appendix A.4 provides further details.
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3.2 Hypothesis 2

We first analyze subjects’ behavior in part I of the AH and the TH treatment. In the
auction game, 61% of the winning subjects face losses with human opponents whereas only
45% do so with computerized opponents. In the transformed game, 32% of the winning
subjects face losses with human opponents whereas this is only the case for 13% of subjects
with computerized opponents. Again, table 1 on page 12 shows that in both games these
outcomes are due to significantly lower bids when facing computerized opponents.

Referring to the idea that the informational structure and not the conditioning drives
Also, subjects earn higher average payoffs when facing computerized opponents. Note that
we observe differences in subjects’ bidding behavior even though the best response requires
a higher bid in the setting with computerized opponents than the equilibrium bid in the
human opponent setting.

Judging again by the categories of table 2, in the auction setting, 6 out of 50 subjects
(12%) behave plausibly with human opponents and 27 out of 50 (54%) do so with
computerized opponents (McNemar’s test, p = 0.000).15 In the transformed game setting,
18 out of 46 subjects (39%) behave plausibly with human opponents while 37 out of 46
(80%) do so with computerized opponents (McNemar’s test, p = 0.000). Similar results
emerge when considering exact equilibrium or best response play.

Maybe not surprisingly, there is strong evidence that the removed strategic uncertainty
and the removed need to form beliefs in the computerized setting has an impact on bidding
behavior. However, the within-subject analysis of the AH treatment in figure A.3 and table
2 suggests that strategic uncertainty alone is unable to explain the differences between
settings. In this treatment, 27 out of 50 subjects approximately best respond once they
are confronted with computerized opponents. Out of 27 subjects that approximately best
respond to the computer opponent, a majority of 17 people (63%) bid more than −3,
a weakly dominated strategy. Therefore, despite the apparent ability to best respond,
subjects face problems of belief formation that go beyond strategic uncertainty.

With help of the AC treatment, we can corroborate for the auction game the observed
differences between human and computerized opponents in that it also holds between-
subject and without preceeding games. Table 3 provides summary statistics for the AC
treatment and shows – on the diagonal – that participants bid significantly lower values
and make significantly higher profits with computerized opponents (Bid averages: -1.80
vs. -2.83, payoff averages: -0.56 vs. -0.12). The Wilcoxon rank sum tests yield significant
differences (Bids, p = 0.022; payoffs, p = 0.033). Additionally, a Fisher’s exact test on the
categories supports this finding (p = 0.001).

With help of the TC treatment, we also can corroborate our results for the transformed
games. Table 5 provides the respective summary statistics for the TC treatment. Subjects

15The McNemar’s test performs a similar test for binary categories as the Fisher’s exact test does and
is additionally appropriate for matched data.
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Table 3: Summary Statistics - AH & AC Treatments
Means AH AC Wilcoxon rank sum
(Std. deviation) Auction game Auction game p-value
Human opp. Bids –1.80 –2.60 0.171

(2.63) (4.13)
Payoffs –0.56 –0.55 0.254

(1.55) (2.43)
Comp. opp. Bids –3.37 –2.83 0.524

(3.30) (3.65)
Payoffs 0.17 –0.12 0.825

(1.53) (1.99)
Wilcoxon test Bids 0.000 0.670
(within treatment)
p-value Payoffs 0.001 0.061
Notes: The last column reports two-sided p-values of Wilcoxon rank sum tests that evaluates whether
the distribution of bids and payoffs is different between treatments. The last rows report two-sided
p-values of Wilcoxon signed rank tests that evaluate whether the distribution of bids and payoffs is
different within-subject between the human and the computerized setting.

bid lower values but do not make higher profits with computerized opponents (Bid averages:
-4.00 vs. -4.18, payoff averages: 0.55 vs. 0.37). Additionally, unlike in the auction setting,
differences are not significant (Bids, p = 0.323; payoffs, p = 0.434). As outlined before,
the difference in the equilibrium predictions between the human and the computerized
setting biases, however, against finding a difference between treatments. Hence, it is more
appropriate to analyze whether plausible play increases in the computerized setting. This
is clearly the case: 18 out of 46 subjects (table 2) play plausible in the human setting,
whereas 27 out of 42 subjects (table 6) do so in the computerized setting (Fisher’s exact
test, p = 0.001).

Result 2(a): In support of Hypothesis 2(a), we find that belief formation and
strategic uncertainty provide additional obstacles for avoiding the WC both
in the auction and in the transformed game. However, strategic uncertainty
alone is not to be able to explain our results, a more general problem of belief
formation seems to be present in the data.16

16An alternative explanation for the difference between the games with human and computerized
opponents might be the following: Subjects actually have complex beliefs about their opponent in the
human setting. But because of the complexity of their beliefs, they are unable to best respond to these
beliefs even so they are able to best respond to simpler beliefs in the computer setting. We think that
this explanation is, however, highly unlikely for two main reasons. First, even if a player is unable to
exactly best respond to his complex beliefs, he should avoid bidding above −3 because he therefore only
has to best respond to the degenerated belief as if all opponents make the highest bid this player considers
possible in his beliefs. But many subjects show that they are at least able to best respond to this more
simple type of beliefs. Second, more generally, it seems questionable that subjects have complex beliefs
even so they do not understand the game sufficiently to best respond. Then it is unclear how they should
have come to these beliefs in the first place.
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The AC treatment allows us to further investigate the consequence of a more subtle
manipulation of the beliefs, namely the help of having played against computer opponents
before. Indeed, 61% of subjects winning the auction game with human opponents face
losses in the AH treatment while only 51% of subjects do so in the AC treatment. Table 3
shows that bids and payoffs differ in the expected direction in the auction game with human
opponents between these treatments, but this difference is not significant (p = 0.171).

