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Abstract

To what extent can changes in the distribution of wages be explained
by changes in labor supply of various groups (due to demographic change,
migration, or expanded access to education), and to what extent are other
factors (technical and institutional change) at work?

We develop a flexible methodology for answering this central question
of labor economics, using an empirical Bayes approach, without imposing
the restrictions on heterogeneity and on cross-elasticities of labor demand
assumed by the literature. Our approach allows to reduce the variance of
estimates by exploiting the information embodied in economic structural
models, while avoiding the inconsistency and non-robustness of misspeci-
fied structural models. This approach also allows to overcome the issues
associated with pretesting and the conventional duality of testing theories
/ imposing theories.

In our empirical application, we analyze changes since 2003 of the wage
distribution in the countries of the European Union, using the EU-SILC
data. We find ***
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1 Introduction

Wage inequality has increased significantly in most industrial countries since
the 1980s; see for instance Autor et al. (2008) for the case of the United States.
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Various explanations have been offered for this increase in wage inequality, in-
volving factors such as the decline of minimum wages and unions, technical
change, demographic change, migration, and international trade. Disentangling
the relative contribution of these factors is important for assessing potential
policy responses.

There is considerable disagreement regarding the importance of these various
factors; see for instance Autor et al. (2008) regarding technical change, and
Card (2009) regarding migration. We argue that part of this disagreement
has methodological roots. One of the workhorse methods of the literature on
wage inequality is the estimation of models for labor demand. The models
used are derived from a parametric specification of an aggregate production
function. Qualitative conclusions, predictions and counterfactual analyses tend
to be quite sensitive to specific choices of functional form for these production
functions, as demonstrated by Card (2009) in his review of the literature on the
impact of migration. An alternative to the imposition of restrictions implied
by such a structural model would be the estimation of an unrestricted model
of labor demand, allowing for a large number of types and unrestricted own-
and cross-elasticities. The problem with such unrestricted models is that they
require estimation of a very large number of parameters using a potentially small
number of observations, leading to estimates of high variance and possibly to
lack of identification.

We propose to instead use an empirical Bayes approach for the construction
of estimators avoiding the problems of both structural and unrestricted estima-
tion. The empirical Bayes approach considers parameters, such as own- and
cross-elasticities, to be themselves drawn from some random distribution. This
distribution is governed by hyper-parameters that have to be estimated. We
model the elasticities (in a model with many types of workers) as being equal
to (i) the elasticities implied by a structural model plus (ii) random noise of un-
known variance. This variance has to be estimated. If this variance is estimated
to be zero, estimation of elasticities proceeds as under the structural model. If
this variance is estimated to be infinite, estimation of elasticities proceeds as
under the unrestricted model. In general, estimates will interpolate between
these two extremes in an optimal, data dependent way.

There are a number of advantages to our empirical Bayes approach: (i) The
resulting elasticity estimates are consistent for any parameter values, in con-
trast to structural estimation. (ii) The variance and mean squared error of the
estimates is smaller than under unrestricted estimation. (iii) In contrast to a
fully Bayesian approach, no tuning parameters (features of the prior) have to
be picked by the researcher. (iv) Counterfactual predictions and forecasts are
driven by the data whenever the latter are informative. (v) The empirical Bayes
approach avoids the irregularities of pre-testing (cf. Leeb and Pötscher, 2005)
which are associated with testing structural models and imposing them if they
are not rejected.

In addition to our methodological contribution, we provide new evidence on
the evolution of wage inequality in Europe and the factors driving it. We use
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data from the EU Survey on Income and Living Conditions (EU-SILC). The
EU-SILC is an annual survey conducted since 2003, which covers the “old” EU-
15 member countries since 2004, and all of the EU-25, as well as some other
countries, since 2005. The EU-SILC provides detailed evidence on earnings and
labor supply as well as on a rich set of demographics for a representative sample
of individuals from these countries.

[empirical results to be discussed here]

This paper is structured as follows: Section 1.1 provides a brief literature
review. Section 2 discusses estimation methods, first reviewing structural and
unrestricted estimation, discussing their drawbacks, and reviewing the general
empirical Bayes approach. In section 2.5, our preferred estimator is introduced,
which shrinks a preliminary unrestricted estimator towards a structural model,
to an extent which depends on how well the latter appears to fit the data. The
properties of our preferred estimator are then explored, and a corresponding
inference procedure is proposed. Section 3.1 introduces the EU-SILC data used
in this paper, and section 3.2 provides some preliminary empirical evidence,
replicating the approaches taken in the literature (which mostly focuses on the
United States) in the European context. Section 3.3 presents our main empirical
results based on the empirical Bayes estimation procedure. Section 4 evaluates
our estimation and inference procedure using a range of Monte Carlo simula-
tions, both calibrated to the data and theoretically motivated, and evaluates
the out-of-sample predictive performance of our procedure using the EU-SILC
data. Section 5 concludes. Appendix A provides some additional details, and
appendix B contains all proofs.

1.1 Related literature

This paper mainly builds on two distinct literatures: The literature on labor
supply/demand and wage inequality in economics, and the literature on shrink-
age and empirical Bayes estimation in statistics. Both literatures are very large
so that it is impossible to do full justice to either; we shall only discuss a few
key references.

The relevant labor literature encompasses various sub-literatures, concerned
with different factors potentially affecting wage inequality (migration, technical
change,...), but united by a common method based on estimating the parameters
of a model for labor demand. The models used are justified by constant elasticity
of substitution (CES) production functions or generalizations thereof.

The literature on the impact of migration on native wage inequality was pio-
neered by Card (1990), who studied the “natural experiment” of a large increase
of the Cuban population in Miami, and did not find much of an effect on native
wages or employment. Card (2001) studied the same question, but took a more
structural approach based on production-function estimation, considering vari-
ation in immigration across metropolitan areas as predicted by a Bartik-type
instrument. The approach based on cross-city comparisons has been criticized
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by Borjas et al. (1996), among others, who argue for considering the national
economy rather than local labor markets, and who do find some effects of im-
migration on the wages of native high-school dropouts. Card (2009) reviews
this debate, and argues that the divergent findings might be driven by different
choices of functional form (number of groups in the CES specification) rather
than the local versus national distinction. This lack of robustness to functional
form choices motivates the methods proposed in this paper. Our methods aim
to avoid such non-robustness.

Another, related, literature studies the impact of technical change on wage
inequality, and in particular on the college premium. Autor et al. (1998) argue
that technical change lead to a continuous rise of the relative demand for work-
ers with college degrees, a rise which was offset partially in periods of expansion
of college enrollment. They interpret the residual of a CES-regression specifica-
tion as reflecting technical change. Autor et al. (2008) review and update this
argument. More recently, Autor and Dorn (2013) argue that technical change
in recent decades has created substitutes for middle income and routine clerical
work, while leaving unaffected low-wage service jobs, and increasing the wages of
highly educated workers, thus leading to a polarization of the wage distribution.

The second literature relevant for us is the statistical literature on empirical
Bayes methods and shrinkage. This literature has its roots in the seminal con-
tributions of Robbins (1956), who first considered the empirical Bayes approach
for constructing estimators, and James and Stein (1961), who demonstrated the
striking result that the conventional estimator for the mean of a multivariate
normal vector with unit variance is inadmissible and dominated in terms of
mean squared error by empirical Bayes estimators. This is true whenever the
dimension of the vector is at least 3.