Table 4: Bid transition by categories (Part I).

bi (Human)
bi (Comp.) [-8] [−8,−5] (−5,−3] (−3, 8] Total

AH treatment
(−5, 8] 0 0 4 19 23
(−5.99,−5] 0 1 0 8 9
[−5.99] 0 5 4 9 18
(−8,−6] 0 0 0 0 0
Total 0 6 8 36 50

AC treatment
(−5, 8] 0 4 1 19 24
(−5.99,−5] 0 3 4 0 7
[−5.99] 0 8 2 2 12
(−8,−6] 1 0 0 0 1
Total 1 15 7 21 44

Judging the bids by categories as illustrated in the Total raws of table 4, it can be
seen that bids below −3 are significantly more likely when the auction game with human
opponents is played after the setting with computerized opponents (Fisher’s exact test, p
= 0.025).

The within-subject analysis gives a particularly illuminating illustration of these
differences. Figure A.4 and table 4 show that as well in this treatment numerous subjects
place bids seemingly randomly around 0 in the top-right quadrant, just like in the AH
treatment (figure A.3). More interestingly, of the 19 approximately best responding
subjects, only 2 bid higher than −3 when facing human opponents. Recall that in AF, out
of 27 that play a best response against computer opponents, 17 bid higher than −3 when
facing human opponents. Therefore, pairing the ability to best respond with a little help
in the belief formation has a strong influence on the expected payoff of the bids placed
against human opponents.

Result 2(b): An effect in line with Hypothesis 2(b) is still observed: Although
the observed difference in average bids is not significant, playing against
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computerized opponents first leads to significantly more plausible play against
computerized opponents.

Table 5: Summary Statistics - TH & TC Treatments
Means TH TC Wilcoxon rank sum
(Std. deviation) Transf. game Transf. game p-value
Human opp. Bids –4.00 –4.64 0.173

(2.61) (2.88)
Payoffs 0.55 0.82 0.116

(1.37) (1.56)
Comp. opp. Bids –5.00 –4.18 0.135

(2.53) (2.90)
Payoffs 0.81 0.37 0.301

(1.56) (2.11)
Wilcoxon test Bids 0.020 0.308
(within treatment)
p-value Payoffs 0.184 0.082
Notes: The last column reports two-sided p-values of Wilcoxon rank sum tests that evaluates whether
the distribution of bids and payoffs is different between treatments. The last rows report two-sided
p-values of Wilcoxon signed rank tests that evaluate whether the distribution of bids and payoffs is
different within-subject between the human and the computerized setting.

Finally, the fourth treatment TC allows us to show that the effect in result 2(b) is not
due to the learning of conditioning during the preceding play against the computer. Table
5 shows that the absolute difference in bids between the TH and the TC treatment is
0.64 with a p-value of 0.173, very similar to the Auction treatments.17 The changes in the
transition between computer and human opponents (figure A.6 and table 6) are analogue
to the Auction treatments.

4 Conclusion

In this paper, we transform a common-value first price auction in a way that subjects
do not need to condition on winning. The experimental implementation of the standard
auction and the transformed auction allows us to investigate the consequences that the
cognitive activity of conditioning on hypothetical events have for the bidding behavior. In
line with results of Charness and Levin (2009) and Ivanov et al. (2010) on the difficulty of
conditioning, we find that subjects are significantly more able to avoid the winner’s curse
in the transformed game.

17Due to the overall lower bidding in the Transformed treatments, there is no significant difference
between categories as depicted in Table 6 (Fisher’s exact test, p = 0.212). If we, however, only consider
those subjects who at least approximately best respond (bi ∈ [−5.99,−5]) in the computerized setting,
more subjects play plausible against human opponents in the TC than in the TH treatment (Fisher’s
exact test, p = 0.052).
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Table 6: Bid transition by categories (Part I).

bi (Human)
bi (Comp.) [−8] (−8,−5](−5,−3](−3, 8] Total

TH treatment
(−5, 8] 0 1 2 5 8
(−5.99,−5] 2 2 5 4 13
[−5.99] 4 9 4 7 24
(−8,−6] 0 0 1 0 1
Total 6 12 12 16 46

TC treatment
(−5, 8] 0 3 4 7 14
(−5.99,−5] 1 10 0 0 11
[−5.99] 3 6 5 2 16
(−8,−6] 0 1 0 0 1
Total 4 20 9 9 42

In contrast to the previous literature, the transformation allows us to manipulate
conditioning in the context of human subject interaction. Using naïve, computerized
opponents, we are able to additionally study the role of belief-formation. We find that
subjects are significantly more able to avoid the winner’s curse when playing against a
computerized opponent whose bidding strategy is known or when playing against humans
after such an interaction with computerized opponents. Overall, we find that both cognitive
activities are important obstacles on subjects’ way to avoid the winner’s curse.

Applications of the kind of transformation we are possible in other games. In the
strategic voting literature, players are conditioning on being pivotal in a jury decision.
Using a computer experiment, Esponda and Vespa (2014) find that the cognitive difficulty
of this operation might stand in the way of strategic voting. An experiment based on a
transformation of the kind presented here can verify these results in the original voting
situation with human opponents.
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A Appendix

In this appendix, we first provide additional figures. Afterwards, some considerations
regarding equilibrium play at the boundaries of the signal space are made. Then, different
learning patters across treatments are discussed. Finally, we present the translated
instructions for the AH treatment. In general, instructions were based on those of Kagel
and Levin (1986), although large modifications had to be made to capture our specific
experimental design. Additionally, Frequently Asked Questions that were orally presented
to subjects after explaining the auction game (Part I) and after explaining the transformed
game (Part II) are outlined after the Instructions.

A.1 Figures: Histograms - AC and TC

Figure A.1: AC Treatment - Bids (Part I)

Figure A.2: TC Treatment - Bids (Part I)
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A.2 Figures: Bid transitions

Figure A.3: AH Treatment - Bid transition (Part I), N = 50.

Figure A.4: AC Treatment - Bid transition (Part I), N = 44.
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Figure A.5: TH Treatment - Bid transition (Part I), N = 46

Figure A.6: TC Treatment - Bid transition (Part I), N = 42.
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A.3 Equilibrium at the boundaries

In the main text, equilibrium considerations regarding the auction game do not take into
account that subjects receiving a signal close to 25 or 225 can infer the commodity’s
real value. This might not only influence those subjects’ strategies that receive signals
close to 25 or 225, but it could in principle also influence those subjects’ strategies that
receive signals well within the interval. In the following, we will, however, outline why
this influence vanishes very quickly and why bi = −8 remains the equilibrium strategy
for all realizations of the commodity’s value that occur in the experiment. We start with
the lower boundary: In order to analyze how subjects’ strategy at the boundary influence
subjects’ strategy for central-value signals, we consider five player types. Player 5 receives
a signal x5 ∈ [46, 54). His strategy might be influenced by his potential opponent with
the lower signal: player 4, who receives the signal x4 = x5 − 6, x4 ∈ [40, 46). But player
4’s strategy might of course be influenced by player 3 (x3 = x4 − 6, x3 ∈ [34, 40)) whose
strategy might be influenced by player 2 (x2 = x3 − 6, x2 ∈ [28, 34)) and finally also by
player 1 (x1 = x2 − 6, x1 ∈ [22, 28)).

Player 1 receives a signal x1 ∈ [22, 28) from which he can infer that the commodity’s
real value is above his own signal. For this reason, player 1 cannot make any profits from
underbidding by −8. Instead player 1 tries to overbid18 player 2. But importantly, player
1 bids at most b1 = +3 because otherwise he would lose money because of overbidding the
commodity’s value x1 + 3. Hence, in equilibrium, player 2 will bid b2 ≥ −3.01 because any
bid below would provide player 1 with an overbidding incentive that would lead player 2
to adjust his bid upwards. Additionally, player 2 cannot bid more than b2 = 0 because
higher bids would lead to negative expected payoffs. Because of these incentives of player
2, in equilibrium, player 3 can ensure himself an expected payoff of at least Eui = 1.495
by bidding b3 = −5.99. If player 3 follows this strategy, player 2 cannot gain money by
winning the auction, and, hence, player 2 will not overbid the player 3 and bids b2 = −3
to avoid losses. This, however, provides an incentive for player 3 to bid less than −5.99,
which in turn provides an incentive for player 2 to overbid the third player and these
overbidding incentives only fully vanish when player 3 bids −5.99 again. Because of this
circular incentive structure, in equilibrium, player 2 and player 3 will mix strategies. We
do not fully characterize the exact mixed strategy equilibrium here, because it is sufficient
for our purpose to show that players will not bid in certain intervals.19

As outlined before, for player 2, strategies above 0 cannot be part of an equilibrium.
Hence player 3 can ensure himself a payoff of at least Eui = 1.495 by bidding −5.99.
Importantly, strategies that are part of a mixed strategy equilibrium must lead to a higher

18More precisely, due to the rule we implement concerning equal bids, overbidding in this context means
that player 1 only has to bid exactly player 2’s absolute bid in order win the auction.

19The strategy space in our experiment is finite because participants have to round their bids to the
cent-level. But for finite strategy spaces we know that there always exists an equilibrium.
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payoff than strategies that are not part of this equilibrium. Hence, bidding b3 ∈ (−5.99,−2)
cannot be part of a mixed strategy equilibrium because it leads to lower payoffs than
bidding −5.99, independent of how player 2 exactly mixes pure strategies below b2 = 0.
Bidding b3 ∈ [−8,−5.99) could in principle lead to the same payoff (or even a higher payoff)
as bidding −5.99 because the commodity’s real value is underbid by a larger amount. The
same is true for bidding b3 ∈ [−2,−1.50] because player 3 might overbid player 4 with
these bids. By bidding above −1.5, player 3 might still overbid player 4, but the (maximal)
payoff (Eui = 1.49) resulting from these bids is lower than the payoff of bidding −5.99.
Bearing these considerations in mind, player 4 could always avoid to be overbid by player
3 by bidding b4 = −7.49 and ensuring himself a payoff of Eu4 = 2.245. Because player 3,
however, does not bid −5.99 as a pure strategy but possibly also mixes strategies over
[−8,−5.99] and [−2,−1.50], player 4 potentially mixes strategies over −8 ≤ b4 ≤ −7.49.
Importantly, bidding above −7.49 cannot be part of an equilibrium because then payoffs
are lower than Eu4 = 2.245. Especially overbidding player 5 even when this player is
bidding b5 = −8 would only lead to an expected payoff of Eu4 = 2.0. For this reason, the
influence on strategies of boundary-signals ends at player 5: This player and all players
with higher signals than player 5 will play −8 as a pure strategy in equilibrium because
their lower-signal opponents do not have an incentive to overbid them. Or in other words,
for signals above 46, bidding −8 remains the equilibrium.

Additionally, at the higher boundary of the commodity’s value space, no problems
occur: A player receiving the signal xhigh ∈ (222, 228] knows that the commodity’s real
value is below his own signal. Hence, he has to underbid his opponent who has a lower
signal in order to earn money. But this do not lead to a change in equilibrium because
if the opponent bids −8, the player with xhigh also just bids −8 and has no incentive to
deviate.
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A.4 Learning

In this section, we first provide evidence that our central results regarding conditioning
and belief formation remain robust when considering single periods and not the average of
the three periods per game, as done in the main text. Afterwards, we additionally analyze
the data from Part II of the AH and the TH treatment, as the main text only analyzes
data from Part I of our treatments.

To robustness check whether our results also hold when considering single periods
instead of the average of three periods is really only interesting for comparisons involving
the transformed game either with human or computerized opponents when played first in
the TH and the TC treatment. As outlined in the main text, only in these two games,
subjects significantly improve their behavior from the first to the second period.