Empirical Bayes approaches were developed further by later contributions
such as Efron and Morris (1973). Morris (1983) was first to discuss the para-
metric version of the empirical Bayes approach. Inference in empirical Bayes
settings was discussed by Laird and Louis (1987) and Carlin and Gelfand (1990),
among others. A good introduction to empirical Bayes estimation can be found
in (Efron, 2010, chapter 1).
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2 Estimation – structural, unrestricted, and an
empirical Bayes alternative

Suppose there are J types of workers, defined for instance by their level of
education, age, and country of origin. Consider a cross-section of labor markets
i = 1, . . . , n; in our application we will focus on NUTS 2 regions in Europe.
Let Yj,i, j = 1, . . . , J be the average log wage for workers of type j in labor
market i, and let Xj,i be the log labor supply of these same workers. Denote
Xi = (X1,i, . . . , XJ,i). We are interested in the structural relationship between
labor supply and wages, that is in the inverse demand function

Yi = (Y1,i, . . . , YJ,i) = y(X1,i, . . . , XJ,i, εi),

where εi denotes a vector of unobserved demand shifters.
There are various alternative ways to estimate this inverse demand function.

One option, taken by the majority of contributions to the field, is to impose a
tightly parametrized structural model, based on the assumptions of a paramet-
ric aggregate production function, a small number of labor-types, and wages
which equal marginal productivity. Another option is to simply estimate a flex-
ible regression model without any of the functional form restrictions imposed
by the structural approach. We will argue that both approaches have serious
shortcomings, and that a third option – empirical Bayes estimation, with details
to be discussed below – combines some desirable features of both approaches,
while avoiding their shortcomings.

We start by reviewing structural and unrestricted estimation and their short-
comings in sections 2.1 through 2.3, and the general empirical Bayes approach
in section 2.4. Section 2.5 presents our proposed empirical Bayes estimator,
and section 2.6 discusses its advantages. We will focus on cross-sectional data
with exogenous variation of labor supply throughout; endogeneity, instruments
and panel data are considered in section 2.7. Section 2.8 finally discusses the
construction of empirical Bayes confidence sets.

2.1 Structural estimation

Let us start by reviewing the most common approach in the literature, structural
estimation, and its conceptual justification.

Differenced estimates

Many papers in the literature run regressions of the following form; examples
include Autor et al. (2008) and Card (2009).

Yj,i − Yj′,i = γj,j′ + β0 · (Xj,i −Xj′,i) + εj,j′,i. (1)

The coefficient β0 in this regression is interpreted as the negative of the in-
verse elasticity of substitution between labor types j and j′.1 The constant

1The elasticity of substitution σ is defined as the relative change in the demand for different
factors induced by a given change in their relative prices.
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γj,j′ captures factors unaffected by labor supply which do affect relative wages.
In practice, such regressions usually include additional controls for observables
and/or time trends, labor market fixed effects in panel data, and might be es-
timated using instrumental variables to account for the endogeneity of labor
supply. More general specifications might also include additional terms for ag-
gregate types of labor, cf. appendix A.

Justification using production function

Denote wages by w and labor supply by N , so that Yij = log(wij) and Xij =
log(Nij). The differenced regression specification can be justified based on the
assumption that wages equal marginal productivity for some aggregate produc-
tion function f ,

wij =
∂fi(Ni1, . . . , NiJ)

∂Nij
,

and that the aggregate production function takes a constant elasticity of sub-
stitution form,

fi(Ni1, . . . , NiJ) =

 J∑
j=1

γijN
ρ
ij

1/ρ

.

These two assumptions together imply

wij =
∂fi(Ni1, . . . , NiJ)

∂Nij
=

 J∑
j′=1

γjN
ρ
ij′

1/ρ−1

· γj ·Nρ−1
j .

We get that the relative wage between groups j and j′ is equal to

wij
wij′

=
γij
γij′
·
(
Nij
Nj′

)ρ−1
.

Taking logs yields

Yj,i − Yj′,i = log(γj)− log(γj′) + β0 · (Xj,i −Xj′,i),

where β0 = ρ− 1. This equation has the desired form.

Equivalence to fixed effects regression with coefficient restrictions

There are various observationally and numerically equivalent ways to rewrite
and estimate regression (1). Note first that equation (1) has the form of a
difference-in-differences regression, where differences are taken across types j
of labor, as well as across cross-sectional units i. Such difference-in-differences
regressions can equivalently be written in fixed effects form, including labor

6



supply of all types j′ among the regressors, but imposing restrictions across
coefficients:

Yj,i = αi + γj +
∑
j′

βj,j′Xj′,i + εj,i, (2)

βj,j′ = β0 ·
{ (

1− 1
J

)
j = j′

− 1
J j 6= j′

(3)

Equation (3) can be written more compactly, in J × J matrix form, as

β = (βj,j′) = β0 ·
(
IJ − 1

JE
)

= β0 ·MJ , (4)

where IJ is the identity matrix, E is a matrix of 1s, and MJ is the demeaning-
matrix, projecting RJ on the subspace of vectors of mean 0.

Differencing this fixed-effects regression across different values of j yields
specification (1), with γj,j′ = γj−γj′ and εj,j′,i = εj,i−εj′,i. In matrix notation,
let

∆ = (−e, IJ−1)

be the (J − 1)× J matrix which subtracts the first entry from each component
of a J vector. Differencing the matrix M yields ∆ ·MJ = ∆. Pre-multiplying
equation (2) by ∆ yields the differenced regression in matrix form,

∆ · Yi = ∆ · γ + β0 ·∆ ·Xi + ∆ · εi.

It is useful to discuss the economic content of the restrictions on β imposed
by equation (4):

1. β · e = 0 for e = (1, . . . , 1):
Proportionally increasing the labor supply of every group by the same fac-
tor does not affect wages. This is a restriction implied by constant returns
to scale, if wages are assumed to correspond to marginal productivity
based on an aggregate production function.

2. βj,j′ = βj,j′′ for j′, j′′ 6= j:
The elasticity of substitution between different groups is the same for
all groups. The CES model imposes that there are only two possible
degrees of substitutability between different workers – either they are per-
fect substitutes, when they are the same type, or they have an elasticity
of substitution of σ = −1/β0.

3. βj,j = βj′,j′ :
The elasticity of demand is the same for all types of labor.

In combination, these restrictions 1-3 in fact imply the CES regression
model.

4. The CES model additionally implicitly entails that changes in labor supply
do not affect within-type inequality of wages. Given the small number of
types usually imposed, this is a strong restriction.
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2.2 Unrestricted least-squares estimation

Rather than imposing the very strong assumptions implied by the CES pro-
duction function model or its generalizations, we could instead “let the data
speak.” A natural way of doing so is to consider a specification with a large
number of types J , and unrestricted own- and cross-elasticities. Sticking to a
linear specification, we could attempt to estimate the model

Yj,i = αi + γj +
∑
j′

βj,j′Xj′,i + εj,i, (5)

using least squares, without imposing any cross-restrictions on the parameters
βj,j′ . This is the same regression model as implied by the CES production
function, except that the latter restricts the J2-dimensional parameter β to lie
in a 1 dimensional subspace.