Regarding our results referring to the conditioning problem, we might want to test
whether the comparisons between the auction and the transformed game remain valid
when we abstract from the fact that subjects learn in the transformed game when this
game is played as the first game of a treatment. When we compare bidding behavior
and payoffs between the auction game and the transformed game with human opponents
(AH vs. TH ) and this time base this comparison only on the first period (to abstract
from learning in the transformed game), subjects still bid significantly less (and earn
significantly more) in the transformed game (Wilcoxon rank sum, bids - p = 0.018, payoffs
- p = 0.050). Additionally, plausible behavior is more likely in the transformed game
(Fisher’s exact test, p = 0.011) than in the auction game. When comparing behavior
between the auction and the transformed games against computerized opponents (AC
vs. TC ) and considering only the first period (to control for learning in the transformed
game), results still have the expected direction but are not generally significant (Wilcoxon
rank sum, bids - p = 0.146, payoffs - p = 0.388; Fisher’s exact test, p = 0.057).

Regarding our results referring to the belief formation problem, we might want to
check whether subjects still improve their behavior in the setting with computerized
opponents compared to human opponents even if we incorporate that subjects learn in
the three rounds of the transformed game with human opponents. When we compare
the human and the computerized version of the transformed games in the TH treatment
and focus on third periods (to incorporate learning in the setting with human opponents),
the differences between the two settings naturally diminish and bids and payoffs are not
significantly different any more (Wilcoxon rank sum, bids - p = 0.143, payoffs - p = 0.871).
Importantly, we have different equilibria in both settings which biases against observing
a difference in bids or payoffs. Hence, the more reliable measure is to consider whether
the percentage of subjects playing plausible in both both settings change. Indeed, more
subjects play plausible in the setting with computerized opponents compared to human
opponents and this difference remains highly significant (McNemar’s Test, p = 0.001). We
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obtain a similar result if we do the same analysis not within but between-subject (TH
vs. TC ), and again consider only the third period (Wilcoxon rank sum, bids - p = 0.621,
payoffs - p = 0.442; Fisher’s exact test, p = 0.000). Hence, as expected, results become
slightly weaker when incorporating that subjects learn in the transformed games, but the
overall pattern of the results seems to remain intact.

In the main text, our analysis was focused on Part I of the three treatments. In this
section, we will additionally analyze Part II of the AH and the TH treatment. Following
Charness and Levin (2009) that problems with contingent reasoning are at the origin of
the WC suggests that we should observe a different learning pattern from Part I to Part II
between the two treatments. If conditional reasoning is an obstacle for understanding the
auction game, playing this game before the transformed game should not per se improve
behavior in the transformed game. Subjects should not gain a better understanding of
the transformed game via the auction game simply because most participants do not
understand the auction game because of the problems with contingent reasoning and those
subject who manage to avoid the WC in the auction game would most likely already play
rationally in the transformed game if this is played first. Playing the transformed game
first, however, might very well facilitate playing the auction game. By understanding
the structure of the transformed game, a better understanding of the setting in which
contingent reasoning on future events is necessary might arise. Hence, different patterns
of learning behavior between the two treatments should be observed:

Hypothesis 3: In the AH treatment, no learning effect should be observed.
Playing the transformed game after playing the auction leads to similar results
than first playing the transformed game. In the TH treatment, however, a learn-
ing effect should be observed: Playing the auction game after the transformed
game leads to more rational behavior than playing the auction game first.20

We focus on the AH and the TF treatments because both treatments potentially
provide a better comparison for the predicted learning effect than the AC and the TCF
treatments. In the later treatments, subjects also first play against the computer in the
second part which in principle could have an influence on playing against human opponents
at very end of each treatment.21

20Our design can, however, not distinguish whether such a learning effect is driven by the fact that
subjects really understand the necessity to condition on the event of winning in the WC because they
played the transformed game first, or whether alternatively, subjects only learn that bidding low is a
good strategy in the transformed game which they then also apply in the auction game. It is, however,
noteworthy, that subjects at least do not receive any feedback about the results before the end of the
experiment. Hence, they do not get any feedback on whether bidding low in the transformed game is a
good strategy

21In general, results for the AC and the TCF treatment are comparable to those in the AH and TH
treatment to the extent, that playing the auction games first does not help playing the transformed games,
whereas playing the transformed games first helps playing the auction games. This effect is significant for
human opponents, whereas for computerized opponents the effect has the right sign but is insignificant.
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Table A.1: Summary Statistics - AH & TH Treatments (Part II)
Mean AH TH
(Std. deviation) Transf. game Auction game
Human opponents Bids –3.66 –3.79

(4.05) (2.88)
Payoffs 0.05 0.29

(2.29) (1.90)
Comp. opponents Bids -3.04 -4.48

(3.74) (2.66)
Payoffs –0.16 0.68

(2.09) (1.53)

Figure A.7: AH Treatment - Bids (Part II), n = 50

Hence, our focus is on the AH and the TH treatment: Does playing one game first
facilitates playing the other game in these treatments? Table A.1 provides the mean values
for subjects’ bids and payoffs for Part II of both treatments.22 In the AH treatment,
the transformed game was played in the second part, both with human opponents and
computerized opponents. In the TH treatment, the auction game was played in the second
part, again both with human opponents and computerized opponents. Figure A.7 and A.8
additionally show histograms of subjects’ bids in the AH and the TH treatment for Part
II of both treatments.
So results in the AH and the TH treatment are in general in line with our learning hypothesis from part
I to part II. It might however, be not so clear, to what extent playing against the computer first still
influences these results.

22We omit the non-parametric tests shown in Table 1 because for the analysis we would like to perform
in this section mainly tests comparing results in Part I with results in Part II are necessary.
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Figure A.8: TH Treatment - Bids (Part II), n = 46

For the TH treatment, we hypothesized that we might observe a learning effect. We
will look at the setting with human opponents first: When the auction game is played
after the transformed game (TH treatment), only 28% of those subjects who win the game
face losses, whereas 61% of those subjects face losses when the auction is played first (AH
treatment). In line with this observation, bids in auction game are lower in TH treatment
(Figure A.8(a)) than in the AH treatment (Figue 3(a)), whereas payoffs are higher (Mean
values - bids: −3.79 vs. −1.80; payoffs +0.29 vs. −0.56).23 Hence, there is clear evidence
that playing the transformed game in the TH treatment before the auction game helps
subjects to avoid the WC in the auction game. Because of learning, we also do not observe
the treatment effect between the two games within-subject in the TH treatment: Bids
and payoffs are roughly the same between the transformed and the auction game in this
treatment (Mean values - bids: −4.00 vs. −3.79; payoffs: 0.55 vs. 0.29).24

Do we also observe this learning effect for the setting with computerized opponents?
When the auction game is played after both transformed games (TH treatment), only
22% of those subjects who win the game face losses, whereas 45% of those subjects face
losses when the auction game is played in Part I (of the AH treatment). In line with
this observation, bids in auction game (with computerized opponents) are lower in TH
treatment (Figure A.8(b)) than in the AH treatment (Figure 3(b)), whereas payoffs are
higher (Mean values - bids: −4.48 vs. −3.37; payoffs +0.68 vs. +0.17). Hence, it again
looks like that subjects behave slightly more rationally when they play the transformed

23Wilcoxon rank sum test - bids: two-sided p = 0.000; payoffs: two-sided p = 0.002. Fisher’s exact test
based on plausible play - two-sided p-value = 0.025.

24Wilcoxon signed rank test - bids: two-sided p = 0.814; payoffs: two-sided p = 0.833. Additionally, a
McNemar’s test (two-sided: p = 0.6072) based on plausible play reveals no significant difference.
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game first compared with the situation when this is not the case. Statistical support,
however, provides only partial support for this this impression.25 Additionally, unlike
in the case of human opponents, the learning effect seems not to be strong enough to
totally prevent a treatment effect also within-subject.26 Hence, there is some evidence for
a learning effect also in the TH treatment, but this learning effect seems to be weaker
than in the setting with human opponents. In the TH treatment, the auction game with
computerized opponents was played as the last game. Potentially, exhaustion or confusion
because of all the different games played before might have been highest at the end of the
experiment, diminishing the learning effect. At least, subjects behave less rational than
expected in the very last game of the TH treatment.

For the AH treatment, we hypothesized above that subjects should not benefit from
playing the auction game first in playing the transformed game second. We will first
analyze the setting with human opponents: When the transformed game is played after
the auction game (AH treatment), 47% of those subjects who win the game face losses,
whereas 32% of those subjects face losses when the transformed game is played first (TH
treatment). Additionally, bids in the transformed game are even slightly higher in AH
treatment (Figure A.7(a)) than in the TH treatment(Figure 4(a)), whereas payoffs are
lower (mean values - bids: −3.66 vs. −4.00; payoffs +0.05 vs. +0.55). Differences, however,
are small and not statistical significant.2728 In any case, subjects do not seem to learn how
to avoid the WC in the transformed game from playing the auction game first. Because
subjects do not learn in the AH treatment, we also observe the treatment effect between
the two games within-subject in this treatment: Bids are higher in the auction game
compared to the transformed game, whereas payoffs are lower (mean values - bids: −1.80

25Wilcoxon rank sum test - bids: two sided p = 0.076; payoffs: two sided p = 0.054. But: Fisher’s exact
test based on plausible play - two sided: p = 0.301.

26Again, the statistical analysis is fairly inconclusive. A Wilcoxon signed rank test just reveals no
significant difference (bids: two-sided p = 0.101; payoffs: two-sided p = 0.371) within-subject between
the transformed and the auction game (with computerized opponents), but a McNemar’s test based on
plausible play reveals such a difference with marginal significance (two-sided p-value = 0.065).

27Wilcoxon rank sum test: Bids - two-sided p = 0.848; payoffs - two-sided p = 0.293. Additionally, a
Fisher’s exact test based on plausible play supports this finding (two-sided p = 0.834).

28Difference additionally remain statistically insignificant (with the exception of payoffs) when only
comparing bids and payoffs for the last of the three periods (and not mean values for all three periods)
and hence controlling for the learning which takes place in the transformed game when played first in the
TH treatment: Wilcoxon rank sum test: bids (last period) - two-sided p = 0.306; payoffs (last period)
- two-sided p = 0.061. Additionally, a Fisher’s exact test using (last period) bids smaller or equal −5
as a classification criterion for plausible behavior supports this finding (two-sided p = 0.209). In the
AH treatment, one might argue that there is a different kind of learning effect in the sense that subjects
do not perform better in the transformed game than subjects in the TH treatment, but at least these
subjects do not have to learn over the three periods of the game (as in the TH treatment) because the
auction game was played before. Importantly, however, differences between treatments in the transformed
game are also not significant when comparing first round behavior which potentially speaks against this
different kind of learning: Wilcoxon rank sum test: bids (first period) - two-sided p = 0.274; payoffs (first
period) - two-sided p = 0.652. Additionally, a Fisher’s exact test using (first period) bids smaller or equal
−5 as a classification criterion for plausible behavior supports this finding (two-sided p = 0.302).
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vs. −3.66; payoffs: −0.56 vs. +0.05)29

How does the behavior in the games with computerized opponents evolve in the
AH treatment? When the transformed game is played after both auction games (AH
treatment), 43% of those subjects who win the game face losses, whereas only 13% of
those subjects face losses in the transformed game in Part I of the TH treatment. In
line with this observation, bids in transformed game (with computerized opponents) are
higher in AH treatment (Figure A.7(b)) than in the TH treatment (Figure 4(b)), whereas
payoffs are lower (Mean values - bids: −3.04 vs. −5.00; payoffs −0.16 vs. +0.81)30