This general model is not identified. Differencing across types j yields a
model which is identified. The data are informative about the effect of labor
supply on relative wages:

∆ · Yi = ∆ · γ + δ ·Xi + ∆ · εi. (6)

δ = ∆ · β (7)

We thus have J · (J − 1) free slope parameters δ to be estimated. Relative to
this general linear fixed effects model, the CES production function therefore
implies J2 − J − 1 additional restrictions.

Throughout the rest of this section, we will use the notation δ↑ to denote
the vectorized form of the (J − 1)× J matrix δ, where the rows of δ have been
stacked, and similarly for other such matrices. In this vectorized notation, we
have δ ·X = (IJ−1 ⊗X ′) · δ, where ⊗ denotes the Kronecker product. We can
thus write the OLS estimator for δ based on equation (6) as solution to the
least-squares problem

δ̂ = argmin
d

En
[
‖∆Y − (IJ−1 ⊗ (X ′ − En[X ′])) · d↑‖2

]
. (8)

2.3 Drawbacks

Structural estimation

There are obvious drawbacks to an approach based on the strong restrictions
implied by the CES model, or by its generalizations as reviewed in appendix A.
The estimates will in particular be inconsistent if the model is misspecified. The
following proposition provides an explicit characterization of misspecification
bias.

Proposition 1 (Misspecification)

• Suppose we observed i.i.d. draws of the J-vectors X and Y . Suppose
that these random vectors have finite joint second moments such that
det(Var(X)) 6= 0.
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• Let β̂0 be the least squares estimator of the structural model in equation
(4), and δ̂ the least squares estimator of the differenced unrestricted model
in equation (6).

• Let β0 be the probability limit, as sample size goes to infinity, of β̂0, and
let δ be the probability limit of δ̂.

Then we can write β0 as

β0 = argmin
b0

‖b0 ·∆− δ‖δ, (9)

where
‖d‖δ :=

(
d′↑ · (IJ−1 ⊗Var(X)) · d↑

)1/2
. (10)

In words, β0 ·∆ is the orthogonal projection of δ onto the subspace of multiples
of ∆ with respect to the norm ‖d‖δ on R(J−1)×J .

The proof of this proposition can be found in appendix B. The result is eas-
ily generalized to other structural models, which impose for instance that β =
β1 ·M1 + β2 ·M2 for some matrices M1 and M2. The matrix defining the norm
‖d‖δ is block-diagonal.

The bias induced by functional form choices in the structural model is not
only a theoretical problem, but of practical importance in various contexts. This
is reflected in non-robust findings, where qualitative conclusions depend on the
specifics of the functional form assumptions imposed.

Card (2009, p5f) discusses an important example, the estimated impact of
past migration on wage inequality in the US. One side of the literature on
this question argues that there were large effects. Their CES specifications
assume (i) migrants and natives are perfect substitutes in the labor market,
while (ii) the elasticity of substitution between high school dropouts and high
school graduates is the same as between either of those and college graduates or
those with a postgraduate degree. The other side of this literature argues that
there were negligibly small effects. Their CES specifications assume2 that (i)
natives and migrants are imperfect substitutes, while (ii) high school dropouts
and high school graduates are perfect substitutes.

We can interpret these diverging results in light of proposition 1. Suppose
that types 1 and 2 (dropouts and high school graduates) are in fact perfect
substitutes, and that the share of type 1 in the population is small. This implies
a coefficient β1,1 close to 0. Suppose that for other types j, the own-elasticity
is negative, βj,j � 0. The structural CES-model imposes all own-elasticities to

be the same, so that β̂0 � 0. An increase of the population of type 1 is then
predicted to depress type 1’s wages significantly, in contrast to what the correct,
unrestricted model would have predicted.

2Card argues that these assumptions are justified by statistical tests.
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Unrestricted estimation

The key drawback of estimating an unrestricted model, on the other hand, is
its large variance. Fitting the differenced model requires the estimation of J2

parameters (including the fixed effects ∆·γ), using observations of only n·(J−1)
outcomes. When the number n of cross-sectional units is not much larger than
the number J of types, least squares will tend to over-fit, producing estimates
with a very large variance. When the number of types exceeds the number of
cross-sectional units, the model is actually not identified anymore. Presumably
this is the main reason why the literature resorts to highly restrictive structural
models, which reduce variance by heavily reducing the number of parameters
to be estimated.

2.4 Empirical Bayes estimation

We have discussed two approaches to estimation, one imposing a lot of re-
strictions based on some structural model, and one leaving the model rather
unrestricted. We have argued that both of these have serious disadvantages, in
theory as well as in practice.

There is a paradigm in statistics, called empirical Bayes estimation, which
can in many ways be seen as providing a middle ground between these two
approaches, and which combines the advantages of both. An elegant exposition
of this approach can be found in Morris (1983). The parametric empirical Bayes
approach can be summarized as follows:3

Y |η ∼ f(Y |η) (11)

η ∼ π(η|θ), (12)

where both f and π describe parametric families of distributions, and where
usually dim(θ) ≤ dim(η) − 2. Equation (11) describes the unrestricted model
for the distribution of the data given the full set of parameters η. Equation
(12) describes a family of “prior distributions” for η, indexed by the hyper-
parameters θ.

Estimation in the empirical Bayes paradigm proceeds in two steps. First
we obtain an estimator of θ. This can be done by considering the marginal
likelihood of Y given θ, which is obtained by integrating out over the distribution
of the parameters η:

Y |θ ∼ g(Y |θ) :=

∫
f(Y |η)π(η|θ)dη. (13)

In models with suitable conjugacy properties, such as the one we will consider
below, this likelihood can be obtained in closed form. A natural estimator for
θ is obtained by maximum likelihood,

θ̂ = argmax
θ

g(Y |θ). (14)

3All of the following probability statements are conditional on our regressors X
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Other estimators for θ are conceivable and commonly used, as well. In the
second step, η is estimated as the “posterior expectation”4 of η given Y and θ,
substituting the estimate θ̂ for the hyper-parameter θ,

η̂ = E[η|Y, θ = θ̂]. (15)

The general empirical Bayes approach includes fully Bayesian estimation as a
special case, if the family of priors π contains just one distribution. This general
approach also includes unrestricted frequentist estimation, as in section 2.2, as
a special case, when θ = η. The general approach finally includes structural
estimation, as in section 2.1, when again θ = η, and the support of θ is restricted
to parameter values allowed by the structural model.

The next section will specialize the empirical Bayes approach to our set-
ting, the section thereafter will discuss the advantages of the empirical Bayes
approach in this setting.

2.5 An empirical Bayes model for our problem

Let us now specialize the general empirical Bayes approach to the setting con-
sidered in this paper. Rather than providing a model for the distribution of the
full data Y given X, we directly model the distribution of the unrestricted OLS
estimator δ̂ of the differenced model, as in equation (8). This does not waste
any information, allows us to easily extend our approach to panel data and
instrumental variables below, and relies on a normal model which is justified
asymptotically. To construct a family of priors for δ = ∆ · β, we assume that
β is equal to a set of coefficients consistent with a structural model such as the
one of equation (4), plus some noise of unknown variance.