Hence, in the setting with computerized opponents, we do not only not observe a learning
effect, but subjects in the AH treatment even perform slightly worse than in the TH
treatment. For this reason, we also do not observe the treatment effect between the two
games within-subject in the AH treatment: Bids and payoffs are fairly similar in the
auction game compared to the transformed game (mean values - bids: −3.37 vs. −3.04;
payoffs: +0.17 vs. −0.16).31

As in the TH treatment, learning behavior seems to be slightly different between the
setting with human opponents and computerized opponents also in the AH treatment.
Our - admittedly - speculative explanation why this is the case is the following: As in
the AH treatment, the transformed game with computerized opponents was played as
the last game. First of all, subjects might already be slightly exhausted at this point of
the experiment. In addition, when solving this game they might at least consider two
other games as a reference: the transformed game with human opponents and the auction
game with computerized opponents. Considering both games might have lead to some
confusion of at least some subjects, leading e.g. to the very high frequency of zero bids in
the transformed game with computerized opponents (imitating the computer’s strategy -
Figure A.7(b)). At least, as in the TH treatment, we also observe in Auction treatment
that subjects behave less rational than expected in the very last game of the experiment.
Overall:

Result 3: In the setting with human opponents, we observe a learning effect
as hypothesized: Playing the transformed game first facilitates playing the
auction game, whereas the reverse is not true. With computerized opponents,
a similar but weaker learning effect is observed in the TH treatment. Overall,
however, rationality levels in the last game of both treatments are lower than
expected. Exhaustion or increased confusion might be responsible for this
result.

29Wilcoxon signed rank tests: bids - two-sided p = 0.000; payoffs - two-sided p = 0.003. This result is
also supported by a McNemar’s test (two-sided p = 0.002) based on plausible behavior.

30Wilcoxon rank sum test: bids - two-sided p = 0.033; payoffs - two-sided p = 0.007. Fisher’s exact test
based on plausible play - two-sided p = 0.001.

31Wilcoxon signed rank test: bids - two-sided p = 0.980; payoffs - two-sided p = 0.205. McNemar’s
based on plausible play - two-sided p = 0.549.
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A.5 Figures: Individual Data

For completeness, Figures A.9, A.10, A.11, and A.12 provide individual bids for all 12
periods of the experiment for all subjects of the three treatments. These figures support
the evidence presented so far that subjects only improve their behavior in the transformed
game when this game is played in Part I of the experiment.
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A.6 Instructions: AH treatment

Welcome to the experiment!

Introduction

I welcome you to today’s experiment. The experiment is funded by the University of
Mannheim. Please follow the instructions carefully.

For participating, you first of all receive a participation fee of 4e. Additionally, you
may earn a considerable amount of money. Your decisions and the decisions of other
participants determine this additional amount. You will be instructed in detail how your
earnings depend on your decisions and on the decisions of other participants. All that you
earn is yours to keep, and will be paid to you in private, in cash, after today’s session.

It is important to us that you remain silent and do not look at other people’s screens.
If you have any questions or need assistance of any kind, please raise your hand, and an
experimenter will come to you. If you talk, shout out loud, etc., you will be asked to leave.

The experiment consists of three parts. For all three parts, you will receive separate
instructions. You will first make your decisions for all three parts and only afterwards at
the very end of the experiment get to know which payments resulted from your decisions.
The currency used in all three parts of the experiment is called Taler. Naturally, however,
you will be paid in Euro at the end of the experiment. Two Taler will then convert
to one Euro.

If you have any questions at this point, please raise your hand.

Part I

The first part of the experiment consists of 2× 3 trading periods (thus trading periods
1-3 and trading periods 4-6). These instructions describe the decision problem as it is
present in trading periods 1-3. This decision problem will be slightly modified in the
trading periods 4-6. You will be informed about the details of this modification at the end
of trading periods 1-3.

In this part of the experiment, you will act as a buyer of a fictitious commodity. In
each trading period, you will have the opportunity to submit a bid for one unit of the
commodity. Importantly, not only you will have this opportunity to make a bid for
the commodity. In each trading period, you will be matched with another participant
of this experiment. This participant will also have the opportunity to make a bid for
the commodity. Importantly, you will always bid against another randomly determined
participant in each trading period.

Your task is to submit bids for the commodity in competition with the other participant.
The precise value of the commodity at the time you make your bids will be unknown to
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you. Instead, you and the other participant will receive an information signal as to the
value of the item which you should find useful in determining your bid. Which kind of
information you will receive, will be described below.

The value of the auctioned commodity (W ∗) will alwalys be an integer and will be
assigned randomly. This value can never be below 25 Taler and never be above 225 Taler.
Additionally, the commodity’s value W ∗ is randomly and independently determined from
trading period to trading period. As such a high W ∗ in one period tells you nothing about
the likely value in the next period

Private Information Signals: Although you do not know the precise value of the
commodity, you and the participant who is matched with you will receive an information
signal that will narrow down the range of possible values of the commodity. This information
signal is either W ∗ – 3 or W ∗ + 3, where both values are equally likely. In addition, it
holds that when you receive the information signal W ∗ – 3, the person who is matched to
you will receive the information signal W ∗ + 3. If in contrast, you receive the information
signal W ∗ + 3, the other person gets the information signal W ∗ – 3.

For example, suppose that the value of the auctioned item (which is initially unknown to
you) is 128.00 Taler. Then you will either receive a) the information signalW ∗−3 = 125.00
Taler or b) the information signal W ∗ + 3 = 131.00. In both cases, the other person will
receive the opposite information signal, in case of a) the information signalW ∗ +3 = 131.00
and in case of b) the information signal W ∗ − 3 = 125.00 Taler. The line diagram below
shows what’s going on in this example.

25.00 Taler 225.00 TalerW ∗= 128.00 Taler

W ∗ − 3 = 125.00 Taler W ∗ + 3 = 131.00 Taler

It also holds that the commodity’s value W ∗ is equal to the signal – 3 or the signal +
3 with equal probability. The computer calculates this for you and notes it.