Modeling δ̂

We assume that the unrestricted OLS estimator δ̂ is normally distributed given
the true fixed effects and coefficients, unbiased for the true coefficient matrix δ,
and has a variance V :

δ̂↑|η ∼ N(δ↑, V ) (16)

This assumption can be justified by conventional asymptotics, letting the num-
ber n of cross-sectional units go to infinity. This assumption also holds for
the panel data and instrumental variables models discussed below. We further
assume that we have a consistent estimator V̂ of V , i.e.

V̂ · V −1 →p I.

We will use an estimator V̂ robust to clustering at the level of cross-sectional
units i; appendix A provides a brief discussion.

4The quotation marks reflect the fact that this would only be a posterior expectation in
the strict sense if θ̂ had been chosen independently of the data, rather than estimated.
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Prior distributions

Let us now turn to specifying a family of “prior distributions.” We model
β as corresponding to the coefficients of the structural CES model plus some
disturbances, that is

β = (βj,j′) = β0 ·MJ + ζ

ζj,j′ ∼iid N(0, τ2),

where, as before, M =
(
IJ − 1

JE
)
. Differencing this model yields

δ = ∆ · β = β0 ·∆ + ∆ · ζ (17)

The term β0 ·∆ is equal to a fixed scalar β0 times ∆ ·MJ = ∆, and corresponds
to a set of coefficients satisfying the CES-production function model. The term
∆ · ζ is equal to a random J × J matrix ζ pre-multiplied by ∆, reflecting
the fact that we are estimating coefficients of the differenced model. Since
∆ ·∆′ = IJ + E =: P , the variance of this term is given by

Var((∆ · ζ)↑) = τ2 · IJ−1 ⊗ P.

If we were to set τ2 = 0, the empirical Bayes approach would reduce to the
structural CES model. If we let τ2 go to infinity we effectively recover the un-
restricted model. We consider τ2 to be a parameter to be estimated, however,
which measures how well a CES model fits the data.

We can summarize our model as follows, using the same vectorized notation
as before:

η = (δ, V )

θ = (β0, τ
2, V )

δ̂↑|η ∼ N(δ↑, V )

δ↑|θ ∼ N(β0 ·∆↑, τ2 · IJ−1 ⊗ P ) (18)

The variance of δ↑ in the last line is block-diagonal and equal to the variance of
the vectorized matrix (∆ · ζ)↑.

Solving for the empirical Bayes estimator

In order to obtain estimators of β2
0 and τ2, consider the marginal distribution

of δ̂ given θ. This marginal distribution is normal, too,

δ̂↑|θ ∼ N(β0 ·∆↑,Σ(τ2, V )), (19)

where (leaving the conditioning on θ implicit)

Σ(τ2, V ) = Var
(
δ̂↑

)
= Var

(
E
[
δ̂↑|η

])
+ E

[
Var

(
δ̂↑|η

)]
= τ2 · IJ−1 ⊗ P + V.
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Substituting the consistent estimator V̂ for V , we obtain the empirical Bayes
estimators of β0 and τ2 as solution to the maximum (marginal) likelihood prob-
lem

(β̂0, τ̂
2) = argmin

b0,t2
log
(

det(Σ(t2, V̂ ))
)

+ (δ̂↑ − b0 ·∆↑)′ · Σ(t2, V̂ )−1 · (δ̂↑ − b0 ·∆↑). (20)

We can simplify this optimization problem by “concentrating out” b0. Given t2,
the optimal b0 is easily seen to equal

β̂0 = (∆ · Σ(t2, V̂ )−1 ·∆′)−1 ·∆ · Σ(t2, V̂ )−1 · δ̂↑. (21)

Substituting this expression into the objective function, we obtain a function of
t2 alone which is easily optimized numerically.

Given the unrestricted estimates δ̂, as well as the estimates β̂0 and τ̂2, we
can finally obtain the “posterior expectation” of δ as

δ̂EB↑ = β̂0 ·∆↑ + IJ−1 ⊗ P ·
(
IJ−1 ⊗ P +

1

τ̂2
V̂

)−1
· (δ̂↑ − β̂0 ·∆↑) (22)

This is the empirical Bayes estimator of the coefficient matrix of interest.

Discussion

• Our approach is based upon directly modeling the distribution of the esti-
mated OLS coefficients δ̂. There is a one-to-one mapping between Y and
the estimated coefficients, fixed effects ∆ · γ, and residuals of the unre-
stricted model. To the extent that residuals and fixed effects do not carry
additional information about δ, our approach does not waste any informa-
tion; this is true, in particular, for a standard parametric linear/normal
model .

• It is instructive to relate the proposed empirical Bayes procedure to struc-
tural estimation of the CES model. First, β̂0 · ∆ is very similar to the
structural estimator of δ discussed in section 2.1, in that in both cases
we are considering an orthogonal projection of the unrestricted estimator
δ̂ onto the subspace of multiples of ∆. The projection is with respect to
different norms, however. In the case of section 2.1, the projection is with
respect to the norm

‖d‖δ :=
(
d′↑ · (IJ−1 ⊗Var(X)) · d↑

)1/2
(compare proposition 1), in the context of our empirical Bayes approach
the projection is with respect to the norm

‖d‖δ,EB =
(
d′↑ · Σ(t2, V̂ )−1 · d↑

)1/2
.

The two objective functions coincide (up to a multiplicative constant) if

and only if (i) τ2 = 0, and (ii) V̂ is estimated assuming homoskedasticity.
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• Second, the empirical Bayes estimator δ̂EB of δ is not given by β̂0 · ∆.
Instead we can think of it as an intermediate point between β̂0 ·∆ and the
unrestricted estimator δ̂. The relative weights of these two are determined
by the matrices τ̂2 · IJ−1 ⊗ P and V̂ . When τ̂2 is close to 0, we get

δ̂EB ≈ β̂0 ·∆. When τ̂2 is large, we get δ̂EB ≈ δ̂.

• Our construction of a family of priors thus implies that, when the struc-
tural model appears to describe the data well, then our estimate of δ will
be close to what is prescribed by the structural model. When the struc-
tural model fits poorly, then the estimator will essentially disregard it and
provide estimates close to the unrestricted ones. A key point to note is
that this is done in a data-dependent, optimal and smooth way, in contrast
to the arbitrariness and discontinuity of pre-testing procedures.

A slightly more general model

In our application, we will consider specifications involving many types j. For
such specifications, shrinking towards the CES model seems problematic. The
CES model implies that all other types of labor are complements for a given
type, with the same elasticity of substitution, including types very similar in
their demographics to the given type.

In a spirit close to the nested CES models, our preferred specification will
thus take the following, slightly more general form.

β = (βj,j′) = β0 ·M1 + β1 ·M2 + ζ

ζj,j′ ∼iid N(0, τ2), (23)

where M1 = M as before, and

M2,j,j′ =

{
−
(

1
kj
− 1

J

)
j′ ∈ Bj

1
J else

, (24)

and where Bj denotes a set of size kj of types j′ which are considered to be
similar to j; analogous to the “nests” in the nested CES production function.
All of our previous discussion immediately generalizes to this model.

2.6 Advantages of empirical Bayes estimation

The proposed approach has a number of advantages relative to structural and
unrestricted estimation approaches. We now provide a formal discussion of some
of these advantages.