Your signal values are strictly private information and are not to be revealed to the
other person. In addition, you will only be informed about the commodity’s value W ∗

and the other participant’s bid at the end of the whole experiment (when also the second
and the third part of the experiment are completed).

It is important to note that no participant is allowed to bid less than the signal – 8 and
more than the signal + 8 for the commodity. Every bid between these values (including
these values) is possible. Bids have at least to be rounded to one cent. Moreover, it
holds that the participant who submits the higher bid gets the commodity and makes a
profit equal to the differences between the value of the commodity and the the amount he
or she bids. That is,
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• Profit = W ∗ (128.00 Taler) – higher bid

for the higher bidding person. If this difference is negative, the winning person looses
money. If you do not make the higher bid on the item, you will neither make a profit nor
a loss. You will earn zero profits. If you and the other participant submit the same bid,
the person who received the lower signal will get the commodity and he or she will be
paid according to his or her bid.

At the beginning of part I, each individual participant will be given a starting capital
credit balance of 8 Taler. Any profit earned by you in the experiment will be added
to this sum. Any losses incurred will be subtracted from this sum. At the end of this
part of the experiment, all gains and losses will be add up and the net balance of these
transactions will be added to your captital credit balance. You are permitted to bid in
excess of your capital credit balance. Even in case of a negative captial credit balance, you
are still permitted to submit bids. Should your net balance at the end of this part of the
experiment be zero (or less), you will not get any payoff from this part of the experiment.
But even in case you make losses in this part of the experiment, you will keep your initial
show-up fee of 4e.

Summary:

1. Two participants have the opportunity to submit bids for a fictitious commodity. The
exact value of the commodityW ∗ is unknown to you. This value will, however, always
be between 25 Taler and 225 Taler. Moreover, you receive a private information
signal concerning the commodity’s value. This signal is either W ∗ − 3 or W ∗ + 3.
The other participant will receive the other signal. No one is allowed to bid less than
the signal – 8 or more than the signal + 8.

2. The higher-bidding participant gains the commodity and makes the following profit
= commodity’s value - higher bid.

3. Profits will be added to your initial capital starting balance. Losses will be subtracted
from your initial capital starting balance. You can always submit higher bids than
your capital starting balance.

4. This part of the experiment consists of two rounds with overall 6 trading periods.
These instructions describe the decision problem as it occurs in the trading periods
1-3. There will be a modification of the decision problem for rounds 4-6, about which
you will be informed soon.

If you have read everything, please click the “Ready” button, to start the experiment.
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Modifciation of the decision problem

You have now entered all decisions for the trading periods 1-3. Now, trading periods
4-6 will follow for which the decision problem so far will be slightly modified. As up
to now the task is to submit bids for a fictitious commodity. Importantly, the other
participant who also has the opportunity to submit bids will be replaced by the computer.
As the other participant in the trading periods 1-3, the computer will also receive a signal
about the commodity’s value that is opposite to your own signal. The computer then
decides according to the following decision rule: The computer always exactly bids
his information signal. Suppose, for example, that the true value of the commodity is
128.00 Taler. If the computer receives the information signal 125.00 Taler (commodity’s
value – 3), the computer’s bid is equal to 125.00 Taler. If the computer receives the
information signal 131.00 Taler (commodity’s value + 3), the computer’s bid is equal to
131.00 Taler. Otherwise, everything else does not change.

If you have read everything, please click the “Ready” button, to continue with the
experiment.

Part II

The second part of the experiment consists of 3 trading periods (trading periods 7-9).
In this part of the experiment, you will again act as a buyer of a fictitious commodity.
In each trading period, you will have the opportunity to submit a bid for one unit of
the commodity. Importantly, not only you will have this opportunity to make a bid for
the commodity. In each trading period, you will be matched with another participant
of this experiment. This participant will also have the opportunity to make a bid for
the commodity. Importantly, you will always bid against another randomly determined
participant in each trading period.

Your task is to submit bids for the commodity in competition with the other participant.
In general, the value of the auctioned commodity will always be an integer and will be
randomly determined. This value can never be below 25 Taler and never be above 225
Taler. At the beginning of each period, you and the other participant will be informed
about the commodity’s value. Importantly, however, there is a slight uncertainty about the
value of the commodity. This value can take two different specifications in every period.
The commodity can either be worth W ∗

1 or W ∗
2 , where both values always differ by 6 Taler

and W ∗
1 always indicates the lower value. Which of the two values really realizes depends

on chance and your bid as well as the other participant’s bid and will be explained to you
in more detail below. Both your bid and the other participant’s bid are not allowed to
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be lower than W ∗
1 − 5 or higher than W ∗

2 + 5. Every bid between these values (including
these values) is possible. Bids have at least to be rounded to one cent.

To make the rules of the auction understandable, they will be explained in detail with
the help of an example. Suppose that at the beginning of one period, you are informed
that the commodity’s value is either W ∗

1 = 107.00 Taler or W ∗
2 = 113.00 Taler. You and

the other participant are not allowed to bid less than W ∗
1 − 5 = 102.00 or more than

W ∗
2 + 5 = 118.00 Taler. Who gets the commodity depends on your bid and the other

participant’s bid. Three rules apply:

1. Your bid is 6.00 Taler or more higher than the other participant’s bid:
In this case, you will get the commodity for sure. With a 50 percent chance each the
commodity’s value then is either W ∗

1 (107.00 Taler) or W ∗
2 (113.00 Taler). Hence,

your profit is:

• Profit = W ∗
1 (107.00 Taler) – Your bid or

• Profit = W ∗
2 (113.00 Taler) – Your bid

Both scenarios are equally likely and the computer will randomly choose which
scenario occurs. If one of the differences is negative and this scenario occurs, you
will make a loss. The other participant will be paid according to rule 2.

2. Your bid is 6.00 Taler or more below the other participant’s bid:
In this case, you will not get the commodity in any case and your profit is zero. The
other participant will be paid according to rule 1.