Consistency

In contrast to structural estimation in the misspecified case, the empirical Bayes
estimator of δ is consistent as sample size goes to infinity:

14



Proposition 2 (Consistency)

• Suppose we observed i.i.d. draws of the J-vectors X and Y , which have
finite joint second moments, where det(Var(X)) 6= 0.

• Let δ̂ be the least squares estimator of the unrestricted model in equation
(5), and let δ be the probability limit of δ̂.

• Let δ̂EB be the empirical Bayes estimator of δ discussed in section 2.5.

Then
δ̂EB →p δ

as sample size n goes to infinity.

The proof of this proposition can again be found in appendix B.

Data-driven predictions

Our proof of consistency relies on the fact that the variance V of δ̂, es well as
the corresponding estimate V̂ , go to 0. In the limiting case, the empirical Bayes
estimator becomes equal to the unrestricted estimator. We shall now discuss a
variant of this argument which presumes not that Var(δ̂) ≈ 0, but instead only

that the variance of the predicted value at some point x, Var(x′ · δ̂) is small. The
following argument shows that for such values the predicted value using empir-
ical Bayes is again close to the predicted value using unrestricted estimation –
and thus also to the predicted value using the true coefficients δ. This insight
is particularly valuable when considering historical counterfactuals (“how much
did migration affect wage inequality?”), which might rely on variation which is
actually observed in the data.

Consider again the formula for the empirical Bayes estimator of δ, equation
(22). Slightly rearranging the expression for δ̂EB↑ in this equation, we can write
it as

δ̂EB↑ = δ̂↑ + V̂ ·
(
τ̂2 · IJ−1 ⊗ P + V̂

)−1
· (β̂0 ·∆↑ − δ̂↑).

Consider further a direction x such that

(IJ−1 ⊗ x′) · V̂ · (IJ−1 ⊗ x′)′ ≈ 0,

noting that (IJ−1 ⊗ x′) · δ↑ = δ · x. Because V̂ is a symmetric matrix, this

condition holds if and only if (IJ−1 ⊗ x′) · V̂ ≈ 0. For this direction x we get

δ̂EB · x = (IJ−1 ⊗ x′) · δ̂EB↑

= (IJ−1 ⊗ x′) ·
[
δ̂↑ + V̂ ·

(
τ̂2 · IJ−1 ⊗ P + V̂

)−1
· (β̂0 ·∆↑ − δ̂↑)

]
≈ (IJ−1 ⊗ x′) · δ̂↑ = δ̂ · x.
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For what values x can we expect the condition (IJ−1 ⊗ x′) · V̂ · (IJ−1 ⊗ x′)′ ≈ 0

to hold? Given the form of V̂ for least squares estimation (cf. appendix A),
this will happen whenever x′ ·Varn(X)−1 · x ≈ 0.

James-Stein shrinkage and dominance

Empirical Bayes estimators are generalizations of the famous James-Stein shrink-
age estimator; see for instance Efron and Morris (1973), Morris (1983), and
Stigler (1990). James-Stein shrinkage applies to the setting where Yi|η ∼
N(ηi, 1), the goal is to estimate η, and loss is evaluated in terms of mean squared
error, summed across i. The empirical Bayes estimator in this setting, based on
a family of normal i.i.d. priors for η, caused a great deal of surprise in statistics
when it was demonstrated that it uniformly dominates the maximum likelihood
estimator η̂ = Y : The empirical Bayes estimator has smaller mean squared er-
ror, no matter what the true η is, as long as dim(Y ) ≥ 3. This dominance result
is likely to generalize to many other settings (see for instance Xie et al. 2012),
though it cannot be expected to hold for all empirical Bayes estimators.

We will demonstrate numerically that dominance relative to both the unre-
stricted estimator and the structural estimator seems to hold for a wide range
of values for η in our setting.

2.7 Extensions: instrumental variables, panel data

Recall that throughout our analysis of empirical Bayes estimation we took as
our point of departure some (asymptotically) normal unrestricted estimator δ̂,

in combination with some estimator V̂ of its variance. We justified this point
of departure by an assumption of exogenous cross-sectional variation of labor
supply X, which implied that δ̂ could be obtained using ordinary least squares.

In this section we consider two extensions, instrumental variables and panel
data, which both yield unrestricted estimators δ̂ and V̂ satisfying the same as-
sumptions. Based on such unrestricted estimators, all our subsequent discussion
in sections 2.5 and 2.6 applies verbatim.

Instrumental variables

Assume that we have data generated by the structural relationship considered
in section 2.2, that is

∆ · Yi = ∆ · γ + δ ·Xi + ∆ · εi,
δ = ∆ · β.

Before, we imposed that the regressorsX are exogenous, so that Cov(Xi,∆·εi) =
0. Assume now instead that there are instruments Z at our disposition which
satisfy

Cov(Zi,∆ · εi) = 0. (25)
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This condition implies the estimating equation

En

[
Z · (∆Y − (IJ−1 ⊗ (X ′ − En[X ′])) · δ̂↑)′

]
= 0.

If the model is just-identified given the available instruments, so that in partic-
ular dim(Z) = dim(X), this implies that we can estimate δ by

δ̂↑ = En [Z · (IJ−1 ⊗ (X ′ − En[X ′]))′] · En [Z ·∆Y ] . (26)

Under standard asymptotics, this gives an asymptotically normal estimator with
a variance that can be consistently estimated by

V̂ = (Z′X)−1Z′V̂ar(∆ε)Z(X′Z)−1,

cf. appendix A. We are thus back to the setting imposed at the outset of section
2.5.

An interesting case arises if some of the instruments appear to be weak. In
that case there are values x such that x′ · En[Z · (X ′ − En[X ′])] ≈ 0, which in

turn implies (IJ−1 ⊗ X ′) · V̂ −1 ≈ 0. This is in some sense the reverse case of
the one we discussed when considering data-driven predictions:

δ̂EB · x = (IJ−1 ⊗X ′) · δ̂EB↑
= (IJ−1 ⊗X ′) ·

[
β̂0 ·∆↑+

V̂ −1 · IJ−1 ⊗ P ·
(
IJ−1 ⊗ P · V̂ −1 +

1

τ̂2
I

)−1
· (δ̂↑ − β̂0 ·∆↑)

]
≈ β̂0 · (IJ−1 ⊗X ′) ·∆↑ = β̂0 ·∆ · x.

We thus get that for coefficients such that the variation in the data is unin-
formative, predictions are driven entirely by extrapolation from well-identified
coefficients based on the structural model. This argument carries over to the
limiting case of underidentified models, where dim(Z) < dim(X).

Panel data

If panel data are available, we can allow for additional forms of endogenous un-
observed heterogeneity, such as time-invariant market-level effects, and common
time-trends across markets. We could for instance consider the model

∆ · Yit = γt + γi + δ ·Xi + ∆ · εit,
δ = ∆ · β,

where
E[εit|X] = 0.

As before, we can estimate this model by OLS with fixed effects, and will obtain
an asymptotically normal estimator δ̂ as well as a corresponding estimator V̂ of
its variance.