3. Your bid is less than 6.00 Taler above or less than 6.00 Taler below the
other participant’s bid:
In this case, either you or the other participant get the commodity with a 50 percent
chance and the computer will make this decision. The commodity’s value is in any
case W ∗

1 (107.00 Taler). Hence, in case you get the commodity, your profit is:

• Profit = W ∗
1 (107.00 Taler) – Your bid

In this case, the other participant earns zero Taler. If on the contrary, you do not
get the commodity, your profit is zero and the other participant’s profit is:

• Profit = W ∗
1 (107.00 Taler) – His/her bid

In both cases, it holds for the person who gets the commodity that this person will
make a loss if the difference is negative.
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At the beginning of part II, each individual participant will be given a starting capital
credit balance of 8 Taler. Any profit earned by you in the experiment will be added
to this sum. Any losses incurred will be subtracted from this sum. At the end of this
part of the experiment, all gains and losses will be add up and the net balance of these
transactions will be added to your captital credit balance. You are permitted to bid in
excess of your capital credit balance. Even in case of a negative captial credit balance, you
are still permitted to submit bids. Should your net balance at the end of this part of the
experiment be zero (or less), you will not get any payoff from this part of the experiment.
But even in case you make losses in this part of the experiment, you will keep your initial
show-up fee of 4e.

You will only be informed about the other participant’s bid and which value of
commodity actually has realized at the end of the whole experiment (when also the third
part of the experiment is completed).

Summary:

1. Two participants have the opportunity to submit bids for a fictitious commodity.
The value of commodity will always be between 25 Taler and 225 Taler. Because of
uncertainty, the commodity’s value can take two specifications W ∗

1 and W ∗
2 , where

the difference between both values is always 6 Taler. No one is allowed to bid less
than W ∗

1 – 5 and more than W ∗
2 + 5.

2. If one person bids at least 6.00 Taler more than the other person, this persons gets
the commodity for sure and either makes the profit = W ∗

1 – his/her bid or the profit
= W ∗

2 – his/her bid. If one person bids at least 6.00 Taler less than the the other
person, this person does not get the commodity in any case and makes a profit of
zero Taler. If the difference of the bids is less than 6.00 Taler, both participants
get the commodity with a 50 percent chance and make the following profit = W ∗

1 –
his/her bid in this case.

3. Profits will be added to your initial capital starting balance. Losses will be subtracted
from your initial capital starting balance. You can always submit higher bids than
your capital starting balance.

4. This part of the experiment consists of 3 trading periods.

If you have read everything, please click the “Ready” button, to continue with the
experiment.
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Part III

The third part of the experiment consists of 3 trading periods (trading periods 10-12).
These 3 trading periods are almost identical to the trading periods 7-9 of part II. In
addition, your capital credit balance of the end of part II will be the starting capital
credit balance of this part. Hence, the payoff you receive from part II and part III of the
experiment will finally depend on the amount of the capital credit balance at the end of
this part of the experiment. In part III of the experiment, the following modification of
the decision problem of part II is implemented: As up to now the task is to submit bids for
a fictitious commodity. Importantly, the other participant who also has the opportunity
to submit bids will be replaced by the computer. As the other participant in the trading
periods 7-9, the computer is informed about both possible values of the commodity. The
computer then decides according to the following decision rule: The computer always
exactly bids the mean value of both values of the commodity (hence W ∗

1 +W ∗
2

2

or W∗
1 + 3 = W∗

2 - 3). Suppose, for example, that the true value of the commodity is
either W ∗

1 = 107.00 Taler or W ∗
2 = 113.00 Taler. The computer will then bid 110.00 Taler

(107+113
2 = 107.00 + 3.00 = 113.00 – 3.00). Otherwise, everything else does not change.

If you have read everything, please click the “Ready” button, to continue with the
experiment.

A.7 Instructions: Frequently Asked Questions

Auction game

1. When I make my decision about which bid to submit, what kind of specific information
do I have? Do I know the true value of the commodity?
You do not know the commodity’s value W ∗. When making your decision, you only
know your private information signal. You also do not know whether you received
the “high” or the “low” signal. You only receive one number. With a 50 percent
chance, you have received the high signal and with a 50 percent chance you have
received the low signal. All this also holds correspondingly for the other participant.

2. On what does it depend whether I get the commodity and how much do I earn should
this situation arise?
The person who submits the higher bid gets the commodity. The profit then is: W ∗

– higher bid. If both bids are exactly the same (meaning bids are also the same on
the cent-level), the person with the lower signal gets the commodity.

3. Which values am I allowed to bid?
You are allowed to under- and overbid your personal information signal by up to
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8.00 Taler. In addition, it is important that you are not only allowed to bid integers.
For example, you could also bid 30.45 Taler instead of 30 Taler.

Transformed treatment

1. When I make my decision about which bid to submit, what kind of specific information
do I have? Do I know the true value of the commodity?
When making your decision, you know about two possible specifications of the
commodity’s value: W ∗

1 and W ∗
2 . Which of these values actually realizes in the end

depends on your decision, the other participant’s decision and chance.

2. On what does it depend whether I get the commodity and how much do I earn should
this situation arise?
If you at least bid 6.00 Taler more than the other person, you will get the commodity
for sure. Your profit will then be W ∗

1 – your bid or W ∗
2 – your bid, with a 50 percent

chance each. Conversely it holds, that if you bid at least 6.00 Taler less than the
other person, you will not get the commodity and your profit will be zero. If the
difference of the bids is smaller than 6.00 Taler, either you or the other participant
gets the commodity with a 50 percent chance and the computer will make this
decision randomly. If the computer chooses you as the winner, your profit will be
W ∗

1 – your bid.

3. Which values am I allowed to bid?
You are allowed to underbid the lower value of the commodity W ∗

1 by up to 5.00
Taler and overbid the higher value of the commodity W ∗

2 by up to 5.00 Taler. In
addition, it is important that you are not only allowed to bid integers. For example,
you could also bid 30.45 Taler instead of 30 Taler.
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