17



2.8 Inference

Inference in our setting is easily implemented, though conceptually somewhat
subtle. We shall construct empirical Bayes confidence regions C for δ. Such
confidence regions are required to satisfy

P (δ ∈ C|θ) ≥ 1− α, (27)

and were first proposed by Morris (1983) and analyzed further by Laird and
Louis (1987) and Carlin and Gelfand (1990). Definition (27) arguably captures
the natural notion of inference corresponding to empirical Bayes estimation.
Empirical Bayes confidence regions are intermediate between frequentist con-
fidence sets (which satisfy P (δ ∈ C|η) ≥ 1 − α), and Bayesian credible sets
(which satisfy P (δ ∈ C|Y ) ≥ 1 − α). The requirement of definition (27) is
slightly weaker than the requirement of frequentist coverage.

We follow Laird and Louis (1987) in constructing such an inference proce-

dure, using the bootstrap to capture sampling variation of the estimates δ̂EB ,
and posterior inference to capture uncertainty about δ given these estimates.
The proposed procedure obtains a predictive distribution for δ which is similar
to a posterior distribution of the form

P
(
δ|δ̂, V̂

)
=

∫
P
(
δ|δ̂, V̂ , θ

)
P
(
θ|δ̂, V̂

)
dθ,

but replaces the posterior for the hyperparameter θ by the distribution for θ̂

obtained using the bootstrap, thus obtaining a mixture distribution M
(
δ|δ̂, V̂

)
.

Our proposed procedure can be summarized as follows:

1. Draw r = 1, . . . , R i.i.d. bootstrap samples from the empirical distribution
of (Yi, Xi).

2. For each of these R samples, obtain estimates

• δ̂r using differenced OLS,

• V̂r using clustering-robust variance estimation,

• and β̂0,r and τ̂2r by maximizing the marginal likelihood,

as discussed in section 2.5.

3. Calculate

• the posterior mean δ̂EBr and variance V EBr for δ

• conditional on δ̂r and θ̂r,

• using equation (22) and

V EBr = Var(δ|δ̂ = δ̂r, θ = θr)

=
1

τ̂2
IJ−1 ⊗ P ·

(
1

τ̂2
IJ−1 ⊗ P + V̂

)−1
· V̂ .

18



4. Consider the mixture distribution

M
(
δ|δ̂, V̂

)
:=

1

R

∑
r

N
(
δ̂EBr , V EBr

)
. (28)

5. Obtain confidence intervals for components of δ using the appropriate

quantiles of the mixture distribution M
(
δ|δ̂, V̂

)
.

Discussion

Empirical Bayes confidence sets need to take into account two types of variation.
This is best illustrated by first considering two invalid inference procedures, both
of which ignore one of these two sources of variation. First, one might consider
sets with the right coverage under the pseudo-posterior distribution, so that
P (δ ∈ C|δ̂, θ = θ̂) ≥ 1−α. Such sets are similar to Bayesian credible sets. Such
sets ignore the fact that θ had to be estimated, and therefore might undercover in
the empirical Bayes sense. Second, one might estimate the sampling variation of
δ̂EB , for instance using the bootstrap. Confidence sets obtained in this way are
similar to frequentist confidence sets, but ignore the fact that there is residual
uncertainty about δ conditional on δ̂ and θ.

The situation is analogous to the forecasting of outcomes using a linear
regression. Forecast uncertainty involves uncertainty about regression slopes
(analogous to θ in our case, and captured by the bootstrap), and uncertainty
about the outcome around its conditional expectation (analogous to the pseudo-
posterior distribution in our setting). A correct inference procedure combines
both aspects.
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3 Empirical analysis

3.1 The EU-SILC data

Our empirical analysis uses the EU Survey of Income and Living Conditions
(EU-SILC) data. These data are provided by Eurostat, the statistical agency of
the European Union. Background on these data can be found on the website of
EU-SILC5, a very detailed description is available in Eurostat (2014). The EU-
SILC project was launched in 2003 in six member states of the European Union
(Belgium, Denmark, Greece, Ireland, Luxembourg and Austria) and Norway.
Since 2004, the survey covers the old EU-15 member countries (except Germany,
the Netherlands, the United Kingdom), as well as Estonia, Norway and Iceland.
All countries of the EU-25 are covered since 2005.

The EU-SILC aims to collect comparable microdata on income, poverty, so-
cial exclusion and living conditions. EU-SILC participation is compulsory for
all EU member states. The survey is based on a “common framework,” defined
by harmonised lists of variables, by a recommended design for implementing
EU-SILC, by common requirements (for imputation, weighting, sampling er-
rors calculation), common concepts (household and income) and classifications
aiming at maximising comparability of the information produced.

The EU-SILC provides two types of annual data, cross-sectional data with
variables on income, poverty, social exclusion and other living conditions, and
longitudinal data pertaining to individual-level changes over time, observed pe-
riodically over a four year period. We only use the cross-sectional data. Social
exclusion and housing condition information is collected mainly at the household
level while labour, education and health information is obtained for all persons
in the survey that are aged 16 and over. Income with detailed components is
mainly collected at the personal level.

We use variables constructed in a way as close as possible to the literature,
which mainly focuses on the United States and uses data from the US Current
Population Survey (CPS) (Autor et al., 2008),6 as well as from the US Census
(Card, 2009). We map the variables available in the EU-SILC data to those of
the models of labor supply considered in section 2 as follows:

• For our main analysis, the cross-sectional units i considered are NUTS
2 regions; we perform additional analyses on the country- and EU-level,
however. Most NUTS 2 regions have between 800.000 and 3 million in-
habitants, regional boundaries are defined based on existing administrative
subdivisions; figure 1 shows a map of all these regions.

• We employ various specifications for labor-types j. For our baseline re-
sults, which are replicating approaches from the literature, we classify
workers by education (2 or 4 subgroups), and possibly by migrant/native
status.

5EU-SILC home, accessed February 17 2015
6More specifically, the March CPS, May CPS, and Outgoing Rotation Group samples.
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For our preferred specifications, based on the empirical Bayes methodology
proposed, we consider various richer sets of types which classify workers
additionally by age, work experience, and occupation.

• Wages of each employed individual in the micro-data are calculated as
12
52 times gross monthly earnings, divided by the number of hours usually
worked per week in their main job.

Type-specific wages wj,i,t are then calculated as averages (appropriately
weighted using survey weights) for all individuals of a given type j in
region i and year t. Outcomes Yj,i,t are defined as Yj,i,t = log(wj,i,t).

• Following Card (2009), we take labor supply Nj,i,t to equal the total hours
worked per year for type j, region i, and year t. Regressors Xj,i,t are
defined as Xj,i,t = log(Nj,i,t).

As a robustness check, we alternatively define labor supply N as the esti-
mated total number of people of a given type in a given region and year.

Figure 1: NUTS 2 regions of the EU

Note: Map of the European Union NUTS 2 regions, 2007. Source: Wikipedia,
January 2, 2015.
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3.2 Replication of Card (2009) for Europe

3.3 Main empirical results
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4 Demonstrating the performance of the empir-
ical Bayes estimator

In this section, we present a series of simulation and evaluation exercises com-
paring the performance of our empirical Bayes procedure to its competitors,
structural estimation and unrestricted estimation. Section 4.1 presents simula-
tions corresponding to the empirical Bayes paradigm, fixing the hyperparameter
θ and drawing from the implied distributions of the parameters η and data Y .
Section 4.1 presents simulations corresponding to the frequentist paradigm, fix-
ing the parameter η and drawing from the implied distribution of the data Y .

We then discuss results based on our application. Section 4.3 considers
simulations similar to section 4.2, but governed by parameters calibrated to
match our empirical application. Section 4.4 implements split-sample exercises
to evaluate the out-of-sample performance of alternative forecasting procedures.

4.1 Monte Carlo results, fixing θ, drawing from the dis-
tribution of η and Y

Corresponding to the different paradigms of statistical inference (Bayesian, fre-
quentist, empirical Bayes), there are different notions of the performance of an
estimator. The Bayesian perspective considers expected loss averaged over pos-
sible values of both θ and η. The frequentist perspective considers expected loss
conditional on η, averaging just over repeated draws of the data. The empirical
Bayes perspective considers expected loss averaging over η but conditional on
θ. Let us first consider simulations based on the empirical Bayes perspective,
where we repeatedly draw values for η (in particular, own- and cross-elasticities
β), and data generated by the parameter η.

In our simulations, we vary the sample size n, the number of regressors
J , the residual variance σ2, and the parameter τ2 which measures how well
the structural model fits the data generating process. For all simulations, the
regressors Xij are i.i.d. draws from the uniform distribution on [0, 1], and the
regression residuals are normally distributed with variance σ2. Results are based
on 1.000 Monte Carlo draws for each design. Table 1 shows the results of these
simulations. For each design we show the mean squared error, calculated as
an average over Monte Carlo draws of β and Y , for four alternative estimation
procedures, relative to the proposed empirical Bayes procedure

At one extreme of the designs considered are those with a small sample
size, a large number of regressors, a high variance of residuals, and a good
fit of the structural model (small τ2). In these designs we would expect the
structural model to work well and to potentially outperform the empirical Bayes
procedure, since it exploits additional correct information. And indeed we do
find that structural estimation dominates empirical Bayes at the very extreme
of the range of designs considered.

At the other extreme of the designs considered are those with large sample
size, small number of regressors, small variance of residuals, and poor fit of the
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structural model (large τ2). In these designs we would expect the unrestricted
estimator to work well, since it has a small variance and does not shrink to-
ward the incorrect structural model. Nonetheless, we do find that unrestricted
estimation never dominates empirical Bayes for any of the designs considered.
It does seem like unrestricted estimation is uniformly dominated by empirical
Bayes in the sense of average mean squared error given θ.

Over almost the entire range of the simulations considered, empirical Bayes
performs very well and better than either of the alternatives structural / un-
restricted estimation. For designs where τ2 is large, estimation based on the
structural model yields estimates that perform very poorly relative to empirical
Bayes, as to be expected. And for all designs considered, the variance reduction
achieved by empirical Bayes implies that empirical Bayes performs better than
unrestricted estimation, sometimes significantly so.

The last column of table 1 shows, for purposes of comparison, the infeasible
oracle empirical Bayes estimator, where τ2 is assumed to be known rather than
estimated. As this column shows, knowledge of τ2 does not appear to result in
significant improvements of performance.

4.2 Monte Carlo results, fixing η, drawing from the dis-
tribution of Y

The last subsection considered simulations where θ was fixed but η was drawn
repeatedly, an approach which corresponds to the empirical Bayes paradigm.
We shall now turn to simulations in the spirit of the frequentist paradigm,
where η is fixed and we repeatedly sample from the distribution of Y .

Specifically, we are considering coefficient matrices of the form

β = β00 ·MJ0 + β01 ·MJ1 + β02 ·MJ2,

where MJ0 is equal to MJ in the first J/4 columns, and zero elsewhere, MJ2 is
equal to MJ in the last J/4 columns, and zero elsewhere, and MJ1 is equal to
MJ in the middle J/2 columns, and zero elsewhere. This design implies that
the structural model is correct if and only if β00 = β01 = β02. Table 2 shows
the results of these simulations. The values for n, J , and σ2 are the same as
considered before, as are the distributions of Xij and of the residuals. For each
combination of these values, we consider different combinations of β00, β01, and
β02.

Structural estimation dominates empirical Bayes when the structural model
is correctly specified, that is when β00 = β01 = β02. Not very surprisingly, the
reduction in MSE by imposing the structural model relative to empirical Bayes
estimation can be made arbitrary large when the model is exactly right, the
number of parameters J is large, and estimates are noisy (small sample size n,
large residual variance σ2). On the other hand, structural estimation performs
significantly worse when the structural model is violated and the variance of
unrestricted estimation is not too large.

The analogy to the famous result of James-Stein (that empirical Bayes dom-
inates unrestricted estimation in the “many means” setting) would lead one to
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Table 1: Mean Squared Error of alternative estimators relative to empirical
Bayes conditional on θ

design parameters MSE relative to empirical Bayes estimation
n J σ2 β0 τ2 structural unrestricted emp. Bayes oracle e.B.
50 4 1.0 1.0 0.2 1.53 1.62 1.00 0.94
50 16 1.0 1.0 0.2 0.82 1.21 1.00 1.00
200 4 1.0 1.0 0.2 3.69 1.01 1.00 0.84
200 16 1.0 1.0 0.2 4.17 1.11 1.00 1.01
50 4 0.5 1.0 0.2 2.28 1.32 1.00 0.94
50 16 0.5 1.0 0.2 1.54 1.14 1.00 1.01
200 4 0.5 1.0 0.2 5.28 0.74 1.00 0.67
200 16 0.5 1.0 0.2 7.86 1.04 1.00 1.00

50 4 1.0 1.0 0.5 2.39 1.31 1.00 0.97
50 16 1.0 1.0 0.5 1.56 1.15 1.00 1.01
200 4 1.0 1.0 0.5 7.78 1.08 1.00 0.97
200 16 1.0 1.0 0.5 7.89 1.03 1.00 1.00
50 4 0.5 1.0 0.5 3.95 1.14 1.00 0.97
50 16 0.5 1.0 0.5 2.91 1.07 1.00 1.01
200 4 0.5 1.0 0.5 14.87 1.04 1.00 0.99
200 16 0.5 1.0 0.5 15.15 1.01 1.00 1.00

50 4 1.0 1.0 1.0 4.06 1.19 1.00 0.99
50 16 1.0 1.0 1.0 2.94 1.06 1.00 1.01
200 4 1.0 1.0 1.0 15.47 1.05 1.00 1.00
200 16 1.0 1.0 1.0 14.94 1.01 1.00 1.00
50 4 0.5 1.0 1.0 7.22 1.08 1.00 0.99
50 16 0.5 1.0 1.0 5.53 1.02 1.00 1.01
200 4 0.5 1.0 1.0 30.13 1.02 1.00 1.00
200 16 0.5 1.0 1.0 29.97 1.00 1.00 1.00

Notes: This table compares the performance of alternative estimators based
on 1.000 Monte Carlo draws given θ. For details, see description in section 4.1.
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conjecture that empirical Bayes might dominate unrestricted estimation in the
present setting, as well. This seems to be the case over a very wide range of
parameter values, but not uniformly so, as can be seen in table 2. Empirical
Bayes compares favorably for most of the parameter space nonetheless; further
exploration will be necessary to better understand its risk properties.

Table 2: Mean Squared Error of alternative estimators relative to empirical
Bayes conditional on η

design parameters mean squared error
n J σ2 β00 β01 β02 structural unrestricted emp. Bayes
50 4 1.0 1.0 1.0 1.0 0.41 3.48 1.00
50 16 1.0 1.0 1.0 1.0 0.02 1.35 1.00
200 4 1.0 1.0 1.0 1.0 0.75 6.37 1.00
200 16 1.0 1.0 1.0 1.0 0.09 5.36 1.00
50 4 0.5 1.0 1.0 1.0 0.54 4.61 1.00
50 16 0.5 1.0 1.0 1.0 0.02 1.36 1.00
200 4 0.5 1.0 1.0 1.0 1.33 11.17 1.00
200 16 0.5 1.0 1.0 1.0 0.09 5.08 1.00

50 4 1.0 1.0 1.0 6.0 3.91 1.16 1.00
50 16 1.0 1.0 1.0 6.0 0.61 1.21 1.00
200 4 1.0 1.0 1.0 6.0 14.65 1.04 1.00
200 16 1.0 1.0 1.0 6.0 1.30 0.47 1.00
50 4 0.5 1.0 1.0 6.0 7.15 1.07 1.00
50 16 0.5 1.0 1.0 6.0 1.14 1.13 1.00
200 4 0.5 1.0 1.0 6.0 28.82 1.02 1.00
200 16 0.5 1.0 1.0 6.0 1.18 0.21 1.00

50 4 1.0 0.0 1.0 6.0 4.67 1.07 1.00
50 16 1.0 0.0 1.0 6.0 0.80 1.17 1.00
200 4 1.0 0.0 1.0 6.0 18.92 1.01 1.00
200 16 1.0 0.0 1.0 6.0 3.83 1.01 1.00
50 4 0.5 0.0 1.0 6.0 8.90 1.01 1.00
50 16 0.5 0.0 1.0 6.0 1.50 1.11 1.00
200 4 0.5 0.0 1.0 6.0 37.52 1.00 1.00
200 16 0.5 0.0 1.0 6.0 5.02 0.67 1.00

Notes: This table compares the performance of alternative estimators based
on 1.000 Monte Carlo draws given η. For details, see description in section 4.2.
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4.3 Calibrated Monte Carlo simulations

4.4 Split sample results

5 Conclusion

27



A Some additional details

Generalizations of the CES approach

One straightforward generalization of the structural regression approach moti-
vated by CES production functions replaces labor types j by aggregated labor
types, including various subtypes which are assumed to be perfectly substi-
tutable. Such a generalization replaces log labor supply Xj by

X̃k = log

 ∑
j:kj=k

θjNj

 ,

where the aggregate labor type k includes subtypes j, which are aggregated
linearly using productivity weights θj .

Another generalization, motivated by nested CES production functions, is
based on aggregate labor types as well, but assumes that subtypes are imper-
fectly substitutable. Such an approach would estimate regressions of the form

Yj,i − Yj′,i = γj,j′ + β · (Xj,i −Xj′,i) + γ · (X̃kj ,i − X̃kj′ ,i) + εj,j′,i,

where

X̃k = log


 ∑
j:kj=k

θjN
ρ2
j

1/ρ2
 ,

and ρ2 = 1 + β. This regression can be estimated in two steps, first considering
comparisons of types j of the same aggregate type kj to get β and ρ2, then
considering comparisons of types j of different aggregate type.

Estimating the variance of δ̂

Let V be the variance of the OLS estimator of δ̂ given η. Denote by X the matrix
stacking (IJ−1⊗ (X ′i−En[X ′])) across cross-sectional units, and ∆Y the corre-

spondingly stacked differenced outcomes ∆ · Yi so that δ̂↑ = (X′X)−1X′(∆Y).
Then V is given by

V = Var(δ̂|η) = (X′X)−1X′Var(∆ε)X(X′X)−1.

With homoskedastic errors in the differenced regression, this simplifies to V =
σ2 · (X′X)−1.

If errors are uncorrelated, we can estimate V by the usual heteroskedasticity
robust variance estimator

V̂ = (X′X)−1X′V̂ar(∆ε)X(X′X)−1.

where
V̂ar(∆ε) = diag(e2

ij).
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If clustering is a concern, as is the case in our setting, we can use the blog-
diagonal

V̂ar(∆ε)ij,i′j′ =

{
0 i 6= i′

eijei′j′ i = i′
.

If we were willing to impose homoskedasticity, we could take

V̂ = e′e/df · (X′X)−1.

where df = (nJ − J2).

B Proofs

Proof of proposition 1:

• As discussed in section 2.2, we can rewrite either estimator as solution to
a least-squares problem after projecting out location means (i.e., the fixed
effects α) and regressor means (to take care of the fixed effects γ) for each
location i, that is, we can write

δ̂ = argmin
d

En
[
‖∆Y − (IJ−1 ⊗ (X ′ − En[X ′])) · d↑‖2

]
and

β̂0 = argmin
b0

En
[
‖∆Y − b0 · (IJ−1 ⊗ (X ′ − En[X ′])) ·∆↑‖2

]
,

where En denotes sample averages.

• The usual arguments for consistency of m-estimators (cf. van der Vaart
2000, chapter 3) yield probability limits of

δ = argmin
b

E
[
‖∆Y − (IJ−1 ⊗ (X ′ − E[X ′])) · d↑‖2

]
and

β0 = argmin
b0

E
[
‖Y − b0 · (IJ−1 ⊗ (X ′ − E[X ′])) ·∆↑‖2

]
.

• Both probability limits are orthogonal projections. The estimand β0 re-
sults from an orthogonal projection on a linear subspace of the space
projected onto for the unrestricted estimator δ. The law of iterated pro-
jections thus yields

β0 = argmin
b0

E
[
‖(IJ−1 ⊗ (X ′ − E[X ′]) · (δ↑ − b0 ·∆↑)‖2

]
,

which shows that our claim holds for

‖d‖2δ = d′↑ · E [(IJ−1 ⊗ (X ′ − E[X ′]))′ · (IJ−1 ⊗ (X ′ − E[X ′]))] · d↑.
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• Algebraic manipulation of this expression finally yields

‖d‖2δ := d′↑ · (IJ−1 ⊗Var(X)) · d↑.

�

Proof of proposition 2:

• By definition of δ we have δ̂ →p δ. For the usual reasons, we have V =
Var(β̂) = 1

nV1, and thus V̂ = Op(1/n).

• By the standard arguments for consistency of m-estimators van der Vaart
(2000, chapter 3), we get convergence of the hyperparameters,

(β̂0, τ̂
2)→p argmin

b0,t2
log
(
det(Σ(t2, 0))

)
+ (δ̂↑ − b0 ·∆↑)′ · Σ(t2, 0)−1 · (δ̂↑ − b0 ·∆↑).

The required conditions for applicability of the general consistency result
are uniform consistency of the objective function and well-separatedness
of the maximum. Both are easily verified to hold given convergence of β̂
and V̂ .

• Combining these results (p lim τ̂2 > 0, p lim V̂ = 0, and p lim δ̂ = δ), the
claim follows from

δ̂EB↑ = β̂0 ·∆↑ + IJ−1 ⊗ P ·
(
IJ−1 ⊗ P +

1

τ̂2
V̂

)−1
· (δ̂↑ − β̂0 ·∆↑)

by Slutsky’s theorem.

�
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